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ABSTRACT

Research on uncertainty quantification and mitigation of software-

intensive systems and (self-)adaptive systems, is increasingly gain-

ing momentum, especially with the availability of statistical infer-

ence techniques (such as Bayesian reasoning) that make it possi-

ble to mitigate uncertain (quality) attributes of the system under

scrutiny often encoded in the system model in terms of model pa-

rameters. However, to the best of our knowledge, the uncertainty

about the choice of a specific system model did not receive the

deserved attention.

This paper focuses on self-adaptive systems and investigates how

to mitigate the uncertainty related to the model selection process,

that is, whenever one model is chosen over plausible alternative

and competing models to represent the understanding of a system

and make predictions about future observations. In particular, we

propose to enhance the classical feedback loop of a self-adaptive sys-

tem with the ability to tame the model uncertainty using Bayesian

Model Averaging. This method improves the predictions made by

the analyze component as well as the plan that adopts metaheuristic

optimizing search to guide the adaptation decisions. Our empiri-

cal evaluation demonstrates the cost-effectiveness of our approach

using an exemplar case study in the robotics domain.

CCS CONCEPTS

• Software and its engineering→ Software system models; Soft-

ware functional properties; • Computer systems organization →

Self-organizing autonomic computing.
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1 INTRODUCTION

Research on uncertainty understanding, quantification and miti-

gation in software-intensive and (self-) adaptive systems has been

the focus of several work in the last few years (e.g., [1–3]). Main-

stream approaches to represent and handle uncertainty involve the

enhancement of the analysis and plan activities of a feedback con-

trol loop architecture for adaptation (e.g., the well known MAPE-K

loop [4, 5]) with model-based inference techniques in order to make

predictions about future observations and plan actuation. These

techniques are complemented with the calculation of confidence

(or credible) intervals that incorporate uncertainty about parameter

estimates, under the assumption that the “best” model representing

the system (the phenomena of interest) has been selected [6, 7].

However, this approach could lead to overconfident assumptions

because it tends to ignore the existence of different plausible alter-

native models to represent the understanding about a system and/or

a process [8]. This condition is henceforth referred to as model-

selection uncertainty. In statistics, this leads to the bias-variance

problem, that is, parameter bias in under-specified models or to

over specified models possibly leading to poor predictions [9].

In self-adaptive systems poor predictions yield failures in rec-

ognizing the need of an adaptation or unnecessary adaptations

affecting dependability attributes [10]. Therefore, with the growing

uncertainty surrounding modern self-adaptive systems (e.g., robotic

software, autonomous vehicles), the ability to tame model uncer-

tainty is becoming a concern of primary importance. Recent pieces

of work demonstrate some effort in this direction, for example,

including learning capability in the feedback loop to improve the

model selection or definition step (e.g., [11, 12]). However, according

to [9], settling on a single model (even the best one) could involve

the risk of neglecting possible scenarios. To this end, a possible

solution is represented by the adoption of a Bayesian Model Averag-

ing (BMA) approach [13, 14]. This approach has been adopted in a

range of disciplines to incorporate model-selection uncertainty into

statistical inference and prediction [9, 13, 15–17], but, to the best

of our knowledge, it has never been exploited to enhance analysis

and plan activities in self-adaptive systems.

As illustrative example, let us consider a search and rescue

robotic system whose goal is helping to discover people in emer-

gency situations (more details are in Sec. 3). Due to little knowledge

of the environment to be explored, the robot may be unable to

go easily through a target location where a victim was remotely

detected, possibly not overcoming all obstacles in non-patterned

positions along the trail. The model that is often adopted in this

situation is the one that conjectures a problem in the sensorial

perception of the robot and drives adaptation to steer the robot’s

behavior. However, different scenarios could have transpired to
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Figure 1: High-level interpretation of BMA: each model is

shown as a robot holding its own beliefs (inspired by [15]).

cause safety issues. For example, (scenario1) there may have been a

problem mainly related to the speed, combined with high latency of

the breaking system: the robot was too fast to be able to avoid the

obstacle after a late detection. Or (scenario2) the low light intensity

(illuminance) of the search area could have prevented the detection

of small obstacles, or alternatively (scenario3) a low quality of the

sensors (e.g., camera, LiDAR, ultrasonic range finder, etc.) could

have been the main cause. Each 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑖 corresponds to a differ-
ent model of the world 𝑀𝑖 associated with a different estimation

of the occurrence of negative events, such as a safety violation 𝜎 ,
denoted by 𝑝 (𝜎 |𝑀𝑖 ). We do not know the true scenarioM, but we

do not really care about it either. Indeed, all that is relevant for our

decision about the right action to undertake is the estimation of

𝑝 (𝜎) unconditional on any particular model of the world𝑀𝑖 .

The probability 𝑝 (𝜎) is referred to as the BMA estimate [17].

Adopting BMA means changing the modelling perspective: rather

than first selecting the most plausible scenario𝑀∗ and then using

the related estimation 𝑝 (𝜎 |𝑀∗), the likelihood of safety violations

is assessed taking into account all scenarios simultaneously. This is

performed by computing a weighted average, accounting for the

plausibility of each scenario with a dynamic weighting scheme,

adjusted as more information becomes available. Figure 1 gives

a high-level overview of the approach. Each scenario’s model is

represented by a robot with its own beliefs about its parameters.

Each robot and its parameters initially have the same size (left side)

indicating no knowledge about the true scenarioM. By gathering

runtime evidence, the size of the robots changes (right side): they

grow if they predict the data relatively well and shrink if they

predict the data relatively poorly. In decision making, it is prudent

to be informed by all the models (weighted by their importance),

not just the best (largest) one.

In this paper, we present TUNE (Taming model UNcErtainty),

a novel approach that augments the MAPE-K architecture with

components that take into account not only the uncertainty about

the parameters given a particular model, but also uncertainty across

all candidatemodels. TUNE is fully automated andworks at runtime

along with the managed system in production. The contribution of

the paper can be described as follows: we introduce TUNE that (1)

enhances the MAPE-K feedback loop with the ability of mitigating

model uncertainty using BMA; and (2) improves the adaptation

decisions through metaheuristic optimization leveraging the BMA

estimates. We present (3) an empirical evaluation that shows the

accuracy, the effectiveness, and the cost of the proposed approach.

