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ABSTRACT

The Software Defined Architectures (SODA) Synthesizer is an open-

source compiler-based tool able to automatically generate domain-

specialized systems targeting Application-Specific Integrated Cir-

cuits (ASICs) or Field Programmable Gate Arrays (FPGAs) starting

from high-level programming. SODA is composed of a frontend,

SODA-OPT, which leverages the multilevel intermediate representa-

tion (MLIR) framework to interface with productive programming

tools (e.g., machine learning frameworks), identify kernels suit-

able for acceleration, and perform high-level optimizations, and of

a state-of-the-art high-level synthesis backend, Bambu from the

PandA framework, to generate custom accelerators. One specific ap-

plication of the SODA Synthesizer is the generation of accelerators

to enable ultra-low latency inference and control on autonomous

systems for scientific discovery (e.g., electron microscopes, sensors

in particle accelerators, etc.). This paper provides an overview of

the flow in the context of the generation of accelerators for edge

processing to be integrated in transmission electron microscopy

(TEM) devices, focusing on use cases from precision material syn-

thesis. We show the tool in action with an example of design space

exploration for inference on reconfigurable devices with a conven-

tional deep neural network model (LeNet). Finally, we discuss the

research directions and opportunities enabled by SODA in the area

of autonomous control for scientific experimental workflows.
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1 INTRODUCTION

Modern experimental instruments, such as electron microscopes,

mass spectrometers, particle accelerators, and more, acquire un-

precedented volumes of multimodal data produced at high velocity

[1]. These instruments cannot store all the data locally and need

to process them in real time to enable autonomous control of the

experimental workflow. Domain scientist may need to set up a large

variety of very specific experiments to collect heterogeneous data,

often at the same time, and with limited opportunities to repeat

the experiments. Machine learning and, more in general, artificial

intelligence methods promise the ability to analyze and efficiently

classify the input data, also in presence of noise. However, as data

rates and features to capture increase, so does the complexity of

the models, making it difficult to reach the low processing latency

required to perform decisions on-the-fly without highly specialized

accelerators. Additionally, beside performing in situ analysis, there

might be the need to reduce and ship the acquired data to large-scale

high-performance computing services to perform further analyses,

execute scientific simulation, and re-train models in a closed loop.

While able to reach high peak computational rates, heterogeneous

solutions composed only of general-purpose processing elements

(central processing units and graphic processing units) typically are

better suited to process large batches of data, optimizing the overall

throughput, rather than optimizing the latency in continuously

streaming inputs.

Domain scientists typically develop their data analysis algo-

rithms in high-level productive programming frameworks, which

trade-off productivity for performance. With the conventional, and

extremely time expensive, approach, expert hardware designers

implement specialized accelerators that match the most common

computational patterns with hardware design languages (HDLs) at

the register transfer-level (RTL). In machine learning and artificial

intelligence, new methods and models are developed all the time.

If algorithms change, the main computational patterns may also

change, rendering all previously designed accelerators inefficient.

The semiconductor manufacturing costs also require significant

volumes to justify the production of application specific integrated

circuits (ASICs), making reconfigurable devices such as field pro-

grammable gate arrays (FPGAs) for these highly critical sectors
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more appealing today, at the price a lower overall performance. New

design automation tools, able to generate specialized hardware ac-

celerators automatically, or with very limited human intervention,

starting from the high-level specification of the algorithms are

required to bridge this hardware productivity gap.

Conventional High-level Synthesis (HLS) tools, which are today

provided by many companies that design FPGAs (AMD Xilinx and

Intel Altera), or provide design automation tools (Synopsys, Ca-

dence, Mentor) typically start from languages such as C or C++,

with tool-specific libraries and annotations that mix the imperative

description of the algorithms with hardware specific information.

While they remove the need to write HDL code, they still need

expert developers to finely tune and hand optimize the code to ob-

tain high quality of results. Approaches that leverage these tools to

generate accelerators from higher-level programming frameworks

(e.g., in Python) typically resort in specializing HLS code templates,

providing a higher abstraction than HDL code templates, but still

significantly limiting the number of mappable computational pat-

terns in name of performance. However, high-level programming

frameworks usually are functional in nature, thus provide many

opportunities to perform automated and transparent optimizations.

