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Abstract: Population aging requires innovative solutions to increase the quality of life and preserve
autonomous and independent living at home. A need of particular significance is the identification
of behavioral drifts. A relevant behavioral drift concerns sociality: older people tend to isolate
themselves. There is therefore the need to find methodologies to identify if, when, and how long the
person is in the company of other people (possibly, also considering the number). The challenge is
to address this task in poorly sensorized apartments, with non-intrusive sensors that are typically
wireless and can only provide local and simple information. The proposed method addresses
technological issues, such as PIR (Passive InfraRed) blind times, topological issues, such as sensor
interference due to the inability to separate detection areas, and algorithmic issues. The house is
modeled as a graph to constrain transitions between adjacent rooms. Each room is associated with a
set of values, for each identified person. These values decay over time and represent the probability
that each person is still in the room. Because the used sensors cannot determine the number of people,
the approach is based on a multi-branch inference that, over time, differentiates the movements in
the apartment and estimates the number of people. The proposed algorithm has been validated with
real data obtaining an accuracy of 86.8%.

Keywords: multi-person detection; sensor data; smart environment

1. Introduction

The rapid development of the ICT sector has enabled scenarios where an ever-deeper
interconnection between the physical and digital worlds is proposed (Phyigital—2007 by
Chris Weil). One scenario is the home, where the interconnection between technologies and
people enables the implementation of a paradigm for autonomous living, guaranteeing
mutual safety (people, family members, and caregivers are in contact with each other)
and allowing the identification of behavioral drifts and their subsequent compensation
(behavioral drift is selectively compensated with solutions for the identified problem by
containing costs and promoting personal autonomy) [1].

In recent years, applications of domiciliary technology systems interacting with the
person have addressed issues such as activity recognition (e.g., [2–4]), health monitoring [5],
security [6], and the prediction of future events [7].

The need to understand what is happening inside the dwelling requires that the
phenomena to be tracked are observable; this assumes that there are suitable sensing
systems (sensors and transducers) and that these are distributed more or less densely in
the home. Considering the environmental sensing, the various proposals combine data
collected from different types of sensors, such as RFIDs (Radio-Frequency IDentification),
PIRs (Passive InfraRed) [8], contact sensors, pressure-sensitive mats [9], tilt sensors [10],
power meters [11], inertial sensors, infrared array sensors [12], etc. In general, the types of
sensor can be vision-based (e.g., cameras), wearable (generally based on inertial sensors like
accelerometers, gyroscopes, etc.) or environment detection (e.g., motion or door/window
sensors, temperature/humidity sensors, etc.). It is worth noting that both current regula-
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tions and perceived privacy violations make it difficult to use vision-based systems (2D
and 3D cameras) over other detection techniques.

Considering wearable vs. non-wearable devices, a non-intrusive monitoring system
(that is, without wearable devices) can guarantee a better trade-off between privacy and
reliability because the absence of wearable devices eliminates or reduces some important
critical issues, such as routine maintenance (e.g., recharging batteries) or the misuse of
the device (e.g., taking it off in certain situations or forgetting to wear it). However, non-
intrusive monitoring systems can provide reliable and direct measurements for many
activities in a specific environment, such as room occupancy in the house, but do not
achieve high levels of accuracy for many other tasks, such as calculating the number of
people in a room. It is worth noting that in some scenarios, like in the case of aging,
the exact calculation of the number of people in a home support system is not particularly
relevant. What is often of interest is to detect whether the person is alone at home (and to
inform the caregiver so that they pay more attention to the person) or whether there is a
behavioral drift present, which leads the elderly to isolate themselves and progressively
reduce their degree of sociality.

In these contexts, it is necessary to identify methodologies for identifying whether,
when, and for how long the person is in the company of other people (possibly also
considering the number).

People-counting in smart environments with distributed sensor networks has been
studied in the past, but using a large number of sensors (e.g., up to 60 sensors distributed in
a single apartment). Such a large number of sensors represents an important entry barrier
for many households. The challenge is to tackle this task in sparsely sensorized apartments,
with sensors that can be wireless (nowadays, many apartments are not equipped to host
wired solutions) and can provide only local and simple information.

In this article, we propose a method that addresses technological problems (such as
the blind times of the PIRs, their insensitivity in the absence of motion, and their different
sensitivity depending on the distance and temperature of bodies), topological problems
(such as possible sensor interference due to the inability to separate detection areas),
and algorithmic problems. In the instrumented apartment, there is only one PIR per room
and one on/off sensor on the front door. This is the minimum monitoring configuration:
below this, one or more rooms are not ‘observable’. The house is modeled as a DAG
(Directed Acyclic Graph). The model is used to deal with the fragmentation of the data
stream that the various sensors can generate. In particular, we need to manage unwanted
transitions between rooms when there are multiple people in the house. The DAG model
can constrain the transition between adjacent rooms and avoid crossing walls. However,
other issues for correct detection remain. The state of each room is represented by a set
of values, one for each identified person. Each value decays over time and represents the
probability that the person, while not specifying who they are, is still in the room. Because
the sensors used in our setting cannot identify the number of people, the approach is based
on multi-branch inference that, over time, differentiates the movements in the apartment
and estimates the number of people; the limitation is that the number of people must be
less than the number of rooms in the dwelling [13].

The main contributions of our work are:

• The method infers, step by step, the number of people in the house. It operates on
non-ubiquity: if sensors are simultaneously active in rooms that cannot interfere, there
are at least as many people as the number of active sensors. If the estimation is aimed
at residents only, the method derives the exact number of people in the apartment.
If the estimation is aimed at guests, the method gets whether the person is alone or
whether there are more people.