The remainder of this paper is as follows. In Sec. 2 we introduce

some preliminaries. In Sec. 3 we describe the case study used to

exemplify and evaluate the proposed approach. The whole TUNE

approach is described in Sec. 4. We illustrate our empirical evalua-

tion in Sec. 5, and we discuss advantages, shortcomings, and threats

to validity in Sec. 6. An overview of related work is presented in

Sec. 7. We then draw our conclusion in Sec. 8.

2 PRELIMINARIES

This section recalls the necessary background concepts and a com-

prehensive characterization of the problem that has been addressed.

2.1 Generalized Linear Models

In this work, we consider a class of statistical models that is a

natural generalization of ordinary linear regression. Generalized

Linear Models (GLMs) include, for instance, linear regression, logis-

tic models, multinomial response model for counts and models for

survival data. In a GLM, each response or outcome 𝑌 (i.e., depen-

dent variables) is assumed to be generated from a distribution in the

exponential family (e.g., normal, binomial, Poisson, and gamma dis-

tributions, among others). Given the independent (or explanatory)

variables 𝑋 , the mean of the distribution is:

𝐸 (𝑌 |𝑋 ) = 𝜇 = 𝑔−1 (𝑋𝛽) (1)

where 𝐸 (𝑌 |𝑋 ) is the expected value of 𝑌 conditional on 𝑋 , the
predictor 𝑋𝛽 is a linear combination of uncertain/unknown param-

eters 𝛽 typically estimated with maximum likelihood, and 𝑔 is the
link function. In GLMs, the relationship between the response and

explanatory variables is not necessarily linear. The link function

provides the relationship between the linear predictor and the mean

of the response distribution. The choice of the link function depends

on the nature of the response 𝑌 . According to [18], there exist com-

mon exponential-family distributions associated with the data they

are typically used for. Given the family, a canonical well-defined

link function is then derived.

As an example, in the case of Bernoulli and binomial distributions,

the predicted parameter is one or more probabilities (i.e., real value

in [0, 1]). The resulting model is known as logistic regression. The

canonical link function is the logit function defined as follows:

𝑋𝛽 = 𝑙𝑛

(
𝜇

𝑛 − 𝜇

)
(2)

with 𝑛 number of trials (𝑛 = 1 in the case of Bernulli distribution).

In both cases, the mean of the distribution is computed as follows:

𝜇 =
1

1 + 𝑒−𝑋𝛽
(3)

The expected value 𝜇 is a probability indicating the likelihood of

occurrence of a single event. For instance, in the case of Bernulli

distribution, we have a single boolean outcome, i.e., either 1 (True)

or 0 (False). Thus, the expected value is the probability of occurrence

of a positive (or negative) outcome.
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2.2 Bayesian Inference

The Bayesian approach is a very popular framework for inference

and prediction [19]. In particular, a very common goal in statistics

is to learn about one (or more) uncertain/unknown parameters 𝜃
describing some details of a stochastic phenomenon of interest. To

infer the parameters 𝜃 , we observe the phenomenon of interest and

we collect observations 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑘 ) in order to compute the

conditional density 𝑝 (𝑦 |𝜃 ) of the observed data given 𝜃 , i.e., the
likelihood function. The Bayesian approach also takes into account

the hypothesis about 𝜃 . This information is often available from

external sources such as operational profiles and expert information

based on past experience or previous studies [20]. This information

is represented by the prior distribution 𝑝 (𝜃 ). By combining the prior

and the likelihood using the Bayes’ theorem (see Eq. 4) we obtain

the posterior distribution 𝑝 (𝜃 |𝑦), describing the best knowledge of

the true value of 𝜃 , given the data sample 𝑦.

𝑝 (𝜃 |𝑦) ∝ 𝑝 (𝑦 |𝜃 ) · 𝑝 (𝜃 ) (4)

The Posterior distribution can be used in turn to perform point

estimates of the uncertain parameters. This is typically addressed

by summarizing the distribution through the posterior mean.

2.3 Bayesian Model Averaging

Let us assume 𝜎 is the quantity of interest we need to evaluate.

To this end, BMA takes into account all the possible scenarios𝑀𝑖

related to the quantity of interest 𝜎 .
The BMA estimate is obtained through the equation:

𝑝 (𝜎) =
∑
𝑖

𝑝 (𝜎 |𝑀𝑖 ) · 𝑝 (𝑀𝑖 ) (5)

and adjusted as new information becomes available.

This information can be referred to collectively as “data,” and

the BMA estimate becomes:

𝑝 (𝜎 |data) =
∑
𝑖

𝑝 (𝜎 |𝑀𝑖 , data) · 𝑝 (𝑀𝑖 |data) (6)

The observations influence not only the predicted quantity 𝜎 for

each scenario, but also the probability of the scenarios themselves.

The resulting distribution 𝑝 (𝜎 |data) represents the beliefs about 𝜎 ,
after having made observations, while simultaneously taking all

models into account. The model-averaged estimate of retains the

uncertainty about the possible scenarios that might explain 𝜎 itself.

This formulation provides a more nuanced and prudent estimate

than simply assuming a single scenario as the true one.

3 CASE STUDY

To illustrate our approach we use a self-adaptive search and rescue

robotic system, inspired by the case study in [21]. The system aims

at supporting emergency circumstances such as fire, hurricane, or

earthquake. Figure 2 shows a high-level overview of its main ar-

chitecture components using an informal notation. The managed

software includes proper abstractions of the physical interfaces

(sensors and actuators), and key functions to carry out the rescue

tasks, such as the navigation as well as the obstacle/human detec-

tion. The sensors (e.g., camera, LiDAR, ultrasonic range finder) feed

the component obstacle detector, which detects and classifies obsta-

cles or human beings. This information is used by the navigator to

controller
obstacle
detector

communication coordinator

managed robotic system

Configuration (adaptation space)

navigator

cruise 
speed

...

sensors 
(e.g., camera)

actuators 
(e.g., control movement)

......

