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Abstract

Nowadays, the growing interest in industry for enhancing manufacturing processes
sustainability is a major trend. One of the most supported strategies to increase the
energy-efficiency of manufacturing activities is the control of machine state towards
the optimum trade-off between production rate and energy demand. This method is
referred to as energy-efficient control and it triggers machines in a standby state with
low power request. In this paper, multi-stage production lines composed of identical
parallel machine workstations are the systems of interest, and the energy-efficient con-
trol policies make use of buffer level information. Each machine can be switched off
instantaneously and switched on with a stochastic startup time. Problem objective
is to minimize the energy demand while assuring production constraints. The paper
proposes a novel approach to solve the problem at hand. An exact model for two-stage
system is formulated using a Markov Decision Process to be solved with a linear pro-
gramming methodology. A novel technique, namely the Backward-Recursive approach,
is used to address systems with more than two stages. Numerical experiments confirm
the effectiveness of the proposed approach.

Keywords: Energy-Efficiency Control; Parallel Machines; Manufacturing Automation; Markov
Decision Process; Linear Programming.

1 Introduction

The industrial sector is accounted for 42% of global energy consumption, mostly caused

by manufacturing activities (Center, 2020), and therefore manufacturing companies are

significantly increasing their interest in the energy-efficiency topic. In a manufacturing

system, energy-efficiency can be addressed at different hierarchical levels of the automation

pyramid (Can et al., 2019): global supply chain, facility, production line, and machine tool
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(machine from now on in the paper) which accounts for approximately 50% of the total

amount of electricity utilized in manufacturing (Hu et al., 2017). In this work, the machine

level is analyzed in order to assess the resulting benefits for the entire production line.

A major energy consumption is caused by machines kept in ready-for-process conditions

even during idle periods, i.e. when the part flow is interrupted, and the machine is not

operating on parts but still has a remarkable energy request. This policy to manage machine

operations is known as Always On (AOn) policy. On the other hand, energy-efficient control

(EEC) policies can be used to decrease machine energy consumption during idle periods.

The key idea behind EEC is that the machine can be switched off when the production is

not needed because the part flow is interrupted so that machine power request is reduced

and, then, it can be switched on again when the production is about to resume. Resume the

service often requires a delay due to the machine startup procedure. A proper EEC policy

should decrease energy consumption while assuring target levels for different production

performance indicators (e.g. system throughput and workstation availability levels). EEC

complexity increases when policies are applied at multiple machines simultaneously.

Multi-stage manufacturing lines with parallel machine workstations are very common.

As particular example, machining is one of the key processes in the automotive industry but

not one of the fastest and therefore machining operations are often performed with parallel

machine workstations managed with AOn policy. Figure 1 represents the conceptual layout

of an automated line producing cylinder heads for automotive (Loffredo et al., 2022). This

example consists of twenty-one operations including four machining operations (Op.125,

375, 390, and 525) performed by parallel machine workstations. Also, Op.500 and 515 are

by far the slowest processes of the entire line leading to frequent blocking for Op.125, 375,

and 390 and to frequent starvation for Op.525. As a consequence, the machining production

stages are almost never used at maximum capacity, and some resources could be switched

off for energy saving without undermining the overall system production rate.

The extensive use of multi-stage production lines made of workstations with parallel

identical machines that are commonly managed with the AOn policy leads to great potential

for increasing the energy-efficiency of these systems. Therefore, being able to reduce the

environmental impact of systems with this layout can strongly improve industrial processes’

sustainability. This goal can be achieved with EEC and, for this reason, this work focuses
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Figure 1: Multi-stage production line with parallel machines (Loffredo et al., 2022).

on the EEC of multi-stage production lines made of workstations with parallel identical

machines. The goal is to obtain an EEC policy using buffer level information to reduce the

overall energy consumption of the production system while reaching desired target levels

on general system performance such as production rate, machine availability, or others.

1.1 Related Literature

Machine energy consumption can be seen as the sum of a Base Load energy independent

of the process and required to maintain ready-for-process machine conditions, and a Load

Dependent energy required to operate on parts (Dahmus and Gutowski, 2004). The princi-

pal techniques to reduce the Base Load energy through machine state control are the EEC

and the energy-efficient scheduling (EES).

EES is connected with the production activities scheduling, i.e. the detailed plan for

the use of the machines to perform a set of production activities called “jobs”. Most of the

time scheduling plan is often defined before its actual realization on the shop floor since all

the relevant data are assumed known and deterministic (Anghinolfi et al., 2021). The goal

of EES becomes the trade-off between energy cost and a main classic scheduling objective,

such as total makespan or jobs’ tardiness (Wang et al., 2018). The objective is to have a

production schedule leading to the optimal energy demand profile: jobs are allocated to

machines minimizing the number of non-productive periods and, consequently, decreasing

the plant energy consumption. Furthermore, the EES approach was also exploited to
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improve the energy-efficiency of parallel machine workstations (Wang et al., 2018; Anghinolfi

et al., 2021; Heydar et al., 2022) and a complete EES literature review can be found in

(Gahm et al., 2016). On the other hand, this work deals with EEC. EEC provides policies

to be applied in real-time during production progress, without deterministic information

on the next part arrival to the machine. Thus, EEC and EES have two completely different

approaches to deal with the energy-efficient problem and are characterized by different

research streams.

Literature for EEC in manufacturing is becoming wide and is expanding in recent years.

A complete and recent literature review on this topic can be found in (Renna and Materi,

2021). The first level of analysis where EEC can be implemented is the single machine

and, consequently, the single-buffer-single-machine layout has been extensively studied in

this field. The first work on this theme is (Mouzon et al., 2007), with several switch off

dispatching rules for a non-bottleneck machine in a production system. Subsequently, in

(Frigerio and Matta, 2015) the authors studied analytically an EEC policy for a single

machine, developing also an adaptive EEC policy based on machine learning techniques

that is able to adapt the control for varying system parameters (Frigerio et al., 2021).

The subsequent level of analysis is represented by the EEC of an entire production line,

modeled as a series of single machines and single finite buffers. A first approach relates to

the concept of temporal opportunity window (OW): this is defined as the longest possible

downtime of a station that does not result in permanent production loss at the end-of-

line station (Chang et al., 2012); thus, during these OWs it is possible to implement EEC

on the machine, reduce energy consumption and not jeopardize the production rate. In

(Sun and Li, 2012) an analytical algorithm is presented to estimate temporal opportunity

windows to implement EEC action on machines in a line. The OW approach was also

used in (Chang et al., 2012), indicating different real-time switching on/off policies for

machines to be applied during OW caused by random failures in a production system.

However, in all the works dealing with the OW concept, the startup time for machines

is never considered and this is not aligned with most manufacturing equipment where a

startup transitory is needed to resume the service and therefore causing a production loss.

A different method was proposed in (Jia et al., 2016) where the authors used work-in-

process information to develop effective EEC policies for the production line; however,

4



their model was limited by the assumption of machines following the Bernoulli reliability

model, machines with constant and identical cycle time, and the possibility to control only

some machines. Most recently, in (Zhang et al., 2019) the authors developed a Gaussian

mixture model to predict machines idle periods duration and, consequently, to be able to

implement EEC actions during the predicted idle periods. Finally, a recent work (Cui

et al., 2021) proposed an optimal EEC method for the whole production line using buffer

level information to reduce energy consumption while only slightly decreasing productivity.