• The method is based on a non-intrusive and minimum-cardinality sensors network
with a single PIR sensor per room and a contact sensor on the front door. The scenario
is typical of real-world situations.
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• The method requires little scenario information (house map, sensor position, and the
observability of each PIR) to determine both adjacency between rooms and interference
situations between sensors.

• Finally, the method is unsupervised (can run in different scenarios without model
training). This requirement is essential in order to make it possible to monitor a wide
set of apartments.

The rest of the document is organized as follows. In Section 2, previous and related
work is introduced. Next, Section 3 presents the proposed approach. In Section 4, the
performance is evaluated. Finally, Section 5 discusses and concludes our work.

2. Related Works

During the years, various smart environment systems have been proposed. They have
been used in many scenarios, such as family houses [14], offices [15], shopping malls [16],
and museums [17], and have been applied for a variety of purposes, including tracking
people in buildings [18], counting people numbers [19], recognizing human behavior [20],
etc. In addition, energy consumption can be monitored, and the indoor environment can
be controlled automatically by using appropriate sensors and controllers [21].

The types of detection means (e.g., through sensors or transducers) that can be used in smart
environments are diversified. They can be roughly divided into two main categories, wearable
devices and non-wearable devices, where the latter is in turn divided into sensors–transducers
and multimedia-based devices. In terms of wearable devices, Bluetooth—BLE ([22,23]), UWB,
Zigbee, WiFi, and RFID technologies [24], or specialized sensors (e.g., magnetic field sensors [25])
are widely used in indoor positioning systems to track or to localize people [26]. Sensors–
transducers include various types of detection systems positioned in a smart environment to
detect the movement of humans [27]. A non-exhaustive list of these devices includes Passive
Infrared sensors [28,29], Thermal Sensors [30], and Force-Sensing Resistors (e.g., smart floors [31].
Moreover, pressure polymer, electromechanical film (EMFi), piezoelectric sensors, load cells, or
WiFi can be used [31]. Finally, multimedia-based approaches can obtain rich context from the
environment with videos [32] and audio [33–35].

Various approaches for people-counting in non-intrusive monitoring environments have
been proposed without multimedia-based devices. Petersen et al. [36] propose an SVM-based
method (Support Vector Machine) to detect the presence of visitors in the smart homes of
solitary elderly because social activity is an important factor for assessing the health status
of the elderly (social, psychological, and physical are, typically, the three dimensions of the
health-related quality of life). Wireless motion sensors are installed in every room, and several
key features are extracted and input to a SVM classifier, which is trained to detect multi-person
events. The model has been validated with a two-subjects dataset and the results demonstrate
the feasibility of visitor detection. The adopted method suffers from some criticalities: time is
divided into fixed slots of time, with epochs of 15 min; all possible room combinations are
taken into account (i.e., n× (n− 1)/2 ) without considering that adjacent rooms could produce
sensors interference; PIR blocking-time is not mentioned (blocking time could interfere with
the activation order of PIRs); the time of the day is flagged a priori to consider the ‘circadian
rhythm’; and finally, the approach is supervised.

Müller et al. [37] implement two approaches for inferring the presence of multiple
persons in a test lab equipped with 50 motion sensors (data from CASAS) and some contact
sensors; only two persons are monitored in the laboratory. One approach is a simple
statistical method to derive the number of people based on the raw sensor data, while the
second one uses multiple hypothesis tracking (MHT) and Bayesian filtering to track the
people. The first method reaches an accuracy of 90.75%; the second one reaches 83.35%.
The limit of this research is that the proposed method can only distinguish whether the
house has a single person or multiple persons, but does not estimate the number of people.
In addition, there are dense sensors in the test smart home, and the complex installation of
sensors may limit the widespread use of such a system.
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The authors of [38] estimate people numbers that satisfy the house topology and
sensor activation constraints; then, a Hidden Markov Model is used to refine the result.
The algorithm is validated in two smart homes and obtains high accuracy results when
the smart home has 0 to 3 persons, but the accuracy decreases dramatically with 4 or
more persons. In this work, both simulated and real data from different scenarios were
used: ARAS (limitation: small rooms, few rooms, and only partially covered), ARAS-FC
(limitation: few rooms without a dataset; the authors produced some data via simulation),
and House 2 (limitation: the authors produced a simulated dataset). Unfortunately, it is not
clear if they took into account the limits of the PIR sensors (for example, sensitivity and
blocking time) and the criticality of the map; for instance, this could create interference
between the different activations.

The work in [39] proposes an unsupervised multi-resident tracking algorithm that can
also provide a rough estimation of the number of active residents in the smart home. They
consider two datasets. The first is the dataset TM004 from CASAS, consisting of 25 ambient
sensors distributed among eight rooms and with two-bedroom apartments with two older
adult residents; occasionally, their child will come and stay in their house for a couple
of days. The second is named Kyoto and contains a denser grid of sensors (91 sensors
installed in six rooms—hallways included) with two residents; occasionally, they received
friends for a visit of a few days. The algorithm has good performance, but this decreases as
the number of residents increases; moreover, the algorithm tends to generate more resident
identifiers when the same resident triggers the same sensor events, and it has a higher
possibility of segmentation errors when tracking residents in a location where sensors are
more densely deployed.