Knowledge
Monitor

Analyze Plan

Execute

MAPE-K control loop

semantic space

observed 
dimensions

selected 
configuration

video 
quality

power

...

firm 
obstacle

firmsmoke 
intensity

Environment

illuminance

Figure 2: Main components of the self-adaptive robotic sys-

tem and its semantic space.

Table 1: Semantic space of the search and rescue robot.

variable space type domain

power configuration integer [0, 100] %
cruise speed configuration continuous [0, 5] m/s
bandwidth configuration continuous [10, 50] Mbit/s
quality configuration categorical {low, mid, high}

illuminance environment continuous [40, 120000] lux
smoke intensity environment categorical {none, thin, thick}
obstacle size environment continuous [0, 120] ft3

obstacle distance environment continuous [0, 10] m
firm obstacle environment Boolean Yes/No

plan the steering angle, the acceleration, and the braking, which

are then put into effect by the controller.

The main components of the robotic software system can be con-

figured at runtime to adapt the mode of operation, in the presence

of uncertain changes in its environment (e.g., available bandwidth)

and resource variability (e.g., estimated battery life). These configu-

ration changes are enacted by engineering the controller with an

adaptation layer embedding a typical MAPE-K feedback control

architecture responsible for changing the system’s operation mode

and meeting dependability requirements at runtime. The configura-

tion space of the system includes multiple dimensions. For instance,

power is a discrete configuration dimension for the controller that

may operate from energy saving to full power mode. The cruise speed

represents a continuous configuration dimension for the navigator.

The set of configuration and environment dimensions is referred

to as semantic space. For our illustrative example, they are roughly

depicted in Fig. 2, while Table 1 lists all the dimensions that collec-

tively compose the semantic space in our case study. More precisely,

the semantic space is defined by a set of variables, each one having

a space (either configuration or environment), a type, and a domain.

For instance, power is an integer configuration variable that ranges

in the interval [0, 100] percentage level. The illuminance represents

instead a continuous environment variable ranging from 40 lux (for

sunset/sunrise) to 120𝑘 lux (for brightest sunlight).
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Table 2: Example of system-level requirements.

label type natural language statement

𝑅1 safety The robot shall maintain a given protective dis-
tance between the actuated physical elements
and possible obstacles in the search area.

𝑅2 safety Misclassifications between objects and human
beings shall not occur.

𝑅3 energy consumption The robot shall reach the target location in the
search area with enough power level.

Managed system

Managing system

Monitor Execute

sensors actuators

events actions

Knowledge

M1 M2 Mn
...

runtime models

BMA with  
MCMC exploration

observations
model 
space

updated 
estimates

Analyze

Metaheuristic 
optimizing search

prediction

Plan

average 
model

target 
configuration

M =

Figure 3: TUNE within a MAPE-K adaptation control loop.

The behavior of the rescue robot comprises different execution

scenarios in which the robot shall carry out specific tasks yet satis-

fying the system-level requirements reported in Table 2. The table

reports an extract as an illustrative example. The explanatory vari-

ables in the semantic space 𝑋 may affect the ability of satisfying

𝑅1–𝑅3. For instance, low video quality as well as high cruise speed

can yield issues for the obstacle detector component that might lead

to invalidate 𝑅1 in case of hostile environment conditions (such as

heavy rain or presence of smoke). At runtime, during the execution

of the system, the likelihood of negative events invalidating the re-

quirements can be modeled by adopting a logistic regression which

depends on 𝑋 . As introduced in Sec. 2, the link function is the logit

and the mean 𝜇 of the distribution in Eq. 3 indicates the likelihood

of observing a negative outcome, meaning that the system is not

able to satisfy all the requirements.

4 THE TUNE APPROACH

In this section we describe an overview of TUNE (Sec. 4.1) and its

integration into the analyze (Sec. 4.2) and plan (Sec. 4.3) components

of a MAPE-K adaptation control loop.

4.1 Overview

Figure 3 illustrates a high-level overview of TUNE and its integra-

tion into a MAPE-K adaptation control loop. TUNE adopts GLMs as

runtime models in the shared knowledge. According to our context

discussed in Sec. 3, each GLM is a logistic model describing the phe-

nomenon of interest affected by the variables in the semantic space.

A given logistic model predicts the ability of satisfying system-

level requirements (i.e., positive or negative outcome) according

average modelMLEmodel space sampler
(exhaustive / MCMC)

sampled 
logit model prior, 

likelihood posterior

inference

BMA 
estimates

model rank

Figure 4: Zoom into the BMA process.

to Eq. 3. The model space𝑀 maintained by the knowledge compo-

nent includes 𝑛 = 2 |𝑋 | possible models, that is, 𝑀 = {𝑀1, ..., 𝑀𝑛},

where the 𝑖𝑡ℎ model 𝑀𝑖 is obtained by including in the predictor

only a subset of the explanatory variables in 𝑋 . Under such circum-

stances, model uncertainty is commonly handled by performing

model selection, as described for instance in [11]. Our analyze

component adopts instead a model averaging approach that is of-

ten more satisfactory to inference because it takes explicitly into

account the uncertainty in both the estimation of the model param-

eters and the model selection itself. The BMA module in Fig. 3 first

estimates the parameters of interest conditional on each sampled

model in 𝑀 , then it computes an unconditional estimate using a

weighted average of these conditional estimates according to the

posterior probability of the corresponding models. Since the total

number of models can be large, our approach adopts Markov Chain

Monte Carlo (MCMC) exploration [22], to sample the model space.

MCMC is, indeed, a popular exploration method which relies on

the efficient generation or repeated random draws from a high-

dimensional space. Such a stochastic exploration feeds BMA to

estimate the quantities of interest. BMA estimates are used to pre-

dict possible violations of requirements. If a violation is predicted

with high probability, the plan component is triggered. The plan

makes use of metaheuristic optimizing search, as proposed in [23].

In our approach, we explore the semantic space by keeping the

current assignment of the environment variables (i.e., observable

phenomena) and looking for alternative assignments to configura-

tion variables (i.e., controllable phenomena) that minimize the cost

of the adaptation and, at the same time, maximize the likelihood of

satisfying the requirements.