However, the authors only consider machines that are characterized by fixed and identical

processing time. As for the literature, only (Loffredo et al., 2021) addressed the EEC for

the parallel machine configuration by providing a model for the EEC of a single stand-alone

workstation composed of an upstream buffer and multiple identical parallel machines. As

extension, the provided model is applied individually on more workstations pertaining to

the same production system (Loffredo et al., 2022). Differently from this work, the EEC

is executed independently at multiple workstations considering the workstation state and

without considering the overall system state in each control action.

1.2 Contribution

In literature, models leading to EEC policies for multi-stage production lines with paral-

lel machine workstations are not present. This paper focuses on the EEC of multi-stage

production lines composed of identical parallel machine workstations, a widely used layout

in manufacturing. A novel approach is proposed to minimize the system energy demand

while assuring quite general production constraints. In particular, this work provides the

following contributions. At first, a novel model, referred to as 2S-Model, is proposed. The

2S-Model leads to an exact solution for the EEC of a two-stage system. The problem is

formalized as a Discrete Time Markov Decision Process (DT-MDP) and a linear program-

ming (LP) approach is used to solve it. The second contribution is represented by a novel

technique, referred to as Backward-Recursive approach, that is proposed to deal with long

production lines. Starting from the last machines and progressing backward, two-stage sub-

systems are considered and the solution to the problem is created recursively. The third

contribution is that the proposed formulation also includes general production constraints,

e.g. target system throughput, and target workstations availability, to be met. In this way,
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the resulting EEC policy will lead to the optimum trade-off between energy demand and the

required performance indicators. Numerical experiments on realistic manufacturing system

configurations are performed to assess the effectiveness of the 2S-Model and to show the

efficiency of the Backward-Recursive approach in solving large problems.

The remainder of the paper is organized as follows. Section 2 describes the system

under investigation. Problem formulation for two-stage lines (i.e., the 2S-Model) is in

section 3 and section 4 formulates the Backward-Recursive approach for more than two

stages. Numerical analysis is presented in sections 5 and 6 respectively for two-stage lines

and lines with more than two stages. Section 7 concludes the work and discusses further

developments.

2 Problem Description

Let us consider a production line composed of m stages as the system to be controlled,

where each stage is composed of a buffer of finite capacity and a workstation with identical

parallel machines. The scope of the EEC is to find a policy leading to the optimum trade-

off between performance indicators and energy demand in the production system under

control. Specifically, if the target is just the minimization of the system energy consump-

tion, the unconstrained EEC problem is addressed. On the other hand, if there are some

production constraints to be satisfied (e.g. one or more performance indicators that must

be higher/lower/equal than a certain target) the problem is referred to as constrained EEC

problem.

2.1 System Description

The system layout is represented in Figure 2. Stages are denoted as Si with i ∈ {1, . . . ,m},

buffers as Bi with i ∈ {1, . . . ,m}, and Mij with j ∈ {1, . . . , ci} indicates machine j of

the ci parallel machines in the i-th stage of the system. Furthermore, for each stage i,

machines Mij with j ∈ {1, . . . , ci} are identical and work in parallel and buffer Bi has a

finite holding capacity 0 < Ki < ∞. The system is characterized by different stochastic

processes, i.e. machine processing time, machine startup time, and the arrival of parts to

S1. These processes are assumed to be Poisson processes, independent of each other and
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stationary. Specifically, parts arrive at S1 following a Poisson process with rate λ, and

this process stops when this buffer is full. Furthermore, machines of Si are characterized

by exponentially distributed startup times with rate δi. Moreover, each machine Mij has

processing times exponentially distributed with service rate µi. Machines are unreliable, i.e.

they can be subject to failures. The stochasticity provoked by machine failures is modeled

by embedding them into machine processing times: in this sense, the overall processing time

(considering also service interruptions caused by failures) is a stochastic variable. Thus, in

the proposed model a stochastic distribution, i.e. the exponential distribution, is used to

represent this stochastic variable. The assumption of having Poisson processes representing

the aforementioned stochastic processes is considered realistic for many industrial cases

of multi-stage production lines: examples in literature with this same assumption can be

found in (Govil and Fu, 1999; Loffredo et al., 2021, 2022; Zhao and Li, 2013). Furthermore,

because it naturally gives rise to Markov processes, the exponential distribution has been

widely used in the literature (Dallery and Gershwin, 1992) and, from (Inman, 1999), it is

possible to state that even if the exponential assumption is violated, Markov model’s results

are relatively insensitive to this violation, i.e it could still provide accurate estimates of

the real system’s average performance at the steady state. Therefore, this assumption is

considered reasonable and applicable to the system under study without undermining the

system model and consequent results.

Figure 2: Layout of the production line under analysis with machine state model.

Machines Mij are starved if they can process parts but Bi is empty while are blocked

if they can process parts but Bi+1 is full. As an exception, machines Mmj of the last stage

Sm cannot be blocked since there is an infinite capacity buffer downstream the system:

processed parts leave the system immediately after the process completion, leading to sys-

tem throughput TH . In addition, all the machines in the line work on a single part type,

and first come first served rule is applied. Finally, machines cannot be switched off while
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operating on items, i.e. part processing cannot be interrupted by the control.

2.2 Machine Energetic State Model

MachinesMij can be controlled for energy saving purposes. It is assumed that each machine

is busy while working on parts and idle when it is in ready-for-process conditions but it is not

operating on parts. Busy and idle are two sub-states composing the machine working state.

When the machine is blocked it is also busy, since the part is still inside it, and the machine

cannot be switched off. The machine is productive only when busy, i.e. characterized by

an exponentially distributed service rate µi. When in the idle state, the machine can be

switched off going instantaneously into the standby state: a lower power request state where

only emergency services are active so that the machine cannot process parts and the service

is interrupted. From the standby state, the machine must execute a startup procedure to

resume the service, so that the startup state is visited before the working state. It is

assumed that the startup procedure can be interrupted by the control, but only to switch

off the device and set the device from startup to standby state. Machine energetic state

model is as in Figure 2. Therefore, machine Mij is characterized by the following state set

Θ = {w, sb, su, id, b}, respectively: working, standby, startup, idle and busy.

It is assumed that machines of a certain stage i are characterized by the same power

consumption in the different states: they require a constant non-negative amount of power

depending on the energetic state they are in. During the standby state most of machine

modules are deactivated and only emergency services are active: the power requested in this

state is assumed to be almost null (wsb ≃ 0). While idle, the machine has all its modules

activated but is not carrying out any process: the power consumption is therefore assumed

to be higher than the standby one (wid > wsb ≃ 0) but not excessively high. During the

startup phase all the procedures required to make the machine suitable for processing are

executed, so that quality and tolerance requirements can be met. The amount of power

required in this case is assumed to be greater than other not-productive states because the

machine is actually performing procedures even if it is not processing parts (wsu > wid >

wsb ≃ 0). Finally, the highest power request occurs during the part-processing, i.e. in

busy state, since this represents the moment of maximum device effort required to properly

operate on items: consequently, it is assumed that wb > wsu > wid > wsb ≃ 0. It must be
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noted that the power request while in the working state is a weighted average of wb and

wid depending on the amount of time the machine spends as busy or idle.