Other papers focus on the problem of the recognition of multi-resident activities in
a smart-home infrastructure [40,41] (using the CASAS dataset with 60 sensors and 2 resi-
dents), [42] (using the ARAS dataset), and they can have as a consequence the possibility of
counting the number of people. However, given their main goal, the number of sensors is
typically very high, and the number of residents is limited to two persons.

A recent paper [43], focuses on the recognition of some daily activities in a multi-
resident family home. The recognition of daily activities is a specialized task that requires
to precisely identify the type of resident. For this purpose, authors used numerous and
specialized types of actuators (e.g., a sensor module for a cup and a sensor box of the
fridge) to distinguish the different activities performed by the individuals and using a
data-driven and knowledge-driven combination method to recognize users. The article
is very interesting, but, for the obvious reasons of observability of the phenomena, it
requires a conspicuous number of transducers in addition to those normally used for
home monitoring.

The survey in [27] focuses on the techniques for localizing and tracking people in multi-
resident environments. For the counting problem, they identify three classes of approaches:
(a) binary-based techniques based on binary sensors like PIRs—they typically exploit
snapshots or, possibly, the history of snapshots with spatial and temporal dependencies
to understand the number of people [44]; (b) clustering-based techniques that identify
multiple non-overlapping clusters containing one or more targets; and (c) statistical-based
techniques based on statistical models to estimate the number of persons.

The work in [45] aims at identifying visitors by using different measures of entropy for the
cases with/without visitors in a smart home equipped only with PIR sensors and a door contact
sensor that is used to confirm the visits and their duration. An accuracy of 98–99% is obtained
in a setting where a single occupant typically resides in the home and a visitor arrives.

Alternative approaches to estimate the number of people have been proposed. For ex-
ample [31] use WiFi: the movement can be detected through the analysis of the propagation
effects of radio-frequency signals. Wang et al. [46] propose a method to count people by
utilizing breathing traces, reaching 86% accuracy for four people. Similarly, in [47], Fiber
Bragg Grating sensors are used for the detection and number of occupants, experimented
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with three people. Recent techniques also include voice recording to recognize up to three
persons [48].

In the literature, vision-based methods have been always considered a reliable approach to
estimate the number of people because the camera can obtain rich information. Vera et al. [49]
proposed a system to count people using depth cameras mounted in the zenithal position: people
are detected in each camera and the tracklets that belong to the same person are determined.
Even though vision-based methods are efficient and reliable [14,50,51], they are unsuitable for
smart homes due to privacy reasons. Algorithms based on wearable devices are infeasible for
detecting visitors who do not wear such devices. Additionally, this intrusive method may not
be acceptable for those people with low compliance.

Our algorithm avoids the usage of wearable devices and cameras: it adopts a system
equipped with a very low number of presence detectors to realize non-intrusive monitoring,
based on architectural modules of the BRIDGe project (Behavioral dRift compensation for
autonomous and InDependent livinG) [52,53].

The proposed algorithm is based on minimal data about the house structure (plans of the
flat) and sensor position, such as room adjacency and possible overlapping monitored areas
(sensor interference), and can update the estimated number of people dynamically. The case
study is with four inhabitants (a family with two adult children) in an apartment with a living
room, a kitchen (open view), three bedrooms (a double room and two single rooms), two
bathrooms, and a corridor. In the apartment, there are frequent guests, especially from Friday
to Sunday (typically in the evening). The maximum number of people has reached six people.
The apartment is instrumented with one PIR per room (eight PIRs) and a contact sensor on
the main door. The PIR has a 2 s blocking time, 2 moves sensibility (the number of moves
required for the PIR sensor to report motion), and a 12 s window time (the period of time
during which the number of moves must be detected for the PIR sensor to report motion).

3. Proposed Method and Algorithm
3.1. System Architecture

The use-case scenario is a classical house with typical rooms: a kitchen, a living room,
and one or more bedrooms and bathrooms. In each room, a PIR sensor is installed. PIR
sensors are cheap and small, but they have some shortcomings: (a) the detection area
of the PIR sensor is difficult to control, so that PIR sensors in different rooms may have
overlapping areas of sensing range; (b) PIR sensors can only provide a binary response to
the presence or not of people regardless of the number of people; (c) the sensitivity of the
PIR is not uniform (it depends on the distance, the width of the visibility area—for example,
edge zone or sectors of areas—and on the speed of the subject, on the characteristics of
the subject [54]); and (d) the functioning of a PIR depends on a set of motion detection
parameters (e.g., the blocking time).

Moreover, a contact sensor is installed at the entrance of the smart home. The sensor
sends an activation signal when the door is opened. It is worth noting that a contact sensor
(e.g., door and windows perimeter monitoring) is less critical, in terms of functioning and
parameters, with respect to PIRs.

Figure 1 shows an overview of the architecture and data flow of the proposed algo-
rithm. The inputs of our algorithm are: the stream data from the PIR and contact sensors
and some information stored in the database, including the house structure and the sensors
settings. The stream data are processed by the Data Processor to detect the status of the
sensors, which can be active or inactive. The Data Fragment Generator reads the sensor
data and groups them into fragments concerning a continuous period that may represent
interesting changes in the house. Then, the Event Detector detects events in the received
data fragment, which may also include events coming from the door contact sensor. Based
on the detected events, the status of the sensors, and the system setting, a multi-branch
inference machine infers the number of people by fusing several independent inference
engines that represent different possible scenarios compatible with the sequence of events.
An algorithm coordinator controls all these modules and adds some functionalities that
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allow (a) to start the algorithm in any initial situation without any information about the
number of residents and (b) to avoid accumulated errors that may occur in long-time
runnings. All the modules are detailed in the next subsections.