TUNE is fully automated and supported by a software imple-

mentation we used to carry out an empirical evaluation, as further

detailed in Sec. 5.

4.2 Analyzing with BMA

Figure 4 shows the overall process generating the average logistic

model. It consists of the following components: the model space
sampler, the MLE, the inference, and the model rank finally pro-

ducing the average model based on the BMA estimates. The pro-

cess receives as input the observations produced by the monitor

𝑦 = {𝑦1, ..., 𝑦𝑘 }, or simply datawhen the notation gets cumbersome.

The data is a set of values assigned to the explanatory variables

𝑋 (semantic space) associated with the corresponding response 𝑌
(either positive or negative outcome), observed by the system in

production.

The sampler drives the whole process by exploring the model

space either exhaustively or using a stochastic approach based on
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Table 3: Example of logistic regression results using MLE.

logit regression results

#observations log-likelihood LL-Null LLR p-value

225 −213.58 −260.19 2.701 × 10−19

estimations

variable space coefficient p-value
intercept - −5.9814 0.000
power configuration 0.0409 0.001
cruise speed configuration −0.0532 0.000
smoke intensity environment −0.0806 0.004
firm obstacle environment 0.9603 0.000

MCMC. For each sampled model 𝑀𝑖 , and the data under consid-

eration, we use Maximum Likelihood Estimations (MLE) [24] to

make inference about the unknown population that is most likely

to have generated the data. This means that the parameters of each

model are estimated by using MLE, while the weighting scheme is

developed under a Bayesian perspective introduced in Sec. 2.

The goal of MLE is to find the values of the model parameters 𝛽
that maximize the likelihood function over the parameter space:

𝛽 = arg max
𝛽

𝑝 (data | 𝛽,𝑀𝑖 ) (7)

Example 1 (MLE results). Table 3 contains an example of lo-

gistic regression using the following subset of the semantic space:

configuration = {power, speed}, environment = {smoke intensity,

firm obstacle}. The results have been obtained by applying the MLE

method on 225 observations of the rescue robot system. The re-

sults show that the log-likelihood1 of the model −213.58 is higher
compared to the “null” model 𝑀0 (i.e., the model containing the

intercept only as parameter) that has a log-likelihood of−260.19 (LL-
Null column). The result of the likelihood-ratio test (LLR p-value

column) meets the common threshold for statistical significance

0.005. This indicates that including the aforementioned selected

variables significantly improves model fit compared to 𝑀0. The

table also shows the estimated parameters. For instance, the coeffi-

cient for the configuration variable speed is −0.0532, with a p-value

of 0.000. This means that the variable is significant, and that, on

average, higher speed of the robot corresponds to lower probability

of satisfying the requirements.

After MLE, the inference component computes the posterior

probability used to rank 𝑀𝑖 adopting a Bayesian perspective. To

this end, we exploit the Bayesian Information Criterion (BIC) that,

according to [14], is a popular criteria adopted to carry out Bayesian

model selection. The BIC is approximately proportional to the like-

lihood that data are produced under the model𝑀𝑖 , as follows:

BIC ≈ −2 𝑙𝑛(𝑝 (data | 𝑀𝑖 )) (8)

Note that Eq. 8 involves the marginal likelihood of the data under

the model 𝑀𝑖 , that is 𝑝 (data | 𝑀𝑖 ). This quantity is used by the

Bayes factor to compare two alternative hypotheses, as follows:

BF [𝑀𝑖 : 𝑀𝑗 ] =
𝑝 (data | 𝑀𝑖 )

𝑝 (data | 𝑀𝑗 )
(9)

1The log-likelihood is often preferable compared to the likelihood, because of the
mathematical properties of the natural logarithm (i.e., simpler to differentiate).

If the Bayes factor is greater than 1, the data under consideration

strongly supports 𝑀𝑖 rather than 𝑀𝑗 . This means that the BIC

information can be used to retrieve the bestmodel having the largest

log of marginal likelihood, which corresponds to the smallest BIC.

If we stop the process to model selection (i.e., we pick up only

the smallest BIC), we essentially ignore the presence of model

uncertainty. Indeed, according to the data other models may have

similar BIC and therefore may be considered equally good.

To account for the model uncertainty, our approach exploits

the posterior probability of all the candidate models in the set

𝑀 to produce a total order and quantify the extent to which the

beliefs expressed by a given model are better or worse than others.

To obtain the posterior probability of each model 𝑝 (𝑀𝑖 |data), the

Bayes rule in Eq. 4 tells that we need to assign the prior probability

𝑝 (𝑀𝑖 ) to each model and then update it after collecting the data by

multiplying themarginal likelihood. Themarginal likelihood is used

to weight the prior probability so that models with higher likelihood

have larger weights, and models with lower likelihood receive

smaller weights. Thus, our framework computes the posterior, for

each model, approximating the marginal likelihood based on the

BIC defined in Eq. 8.

The model rank component quantifies the existing uncertainty

by producing a total order in𝑀 according to the log of the posterior

odd over the “null” model𝑀0. Intuitively, this quantity measures

the likelihood of a given model compared to𝑀0 given the data. The

posterior odd is computed as follows:

PO[𝑀𝑖 : 𝑀0] = BF [𝑀𝑖 : 𝑀0] ·𝑂 [𝑀𝑖 : 𝑀0] (10)

where 𝑂 [𝑀𝑖 : 𝑀0] represents the prior odd defined as the ratio

𝑝 (𝑀𝑖 )/𝑝 (𝑀0).

Example 2 (Model uncertainty). In our rescue robot example,

the semantic space contains 9 possible explanatory variables (see

Table 1), thus 512 models using all possible combinations of the

variables. Figure 5 visually represents the model uncertainty, after

collecting 225 observations. The 𝑦-axis lists the variables (includ-
ing the intercept), while the 𝑥-axis shows the rank of the first 20

models based on the posterior probability. Each vertical column

corresponds to a logistic model. Black areas correspond to variables

not included in a model. For instance, the first one in the rank in-

cludes 6 variables: the intercept, smoke intensity, obstacle size, firm

obstacle, power, and cruise speed. The rank is produced by ordering

the models according to Eq. 10. In our example, we started from

the same prior probability for all models (i.e., uninformative prior).