3 The Exact 2S-Model

Let us consider a production line consistent with the description of section 2 and m = 2

stages, Si with i ∈ {1, 2}. This section is focused on the model to identify an EEC policy

for this layout, namely the 2S-Model. The problem is formalized as a Continuous Time

MDP (CT-MDP) and then converted into a DT-MDP with the uniformization technique

(Lippman, 1975). Then, an LP approach can be used to solve the DT-MDP problem and

the exact solution can be identified (Puterman, 2014). Sections from 3.1 to 3.5 describe

the MDP. Section 3.6 introduces the LP formulation which allows enriching the MDP for-

mulation by including general production constraints in the problem. Section 3.7 provides

a descriptive example of a control policy for the EEC problem at hand.

3.1 Decision Epochs

The time horizon is divided into periods k = {1, 2, . . . } of variable length, according to

the occurrence of event yk ∈ Y. The event yk happens at the end of period k and the

decision epochs k correspond to instances of the event yk. The event set can be defined

as Y = {A1, A2 ≡ D1, D2, E1, E2} where event Ai indicates a part arrival to stage i,

event Di a part departure from stage i due to process completion, and event Ei a startup

completion for one of the machines at stage i. Trivially, in this model A2 ≡ D1; furthermore,

departures cannot happen when the respective stage is empty, arrivals cannot happen when

the correspondent buffer is full, and a startup completion occurs only when at least one

machine in the stage is in startup state.

3.2 State Space and Action Space

The system state is defined as s ∈ S, where S is the discrete state space representing all

possible system states, denoted by the ordered vector s = {n1, n2, x1, x2}: integer variable

xi ∈ {0, 1, 2, . . . , ci} represents the number of machines in working state in Si and the

number of parts in stage Si is represented with the integer variable ni ∈ {0, 1, 2, . . . ,Ki+ci}.

9



A certain machine Mij has a service rate equal to µi > 0 when busy or 0 otherwise. Si has,

at any given time, capacity equal to Ki + xi, i.e. only working machines can hold parts,

and therefore Si can hold up to Ki + ci parts at full capacity. State set S is finite since the

number L of possible system states is finite and it is given by all the possible combinations of

n1, n2, x1 and x2. At the beginning of period k, s is referred to as sk = {n1,k, n2,k, x1,k, x2,k}.

The control action a = [a1, a2] is applied to control the numbers of machines to be in

working state x1 and x2. Hence, a determines the switching on/off of machines in S1 and S2.

The allowable action space is As(y) depending on system state s and event occurrence y and

it represents the set of actions that can be chosen in s, i.e. the allowable values a can assume

when a control action is executed. As(y) is determined by part processing that cannot be

interrupted by the control, i.e. it is not allowed to choose a control action a imposing

a switch off of a busy machine. At the same time, As(y) is also determined by trivial

boundaries: (i) if all machines in Si are already working or executing startup, i.e. switched

on, it is not possible to switch on any additional machine in Si, and, (ii) if all machines

are already in standby state, i.e. switched off, it is not allowed to switch off any additional

machine in Si. At the end of the period k, after the event yk is observed, x1,k and x2,k can

be controlled with the action ak = [a1,k, a2,k]. The optimal policy π∗ : S×Y → As(y) maps

the optimal action a∗k(sk, yk) given system state sk and occurrence of event yk.

3.3 System Dynamics and Uniformization

System dynamics is assumed to be stationary and it is represented by functional Z : S x Y

x As(y) → S. Given system state sk, event yk and control action ak, the next system state

sk+1 = {n1,k+1, n2,k+1, x1,k+1, x2,k+1} is defined as follows:

sk+1 =



{min[n1,k + 1,K1 + x1,k], n2,k,min[a1,k, x1,k],min[a2,k, x2,k]} if yk = A1

{max[n1,k − 1, 0],min[n2,k + 1,K2 + x2,k],min[a1,k, x1,k],min[a2,k, x2,k]} if yk = A2 ≡ D1

{n1,k,max[n2,k − 1, 0],min[a1,k, x1,k],min[a2,k, x2,k]} if yk = D2 (1)

{n1,k, n2,k,min[a1,k, x1,k + 1],min[a2,k, x2,k]} if yk = E1

{n1,k, n2,k min[a1,k, x1,k],min[a2,k, x2,k + 1]} if yk = E2

The number of parts ni,k decreases with the occurrence of departures and increases

with arrivals up to the holding capacity of Si, including parts held in buffer and in work-
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ing machines, i.e., Ki + xi,k. The number of working machines changes according to the

control. When ai,k ≤ xi,k, xi,k − ai,k machines are switched off and immediately enter

the standby state, thus the number of working machines xi,k+1 = min[ai,k, xi,k]. Whereas,

when ai,k > xi,k, ai,k − xi,k machines enter in startup to resume the service, and the

number of working machines does not change until a startup completion occurs increas-

ing the number of working machines by one unit. In order to fully understand system

dynamics, the implicit effect of the control must be expressed. Indeed, the control ai,k

also determines the number of machines in standby and startup states in the next period,

respectively sui,k+1 and sbi,k+1. When ai,k > xi,k, a switch on command is applied so as

sui,k+1 = max[0, ai,k −xi,k]. As a consequence, machines in standby are not working nor in

startup state: sbi,k+1 = ci−xi,k − sui,k+1. In addition, among the working machines, some

are actually busy whilst others might be starving of raw parts (i.e., idle). The number of

busy machines in Si is bui,k = min[xi,k, ni,k] and, consequently, the number of idle machines

is idi,k = xi,k − bui,k and the overall service rate of Si is defined as µtot
i,k = bui,kµi. Finally,

the number of parts in buffer Bi is nbi = min[0, ni,k − bui,k]. At each period of time, sui,k,

sbi,k, and nbi are tracked to compute the payoff function (section 3.4). As an illustrative

example, let us assume to observe a station with ci = 6 so that ni,k = 4 and xi,k = 2.

ni = 4 indicates that four parts are in Si where two parts are processed by the xi,k = 2

busy machines and two parts wait in the buffer (i.e., bui,k = 2, idi,k = 0, nbi = 2). The

control action is ai,k = 5 so that a switch on command is issued. Consequently, working

machines keep processing parts (xi,k+1 = 2), three machines enter in startup (sui,k+1 = 3)

and one machine is in standby sbi,k = 1. Lastly, if sui,k > sui,k+1 the startup is actually

interrupted on some machines that are switched off and go into the standby state.

The MDP transition probabilities p(sk, sk+1, yk,ak) at given event yk are:

p(sk, sk+1, yk = A1,ak) =


0 if n1,k = K1 + x1,k

λ otherwise

(2)

p(sk, sk+1, yk = A2 ≡ D1,ak) =


0 if n1,k = 0 ∧ n2,k = K2 + x2,k

µtot
1,k otherwise

(3)

p(sk, sk+1, yk = D2,ak) =


µtot
2,k if n2,k > 0

0 otherwise

(4)
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p(sk, sk+1, yk = Ei,ak) =


0 if xi,k = ci

δi otherwise

(5)

in this way, the system is described by a continuous time Markov chain. With the uni-

formization technique, it is possible to convert the continuous time Markov chain into a

discrete time Markov chain using a uniform transition rate ν defined as follows (Lippman,

1975): ν = λ + c1(δ1 + µ1) + c2(δ2 + µ2). Finally, defining a discount factor 0 < ξ < 1

and η = ξ + ν it is possible to define the transition probabilities for the infinite horizon

discounted cost scenario as p̃(sk, sk+1, yk,ak) =
1
ηp(sk, sk+1, yk,ak).