Figure 1. Architecture of the proposed algorithm.

3.2. Fragment Generation and Event Detection
3.2.1. Data Fragment Generation

Sensors produce and send data irregularly, depending on the activities that occur in
the house. Typically, a series of signals are activated by the movement of a person within a
small time interval. To recognize events that happen in the house, we divide stream data
into semantic fragments composed of sequences of signals that occur in a certain interval
as shown in Figure 2. Fragments are separated by periods that do not detect events for a
given time interval.

In our Data Fragment Generator, only the active signal of PIR sensors and contact sensors
installed at the entrance door are taken into consideration. Thus, data fragments represent events
such as ‘somebody moves from the bedroom and goes out passing through the living room’.

Figure 2. The generation of a data fragment: circles represent events that produce new data; if
the time difference between two events is greater than interval, the new data are regarded as the
beginning of a new data fragment.

3.2.2. House Event Detection

The layout of the rooms in the house is modeled as a Directed Acyclic Graph (DAG)
representing their adjacency. The algorithm works also in multi-floor buildings. The detec-
tion and inference of possible events is realized by finding the transition of active signals
from generated data fragments.

Besides the movement of people between adjacent rooms, there are some special events:

• Go in: When someone enters the house, a ‘go in’ event happens. The total number of
people in the house increases.

• Go out: Similarly, a ‘go out’ event happens when someone goes out of the house.
In this case, the total number of people decreases. Notice that the exact number of
people entering/exiting the house cannot be determined, so the algorithm must take
into account this aspect.
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• Overlap: The detection area of PIR sensors in different rooms may have overlapping
detection areas. An example is shown in Figure 3. Such kinds of events need to be
identified to have a better inference.

Figure 3. Overlap Example: Both sensors in Room A and B are active, but the overlap is in Room B, so this
is defined as the Overlapped True (OT) room; instead, Room A is defined as the Overlapped False (OF) room.

The overlap case depends on the direction and the installation place of sensors; there-
fore, the possible overlap areas can be identified in advance.

If an overlapping case occurs, both sensors are active: if the difference between their
timestamps is less than a predefined overlap interval, the detector will detect an overlap
event. Figure 4 shows the typical behavior.

Figure 4. Overlap Event Detector: The last two signals highlighted in each data fragment are
compared with the list of known overlap cases.

3.3. House Status Estimation
Decayed Room Status Representation

To represent the house status, our method considers the following facts:

• PIRs transmit a state change when they detect a change in the infrared signals they
receive. After an activation, PIR sensors remain inactive for a while and do not capture
other events (blocking time). It is worth noting that PIR sensors do not change state
when people are motionless.

• The latest data can be considered more reliable for the representation of the current
status of the house compared to previous data.

To estimate the number of occupants accurately, besides the latest data, also the
previous data need to be taken into account. In each room, more than one person may be
present: the status of a room is represented by a set of values, one for each estimated person,
that decay over time and that represent the probability that the persons are still in the
room. We call this kind of representation Decayed Room Status Representation (DRSRt) and
the status of each person j in each room i at the time instant t Room Status Signals (RSSj

i,t).

The value of each RSSj
i,t varies from 0 to 1: 1 means that the person has been detected, 0

that the person has left the room, an intermediate value that the person may be in the room.
Each RSSj

i,t decays over time with a given decay ratio until it reaches a lower limit,
according to Equation (1), where ∆ti is the time difference from the last update of the i-th
room and ni is the number of persons estimated in the room.

RSSj
i,t+∆ti

= max{RSSj
i,t − decay_ratio× ∆ti, decay_lower_limit}, j = 1, 2, ..., ni (1)
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where decay_ratio defines the decay speed of RSSj
i,. and decay_lower_limit is the limit that

RSSj
i,. can reach. Such a decay mechanism can make up for the shortcomings of the PIR

sensors that are insensitive to motionless people. When a person is detected in a room,
if the adjacent room has not revealed an activity, we can assume that the person is still
there. Therefore, the activation status can last for a certain period, until the RSSj

i,t value
decays to the lower limit (decay_lower_limit). Thus, from the status DRSRt of the house, we
can determine whether a room is occupied or not by comparing their RSSj

i,t values with a

given threshold. The description of RSSj
i,t is shown in Figure 5.

Figure 5. The graphical representation of RSSj
i,t with the active and inactive areas, the decay lower

limit and the decay ratio.

The RSSj
i,t also has the following tunable parameters:

• Additional decay: To balance the uncertainty between the case of motionless people
(but still in the room) and people that have moved to other rooms, an additional decay
value is defined to be added in case of inactivity signals.

• Active threshold: determines the status of a room. If an RSSj
i,t is higher than the

active threshold, the room status is set as occupied; when it is lower than the active
threshold, the person is removed from the counting for that room.

Because the transfer of people from one room to another can be detected from a data
fragment as described in Section 3.2.2, if the algorithm detects a transfer from room A to
room B, while room B already has one person in it, then the number of people in the status
of that room will be set to 2. For example, if the active threshold is 0.2 and the RSSs in the
house are those shown in Table 1, then the total number of people in the house is estimated
to be equal to 3 because three RSSj

i,t values are greater than 0.2. Notice that for Room 2,

two different RSSj
2,t values are available, one for each person.

Table 1. Example of people occupation determination.