To address some of these gaps, we introduced the Software De-

fined Accelerators (SODA) Synthesizer [3], an open-source, modu-

lar, and extensible end-to-end compiler-based framework for gen-

erating highly specialized hardware accelerators from algorithms

designed in high-level programming frameworks. SODA is com-

posed of SODA-OPT [2], a frontend based on the MultiLevel In-

termediate Representation (MLIR) [11] framework, that interfaces

with high-level programming frameworks and applies high-level

optimizations, and PandA-Bambu [8], a state-of-the-art HLS tool

that generates hardware designs in HDL (Verilog). SODA interfaces

with external logic synthesis tools for FPGAs and ASICs.

In this paper, we discuss how the SODA Synthesizer can provide

a fundamental research infrastructure to generate custom accel-

erators and systems for low latency reasoning and autonomous

control, focusing on the unique case of experimental scientific

instruments. We provide a brief overview of the current SODA

framework, present the use case of precision material synthesis

in terms of requirements and opportunities for autonomy, show

preliminary results with the framework to explore design tradeoffs

with a common autoencoder model, and discuss future research

directions to enable in situ on-chip learning.

2 THE SODA SYNTHESIZER

The SODA Synthesizer (Figure 1a) consists of two major compo-

nents: i) SODA-OPT[2], the frontend compiler for system-level

partitioning and high-level optimizations, and ii) PandA-Bambu [8],

a state-of-the-art HLS tool.

Inputs of the SODA toolchain are algorithm descriptions written

in high-level programming languages and frameworks, such as

Python. The framework generates the related hardware accelerators

described in Verilog RTL, synthesizable to FPGA or ASIC targets.

The high-level specification provided to the compilation pipeline

is translated into a high-level intermediate representation (IR) in the

early stages of the high-level optimizer. This IR actually consists of

several dialects (i.e., specialized IRs derived from the same meta-IR)

of the Multi-Level Intermediate Representation (MLIR) [11].

SODA-OPT performs hardware/software partitioning of the in-

put program and architecture-independent optimizations by lever-

aging MLIR features. SODA-OPT generates two different types of

LLVM IR outputs. The first one is an optimized LLVM IR file with-

out external dependencies that represents the kernels identified

for acceleration. This file is in turn passed as an input to PandA-

Bambu [8]. The other output is an LLVM IR file representing the

host program that orchestrates calls to the accelerators. All the

optimizations performed by the SODA framework are implemented

as different compiler transformations.

SODA provides a design space exploration engine that selects a

suitable combination of compiler passes and parameters, optimizing

the design for a chosen target metric (performance, area, power,

etc.).

2.1 SODA Frontend

SODA-OPT [2] is the framework’s compiler frontend (Figure 1b). It

is developed by extending LLVM’s MLIR, which allows to build a

modular and reusable compiler infrastructure through the definition

of dialects, i.e., specialized, and self-contained IRs compliant with

MLIR’s meta-IR syntax.

Conventional HLS methodologies often require significant code

modifications and/or take advantage of compiler directives provided

via pragma annotations. Such directives influence HLS optimiza-

tions, for example exposing more or less task-level parallelism in

parallel loops, or, controlling their unrolling factor. SODA-OPT

takes an orthogonal approach by leveraging the semantic informa-

tion carried by context-specific MLIR dialects and automatically

applies the high-level transformations while preparing the input

program for hardware synthesis.

SODA-OPT provides compilation passes to Search, Outline, Op-

timize, Dispatch, and Accelerate parts of the initial specification

coming from high-level frameworks. SODA-OPT defines the soda

MLIR dialect, used for the automatic partitioning of the input ap-

plication into a host program responsible for orchestrating the

runtime execution, and the custom hardware accelerators [2].

In the search phase, SODA-OPT analyzes the MLIR representa-

tion of the specification to identify code regions suitable for acceler-

ation. Such regions are then extracted into separate MLIR modules

(outline), which undergo further optimization passes. SODA-OPT

can leverage MLIR dialects and the associated optimizations di-

rectly included within the MLIR distribution in the LLVM compiler

framework or provided externally. For example, SODA-OPT lever-

ages MLIR’s linalg and affine dialects to identify operators and

perform loop optimizations.

Machine Learning frameworks (e.g., TensorFlow, ONNX-MLIR,

and TORCH-MLIR), software for scientific computing (e.g., NPCOMP),

and general-purpose programming languages (e.g., the FLANG

Fortran compiler) are designing MLIR dialects, optimizations, and

lowering passes to optimize their input programs. SODA-OPT can

directly interface with all the frameworks that lower to dialects

provided in the MLIR distribution.