In this case, the prior odd is equal to 1 and the posterior odd is the

same as the Bayes factor. The color associated with each column

in Fig. 5 has been generated according to the log of the posterior

probability. Since models with same colors have similar posterior

probabilities, we can see clusters of models that are equally good

based on the existing model uncertainty.

The posterior probability of each model, is then used to calculate

weighted averages of quantities of interest as defined by the BMA

weighting scheme in Eq. 6. Essentially, the next prediction 𝑌 ∗ after

seeing the data can be calculated as a weighted average of the pre-

diction of next observation under each model𝑀𝑖 , with the posterior

probability of𝑀𝑖 being the weight. Models with higher posterior
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Figure 5: Model uncertainty after 225 observations.

receive higher weights, while models with lower posterior receive

lower weights.

Example 3 (BMA estimates). Let us consider the model rank

described in Example 2. According to the posterior probability of

each model 𝑀𝑖 , the BMA module computes the estimates reported

in Table 4. The table lists, for each possible explanatory variable in

the semantic space, the posterior mean and the posterior inclusion

probability 𝑝 (𝑥 ≠ 0) of each coefficient under BMA. Assume the fol-

lowing valid assignment leading to breaking 𝑅1: {power = 52, cruise

speed = 4.6, bandwidth = 28.6, quality = low, illuminance = 11800,

smoke intensity = none, obstacle size = 5.38, obstacle distance = 2.58,
firm obstacle = No}. According to the logistic model in Table 3, the

expected value 𝐸 (𝑌 |𝑋 ) is 0.57, meaning that the model predicts

the absence of negative events with high probability (i.e., greater

than 0.5). However, this prediction is purely based on assumptions

that ignore the presence of model uncertainty. For instance, the

selected logistic model ignores the obstacle size that has high in-

clusion probability according to the BMA results in Table 4. Using

BMA, the prediction 𝑌 ∗ is 0.47, meaning that the average model is

more pessimistic (i.e., probability lower than 0.5).

When the total number of models is relatively small, the model
space sampler can exhaustively enumerate them all to calculate

the BMA estimates. In general, we may have a large number of vari-

ables, which often lead to long computation time. In this case, the

sampler uses MCMC exploration based on the Metropolis-Hastings

algorithm [25]. In the following, we limit the description to a high-

level overview and we let the reader refer to [25] for further details.

The algorithm produces a sample of the model space where the

relative frequency of occurrence of each model in the sample rep-

resents a good proxy of its posterior probability. Starting from an

initial model𝑀0 the exploration proceeds by randomly picking the

next model𝑀1 and by checking whether this model improves the

posterior probability computing the posterior odd 𝑃𝑂 [𝑀1 : 𝑀0]

based on the Bayes factor and the prior odd, as in Eq 10. If the

value is greater than 1, 𝑀1 improves the posterior compared to

𝑀0. In this case𝑀1 is included in the final sample. If the posterior

odd is less than 1, the final sample still needs some representatives

Table 4: BMA estimates and inclusion probability for each

explanatory variable after 225 observations.

variable space posterior mean 𝑝 (𝑥 ≠ 0)

intercept – −6.1402 1.0000
power configuration 0.0338 0.9032
cruise speed configuration −0.0514 0.9993
bandwidth configuration −0.0037 0.0994
quality configuration 0.0001 0.0438
illuminance environment 0.0004 0.0765
smoke intensity environment −0.0734 0.9094
obstacle size environment 0.1401 0.8478
obstacle distance environment 0.0001 0.0552
firm obstacle environment 0.9097 0.9958

search engine

cost estimation

new 
values

predicted probability

estimated cost
scalarization

fitness scoretarget 
configuration

average model
with BMA estimates

Figure 6: Zoom into the optimizing search process.

of this model. In this case, the posterior odd reflects the chance

that𝑀1 is included in the final sample. After generating𝑚 models

𝑀0, 𝑀1, ..., 𝑀𝑚 , the posterior of each model 𝑀𝑖 can be estimated

by using the relative frequency of occurrence of𝑀𝑖 in the sample.

These probabilities can be used to calculate the BMA estimates.

4.3 Planning with BMA Estimates

The plan component takes as input the predictions produced by

the analyze component as well as the average logistic model com-

puted by applying BMA. An individual prediction 𝑌 ∗ triggers the

adaptation when the probability of satisfying the system-level re-

quirements is lower than 0.5. In this case the the plan component

searches for an alternative configuration of the system that en-

sures a prediction greater than 0.5, while minimizing the cost of

the adaptation. It is worth noting that a configuration is specified

by an assignment of values for all the configuration variables (i.e.,

a subset of the semantic space including the dimensions that can

be controlled). Therefore, the configuration variables collectively

compose the adaptation space of the managed system. A target

configuration (if any) represents the adaptation selected by the

plan that is then executed in the next step of the MAPE-K loop, as

shown in Fig. 3. The plan component makes use of a metaheuristic

optimizing search approach [26] to reduce the cost of enumerating

all possible valid configurations.

Figure 6 shows an overview of the automated process that se-

lects a target configuration. It is composed of four main elements:

the search engine, the average model (produced by the analyze

component), the cost estimation, and the scalarization. The
iterative process starts with the search engine generating a set

of new values for all the configuration variables (e.g., modified

cruise speed or power). The new values are used by the average

model to predict the probability of satisfying the requirements and

30



Taming Model Uncertainty in Self-adaptive Systems Using Bayesian Model Averaging SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

by the cost estimation that calculates the cost of the adaptation

according to the initial and the new values. The scalarization
computes the fitness score depending on these two latter outcomes.

Then the fitness score is fed back to the search engine to generate

new (and better) input values over the next iterations. This process

continues until a given time/iteration budget runs out.