Rooms Room 1 Room 2 Room 3 Room 4

RSS [0.0] [1.0, 0.3] [0.15] [0.73]

Status Empty 2 people Inactive 1 person

3.4. Inference Engine

An inference engine is an entity that infers the status of the house. It has two attributes: the
status of the rooms RSSi,t of the house described above and a confidence score which changes
with the inferring process. The confidence score represents the consistency of the state of the
house. Whenever an ambiguity condition occurs, the confidence score decreases to return to
1 when the ambiguity is resolved. For example, if the inference engine finds that a transfer from
one room to another is concluded successfully, the inference process finishes, and the state of
the house is updated. On the contrary, if some inconsistencies are found and the process needs
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to continue in order to solve these problems, the confidence score is decreased. The number of
inference engines depends on the events in the house and the sensors data, as different branches
for all the possible cases that could be inferred are generated.

When the algorithm starts, one inference engine is initialized with the confidence score
set equal to 1. All rooms are regarded as empty, i.e., all RSSi,t are initially empty. When
the system is running, the new sensors data and the events detected by the Data Fragment
Generator are fed to the inference engine to update the status of the rooms. Then, the
number of people is estimated based on the RSSi,t values.

The Inference Engine updates status of the rooms following the main rules below:

• ‘Go in’ event: For the room connected to the entrance door (for example, room i = 1), a

new RSSj
i,t with value 1 is added and the status (number of people) is increased by 1.

The event is identified through the analysis of the activation sequence between the
input PIR and the ON/OFF sensor;

• ‘Go out’ event: For the room connected to the entrance door (for example, room i = 1),
all RSSi,t values and the status are set to 0; if the room is currently estimated as empty
(inconsistency state), the confidence is reduced.

• ‘Overlap’ event: the false activation signal is ignored;
• When the system receives an active signal, the algorithm determines if a room transfer

has occurred according to the topology of the house. If a transfer happens, a new
RSSj

i,t of the target room is set to 1. At the same time, the RSSj
i,t with the minimum

value of the room where the person comes from is deleted. In case the active signal
just intercepts an activity inside the room (person movement), all RSSj

i,t for that room
are incremented through the following formula (in the current settings, arise_ratio is
equal to the decay_ratio)

RSSj
i,t+∆ti

= max{RSSj
i,t + arise_ratio× ∆ti, 1}, j = 1, 2, ..., ni (2)

• If the PIR sensor does not activate for a certain time, but it may be possible that there

are still persons in the room, the status of the room becomes inactive, and its RSSj
i,t

values are decreased by the additional decay value.

Multi-Branch Inference

Because PIR and contact sensors cannot distinguish the number of people, we deal
with this situation with a multi-branch inference approach to consider the context of
sensors data. In some cases, the system may not be able to estimate the number of people
accurately, like in the case where there are more than two candidate rooms that satisfy the
room transfer condition, but after some inferences, the estimated result can finally converge
to the ground-truth number. Figure 6 shows a simple example.

The maintenance of the proposed multi-branch inferring method is as follows:

Figure 6. Example of transfer dilemma: One person is in Room A and another one is in Room C.
If the PIR sensor in Room B is activated, it is hard to determine whether the person who activated it
comes from Room A or Room C, until other events occur.

• Create Branch: When a dilemma case occurs, several new inference branches are
created for every possible movement case. Every branch has a confidence attribute
representing its reliability. For example, for the transfer dilemma case in Figure 6,
two inference engines are created—one for a possible transfer from Room A to Room
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B; another for the transfer from Room C to Room B, with independent room status
values. Both continue to infer the house status simultaneously.

• Merge Branch: Branches that have the same status are merged. If two inference
engines have the same status of the house for all the rooms, we regard them as the
same inference engine, delete one of them, and sum their confidence scores.

• Resize Confidence: Confidence scores are scaled-up periodically according to
Equation (3), where confidencei,t+∆ is the new confidence for engine i, confidence is the
vector of all confidence values of the engines.

con f idencei,t+∆ =
1

max(con f idence)
× con f idencei+t (3)

• Delete Branch: To reduce the number of inference engines, all the confidences are
sorted, and the inference engines with the lowest confidence values are deleted.

• Branch Fusion: All inference branches have different DRSR statuses and estimated people
numbers. Specific methods are used to fuse the results of all the inference branches, such
as voting, averaging, or weighted averaging based on branch confidence.

3.5. Algorithm

The general algorithm as well as all the steps described in the previous subsections
are described in Algorithms 1–5.

Algorithm 1 Main algorithm

1: sensorId, sensorState, sensorTimestamp← getSensorEvent()
2: if sensorState == On then
3: sensorsList← updateSensorsList(sensorID, sensorTimestamp, On)
4: if goIn(sensorsList, sensorID) == True then
5: for each DRSR in DRSRList do
6: roomentrance ← addNewPerson()
7: end for
8: else
9: if goOut(sensorsList, sensorId) == True then

10: for each DRSR in DRSRList do
11: roomentrance ← zeroPerson()
12: end for
13: else
14: if overlap(sensorsList, sensorId) == True then
15: DRSR← re f resh(sensorsList, sensorId, time())
16: else
17: DRSR← update(sensorsList, sensorId, sensorTimestamp)
18: end if
19: end if
20: end if
21: else
22: if sensorState == O f f then
23: sensorsList← updateSensorsList(sensorID, sensorTimestamp, O f f )
24: DRSR← update(sensorsList, sensorId, sensorTimestamp)
25: DRSR← rssDecay(sensorTimestamp)
26: else
27: DRSR← re f resh(sensorsList, All, time())
28: end if
29: end if
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Algorithm 2 Function goIn