3.4 Payoff Function

The payoff function for each production stage Si consists of four non-negative and finite

elements, respectively the working, startup, standby, and holding powers. The working

power is the one requested for machines Mij while in working state and it is function of

wi,b, wi,id and the number of busy and idle machines, respectively bui and idi; thus, the

working power for the whole stage Si is equal to (buiwi,b + idiwi,id). Similarly, the startup

power is the one required for machines Mij while in startup state and it depends on wi,su

and on the number of machines in startup state sui; thus, the startup power for the whole

stage Si is equal to wi,susui. The third element is the standby power, representing the

request of power by Mij during the standby state; this is directly related to wi,sb and the

number of machines in standby state sbi; therefore, the standby power for the whole stage

Si is wi,sbsbi. Finally, the last item to be considered is the holding power. It is assumed,

indeed, that a power request wi,h is required to hold a part in stage Si. This represents a

penalty imposed to the system for maintaining parts in the buffer Bi and not processing

them: consequently, as wi,h increases, the control is prone to be more productive. Hence,

the holding power for the whole stage Si is equal to wi,hbni.

3.5 Optimality Equation

All the DT-MDP elements are identified and it is possible to define Bellman’s optimality

equation for the infinite horizon discounted cost. It must be noticed that: (i) the discount

factor ξ and belongs to the interval 0 < ξ < 1, (ii) the state space S is discrete and
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finite, and, (iii) system dynamics and payoff function are stationary, i.e. independent from

the period k considered. When these three conditions are verified, there always exists an

optimal stationary policy π∗ for any MDP evaluated with the infinite horizon discounted

cost criterion (Puterman, 2014). This means that also for the considered DT-MDP, there

is an optimal policy leading to the solution of Bellman’s optimality equation defining our

problem and this policy is stationary: it does not change over time and is independent of

the period k considered. The control action ak depending on the optimal policy π∗ and

affecting the Bellman’s equation is independent of the period k. For ease of notation, sk,

sk+1, yk and ak become s, s′, y and a, and the optimality equation can be written as:

V ∗(s) = min
a∈ As(y)

[
g(s) +

∑
s′∈ S

p̃(s, s′, y,a)(V ∗(s′) + ηac(s))

]
(6)

where g(s) represents the state cost, ac(s) the action cost and ϕ is the energy cost:

g(s) =
ϕ

η

m=2∑
i=1

(
(buiwi,b + idiwi,id) + wi,hbni + wi,sbsbi

)
(7)

ac(s) =
ϕ

η

m=2∑
i=1

wi,susui (8)

It must be noticed that both g(s) and ac(s) are also time-dependent (e.g. how much time

a machine is in working state influences the working power). However, the time horizon

is taken into account by means of η that introduces the infinite horizon discounted cost

criteria in the DT-MDP considered. In this way, the time-dependency is taken into account

in the problem. Furthermore, the solution of Equation (6) represents the minimum expected

energy cost that the system, starting from state s, will incur when the optimal control action

a∗ is applied. The optimal policy π∗ maps the optimal action a∗ to be implemented. It is

noteworthy that π∗ is based only on n1 and n2 and event y because a∗ directly controls x1

and x2. In this way, the optimal EEC policy for a two-stage production line with parallel

machine workstations can be obtained and the unconstrained EEC problem can be solved.

3.6 LP Formulation with Production Constraints

LP formulation can be used for determining the optimal control policy for a DT-MDP; with

this approach, the LP solution is equivalent to that of the DT-MDP (Puterman, 2014).

Examples of this MDP to LP formulation can be found in (Nadar et al., 2016; Hosseini

and Tan, 2019); this choice is motivated by the requirement of inserting constraints in
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the solution provided by the MDP. With this technique, this becomes feasible and it is

possible to obtain a constrained optimal solution for a problem modeled with an MDP.

Furthermore, it must be noted that: (i) both the state and action costs are bounded (i.e.

|g(s)| ≤ Z < ∞ ∧ |ac(s)| ≤ Z < ∞ for all s ∈ S and a ∈ As), (ii) the state space S

is discrete and, (iii) the allowable action space As is finite for each possible system state

s ∈ S. Under these three conditions, for an LP formulation for a DT-MDP problem

evaluated with the infinite horizon discounted cost criterion, there always exists an optimal

solution corresponding to optimal stationary and deterministic policy (Puterman, 2014).

This means that, being the policy deterministic, in each state the action choice is performed

with certainty. Let us define α(s), satisfying
∑

s∈S α(s) = 1, as the initial probability

distribution over S, and β(s) as the total discounted probability that the system occupies

state s given a certain α(s). The decision variable for the LP model is β(s) and the objective

is the minimization of the infinite horizon discounted cost that can be found solving the

following LP problem:

min
∑
s∈S

∑
a∈As

β(s)(g(s) + ac(s)) (9)

s.t. β(s)−
∑
s∈S

∑
a∈As

∑
y∈Y

p̃(s, s+1, y,a)β(s) = α(s) (10)

0 ≤ β(s) ≤ 1 ∀s ∈ S (11)

g(β(s)) ≥ G∗ (12)

where Equation (9) is the objective function, Equation (10) is a structural property to

be ensured in an MDP to LP formulation (proof in Puterman (2014)), and Equation (11)

represents the boundary conditions, i.e. β(s) ∈ [0, 1]. Equation (12) defines a general

production constraint to be respected while guaranteeing the minimization of the energy

cost. Equation (12) is the novelty introduced compared to a classical MDP formulation

and it enables the solution of constrained EEC problems. Equation (12) indicates that a

certain performance indicator g(β(s)), depending on system probabilities β(s) of being in

a certain state s, must be higher or equal than a specific target G∗. Function g(β(s)) can

represent many key performance indicators. System throughput is the most common and
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valuable example of a target (T target
H ) to be met at least, so that Equation (12) becomes:∑

s∈S

β(s)µtot
i,k ≥ T

target
H for i = 1, 2 (13).

similarly a minimum availability target Atarget
V for a certain workstation i becomes:∑

s∈S

β(s)
xi

ci
≥ A

target
V (14)

and a maximum WIP (wiptarget) constraint becomes:∑
s∈S

β(s)(n1 + n2) ≤ wiptarget (15)

Define β∗(s) as the optimal solution of problem (13-16); from β∗(s) the associated

optimal EEC policy π∗ can be derived, since π∗ and β∗(s) are directly connected (proof in

Puterman (2014)). Moreover, β∗(s) and π∗ do not depend on the initial state distribution

α(s) (proof in Puterman (2014)), which can therefore be arbitrarily selected as long as

it stands that
∑

s∈S α(s) = 1. π∗ leads to the optimal solution of the constrained EEC

problem for a two-stage production line. It must be also noted that, especially in presence

of strict constraints, the optimal solution of the presented LP formulation might lead to an

optimal policy π∗ equal to the AOn policy.

