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Abstract

We propose a novel, system theoretic analysis of the Alternating Direction Method of Multipliers (ADMM) applied to
a convex constraint-coupled optimization problem. The resulting algorithm can be interpreted as a linear, discrete-time
dynamical system (modeling the multiplier ascent update) in closed loop with a static nonlinearity (representing the
minimization of the augmented Lagrangian). When expressed in suitable coordinates, we prove that the discrete-time
linear dynamical system has a discrete positive-real transfer function and is interconnected in closed loop with a static,
passive nonlinearity. This readily shows that the origin is a stable equilibrium for the feedback interconnection. Finally,
we also show global asymptotic stability of the origin for the closed-loop system and, thus, global asymptotic convergence
of ADMM to the optimal solution of the optimization problem.

Keywords: ADMM, Constraint-Coupled Optimization, Passivity theory, Nonsmooth optimization, Control for
optimization

1. Introduction

Many relevant applications in control engineering can be
posed as constraint-coupled optimization problems. They
usually involve the minimization of the sum of N inde-
pendent, nonsmooth, convex cost functions whose deci-
sion variables must satisfy individual, convex constraints.
On top of these constraints, all the variables are linearly
coupled through equality constraints making the problem
meaningful and its solution nontrivial. Formally, we focus
on optimization problems in the form

min
x1,...,xN

N∑
i=1

fi(xi) (1a)

subj. to xi ∈ Xi ∀ i = 1, . . . , N (1b)

N∑
i=1

Hixi = b (1c)

Assumption 1.1. Problem (1) admits a unique optimal
solution x? = [x>1,? · · · x>N,?]> and its dual problem admits
a unique optimal vector of Lagrange multipliers λ?. More-
over, strong duality holds.

The proposed analysis would carry over to multiple
primal-dual solutions at the expense of a heavier notation.

An effective and widely adopted algorithm to address
this class of problems is the Alternating Direction Method
of Multipliers (ADMM). When applied to problem (1),
ADMM takes the form (see, e.g., [1, §3.4] and [2, §7.3])

xi,k+1 ∈ argmin
xi∈Xi

fi(xi) + 1
2c ‖λk + c(Hixi −Hixi,k + dk)‖2

∀ i = 1, . . . , N (2a)

dk+1 =
1

N

( N∑
i=1

Hixi,k+1 − b
)

(2b)

λk+1 = λk + c dk+1, (2c)

with xi,0∈Xi, d0∈Rp, λ0∈Rp, and c > 0. Vector dk ∈ Rp
represents the current violation of the coupling constraints
(1c) and λk ∈ Rp represents the current value of the La-
grange multiplier vector associated to those constraints.

In this note, we analyze (2) from a system theoretic per-
spective. The growing interest in taking such a perspec-
tive is testified by the numerous contributions recently ap-
peared in the literature. In [3] the authors reinterpret dif-
ferent gradient-based optimization algorithms in terms of
dynamical systems, without however giving proofs for their
convergence. The authors of [4] study the Nesterov accel-
erated version of a continuous-time gradient algorithm and

where xi ∈ Rni are the decision variables, with ni ∈ N, 
each cost function fi : Rni → R is convex (possibly 
nonsmooth), and each decision variable must belong to

a convex and nonempty compact set Xi ⊂ Rni , for all 
i = 1, . . . , N . Finally, all the decision variables must sat-

isfy a set of p ∈ N linear, coupling constraints described 
by matrices Hi ∈ Rp×ni , i = 1, . . . , N , and vector b ∈ Rp.

This structure is often encountered in resource alloca-
tion problems where the coupling constraint is given by 
the resource budget. To ease the notation, we impose the 
following assumption.



its discretization. In [5] the dynamical system perspective
and dissipativity theory are leveraged to design Nesterov-
like acceleration schemes for discrete-time gradient-based
optimization algorithms. Similarly, the work in [6] lever-
ages a control system perspective to show that gradient
algorithms with Nesterov acceleration are robust to noise
in the gradient evaluation. The authors in [7, 8] use Lya-
punov stability and linear matrix inequalities to design
first-order algorithms with robustness guarantees and ac-
celeration schemes. In [9, 10] linear matrix inequalities
and integral quadratic constraints are used to analyze and
design optimization algorithms. Finally, [11] leverages lin-
ear system theory to analyze the convergence properties of
the (distributed) gradient tracking algorithm. Notably, all
mentioned approaches focus on first-order methods such
as the gradient method and its variants and their line of
analysis cannot be carried over to ADMM.