1: de f goIn(sensorsList, sensorId) : boolean
2: if (sensorId) == DOOR then
3: if time(sensorsList.entrance)− time(sensorsList.door) ≤ DELTA then
4: returnTRUE
5: else
6: returnFALSE
7: end if
8: end if

Algorithm 3 Function goOut

1: de f goOut(sensorsList, sensorId) : boolean
2: if (sensorId) == DOOR then
3: if time(sensorsList.door)− time(sensorsList.entrance) ≤ DELTA then
4: returnTRUE
5: else
6: returnFALSE
7: end if
8: end if

Algorithm 4 Function update

1: de f update(sensorsList, sensorId, time) : DRSR
2: if dilemma(sensorsList, time, DAG) == True then
3: DRSR← addNewDRSR(sensorsList, time)
4: else
5: if roomsTrans f er(sensorsList, time, DAG) == True then
6: DRSR← moveDRSR(sensorsList, time)
7: else
8: DRSR← re f resh(sensorsList, sensorId, time)
9: end if

10: end if

Algorithm 5 Function refresh

1: de f re f resh(sensorsList, sensorId, time) : DRSR
2: DELTA = time− lastTime
3: if sensorId! = ALL then
4: DRSR← rssArise(sensorsList, sensorId, time)
5: else
6: if DELTA ≥ INTERVAL then
7: lastTime = time
8: DRSR← rssDecay(DELTA)
9: DRSR← resize()

10: DRSR← merge()
11: DRSR← f usion()
12: DRSR← delete(numDRSR)
13: end if
14: end if

3.6. Algorithm Coordinator

Two further important algorithm steps are introduced: the two-stage process and
the restart mechanism. The former is needed to balance the accuracy and stability of our
algorithm; the latter is used to avoid an accumulated error for long-time running.
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There are two challenges that our algorithm has to face: the first one is that the initial
number of people and the initial status of the house are unknown because the smart home
system may start at any time; the second challenge is that sensors in the smart home cannot
distinguish multiple persons. For example, if two people are in the same room, they are
regarded as one person, because sensors cannot see the difference with respect to the case
of a single person. In this condition, the algorithm would estimate fewer people. To solve
the two problems above, the algorithm works in two different stages: refresh stage and
stable stage.

• Refresh stage: When the system starts (the initial people number is set to 0) or when
the entrance door opens (some people may come in or go out), the estimated people
number is uncertain. The number of people is refreshed over time, and the estimated
number can converge to a correct result. This process is realized by changing the lower
limit of the room status. When this is set to 0, the estimated number can increase and
also decrease.

• Stable stage: When the estimated number remains unchanged for a specific period,
the lower limit of the room status is raised to a value that is greater than the active
threshold, i.e., the estimated number can only increase. In this stage, our algorithm
can perform a more stable estimation because people will not disappear when the
door does not open.However, the algorithm should allow the increase in the estimated
number because, in the refresh stage, some motionless/sleep inhabitants may have
been ignored and the corresponding room statuses are falsely decaying to 0.

A parameter called Refresh Stage Duration is set to switch the algorithm from the refresh
stage to a stable stage. The diagram of our two-stage process is shown in Figure 7.

Figure 7. Diagram of the Two-stage Process: The algorithm starts, and after the Refresh Stage
Duration, the algorithm switches to the stable stage.

Because smart home systems need to run for months, our proposed algorithm also
needs to run for a long time. To avoid accumulated errors for the house status and
people number estimation, the algorithm needs to be restarted regularly. The length of
the Refresh Stage Duration has been tuned on the field, and the results are shown in the
experimental section.

4. Results

Our approach has been validated in a domestic environment equipped with smart sensors
using the BRIDGe platform [52]. Data have been recorded for 14 days in a house with four
people (a family with two adult children). In the apartment, there are frequent guests, especially
from Friday to Sunday (typically in the evening). Six is the maximum number of people at a
Saturday dinner (on the other days, the typical number is less or equal to four).

4.1. House Layout and Sensor Setting

Figure 8 shows the layout of the house. It includes a kitchen (open view), a living
room, two bathrooms, three bedrooms, and a corridor. The corridor connects bedrooms,
bathrooms, and the living room. The entrance door of the house is in the living room.
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Figure 8. The Layout of Smart Environment with PIR sensors positions. The positions of the PIRs are
highlighted with red circles in the pictures of the rooms. On the map represent, they are positioned in
corresponding of the red circles, while the red sectors indicate the general direction of the sensors’
sensing areas, not the actual sensing range.

The apartment is instrumented with one PIR per room (therefore eight PIRs) and a
contact sensor on the main door. Data are collected by the FIBARO control unit (model
HC2); all FIBARO sensors, Z-Wave protocol (868 MHz), are mesh networked to the FIBARO
control panel. It is worth noting that the WiFi (there is a connection in the apartment) and
Z-Wave connection do not interfere because they operate on different frequencies. Data
transmission from the central unit to the cloud operates by events. Whenever a sensor
changes state (the state—ON or OFF—and time in which the state change occurred),
the record related to the sensor (SensorID, State, Time) is sent to the cloud. The PIRs are
FIBARO Motion Sensors, type FGMS-001 (multi-sensor: PIR, vibration, temperature, and
light), configured as follows: 2 s blocking time, 2 moves sensibility (number of moves
required for the PIR sensor to report motion), and 12 s window time (period of time during
which the number of moves must be detected for the PIR sensor to report motion). The
PIRs are sensitive to direct sunlight. The PIRs were put in a condition not to be directly
affected by the sun. There are no other particular and critical situations to take into account.
The PIRS in the bathrooms are positioned far from water. By construction, they tolerate
humidity; this characteristic is particularly important in Bathroom Small, where a shower
is present and where it is possible to detect variations of 30% RH when taking showers
in winter. Possible overlap cases exist in this smart environment as shown in Table 2.
As described in Section 3.2.2, OT rooms are the correct rooms to be considered when the
person is in the overlap area. For example, the first line indicates that when the person is in
the corridor, there is an area where they may also be detected by the living room sensor.
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Table 2. Possible Overlap Cases in Validation Dataset.