2.2 SODA Synthesizer Backend

Bambu (Figure 1c) is an open-source state-of-the-art HLS tool from

the PandA framework, and it acts as the main synthesis backend of
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Figure 1: The SODA framework is an open-source, multi-level, modular, extensible, hardware generator composed of a high-level

compiler and an HLS backend

the SODA framework. Bambu synthesizes the accelerators designs

starting from the LLVM IR produced by SODA-OPT, accepted by

the tool as input, in addition to C and C++ programs, through a

dedicated Clang plug-in. This feature allows SODA-OPT to directly

interface with the tool, acting as an additional specialized frontend.

Starting from LLVM IR generated after SODA-OPT high-level opti-

mizations for HLS results in superior quality of results compared

to accelerators synthesized starting from C/C++. Internally Bambu

builds several IRs to perform HLS steps (resource allocation, sched-

uling, and binding) and optimizations (e.g., operations chaining,

bitwidth analysis, loop optimizations). It finally generates as out-

put the RTL description of the generated hardware, in Verilog or

VHDL. In addition to the synthesizable RTL code, Bambu can also

automatically generate testbenches for verification, together with

simulation script for different tools, such as ModelSim and Verilator.

Bambu enables the SODA framework to target FPGAs (from Xilinx,

Altera, Lattice, NanoXplore) and ASICs. For ASICs, SODA supports

Verilog-to-GDSII generation using both commercial (Synopsis De-

sign Compiler) and open-source (OpenROAD [9]) logic synthesis

tools. The final RTL designs are generated in behavioral HDL and

can synthesized targeting any type of device and process technol-

ogy. However, several steps in the HLS process can benefit from

a detailed characterization (area, delay, power) of functional units

and components in the resource library, with respect to specific

target devices and technology. In addition to individual modules,

integrating technology-specific interconnect models can improve

the quality of the results of the generated designs. Module binding

and operations scheduling can use this information to optimize for

various metrics (e.g., overall latency and area of the accelerator)

while meeting synthesis constraints like a target frequency. For ex-

ample, if sufficient slack exists, two functional units can be chained

to execute in the same control step.

For this purpose, Bambu integrates Eucalyptus, a resource char-

acterization tool. Eucalyptus runs micro-benchmarks with the back-

end logic synthesis tools and annotates the relevant information for

each component in the resource library, for each target technology

or FPGA device. Currently, Bambu already includes characteriza-

tion for a variety of FPGA devices and various ASIC technology

libraries. However, new targets can be added, further extending

opportunities for design space exploration, with semi-automatic

tradeoff evaluations across different target technologies.

Bambu, by default, generates RTL designs following the finite

state machine with datapath (FSMD) model, but also integrates

methodologies to support alternative parallel accelerator designs.

It can, in fact, compose FSMD components as processing elements

in coarse-grained dataflow designs [5] or generate completely dy-

namic dataflow accelerators at the single instruction level [4]. To

achieve high-throughput in parallel irregular workloads, Bambu

can exploit dynamically scheduled, multithreaded parallel tem-

plates [16]. In addition, Bambu integratesmodular synthesismethod-

ologies [17] to enable inter-procedural resource sharing across the

design hierarchy.

MLIR descriptions are naturally parallel and hierarchical, making

it possible to trigger Bambu’s advanced synthesis methodologies

from SODA-OPT. Rather than requiring manual annotations on the

input code, we can define the design hierarchy at a higher level of

abstraction by exploiting MLIR. This approach demonstrates how

clean interfaces and integration between the two tools facilitate
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Figure 2: Opportunities for co-design in Transmission Electron Microscopy (TEM)

hardware design, removing the need to provide input code with

hardware information in the form of annotations.

3 PRECISION MATERIAL SYNTHESIS USE
CASE

Artificial intelligence platforms provide a unique opportunity to

integrate new functionalities in materials evolution processes. Ap-

plications ranges from sentient and adaptive biological systems to

3D-printing to synthesis of atomically precise quantum devices.

A key part of precision material synthesis is Transmission Elec-

tron Microscopy (TEM). TEM provides insightful information about

the structure and dynamics of physical phenomena.

Figure 2 provides an overview of signals and data incoming from

a TEM instrument (1) and data that local instrument controller (2)

and local analytics engine (3) process. In the experimental work-

flow, data might then be sent to a user facility (4) where additional

analytics and control software are located. The user facility may

use acquired data to perform additional scientific simulations and

retrain models for the on-instrument local analytics engine.