The search engine drives the whole iterative process through
a genetic algorithm to create new individuals (i.e., configuration

values) using typical crossover andmutation operators to find better

candidates while promoting diversity. The search is driven by the

following two objectives: (1) maximize the predicted probability;

and (2) minimize the cost of the adaptation. The two objectives map

to two fitness functions 𝑓1 and 𝑓2 that are then combined by using

linear scalarization [27]. The scalarization is an a priori method

which reduces the multi-objective optimization problem to single-

objective by expressing preference information before starting the

search. The scalarization applies the following weighted sum to

obtain the fitness score:

score = 𝜔1 𝑓1 (·) + 𝜔2 𝑓2 (·) (11)

with the weights 𝜔1, 𝜔2 in [0, 1] such that 𝜔1 > 𝜔2, as the search

process penalizes high costs yet giving more value to high predicted

probability. Since the search aims at minimizing the score, we define

the two fitness functions in a way that the lower the result, the

better the adaptation.

The function 𝑓1 is as follows:

𝑓1 (𝑝) =

{
1 − 𝑝 𝑝 > 0.5

(1 − 𝑝) · 𝜆 otherwise
(12)

with 𝑝 probability value given by the average model, and 𝜆 constant
penalty term that discourages values lower than 0.5.

Given a static cost profile 𝑢 = {𝑢1, ..., 𝑢 |𝑋 | } such that 𝑢𝑖 in [0, 1]
for all 𝑖 , the function 𝑓2 is defined as follows:

𝑓2 (𝐶,𝐶
′) =

∑
𝑖

𝑢𝑖
|𝐶𝑖 −𝐶

′
𝑖 |

ub(𝑋𝑖 ) − lb(𝑋𝑖 )
(13)

with𝐶 and𝐶 ′ vectors of initial and new values, respectively, ub(𝑋𝑖 )
and lb(𝑋𝑖 ) upper-bound and lower-bound of the corresponding vari-
able 𝑋𝑖 , respectively, 𝑢𝑖 relative cost of changes for 𝑋𝑖 . The idea of
𝑓2 is to estimate the cost by accounting for the weighted magnitude

of the change considering all the configuration dimensions. The

meaning of the weight𝑢𝑖 for all 𝑖 is to rank the configuration dimen-

sions according to the cost of changing them. Intuitively, changing

the cruise speed of the robot is cheaper than changing the power

level, which implies a potentially expensive charging process. In

this case, the weight associated with the variable power should be

greater than the one associated with cruise speed.

Example 4 (Adaptation). Let us consider the BMA estimates

introduced in Example 3 as well as the initial logistic model in

Table 3. In the previous example we saw that the initial model

leads to a false positive prediction. According to the average model,

we observe instead a true negative triggering the adaptation pro-

cess. Starting from the assignment in Example 3, the search engine

executes the genetic algorithm that emits the following target adap-

tation: {power = 52, cruise speed = 2.4, bandwidth = 28.9, quality =

low}. Since power has a very high weight compared to the other

variables (e.g., 70% higher than speed in this example), its assign-

ment remains the same. The quality configuration does not change

as well. Indeed, according to the posterior mean and the inclusion

probability in Table 4, this explanatory variable has low influence

on the outcome. The cruise speed has instead higher influence. Here,

we can observe a substantial change that causes the robot to slow

down. According to the average model, this adaptation increases

the predicted probability from 0.47 to 0.56.

5 EMPIRICAL EVALUATION

In this section we report on the empirical evaluation of TUNE.

We introduce our research questions and design of the evaluation

(Sec. 5.1) and then we present the major results (Sec. 5.2).

5.1 Research Questions and Design

The purpose of the evaluation is to study the extent to which TUNE

can improve the predictions of the analyze component and the

adaptation decisions of the plan component. In particular, we aim

at answering the following three research questions:

RQ1: What is the prediction accuracy obtained through BMA

estimates adopted by the TUNE analyze component?

RQ2: What is the effectiveness of the adaptation decisions taken

by the TUNE plan component through BMA estimates?

RQ3: What is the cost of calculating the BMA estimates in TUNE

to mitigate the model uncertainty?

To answer the research questions, we designed a set of controlled

experiments using the case study introduced in Sec. 3. In particular,

we simulated multiple runs of the system to sample the semantic

space 𝑋 (see Table 1) and observe the response 𝑌 , i.e. a boolean
outcome representing the satisfaction of the requirements in Table 2.

The system response has been generated according to a ground

truth baseline built by defining an oracle logistic model.

Then, we executed the analyze component multiple times adopt-

ing alternative competing models in the model space 𝑀 as well

as the BMA estimates built by using the same data sample, com-

posed of 450 observations. We then used all the models to make

predictions and compare their accuracy.

The predictions have been used as input to run the plan compo-

nent and study the effectiveness of the adaptation decisions driven

by alternative models in 𝑀 and the BMA estimates. The cost of

calculating the BMA estimates has been assessed measuring the ex-

ecution time by varying the sample size and the number of potential

explanatory variables in the semantic space.

All the experiments have been conducted by using a commodity

hardware machine equipped with: 2.3 GHz Dual-Core Intel Core i5
CPU, and 8 GB 2133 MHz LPDDR3 RAM.

Hereafter, we discuss the most relevant results and we refer the

reader to our dataset for the replicability of the experiments2.

5.2 Results

5.2.1 RQ1 (prediction accuracy). To address RQ1 we executed the

analyze component described in Sec. 4.2 by changing the model

used to make predictions. Specifically, for the semantic space in

Table 1 (9 variables) we built all possible 512 logistic models fitted

2Replication package available at https://github.com/matteocamilli/bma-package.
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Figure 7: Accuracy comparison between BMA estimates and all the other 512 models.

using MLE as well as the BMA estimates based on the same training

set with 450 observations generated through the oracle model.

We assessed the accuracy comparing the classical metrics preci-

sion, recall, and F1 score [28] for all the models using a validation

set with other 450 observations. The precision is the number of

outcomes correctly classified as “requirements satisfied” (i.e., true

positives) divided by the total number of positive outcomes in the

evaluation set (i.e., sum of true positives and false positives). The

recall measures the number of true positives divided by the sum

between true positives and false negatives, that is, the outcomes

wrongly classified as “requirements unsatisfied”. High recall but low

precision means many positive predictions, most of them incorrect.