Number of Case OT Room of Case OF Room of Case

1 Corridor Living Room
2 Bedroom L Living Room
3 Bathroom Big Corridor

There are four permanent residents, and they have private environments. In particular,
there are two single rooms (Room person A and Room person L) and one master bedroom
(Room persons F and S). Bathroom Big is used mainly by A, L, and F, while Bathroom Small
is used mainly by S. In Bathroom Small, there is a shower used by all four family members.
In the living room, there are two sofas and a television; there is no table. The table is
only in the kitchen. For the ground truth, the arrival and leaving of people have been
recorded manually, including in/out events, the change of people number, and the time
when they were in or out. The time has been recorded manually and accurately (hours
and minutes). The total people number changes when the door is opened; then, it may
be distributed in different ways in the different rooms. Because the record of the contact
sensor installed at the door is accurate to seconds, we used it to align the in/out time to
reach second-level accuracy.

4.2. Indicators Design

To measure the performance of our approach, two kinds of indicators have been
considered: the accuracy of the number of people and the stability of the number change.

4.2.1. Accuracy Design

The accuracy represents the percentage of the time with a correct estimation with
respect to ground truth. As shown in Equation (4), TTotalTime is the total time we measured,
and the unit is in seconds.

Accuracy =
∑n

i=0 TPi

TTotalTime
(4)

TTotalTime = t− tbegin (5)

TCorrectEstimate+ = [n̂t = nt]× (t− tprev) (6)

Accuracy is the overall accuracy of the validation dataset. TPi is the total time that the
algorithm makes a correct estimation when the ground-truth number is i. TTotalTime stands
for the total time from which the system begins to the current moment. t and tbegin are
the current timestamp and the moment when the system started, respectively. In the last
equation, n̂t is the estimated people number at the current moment, nt is the true people
number, t is the current time, and tprev is the previous timestamp when the sensor data
have been received.

4.2.2. Stability Indicator Design

Stability can be represented by using the notion of information entropy. The information
entropy is used to measure the uncertainty of inferred numbers. We take the last 10 min of the
inference results to calculate the entropy because the earlier change of numbers may possibly be
caused by people’s movements. The less the entropy, the better the system performance.

Total_Entropy =
∑ Entropy(t)

N
(7)

Entropy(t) = −
max(n̂t)

∑
k=0

(pn̂t=k,tln(pn̂t=k,t)) (8)

pn̂t=k,t =
∑ 1n̂=k
T/Fs

(9)
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Total_Entropy is the average entropy of every moment. N is the total number of
the received data from the validation dataset. Entropy(t) is the calculated entropy in the
10 min before time t. n̂t is the estimated people number at the current moment, pn̂t=k,t is
the probability that the algorithm estimates the people number is equal to k in the 10 min
before time t, T is the sample period, and Fs is the sample frequency; here, we set it to 1 Hz.

Notice that entropy alone is not enough to represent the stability. For example, if there
are two people-counting results, such as (2,1,2,1,2,1) and (2,2,2,1,1,1), they have the same
entropy value, but the former result is worse. Therefore, a measure of the frequency of
changes in the estimated numbers is introduced, called Changecost(). The less the changes
cost, the better the system performance.

Total_ChangeCost = ∑ ChangeCost(t)
N

(10)

ChangeCost(t) =
T

∑
t=0
|n̂t − n̂t−1| (11)

Total_ChangeCost is the average ChangeCost of the whole dataset. ChangeCost(t) is
the calculated entropy in the 10 min before time t.

4.3. Experiment

The final selected parameters are shown in Table 3. The final accuracy result is 86.78%
with about 36,000 sensors data from the eight PIRs and the contact sensors for 14 days.

Table 3. Editable Parameters in the Algorithm.

Editable Parameters Value Editable Parameters Value

Decay Ratio 0.003/s Series Interval 40 s

Additional Decay 0.2/s Door Action Interval 60 s

Active Threshold 0.1 Max Branch Number 50

Overlap Interval 10 s Refresh Stage Duration 300 s

Some examples of the parameter selections are reported next: the first example is the
selection of the Refresh Stage Duration. We took values from 1 to 30 min and tested the
data from the dataset and obtained the result in Table 4. It can be noticed that when the
Refresh Stage Duration is 5 min, the algorithm can reach the highest accuracy of 91.78%,
with acceptable values of the other indicators, such as Entropy and ChangeCost.

Table 4. Parameter Selection of Refresh Stage Duration.

Parameter Values Accuracy Entropy ChangeCost

1 min 56.89% 0.155 0.820

3 min 88.63% 0.169 0.824

5 min 91.78% 0.171 0.882

10 min 89.12% 0.176 0.937

15 min 58.12% 0.213 1.375

20 min 12.17% 0.294 2.225

30 min 10.34% 0.325 2.894

The next example concerns the selection of the Max Branch Number. Similarly, several
values were tested to find out the best value. The results of the tests are shown in Table 5.
From the table, we can see that when the Max Branch Number is set to 30, the algorithm
obtains the best result.
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Table 5. Parameter Selection of Max Branch Number.