The literature concerning ADMM is quite vast and we
here provide, in the interest of space, a (necessarily in-
complete) summary of recent advances. It is well known
that ADMM can be seen as an application of the Douglas-
Rachford splitting and enjoys favorable convergence prop-
erties of monotone operators, [2]. Along this operator the-
ory perspective, [12] proposes several acceleration schemes
(without convergence proofs), while [13] studies the lin-
ear convergence of the ADMM operator to derive better
convergence rates. Similarly, [14] studies the ADMM op-
erator to find the penalty coefficient achieving the best
convergence rate, but focusing of quadratic objective func-
tions only. Convergence properties of ADMM have also
been studied from a system-theory perspective. In [15], a
continuous-time (accelerated) version of ADMM is inter-
preted as a dynamical system and stability and conver-
gence rates are analyzed. Similarly, in [16] a continuous-
time version of ADMM is interpreted as a dynamical sys-
tem and analyzed by means of integral quadratic con-
straints. In [17], a continuous-time version of ADMM is
robustified against delays using passivity theory. Finally,
in [18] the convergence rate of ADMM is studied under
strong convexity assumption, while in [19] a distributed
version of ADMM is studied using a Lyapunov approach.

In this note we follow this latter perspective: we study
ADMM for constraint-coupled optimization problems by
interpreting (2) as the feedback interconnection of two
discrete-time dynamical systems and we analyze the sta-
bility properties of the feedback loop leveraging passivity
theory. Differently from [15–17] our analysis is carried out
directly in discrete-time and, in contrast to [18] we do not
require the objective function to be strongly convex. Be-
sides being interesting per se, this approach can shed light
and give insights about the inner working of ADMM, pos-
sibly leading to the synthesis of some variants or even novel
optimization strategies resulting from the control-oriented
interpretation.

2. System Theoretic Reformulation

In this section we rephrase the ADMM algorithm for
constraint-coupled problems (2) adopting a system theo-
retic perspective so that its convergence analysis will be
posed as an asymptotic stability problem.

2.1. Aggregate Reformulation

We start by introducing a compact formulation of (2).
Collecting the primal iterates into xk = [x>1,k · · · x>N,k]>,
the N minimization steps described by (2a) can be ar-
ranged as a single optimization given by

xk+1 ∈ argmin
x∈X

f(x) + 1
2c ‖1λk + c (Hdx−Hdxk + 1dk)‖2

(3a)

where Hd = blkdiag(H1, . . . ,HN ), 1 = 1N ⊗ Ip with 1N
being the all-one vector of dimensionN , x = [x>1 · · · x>N ]>,

and f(x) =
∑N
i=1 fi(xi). Also the coupling constraints can

be compactly written as
∑N
i=1Hixi − b = 1>Hdx − b =

1>(Hdx−Hdx?), where we used the fact that b = 1>Hdx?
for the optimal (thus feasible) solution x? of problem (1).
Therefore, updates (2b) and (2c) can be rephrased as

dk+1 = 1
N 1> (Hdxk+1 −Hdx?) (3b)

λk+1 = λk + c dk+1. (3c)

Exploiting the definition (3b) the term 1dk appearing
in (3a) can be substituted by J(Hdxk − Hdx?) with
J = 1

N 1N1>N ⊗ Ip, so that (3) further simplifies into

xk+1 ∈ argmin
x∈X

f(x) + 1
2c‖1λk + c (−(I − J)Hdxk

+Hdx− JHdx?)‖2 (4a)

λk+1 = λk + c 1
N 1>(Hdxk+1 −Hdx?). (4b)

Two remarks are in order. First, notice that the quan-
tities passed on from one iteration to the next in (4) are
(I − J)Hdxk and λk only. Secondly, let us point out that,
despite the optimization in (4a) admits multiple minimiz-
ers, it has a strictly convex objective function in Hdx.
Hence, the quantity Hdxk+1 is uniquely defined for all
k, no matter which xk+1 results from (4a). In light of
these two considerations, it is sensible to interpret (4) as
a discrete-time (nonlinear) dynamical system with state
variables λk ∈ Rp and (I − J)Hdxk ∈ RpN .