High precision but low recall means very few positive predictions,

most of them correct according to the oracle. Ideally, the analyze

component should use a model with high precision and high recall

that are combined in the F1 score defined as the harmonic mean of

the two quantities (the higher the F1 score, the better).

Figure 7 shows the results of the prediction accuracy by using

box plots. The plots compare the three metrics precision (Fig. 7a),

recall (Fig. 7b), and F1 score (Fig. 7c) using the BMA estimates and

all the other 512 models clustered together by number of explana-

tory variables (Logit1–Logit8). Overall, we can observe that by

increasing the number of explanatory variables in the models, we

improve the median value of the three metrics and we also decrease

the dispersion, as measured by the interquartile range𝑄3−𝑄1 (i.e.,
the distance between the upper and lower quartiles). Excluding

the cluster Logit1, which yields consistent and very low values

(close to zero), the median varies from ∼ 0.3 to ∼ 0.55, while the
interquartile range of the F1 score varies from ∼0.35 to ∼0.05. This
means that, in our case study, a model selection in Logit8 would

generally lead to better results than considering the other clusters

(Logit1–Logit7). However, the data indicates the average model as

the best one considering both prediction and recall, meaning that

model averaging adopted by TUNE is always superior than model

selection. Indeed, the F1 score obtained by using the BMA estimates

is consistently higher than the median as well as the Q3 values of

all the clusters. Considering the median of Logit2–Logit8, the BMA

approach improves the F1 score from ∼5% to ∼30%.

RQ1 summary: the prediction accuracy of TUNE is always

higher using BMA than other competing models. This means

that model averaging is superior than model selection. By ap-

plying model uncertainty mitigation through BMA, the TUNE

analyze component improves the F1 score up to 30%.

5.2.2 RQ2 (effectiveness of the adaptation decisions). To address

RQ2 we conducted additional controlled experiments with the plan

component introduced in Sec. 4.3 by changing the model used to

drive the adaptation decisions. We considered the same setting

introduced in Sec. 5.2.1, that is, the same semantic space, and all

the 512 logistic models fitted using MLE, as well as the BMA esti-

mates, based on 450 observations of the search and rescue robot

generated through the oracle model. Then, from the validation set,

we selected 302 observations associated with the negative outcome

“requirements unsatisfied”. Starting from these valid assignments,

we executed the planning process for each model and each negative

outcome (154624 executions in total).

To measure the effectiveness of the adaptation decisions, we con-

sidered the Relative Error (RE) and the Success rate after producing

the selected adaptation (i.e., a new assignment to configuration

variables). The RE measures the magnitude of the difference be-

tween the prediction made by the adopted model and the prediction

made by the oracle model after applying the selected adaptation.

Intuitively, the higher the RE, the lower the chance to see a suc-

cess, that is, select an adaptation leading to the positive outcome

“requirements satisfied”. Thus, we measure the success rate as the

ratio between the number of successful adaptations and the total

number of planned adaptations.

Figure 8 shows the results of the effectiveness of adaptation

decisions in terms of RE (box plot in Fig. 8a) and success rate (bar

plot in Fig. 8b). The two plots compare the results obtained by

using the BMA estimates and all the other logistic models. We can

observe that BMA estimates lead to lower RE, and therefore, higher

success rate. According to our results in Fig. 8a, the median RE

measured with BMA (0.0242) is two orders of magnitude lower

than the median RE measured with all the other models (0.4734).
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Figure 8: Effectiveness comparison between BMA estimates

and all the other 512 models.

Figure 8b shows that the success rate with BMA (0.7582) is 36%
higher than the the success rate with all the other mdoels (0.3624).

RQ2 summary: the effectiveness the adaptation decisions of

TUNE using BMA is higher than other competing models. The

BMA estimates reduce the RE by two orders of magnitude and

lead to observe a 36% higher success rate.

5.2.3 RQ3 (cost of BMA estimates). To address the last research

question we carried out controlled experiments with the BMAmod-

ule introduced in Sec. 4.2 by controlling the number of explanatory

variables in the semantic space (thus, the size of the model space),

and the number of observations. We repeatedly calculated the BMA

estimates by varying the variables from 2 to 64 (i.e., from 4 to

1.8 × 1019 models) and varying the number of observations from

200 to 25600. We repeated each experiment 100 times and we mea-

sured the effort as the wall-clock time (seconds) required by the

BMA module to calculate the estimates. Being our approach meant

to be executed at runtime along with the managed system, we

would like to see a negligible cost (the lower the time, the better).

Figure 9 contains two heatmaps showing the mean cost. In all

the runs, we set a timeout (TO) of 200 seconds. Figure 9a shows

the cost when adopting an exhaustive enumeration of all the mod-

els in the model space, while Fig. 9b shows the cost when using

MCMC exploration.We can observe that for low-dimensional model

spaces (from 2 to 8 variables) the cost is generally lower when us-

ing exhaustive enumeration, even when increasing the number of

observations. In both cases the time is less than a second from 200

to 800 observations and increases up to 0.56 and 1.2 minutes with

25𝑘 observations, respectively. However, the MCMC exploration

yields better scalability. With high-dimensional model spaces (from

16 to 64 variables), we can observe that the exhaustive exploration

leads to higher costs, exceeding the TO in almost all the cases. The

MCMC never reaches the TO even in the worst case, when the

model space has an order of magnitude of 109.
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Figure 9: Cost of calculating the BMA estimates.

RQ3 summary: for low-dimensional model spaces (up to 8 vari-

ables), the cost is generally lower when using exhaustive enu-

meration. The MCMC exploration yields better scalability and

it never reaches the given TO. Even with very high-dimensional

spaces (109 models), the time varies from 3.8 to 147.6 seconds
when increasing the observations from 200 to 25𝑘 .

6 DISCUSSION AND THREATS TO VALIDITY

In this section we briefly discuss major advantages and disadvan-

tages of TUNE, as well as how we mitigated threats to validity.