Parameter Values Accuracy Entropy ChangeCost

10 49.04% 0.196 1.093

20 73.50% 0.212 1.430

30 84.21% 0.177 1.002

40 81.14% 0.177 0.952

50 81.14% 0.177 0.952

60 83.78% 0.173 0.913

70 81.14% 0.174 0.884

Several ablation studies of the algorithm have been undertaken to compare the perfor-
mance with different methods and settings.

First of all, the validation dataset has been tested without the multi-branch inference
method, i.e., only one inference engine has been used to infer the status of the smart
environment. As shown in Table 6, we can see that the multi-branch method has less
Entropy and ChangeCost than the single-branch method, which means that the estimated
result of the former method is more stable. Moreover, the Accuracy of the multi-branch
method is higher than the single-branch method, by over 10%. Thus, the proposed multi-
branch inference method plays an important role in our algorithm.

Table 6. Comparison of multi-branch method and single-branch method.

Method Accuracy Entropy ChangeCost

Multi-branch Inference 86.785% 0.152 0.757

Single-branch Inference 75.695% 0.160 0.785

In the proposed algorithm, overlap events can be detected and this message can
be used as information to help the inference engine infer the house status. By using
this event detector, the shortcomings of PIR sensors can be remedied. To prove this,
an ablation experiment has been conducted and the result is shown in Table 7. Additionally,
the detection of door actions, including the ‘go in’ and ‘go out’ events, have also been
taken into account. From Table 7, we can see that without detecting the ‘Overlap’ event,
the algorithm obtained a worse result than the proposed method in all the indicators.
The former method regards the false overlapping case of the PIR sensors as real activation
signals, which leads to an incorrect inference of the house status. If the ‘Door Action’ event
detector was forbidden, the algorithm failed to make a correct estimation because the door
action is important for the house status inference.

Table 7. Ablation Study on Event Detection.

Method Accuracy Entropy ChangeCost

Proposed Method 86.78% 0.152 0.757

Without ‘Overlap’
Detector 55.71% 0.172 0.904

Without ‘Door Action’
Detector fail fail fail

4.4. Limitations of the Method

It is worth noting that to detect the right number of people in the apartment, the
following conditions must hold:
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1. The number of people in the apartment is lower than the number n of rooms with a
PIR sensor (or to the number of PIR sensors that cover separate areas). If this is not
the case, the algorithm will identify a number of people that is at most equal to n.

2. The blocking time of the PIR sensors reduces the accuracy of our algorithm, especially
when residents move around quickly and/or frequently; the lower the value, the
higher the accuracy of the proposed method. It is worth noting that the parameters of
the sensors strongly depend on the technology (both for connectivity and detection),
on the chipset, and on the available energy. The latter aspect is the predominant
factor because liveness depends on energy consumption. For example, the Tellur WiFi
motion sensor and Xiaomi Aqara Zigbee have a blocking time of 60 s, the FIBARO
motion sensor Z-Wave—the type used in our case study—has a blocking time that
varies from 2 to 8 s, while for wired sensors, the times are extremely lower, and also
with mixed detection technology (e.g., the Risco BWare DT AM microwave in K band
with PIR).

3. The dynamics of the in/out events from the apartment must be lower than the
dynamics of the movements of the people in the house; if the stationary condition
of the number of people in the rooms is long enough, the algorithm is more likely
to identify the number of people in the apartment. In fact, as the time of the people
staying in the apartment increases, the certainty of the results increases (if they move
among different rooms).

4. People in the apartment do not always move in pairs. If the people move in groups,
the algorithm will not distinguish them from the movement of a single person.

The proposed methodology is general and without any specific needs, excluding those
reported above; the rooms are those of a typical apartment (kitchen, bedroom, bathroom,
etc.), and the limitations are derived from the number of the rooms and their connections.
A studio apartment, for example, is an environment that does not allow, in a non-intrusive
way, to draw much information about the number of people (except for special ‘private’
events, such as the use of the bathroom). Although it is out of the scope of this article,
in some real cases we have been faced with, by increasing the PIR densities in some specific
rooms, they had a ‘complex’ characterization. For example, in an apartment with an open-
space living area gathering, where there is a kitchen, dining table, living room, etc., the area
has been virtually partitioned into sub-units in order to infer where people are moving and
the type of activity they are doing. In these cases (with the limits reported above), it is also
possible to estimate the number of people.

5. Conclusions

In this paper, we presented a people-number estimation algorithm based on non-
intrusive, sparse-distributed sensors data from a multi-resident smart environment with
work on the continuous flow of data generated by the sensors. Estimating the exact number
of people in a family with more than two residents is a difficult task, especially in a sparse-
distributed sensor network where each room has only one binary sensor to detect the
presence of a human. However, the choice for such a setting, which is basic and minimal,
is affordable in practice in many situations. Moreover, having a good, even if not precise,
estimation of the number of people can be sufficient in many real scenarios of older people
living alone at home.

Our algorithm has several advantages: it does not need to learn any data and therefore
can be applied immediately, starting at any time, and only limited information about the
house settings is needed. A good accuracy has been obtained thanks to the representation
of the status of the rooms and the multi-branch inference based on the context.

As future work, we plan to also test other types of sensor data, such as bed/chair sen-
sors, to evaluate the results in motionless situations [55] where no PIR sensors are activated.
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