3.7 Policy Illustrative Example

An optimal EEC policy π∗ maps the optimal actions a∗ to be implemented in the system,

i.e. for each possible state s, π∗ indicates the corresponding optimal number of machines in

S1 and S2 that should be in working state: [a∗1, a
∗
2]; moreover, π∗ can be based only on n1

and n2 because a∗ directly controls x1 and x2 (section 3.5). To better clarify how π∗ works,

let us assume to have K1 + c1 = 4, K2 + c2 = 3 and c1 = c2 = 2. π∗ indicates that, for

instance, if the system is in state s = {4, 2, 1, 1} and the optimal action for [n1, n2] = [4, 2]

is a∗ = [2, 1], then one additional machine is switched on in S1 and none in S2 leading

to su′1 = 1; when the startup on this machine will be completed, the state will become

s’ = {4, 2, 2, 1}. In order to give a benchmark, the AOn policy would indicate to maintain

always 2 machines switched on in both stages: a = [2, 2], for any state possible state s, i.e.

any value of [n1, n2].
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4 The Approximate Model for Long Production Lines

Let us consider a production line consistent with section 2 and m > 2 stages, Si with

i ∈ {1, . . . ,m}. As easily understandable, the problem size grows drastically with m and,

consequently, an exact analytical solution cannot be identified for large values of m. This

section describes an approximated solving approach for m > 2, namely the Backward-

Recursive approach. The main idea is (i) to break down the original problem into a series

of two-stage sub-systems (couple [Si;Si+1]), i.e. a series of sub-problems solvable in an

exact way, (ii) to solve the last sub-problem (couple [Sm−1;Sm]) so that local optimal

policy π∗
i with i = m is found, (iii) to proceed backward towards the first sub-problem

(couple [S1;S2]) solving recursively sub-problems. The locally exact sub-problem solutions

are combined to approximately identify a unique EEC policy for the entire production

line under analysis. An extended version of the 2S-Model is required to comply with this

approach; indeed, three additional issues must be addressed: the blocking condition, the

policy-separation assumption, and the policy-uniqueness constraint.

4.1 The Extended-2S

The 2S-Model is extended to model generally two consecutive stages of a production line,

i.e. the couple [Si−1;Si]. First of all, if i < m stage Si might be blocked and the model

must be extended considering the Blocking Condition. Secondly, as for the creation of

sub-problems in the proposed approach, each stage Si with i ∈ {2, ...,m − 1} is included

in two sub-problems (couples [Si−1;Si] and [Si;Si+1]). Nevertheless, the obtained policy

to be applied in stage Si must be consistent in mapping actions to states for Si, and a

Policy-Uniqueness constraint is added. Lastly, the proposed approach requires the EEC

policy of a stage to be independent of the other stages resulting in a simplification of the

EEC policy applied. Thus, the Policy-Separation assumption is introduced.

(i) The Blocking Condition: for the generic couple [Si−1;Si] with i < m, stage Si

might block because buffer Bi+1 is full. Assuming that sub-problem [Si;Si+1] has been

solved previously, the policy π∗
i+1 to be applied to [Si;Si+1] is known. The steady-state

probability Pbl,i of having the buffer Bi+1 full and Si blocked can be computed with a

Markov chain representing the behaviour of couple [Si;Si+1]. At the same time, the prob-
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ability of having Bi+1 not-full and Si not-blocked will be 1 − Pbl,i. Hence, the blocking of

Si can be represented with a Bernoulli variable and the Extended-2S is modified as follows:

a Bernoulli state variable bl representing the blocking of Si is included in system state

s = {ni−1, ni, xi−1, xi, bl}, where bl = 1 if Si is blocked and 0 otherwise. All the remainder

of the Extended-2S is consistent with section 3. The formulation of the problem to be

solved is still described by Equations (9-12) except for system dynamics (Equations 10)

which now includes the blocking event. Indeed, when the system may have blk = 1 with a

probability Pbl,i and blk = 0 with 1 − Pbl,i, in compliance with the Bernoulli distribution.

Lastly, in a blocked stage, departures cannot occur.

(ii) The Policy-Separation Assumption: this simplifies the EEC policy applied so

as it is assumed that actions a∗i only depend on stage Si, i.e. a∗i (ni), for all stages. Thus,

policy π∗
i for couple [Si−1, Si] maps actions a∗i−1(ni−1) and a∗i (ni) independently. To better

clarify, as an example, let us consider the couple [Si−1, Si] and assume ci−1 = ci = 4 and

Ki−1 = Ki = 5. In a specific moment, let us assume that ni = 3, i.e. there are 3 parts in

Si, and xi = 1, i.e. there is 1 working machine in Si. If π
∗ indicates that, for instance, the

associated optimal action for ni = 3 is ai
∗ = 2, i.e. there should be 2 working machines in

Si, then one additional machine is switched on in Si, and this is independent of the ni−1

and xi−1 values; on the other hand, ai−1
∗ for Si−1 does not depend on ni and xi.

(iii) The Policy-Uniqueness Constraint: let us consider three consecutive stages

Si−i, Si and Si+1 of the production line forming two couples: [Si−1;Si] and [Si;Si+1]. Let

us define π∗
i+1 as the solution obtained from solving the sub-problem associated to [Si;Si+1]

and, similarly, π∗
i for [Si−i;Si]. While considering the whole line, decisions regarding stage

Si must be unique, thus, policy π∗
i and policy π∗

i+1 must be consistent in mapping actions

to states for Si. The following Policy-Uniqueness constraint is added to the LP problem:

a∗i = ã∗i . In this case ã∗i is the action on stage Si selected by π∗
i+1, and, similarly a∗i is the

action on Si selected by π∗
i .

4.2 The Backward-Recursive Approach

The proposed Backward-Recursive approach is represented in Figure 3 and fully described

in Algorithm 1. The algorithm starts breaking down the original system into a series of

two-stage sub-systems. Couples [Si−1;Si] with i ∈ {2, . . . ,m} are created (STEP 1 ) and
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each couple represents a sub-problem that can be solved in an exact way. Starting from the

end of the line (i = m), the algorithm solves sub-problem [Si−1;Si] with the Extended-2S

model (STEP 2 ). Since Pbl,m = 0 and stage Sm does not require the Policy-Uniqueness

constraint, the sub-problem is solvable and policy π∗
m is found. Therefore, actions ã =

ã∗i−1 can be extracted. Sub-system Markov chain is created in STEP 3 and probability

p̃ = Pbl,m−1 is computed. Moving backward, the following sub-system is solved. Therefore

STEP 4 recursively imposes i = i− 1 until i = 2 and the general couple [Si−1;Si] is solved

with the Extended-2S model. The boundary conditions Pbl,i = p̃ and ã∗i = ã are known.

Also, the sub-system Markov chain is created and probability p̃ = Pbl,i−1 is computed.

Lastly, STEP 5 combines all the optimal local EEC policies π∗
i with i ∈ {2, . . . ,m} in the

unique approximate policy Π∗ that represents system control policy to reduce the energy

consumption for the entire line.

Figure 3: Illustration of the ”Backward-Recursive” approach.

5 Numerical Experiments with Two-Stage Lines

A numerical analysis is carried out to show the performance of the 2S-Model. Section 5.1

assesses the computation time as the number of possible system states enhances. Model

effectiveness is studied in section 5.2 and in section 5.3 a sensitivity analysis is performed.

In all the experiments the energy cost is ϕ = 1, the discount factor is ξ = 0.80, and arrival

rate is λ = 0.04. The model is implemented with Matlab R2020a and ILOG CPLEX 12.10

and results are obtained with 4.90GHz i7 Intel Core and 16GB RAM. The computation

times correspond to the overall experiments duration with both softwares.
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Algorithm 1 The Backward-Recursive approach.