Next we study the stability properties related to (4).

2.2. Steady-state Analysis

Let us study the equilibria of (4) by investigating its
steady-state. By setting

λk+1 = λk = λss (5a)

(I − J)Hdxk+1 = (I − J)Hdxk = ξss (5b)

in (4) it gives

ξss = (I − J)Hdx
+ (6a)
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x+ ∈ argmin
x∈X

f(x) + 1
2c‖1λss + c (Hdx− ξss − JHdx?)‖2

(6b)

λss = λss + c 1
N 1>

(
Hdx

+ −Hdx?
)
. (6c)

We used the symbol x+ in (6b) to stress that dependence
on k is irrelevant. We shall show that the (unique) pair
(x+, λss), associated to the (unique) pair (ξss, λss) solv-
ing (6), is the optimal primal-dual solution of problem (1).

By simplifying λss in (6c), we have

0 = 1>(Hdx
+−Hdx?) =⇒ 1>Hdx

+ = 1>Hdx?= b, (7)

which shows that x+ satisfies the coupling constraints
of (1). Moreover, left-multiplying (6c) by 1 yields

0 = JHdx
+ − JHdx? = Hdx

+ − ξss − JHdx?, (8)

where in the last equality we used (6a). By plugging (8)
into (6b), it becomes

x+ ∈ argmin
x∈X

f(x) + 1
2c‖1λss + c (Hdx−Hdx

+)‖2.

By applying [1, Lemma 4.1, p. 257] to the previous opti-
mization problem, it turns out that x+ must satisfy

f(x+) + (1λss)
>Hdx

+ ≤ f(x) + (1λss)
>Hdx (9)

for any x ∈ X. Evaluating the right-hand side of (9) at x
equal to the optimal solution x? of (1) gives

f(x+) + λ>ss1
>Hdx

+ ≤ f(x?) + λ>ss1
>Hdx?. (10)

Since 1>Hdx
+ = 1>Hdx? by (7), then f(x+) ≤ f(x?).

Since x+ is in X and satisfies also the coupling constraints,
then x+ is feasible for (1), hence f(x+) = f(x?) and x+

is the (unique) optimal solution of problem (1).

Finally, combining (7) and (9), we get for all x ∈ X

f(x+) ≤ f(x) + λ>ss(1
>Hdx− 1>Hdx

+)

= f(x) + λ>ss(1
>Hdx− b) = f(x) + λ>ss(Hx− b).

If we set x in the previous relation equal to any element
of argminx∈X f(x) + λ>ss[Hx− b], we have

f(x?) = f(x+) ≤ min
x∈X

f(x) + λ>ss[Hx− b] = q(λss), (11)

where q(λ) =
∑N
i=1 minxi∈Xi

(
fi(xi)+λ(Hixi−Hixi,?)

)
is

the dual function of (1). Since q(λss) ≤ maxλ q(λ) = q(λ?)
and q(λ?) = f(x?) by strong duality, inequality (11) shows
that λss is the (unique) optimal dual solution.

The previous discussion shows that any equilibrium
(ξss, λss) of (4) is associated with the unique primal-dual
optimal pair (x?, λ?). We can thus safely take ξss =
(I−J)Hdx? and λss = λ? and, since x? and λ? are unique,
then also the equilibrium (λss, ξss) is unique.

2.3. Feedback Interconnection

Let us perform a change of coordinates to shift the equi-
librium to the origin by defining the state vector[

ek
vk

]
=

[
λk − λ?

c (I − J)(Hdxk −Hdx?)

]
,

with ek ∈ Rp and vk ∈ RpN . Then, in order to express (4a)
in terms of (ek, vk), we add and subtract Hdx? and 1λ?
inside the squared-norm term in (4a) to write

xk+1 ∈ argmin
x∈X

f(x)+ 1
2c‖1λ?+c (Hdx−Hdx?)+1ek−vk‖2.