Modern TEM instruments have high resolution and acquisition

rates, and provide detector designs that enable manufacturing pro-

cesses to be analyzed in operando at acquisition speeds. However,

reaching the latency required to perform real-time decision-making

needs effective edge processing solution. Some of the latest TEMs

provide opportunities to connect to FPGAs, which are commonly

used to process streaming data, or other on-edge processing de-

signs.

With effective local processing capabilities, there are several op-

portunities for applying AI to improve the experimental workflows

in TEM. Three opportunities are:

(1) Electron Energy Loss Spectrometry (EELS). Even if EELS data

acquisition speeds with electron counting regularly reaches

400 fps with near-zero read noise, signal to noise ratio (SNR)

remains a challenge, and low SNR can render datasets too

noisy for analysis [18]. Machine learning can provide so-

lutions for denoising. For example, RapidEELS [18, 20] is a

framework composed of an autoencoder and a binary classi-

fier to denoise low SNR EELS spectra and classifying their

oxidation state. The autoencoder is trained on high fram-

erate, low SNR spectra and their corresponding denoised,

background subtracted data. The classifier is trained on the

latent space representation from the autoencoder, and it es-

tablishes if the oxidation state is "initial" or "annealed". The

classifier consists of a single, two-neuron, dense layer with

Softmax activation.

(2) Reflection high-energy electron diffraction (RHEED). RHEED

is a powerful in-situ surface characterization technique used

during molecular beam epitaxy (MBE) and pulsed laser depo-

sition (PLD) growth to provide insights into surface structure

and quality [14]. The real-time qualitative and post-growth

quantitative analysis of RHEED diffraction patterns provides

crucial information on crystalline phase, surface roughness,

in-plane strain, growth rate, and the presence of undesirable

secondary phases and/or polycrystalline components.

Recent work has demonstrated the promise of applying data

analytics to RHEED pattern images [19, 22]. RHEED data

generated during MBE growth has been successfully ana-

lyzed after the deposition with both multivariate methods

(e.g., principal component analysis) using k-means clustering

algorithms and a convolutional neural network architecture

to provide phase identification and qualitative insight into

film quality [13].

(3) Neural Networks Potentials (NNPs). NNPs are a way to rep-

resent the multidimensional potential energy surface (PES)

leveraging machine learning [10]. The PES is of central im-

portance for reaching an atomic-level understanding of any

type of system, and contains all the information about the
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stable and metastable structures, the atomic forces driving

the dynamics at finite temperatures, the transition states

and barriers governing reactions and structural transitions,

and also the atomic vibrations. NNPs learn the shape of the

PES from reference data obtained from high-level electronic

structure calculations. This allows to represent the atomic

interactions in large scale simulations (such as molecular

dynamics) significantly faster than the electronic structure

calculations without a significant loss in accuracy.

Providing the ability to accelerate simulations on the edge

with surrogate models allows generating additional data that

can then be used to perform automated decision-making.

4 EXPERIMENTAL EVALUATION

Table 1: Execution latency (Clock Cycles) of LeNet with different outlining
strategies. Merged cells correspond to a single accelerator.

Layer type Individual Fused as Fused Full

Ops TF kernels Coarser Network

Conv2D - 6x5x5 filters 2,353,598
2,388,122

2,443,073

5,965,844

ReLU 34,526

AvgPooling2D - 2x2 84,338 84,338

Conv2D - 16x5x5 filters 4,835,522
4,835,522

4,853,938ReLu 11,312

AvgPooling2D - 2x2 28,842 28,842

Dense - 120 units 926,402
927,362 927,362

ReLU 842

Dense - 84 units 195,722
196,394 196,394

ReLU 590

Dense - 10 units 16,372
16,731 16,731

Softmax 410

Total 8,488,476 8,477,311 8,427,498 5,965,844

We demonstrate the end-to-end capabilities of the SODA frame-

work by automatically generating specialized hardware accelerators

from high-level programming frameworks. We automatically trans-

late a LeNet model [12] trained in TensorFlow to the linalg dialect

and employ SODA-OPT to search, outline, and optimize different

regions of the network. We generate different specialized accelera-

tors with the SODA framework targeting a Xilinx xc7z045-2ffg900

FPGA device, and frequency of 200 MHz.