STEP 1: Couple the m stages: [Si−1;Si] with i ∈ {2, . . . ,m}

STEP 2: Solve sub-problem [Sm−1;Sm]

Do Pbl,m = 0; i = m

Relax Policy-Uniqueness Constraint and solve the sub-system with the Extended-2S model

Extract ã = ã∗m−1 from obtained π∗
m

STEP 3: Evaluate sub-system [Sm−1;Sm] under π∗
m

Create the Markov chain of [Sm−1;Sm]

Compute p̃ = Pbl,m−1

STEP 4: Recursively solve sub-system [Si−1;Si]

while i ≥ 2 do

Do i = i− 1; Pbl,i = p̃; ã∗i = ã

Solve sub-system [Si−1;Si] with the Extended-2S model

Extract ã = ã∗i−1 from obtained π∗
i

Create the Markov chain of [Si−1;Si]

Compute p̃ = Pbl,i−1

end while

STEP 5: Combine obtained policies π∗
i with i ∈ {2, . . . ,m} and find Π∗

5.1 Computation Time Analysis

The problem size, i.e. the number of system states L, directly impacts on the computation

time to reach a solution. Given by all the possible combinations of state variables (n1, n2, x1

and x2), L can be computed as: L = (c1+K1+1)(c2+K2+1)(c1+1)(c2+1). Without loss

of generality, we considered K = K1 = K2 and c = c1 = c2. Then, 13 scenarios varying the

buffer capacity K and the number of machines c are sampled, so that different problem sizes

are represented. Each scenario is replicated (10 replications) and the computation time is

extracted with a 95% confidence level on the mean value. Figure 4 shows the results of this

analysis as confirmation that the computation time grows significantly when L increases.

Also, time variability is really low, as shown in Figure 4, and this confirms the effectiveness

of the 2S-Model in a limited amount of time. In detail, until L is lower or equal than

2000, the solution can be reached in less than 3 minutes while if L is higher than 5500,

the 2S-Model starts taking more than 1 hour to provide a solution. Since there is a high

number of possible system configurations leading to less than 5500 possible system states

the 2S-Model nearly always leads to an exact solution in a short-medium amount of time.
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Figure 4: Time duration of the experiments vs number of system states.

5.2 2S-Model Effectiveness

Firstly, we introduce a novel indicator named the Power-Request Configuration Ratio or

PCR. It compares the power requested in EEC-related states (i.e., startup and standby)

with that consumed in the states representing machine common behavior (i.e., busy and

idle) under the AOn policy; thus, it indicated machine EEC potential. We define: PCRi =

(wi,b + wi,id)/(wi,sb + wi,su). High PCR indicates major saving potential, while low PCR

indicates minor potential because machine power during the working states is similar to that

in EEC-related states. We consider 2-stage lines with equal buffer capacity K = K1 = K2,

constant holding power wh = w1,h = w1,h, and stages composed by machines with equal

power requests and equal startup rate δ = δ1 = δ2. The choice to assume identical K, δ,

wh, and machine power consumption in both stages does not lead to any loss of generality.

A 2k factorial design with center points (Montgomery, 2017) with nine factors at two levels

(Table 1) is used to generate 516 different experiments. The center points are considered

to test the linearity effect of factors on the resulting energy saving. Factors are: the buffer

capacity K, the numbers of machines c1 and c2, the startup rate δ, the holding cost wh,

the system configuration (i.e., balanced or not balanced), the station saturation level ρ in

isolation, the PCR, and the throughput target (i.e., constrained or unconstrained problem).

In addition, a center point is added for each numerical factor, generating 4 additional

experiments (Table 1). In the center points, the value of each numerical factor corresponds

to the “center” value between the low and the high level in the 2k factorial design (e.g.

center for K is 4 since the low level is 2 and the high is 6). However, “Constraint” and

“Balanced” factors cannot have a “center” since they can only be equal to “Yes” or “No”.
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Table 1: Factors and levels for the 2k factorial design along with the 4 center points values.

2k factorial Design

Factor K δ c1 c2 ρ PCR wh Constraint Balanced

Low Level 2 0.02 2 2 0.3 1.2 0.5 (kW) Yes Yes

High Level 6 0.1 6 6 0.9 4 10 (kW) No No

Center Points

Factor K δ c1 c2 ρ PCR wh Constraint Balanced

Exp. 1 - Values 4 0.06 4 4 0.6 2.6 5.25 Yes Yes

Exp. 2 - Values 4 0.06 4 4 0.6 2.6 5.25 Yes No

Exp. 3 - Values 4 0.06 4 4 0.6 2.6 5.25 No Yes

Exp. 4 - Values 4 0.06 4 4 0.6 2.6 5.25 No No

Hence, the number of additional experiments is equal to 4: an experiment is generated for

each possible combination of values for the two categorical factors, while the values of the

numerical factors are maintained fixed and equal to their respective “center” values. The

saturation ρi of stage i is computed as follows: ρi = λ/(ciµi). Therefore, µi is computed

for each experiment given λ and the factors c1, c2 and ρ. Machine power requests in

experiments with PCR = 1.2 are: [wi,sb, wi,su, wi,id, wi,b] = [0, 9.5, 1.5, 10] kW. Similarly for

PCR = 4: [wi,sb, wi,su, wi,id, wi,b] = [0, 6.25, 5, 20] kW. The system configuration can be:

(i) balanced, imposing ρ1 = ρ2, or (ii) not-balanced, imposing ρ1 = 0.9ρ2, i.e., stage S2

is the bottleneck. Lastly, experiments including a throughput constraint where the target

level T target
H to be satisfied is imposed as equal to the 90% of the maximum throughput

achievable by the most saturated stage in the line.

The designed experiments represent a variety of configurations of manufacturing sys-

tems. At first, in this analysis, the 2S-Model is applied to all the 516 manufacturing systems

generated, leading to a suitable EEC policy for each case. Subsequently, for each case, it

is computed the percentage of energy saving when the respective EEC policy is applied

in comparison to the same configuration but with the AOn policy applied. In all the 516

analyzed cases, the application of the 2S-Model is able to offer an appropriate and effective

EEC policy, and, for this reason, the model effectiveness is verified. Figure 5 shows the

percentages of energy saving obtained when the identified policy π∗ differs from the AOn

policy. Indeed, in 95 cases, the optimal policy is actually keeping the machines always

ready for process parts (idle state) due to specific conditions such as a high saturation level

and a strict throughput constraint. As a result, the machines are required to work at full

capacity and, for this reason, a switch off is not advantageous. On the other hand, in more

than 80% of the analyzed cases (421), switching off/on the machines leads to energy saving.
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The maximum saving is equal to 33.68%. The highest savings are achieved, as expected, in

cases where saturation is low (ρ = 0.3) so that few parts are in the system and machines are

frequently starving. The main effect plots for the resulting percentage energy saving are

obtained and represented in Figure 6 along with the Kruskal-Wallis test results to assess

the significance of each factor. The high p-values for c1 and c2 indicate that these factors

are not significant in this analysis. Moreover, the main effect plot shows that higher savings

can be achieved when: the system is unbalanced, there is not any throughput constraint,

the startup rate δ is high (i.e., the startup time is low), the saturation level is low, the PCR

is high, the holding power wh is low, and buffer capacity K is high. Lastly, Figure 6 shows

how the center points do not deny the linear effect on the results.