6.1 Advantages and Disadvantages

According to our experience, TUNE can be effectively used to ac-

count for, and then mitigate, uncertainty across models. Thus, its

adoption offers the following advantages:

• TUNE deals with the oversimplified view taken by model selec-

tion which ignores model uncertainty and assumes zero proba-

bility for all but one model.

• Model averaging improves classical hypothesis testing in which a

model is either accepted or rejected wholesale (i.e., the so-called

“all-or-nothing” mentality). BMA retains instead all plausible

models and ranks them all for the final inference stage.

• BMA makes adaptation decisions robust to misspecification. In

case one model is selected, we assume the modeler is 100% sure

of being correct, that is often not realistic. In TUNE, a range of
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competing models are considered, thus increasing the chance

that at least one of the models is approximately correct.

• TUNE gracefully updates estimates in the shared knowledge as

the data accumulates. Themodel weights are continually adjusted

preventing model lock-in when circumstances change.

• TUNE is fully automated and works at runtime along with the

managed system in production. It does not require heavy training

(offline) stages.

The aforementioned advantages do not come for free. Based on

our evaluation, a few disadvantages may arise:

• Since a set of models is maintained, there exists the risk of as-

signing nonzero probability to some “wrong” models, especially

in a cold start.

• The model space exploration introduces a computational over-

head especially with high-dimensional model spaces. Stochastic

sampling like MCMC can be used to mitigate this drawback.

6.2 Threats to Validity

Wemitigated construct validity threats by assessing the appropriate-

ness of our claims on the basis of our measurements. We measured

the prediction accuracy using classical quality metrics in this con-

text: precision, recall, and F1 score. The RE and success rate are

common metrics to quantify the effectiveness of adaptation deci-

sions. The execution time is again a natural measure of the cost.

To reduce threats to internal validity, we designed a set of con-

trolled experiments detailing the independent variables of interest.

In particular, our experimental setting allows for direct access to:

the oracle model, the variables in the semantic space, its size, and

the number of observations. This direct manipulation has been

fundamental to assess cause-effect relations between external fac-

tors and both benefits and costs of our approach. We also enable

replication by making our implementation and the experimental

results publicly available.

External validity threats may exist if the characteristics of the

system in our case study are not indicative of the characteristics of

other systems. We limited these threats by adopting an established

case study in self-adaptive systems having a nontrivial semantic

space [21]. For practical reasons, we conducted the evaluation by

simulating our case study. The application of our approach to addi-

tional case studies in other domains is part of our future work.

Threats to conclusion validity exist since BMA with MCMC is

guided by a stochastic sampling of the model space. To avoid the

risk of obtaining results by chance, we repeated our experiments

multiple times. In particular, accuracy and effectiveness has been

measured calculating the estimates with a validation set of 450

observations. Furthermore, each experiment to measure the cost of

BMA with MCMC has been repeated 100 times.

7 RELATEDWORK

Over the past years, researchers recognized the importance of study-

ing the notion of uncertainty in the context of self-adaptation [2,

8, 21, 29]. Thus, a number of techniques explicitly integrating un-

certainty in modeling recently emerged in different stages of the

engineering life-cycle, such as design-time specification [30], test-

ing [31–33], and runtime verification [6]. The mainstream approach

to express uncertainty is by using model parameters, that are then

handled using alternative methods including: probabilistic meth-

ods [34], where parameters are described by probability density

functions; fuzzy sets [35], in which uncertain parameters are de-

scribed with fuzzy boundaries; and interval analysis that aim at

studying the limits of variation to detect either best/worst cases or

violated requirements [3, 6, 7].

The Bayesian perspective in analyzing the variation of uncer-

tain parameters is often preferred than the frequentist one, since

it embeds the probability of the initial hypothesis in the inference

framework [36, 37]. Under this setting, runtime analysis techniques

supporting adaptation decisions usually keep alive Markov models

(e.g., Discrete/Continuous Time Markov Chains) and calibrate their

transition probabilities (representing uncertain QoS properties) us-

ing Bayesian inference [36, 38]. Improvements of these approaches

have been proposed to alleviate the negative effect of historical

data on the estimation by using aging mechanisms (e.g., Kalman

filters [39]) to discard old information [37, 40]. To quantify the

degree of uncertainty as the deviation from initial beliefs, the no-

tion of Bayesian surprise [41] has been introduced to measure the

distance from a prior to a posterior and support decision making

when unexpected circumstances possibly require adaptation.

All the aforementioned approaches work under the overconfi-

dent assumption that the best model representing the phenomena

of interest has been selected over plausible alternative models. The

importance of this type of model uncertainty has been recently

discussed in [11]. This latter approach applies model selection that

aims at finding optimal hyper-parameter settings of Deep Neural

Network models over alternative choices. The model is then used to

predict the adaptation subspace possibly satisfying multiple types

of goal (threshold goals and optimization goals). A different ap-

proach presented in [12] infers the models at runtime exploiting a

generalization of classical Markov model to deal with situations in

which the state of the system is not known in advance.

To the best of our knowledge, our work introduces the first

approach integrating BMA into a MAPE-K control loop to tame

model uncertainty at runtime in self-adaptation.

8 CONCLUSIONS

In this paper we presented TUNE, an approach to mitigate the

uncertainty related to the model selection process in self-adaptive

systems by using BayesianModel Averaging. This method improves

the predictions made by the analyze component as well as the plan

that adopts metaheuristic optimizing search to guide the adaptation

decisions. Our empirical evaluation shows the cost-effectiveness of

TUNE through controlled experiments with an exemplar case study

in the robotics domain. According to our experience, BMA is better

than model selection. It yields prediction accuracy up to 30% higher

and effectiveness of the adaptation decisions 36% higher. The over-

head introduced by BMA is negligible with low-dimensional model

spaces (up to 8 variables) and it can be alleviated with very high-

dimensional spaces using MCMC exploration. Indeed, the approach

exhibits good scalability up to 109 models and 25𝑘 observations.

As future work we plan to extend our study by considering

heterogeneous requirements, such as threshold and optimization

goals. We also plan to extend our empirical evaluation to other case

studies in the literature, belonging to different domains.
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