Table 1 presents, for each layer of the model, the execution la-

tency in number of clock cycles obtained with different outlining

strategies. We first generate one accelerator for each individual

operator of the network, and progressively move to coarser gran-

ularity by fusing operators as usually performed in TensorFlow.

Finally, we outline the entire network to generate a single accel-

erator. SODA-OPT allows exploring custom accelerators for fused

operators at any level of granularity. As the results show, outlining

the entire network provides the greatest opportunity for perfor-

mance improvement, with 1.42x speedup compared to the outlining

of individual operations. Combining layers also significantly affects

the area and frequency, as summarized in Table 2. While fusing lay-

ers could provide more opportunities for optimization and reduce

the execution latency of the network, it could also result in bigger

accelerators or lower maximum achievable frequency.

The ability to perform outlining at arbitrary granularity at the

IR level enables to explore a much wider design space than just

combining parametrized accelerators for each operator. In fact, de-

pending on the desired optimization objectives (latency or area) and

system constraints (e.g., the target frequency), it is also possible to

describe a system composed of accelerators at different granularity.

5 RESEARCH DIRECTIONS AND
OPPORTUNITIES

Achieving autonomy (self-driving vehicles, experimental work-

flows, and more) requires the ability to process multimodal data,

often unstructured, at very low latency to perform real-time deci-

sion. In the case of scientific experimental workflows, for example,

the latencies are highly dependent on the evolution of the physical

processes. These situations justify the need of highly specialized

processing, as more generalized accelerators design may not com-

pletely fit the complex tradeoffs required by these applications.

Even if reconfigurable devices, able to be specialized after their

production, seems to provide an opportunity to support the diverse

application areas requiring autonomy, developing and exploring

highly specialized accelerators still is highly inconvenient. Research

in the data analytics approaches needed to identify decisions to

take are performed in high-level frameworks, which typically do

not consider the strict latency requirements of autonomous con-

trol. Research in the area of design automation is today looking

at bridging the gap from high-level framework. SODA is part of

such a context, providing a modular and extensible infrastructure

to move from high-level data science algorithms formulation to

their hardware implementation. However, there are still significant

challenges to overcome and many opportunities arising from the

investments on advanced semiconductor manufacturing.

First, the hardware design ecosystem needs to provide both open-

source tools and the ability to seamlessly integrate with proprietary

solutions. Open-source tools have been mainly research-focused,

and as such have the freedom to try to quickly address new emerg-

ing requirements. However, they sometimes lack the production-

ready quality of proprietary tools. Conversely, commercial tools

are typically difficult to directly integrate into automated flows and

require significant manual efforts, since some of their algorithms

and interfaces are proprietary, significantly limiting opportunities

for design space exploration. A prominent example in the area of

low latency control for experimental workflows is HLS4ML [7].

Born with only the support for Xilinx HLS tools, HLS4ML is now

moving towards supporting other commercial tools for FPGAs

and ASICs (e.g., Mentor Catapult C). However, the tool employs

a library-based approach, developing specific HLS templates for

each network under consideration. While this leads to high per-

formance for the considered cases, it might not allow to quickly

explore new algorithms (even if at lower quality of results), and

makes necessary to write solutions for each and every HLS backend

with custom and proprietary directives. We also are investigating

the integration of the SODA framework with several different tools

of the open-source and proprietary ecosystems. For SODA-OPT we

have implemented initial support for commercial FPGA synthesis

tools (Vitis HLS) by also generating optimized LLVM IR inputs,

extending the work in [23]. In terms of target technologies, instead,

our open-source HLS backend can already support FPGAs from
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Table 2: Area reqirements (Slice LUT/FlipFlop Pairs)) and maximum freqency (MHz) of LeNet with different outlining strategies. Merged cells correspond to
a single accelerator.

Layer type

Individual Fused as Fused Full

Ops TF kernels Coarser Network

Pairs Fmax Pairs Fmax Pairs Fmax Pairs Fmax

Conv2D - 6x5x5 filters 4,497 222.76
5,288 221.33

33,135 202.265

134,573 134.74

ReLU 923 234.57

AvgPooling2D - 2x2 13,325 210.03 13,325 210.03

Conv2D - 16x5x5 filters 7,315 221.92
7,315 221.92

39,607 201.32ReLu 2,175 236.01

AvgPooling2D - 2x2 12,315 214.59 12,315 214.59

Dense - 120 units 2,052 219.34
2,347 218.24 2,347 218.24

ReLU 234 315.65

Dense - 84 units 2,148 221.09
2,444 218.57 2,444 218.57

ReLU 234 310.17

Dense - 10 units 2,934 207.90
6,765 173.19 6,765 173.19

Softmax 2,792 216.68

min(Fmax) min(Fmax) min(Fmax)

Total 50,944 207.90 49,799 173.19 84,298 173.19 134,573 134.74

different vendors and ASIC, leveraging technology characterization

to improve quality of results.