Figure 5: 2k factorial analysis: achieved energy saving when π∗ differs from the AOn policy.

Figure 6: 2k factorial analysis: main effects plot with Kruskal-Wallis test p-values.
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5.3 Sensitivity Analysis

A sensitivity analysis is performed to detail the effect of the significant factors: wh, PCR,

δ and K. A set of experiments is designed starting from four main configurations (Table

2), namely: Best, Medium - 1, Medium - 2, and Worst. The Worst configuration is the

experiment from the 2k factorial design of section 5.2 that obtains the lowest savings (Figure

6) and, similarly, the Best configuration is the experiment obtaining the highest savings.

Configurations Medium - 1 and Medium - 2 represent intermediate configurations. For

each configuration, the sensitivity analysis varies one significant factor at a time. Figure 7

shows the percentage of energy savings obtained for the evaluated cases.

Table 2: Base configurations for the sensitivity analysis.

Configuration Balanced System Constraint δ ρ PCR wh K

Best No No 0.1 0.3 4 0.5 (kW) 6

Medium - 2 No No 0.05 0.7 2.5 1 (kW) 4

Medium - 1 Yes No 0.03 0.8 2 4 (kW) 4

Worst Yes Yes 0.02 0.9 1.2 10 (kW) 6

Figure 7: Sensitivity analysis when wh (a), PCR (b), startup time (c) and K vary.

For the Worst configuration, the obtained savings are always null (i.e., 0%) because the

optimal policy π∗ is actually the AOn. For all the other configurations, the sensitivity

analysis shows what follows. When wh increases the saving decreases: to avoid high holding

power consumption, parts are processed and not maintained in the buffer, leading to a
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reduced number of switching off actions and reduced savings. Similarly, the saving decreases

when K increases, since maintaining a growing number of parts in the buffers leads to

higher holding power consumption: to avoid that, the number of switching off actions is

reduced and, consequently, also the saving. Furthermore, the saving increases also when

PCR increases: high PCR indicates major saving potential. Then, increasing δ increases

(i.e. decreasing startup time) also leads to better savings: a fast startup leads to a faster

switch on action, increasing the possibility of switching on/off one or more machines during

the line operation. Finally, as the saturation increases, the saving decreases as well: high

saturation leads to really rare idle machine periods.

6 Numerical Experiments with Longer Lines

A numerical analysis is carried out to show the effects of the proposed Backward-Recursive

approach for lines with m > 2. The Backward-Recursive approach is used to solve a set of

problems. Discrete Event Simulation (DES) is used to estimate the actual performance of

the obtained solutions. Expected savings obtained with the Backward-Recursive approach

are compared with those obtained with DES. The expected throughput loss computed with

DES is also compared to the target throughput loss.

6.1 Design of Experiments

The experimental campaign is focused on two system layouts: a medium line composed of

five-stages and a long line with fifteen-stages. For the sake of simplicity, the production lines

are composed of stages of two types: A (or wsA) and B (or wsB) with parameters as in Table

3. Parameters for wsA and wsB are selected considering insights from section 5 as well as

values to have studied systems aligned with realistic cases in manufacturing. As confirmed

by its parameters, wsA represents a type of workstation very fast from a processing time

point of view (low saturation level along with high δ) and characterized by high power

requests (high PCR); this combination of parameters makes wsA very suitable for EEC

application, since, according to section 5, high savings are expected for this workstation.

On the contrary, wsB represents a slow workstation (high saturation level along with low

δ) characterized by low consumption (low PCR); this means that, according to section 5,
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EEC application on wsB should not lead to great savings. Hence, wsA and wsB represent

two opposite types of workstations from an EEC point of view and therefore are considered

worthy of interest for this analysis.

Table 3: Parametes of wsA and wsB.

Stage K c δ ρ PCR wh

A (wsA) 5 2 0.05 0.75 2.5 1 (kW)

B (wsB) 5 2 0.02 0.9 1.2 3 (kW)

In all the experiments the energy cost is ϕ = 1, the discount factor is ξ = 0.80, and the

arrival rate is λ = 0.04. Also, a throughput constraint is imposed such that the expected

throughput loss of the system is at most 3% with respect to the same configuration but

applying the AOn policy. Both for medium and long lines, four different cases are studied:

(case i) a balanced case with only B-type stages, and three unbalanced cases where the

slowest stages (B-type) are at the beginning of the line (case ii), in the central part of the

line (case iii), and at the end of the line (case iv). These configurations are selected according

to the results of section 5: case (i) should lead to lower savings due to the balanced system

analyzed while cases (ii-iii-iv) should produce higher savings. DES models are developed

in Matlab environment. Both energy saving and throughput loss are extracted with a

95% confidence level on the mean value: thus, simulations are replicated 10 times. The

simulation ends after producing 5000 parts, a value ensuring short width for the confidence

interval on results, and simulation warm-up is the production of 1000 parts: this represents

an overestimation, for computational-accuracy reasons, of the transient period identified

with the Welch method (Welch, 1983).

6.2 Results

Tables 4 and 5 show the experimental results for analyzed configurations with, respectively,

five and fifteen stages. The expected throughput TH and the expected energy consumed per

produced part EN when the AOn policy is applied are computed with DES and reported as

a reference. In all evaluated cases, the DES throughput loss is higher than the target: the

approximation introduced by the Backward-Recursive approach might underestimate the

blocking probability so that the actual throughput is lower than expected. As for the five-

stages, this difference is below 1% both for throughput loss and savings and this confirms
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the effectiveness of the proposed model in solving medium lines. On the other hand, in

the fifteen-stages cases, the differences are higher (up to 2.5%) since the approximation

introduced increases with the number of stages: the model does not lose effectiveness for

long lines but leads to near-optimal solutions. In all the analyzed cases, the application of

the Backward-Recursive approach is able to significantly reduce energy consumption while

slightly decreasing the system throughput, in compliance with the imposed production

constraint (except for the aforementioned approximations). In particular, the achieved

savings for the five-stage cases are included in a range going from about 3.50 to about 5%

while for the fifteen-stage cases the savings increase drastically (from about 12 to about

15.50%). Hence, applying EEC to more workstations in a production line leads to higher

benefits in terms of environmental impact. Finally, for both configurations the balanced

system, as expected, is characterized by lower energy saving than the unbalanced systems.

Table 4: Results of five-stage production line experiments.

Stages TH(AOn) EN(AOn) Savings Savings Th.loss Th.loss

Sequence [part/min] [kJ/part] DES Target DES

i: B-B-B-B-B 2.08 ± 0.01 1.46 ± 0.01 3.40% 3.52 ± 0.08% 3% 3.11 ± 0.05%

ii: B-B-A-A-A 2.17 ± 0.02 2.29 ± 0.02 4.43% 4.57 ± 0.07% 3% 3.23 ± 0.07%

iii: A-A-B-A-A 2.20 ± 0.02 2.34 ± 0.01 4.68% 4.92 ± 0.11% 3% 3.42 ± 0.08%

iv: A-A-A-B-B 2.16 ± 0.03 2.23 ± 0.01 4.99% 5.11 ± 0.10% 3% 3.29 ± 0.06%

Table 5: Results of fifteen-stage production line experiments.