While FPGAs appear a promising target due to their ability to

be configured post fabrication, with the new investments in semi-

conductor manufacturing capabilities (e.g., the CHIPS & Science

Act) that could lower the access to production lines for small vol-

ume highly specialized designs there is an opportunity to assemble

custom ASIC solutions through chiplets. From this point of view,

interfacing with both commercial and open-source ASIC tools, is

trying to foster opportunities to perform end-to-end synthesis. On

this line, advanced manufacturing capability for small scale pro-

duction and prototyping can allow composition and generation of

entire domain specialized systems. SODA-OPT can already reason

about system-level design. It performs code partitioning, optimiza-

tions specific for custom hardware generation, and composition of

a system architecture, generating glue code for control processors

or assembling accelerators in dynamically scheduled architectures.

A similar approach could be further extended by integrating with

rapid prototyping platforms from the open-source ecosystem, such

as the Embedded Scalable Platforms (ESP) [15]. We are currently

working to integrate both SODA-OPT and Bambu with ESP. SODA-

OPT can drive the system-level design, leveraging the services of-

fered by ESP to invoke accelerators. Bambu can provide ESP with

an open-source HLS backend for custom accelerators, which will

be generated from code partitioned, optimized, and mapped on the

ESP SoC by SODA-OPT.

Considering the availability of open-source IPs and architectural

templates, several of these modules can either become targets for

SoC design (e.g., platforms provided with RISC-V cores) or part of

the HLS tool resource library. For example, Bambu can integrate

templates of systolic arrays in its resource library, allowing it to

generate specialized processing elements, similar to the approach

presented in [16].

An additional opportunity, particularly relevant for specialized

designs with quickly changing algorithms, is supporting generators

for domain-specific FPGAs. In the case of experimental workflows

for material synthesis, the reconfigurable substrate could be special-

ized to deal with the input data types and the instrument interfaces.

SODA could integrate with solutions such as OpenFPGA [21], per-

forming high-level analysis to identify patterns that might require

additional hard macros in the hardware substrate while still lever-

aging fine-grained reconfigurability. The HLS tool could perform

design space exploration, leveraging the hard macros through the

resource library, or even synthesizing them on-the-fly and reusing

them as necessary.

On a longer term, providing amodular hardware design toolchain

can also allow to explore new computing paradigms leveraging ex-

isting components of the infrastructure. For example, we previously

have shown the SODA framework modularity by proposing a new

MLIR dialect for spiking neural networks (SNN) [6]. The dialect al-

lows mapping SNNs on digital neurons that could be synthesized on

FPGAs using Bambu (as often done with other SNNs frameworks).

Domain specialized FPGAs might even provide components that

facilitate design of SNNs (for example, memristive devices). In gen-

eral, supporting design and generation new computing paradigms

could provide significant advantages for edge devices in areas such

as experimental instruments: remaining near the sensors, and in the

same domain of the acquired data (e.g., analog) beside being power

efficient might drastically reduce or remove conversion latency and

thus facilitate real-time control.

6 CONCLUSIONS

In this paper we presented an overview of the SODA framework,

an end-to-end, multi-level, open-source hardware compiler. SODA

incorporates a frontend based on the MLIR infrastructure and a

backend leveraging a state-of-the-art HLS engine. SODA interfaces

with a variety of high-level data science frameworks such as Tensor-

Flow, and generates custom hardware accelerators targeting both

FPGAs and ASICs. We discussed the need for hardware acceleration

in research areas such as precision material synthesis, focusing on

the low latency required to enable autonomous control for monitor-

ing the evolution of the physical processes. We demonstrated how

end-to-end solutions like SODA could provide the agility needed
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to go from algorithmic formulation to hardware implementation of

specialized accelerators for machine learning models, and perform

design space exploration to meet the edge processing requirements.

Finally, we discussed research challenges and opportunities to en-

able on-chip learning at the edge leveraging end-to-end hardware

design tools for critical areas such as autonomous scientific systems.
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