Stages TH(AOn) EN(AOn) Savings Savings Th.loss Th.loss

Sequence [part/min] [kJ/part] DES Target DES

i: B-B-B-B-B-B-B-B-B-B-B-B-B-B-B 1.67 ± 0.02 9.80 ± 0.03 9.80% 11.91 ± 0.09% 3% 3.96 ± 0.09%

ii: B-B-A-B-B-A-A-A-A-A-A-A-A-A-A 1.86 ± 0.01 12.74 ± 0.04 13.32% 15.39 ± 0.11% 3% 4.15 ± 0.11%

iii: A-A-A-A-A-B-B-A-B-B-A-A-A-A-A 1.94 ± 0.01 14.01 ± 0.05 12.40% 14.34 ± 0.23% 3% 4.43 ± 0.08%

iv: A-A-A-A-A-A-A-A-A-A-B-B-A-B-B 1.84 ± 0.01 12.10 ± 0.04 13.60% 15.59 ± 0.22% 3% 4.89 ± 0.10%

Two main insights can be extracted from numerical results. First of all, the obtained

EEC policies are threshold based so that the switch off/on of each machine is triggered at

two specific buffer level values, defined as noff
ij and non

ij , to respectively switch off and on

Mij in Si. Numerical evidence shows that the control policy might be simplified without

affecting the results. Threshold values for the analyzed cases are reported in Tables 6 and

7 showing that the number of active machines increases as parts accumulate in buffers. As

an example, let us focus on stage S1 of case (i) for the five-stage layout: the EEC policy

indicates that in S1, when n1 = 1 the first machine must be in working state, and the same

occurs for the second machine when n1 = 2: S1 has non
11 = 1 and non

12 = 2; for the same
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Table 6: Thresholds obtained for the five-stage configuration experiments.

Case i ii iii iv

Stage (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 ) (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 ) (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 ) (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 )

S1 (0, 1) (1, 2) (−, 0) (0, 1) (0, 1) (2, 4) (0, 1) (1, 2)

S2 (0, 1) (1, 2) (−, 0) (0, 1) (0, 1) (1, 3) (0, 3) (2, 4)

S3 (0, 1) (1, 2) (0, 1) (1, 3) (−, 0) (2, 4) (0, 1) (0, 1)

S4 (0, 1) (1, 2) (0, 2) (2, 4) (0, 1) (1, 2) (−, 0) (1, 2)

S5 (0, 1) (1, 2) (0, 2) (3, 4) (0, 1) (1, 2) (0, 1) (2, 3)

Table 7: Thresholds obtained for the fifteen-stage configuration experiments.

Case i ii iii iv

Stage (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 ) (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 ) (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 ) (n
off
i1 , non

i1 ) (n
off
i2 , non

i2 )

S1 (0, 1) (1, 2) (−, 0) (−, 0) (0, 1) (1, 3) (0, 1) (1, 2)

S2 (0, 1) (1, 2) (−, 0) (−, 0) (0, 1) (1, 2) (0, 1) (1, 2)

S3 (0, 1) (1, 2) (−, 0) (−, 0) (0, 1) (1, 2) (0, 1) (2, 3)

S4 (0, 1) (1, 2) (−, 0) (−, 0) (0, 1) (1, 2) (0, 1) (2, 3)

S5 (0, 1) (1, 2) (0, 1) (0, 2) (0, 1) (1, 3) (0, 1) (2, 3)

S6 (0, 1) (1, 2) (0, 1) (0, 2) (0, 1) (2, 3) (0, 1) (0, 2)

S7 (0, 1) (1, 2) (0, 1) (1, 3) (0, 1) (2, 3) (0, 1) (0, 2)

S8 (0, 1) (1, 2) (0, 2) (1, 3) (0, 1) (1, 2) (0, 1) (1, 2)

S9 (0, 1) (1, 2) (0, 1) (2, 3) (0, 1) (1, 2) (0, 1) (1, 2)

S10 (0, 1) (1, 2) (0, 1) (2, 3) (0, 1) (1, 2) (0, 1) (1, 2)

S11 (0, 1) (1, 2) (0, 1) (2, 3) (0, 1) (1, 2) (0, 1) (2, 3)

S12 (0, 1) (1, 2) (0, 1) (1, 3) (0, 1) (1, 2) (0, 1) (1, 2)

S13 (0, 1) (1, 2) (0, 2) (1, 3) (0, 1) (1, 2) (0, 1) (2, 3)

S14 (0, 1) (1, 2) (0, 2) (1, 3) (0, 1) (1, 2) (0, 1) (3, 4)

S15 (0, 1) (1, 2) (0, 1) (1, 2) (0, 1) (1, 2) (0, 1) (1, 2)

reason, S1 has noff
11 = 0 and noff

12 = 1, since the second machine will be switched off when

n1 = 1 and the first when n1 = 0. As expected, in the unbalanced systems A-type stages

are less saturated than B-type ones, and, consequently, they are frequently idle and might

be switched off to save energy. Finally, (noff
j , non

j ) = (−, 0) indicates to apply AOn policy

on that machine; this often occurs for the B-type stages in the unbalanced cases: being

highly-saturated, these machines are almost never idle. Lastly, regarding long production

lines as the cases with fifteen-stages, future work could regard the use of Π∗ as a starting

point for a calibration process of the policy parameters; afterward, a suitable and modified

EEC policy Π∗
suit can be identified and applied in the system, leading to a resulting energy

saving and throughput level closer to the target.

7 Discussion and Conclusions

In this work, it is proposed a novel method to address the problem of controlling multi-

stage production lines composed of parallel machine workstations with EEC policies. The
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approach minimizes energy consumption and includes desired target levels on the system

performance indicators as problem constraints. The proposed method, exact for two-stage

lines with Markovian processes, allows setting different and general production constraints

on many key performance indicators leading to the optimum trade-off between energy de-

mand and system performance. Numerical results show that the proposed approach is

effective for all evaluated cases and that the solution obtained does not lose effectiveness

for long lines, leading to near-optimal solutions. The effectiveness of the proposed ap-

proach might be directly translated into a successful application in a real-world industrial

case where, starting from the actual system parameters, the model could be applied to lead

to enhanced industrial processes sustainability without jeopardizing system performance

indicators. Results obtained highlight that higher savings can be achieved with worksta-

tions characterized by: (i) low saturation, (ii) low holding power consumption, (iii) high

PCR, (iv) short startup time, and (v) high buffer capacity. Thus, from the point of view

of practitioners, a preemptive analysis of the line parameters is useful to assess the saving

potential of the EEC. Furthermore, in unbalanced systems less saturated stages are fre-

quently idle: the operation of these stages is more affected by EEC since the reduction of

their idle period also means a reduction of their environmental impact; on the other hand,

more saturated stages, i.e. bottlenecks, are rarely switched off since they are almost never

idle. This last piece of information is also a useful insight to be applied in practice, to

understand which are the workstations with more saving potential and where to apply a

proper EEC policy.

Limitations of this work are related to the assumptions regarding the system under

control, especially the exclusive presence of Markovian processes, and the approximations

introduced for long lines. Future efforts will be devoted to extend the proposed approach to

represent long lines and systems with more general assumptions. In this case, the proposed

approach could be used as starting point for a local search aiming at tuning the control and

improving the solution. Lastly, a further development might be the use of machine learning

techniques in the model to adapt the control to non-stationary system dynamics.

Data availability statement: The authors confirm that the data supporting the findings

of this study are available within the article its supplementary materials.
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