Introducing the following nonlinear map ϕ(·) : RpN→ RpN

ϕ(y) = c (Hdx
+ −Hdx?) (12a)

x+∈ argmin
x∈X

f(x)+ 1
2c ‖1λ?+c (Hdx−Hdx?) + y‖2, (12b)

system (4) can be conveniently rewritten as[
ek+1

vk+1

]
=

[
ek + 1

N 1>ϕ(1ek − vk)
(I − J)ϕ(1ek − vk)

]
. (13)

Defining yk = 1ek − vk and uk = ϕ(1ek − vk) = ϕ(yk), we
can rewrite (13) as

Σ :


[
ek+1

vk+1

]
=

[
I 0
0 0

] [
ek
vk

]
+

[
1
N 1>

I − J

]
uk

yk =
[
1 −I

] [ek
vk

] (14a)

uk = ϕ(yk), (14b)

which highlights how the autonomous discrete-time dy-
namical system in (13) can be easily interpreted as the
feedback interconnection of a linear dynamical system Σ
with states ek and vk, input uk and output yk, and the
static nonlinearity ϕ(·). In light of the reformulation
above, the standard convergence result for (2) (see, e.g., [1,
Prop. 4.2, p. 256]) can be restated as follows.

Theorem 2.1. Under Assumption 1.1, the origin is a
globally asymptotically stable equilibrium for the closed-
loop system in (14).

In the following Section 3 we will prove Theorem 2.1
leveraging a clever reformulation of (14) together with ar-
guments from discrete-time passivity theory.

3. Passivity-based Stability Analysis

We investigate the two subsystems in (14) separately and,
then, combine their properties to assert global asymptotic
stability of the origin for their feedback interconnection.
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3.1. Passivity of the Nonlinear Part

We first focus on the static, nonlinear part of the feed-
back loop in (14). By [1, Lemma 4.1, p. 257] applied
to (12b), given any y ∈ RpN we have that x+ satisfies

f(x+) + [1λ? + c (Hdx
+ −Hdx?) + y]>Hdx

+

≤ f(x) + [1λ? + c (Hdx
+ −Hdx?) + y]>Hdx,

for all x ∈ X. Setting x = x?, scaling by c and using (12a),
the previous inequality can be rearranged as

c f(x+) + [1λ? + ϕ(y) + y]>ϕ(y) ≤ c f(x?). (15)

Optimality of x? and the Saddle-Point Theorem imply

f(x?) ≤ f(x+) + λ>? (Hx+ − b)
= f(x+) + λ>? 1

>(Hdx
+ −Hdx?),

with H = 1>Hd. Using ϕ(·) as in (12a), we can com-
bine (15) with the previous inequality to get

[ϕ(y) + y]>ϕ(y) ≤ 0. (16)

Condition (16) proves that the nonlinear part of the feed-
back loop is an output strictly passive (static) system.
This property is stronger than mere passivity and it means
that ϕ(·) actually has an excess of passivity. Such excess
can be exploited to manipulate the feedback interconnec-
tion if needed as discussed in the following subsection.

3.2. Loop Transformation

If also Σ had been passive, then the whole interconnec-
tion would have been. Unfortunately, this is not the case.
However, as is customary in a passivity framework, one
can “steal” the excess of passivity in one system to com-
pensate the shortage in the other.

To this end, we define a new output ỹk = yk + uk and,
consistently, a new static nonlinearity ϕ̃(·) : RpN → RpN
such that ϕ̃(ỹk) = ϕ(yk). Accordingly, (14) becomes

Σ̃ :


[
ek+1

vk+1

]
=

[
I 0
0 0

] [
ek
vk

]
+

[
1
N 1>

I − J

]
uk

ỹk =
[
1 −I

] [ek
vk

]
+ uk

(17a)

uk = ϕ̃(ỹk). (17b)

We shall emphasize that (17) and (14) are equivalent.
However, in the former the input uk directly affects the
output ỹk resulting in ϕ̃(·) defined only implicitly as

ϕ̃(ỹ) = c (Hdx
+ −Hdx?)

x+ ∈ argmin
x∈X

f(x) + 1
2c

∥∥1λ? + c (Hdx−Hdx
+) + ỹ

∥∥2
.

On the other hand, from (16) one can see that ϕ̃(·) satisfies

ỹ>k ϕ̃(ỹk) = ỹ>k uk ≤ 0, (18)

proving that passivity of the nonlinear part has been pre-
served and made tight.

By looking at the second state equation in (17a), we
can see that the state vk satisfies 1>vk = 0 for all k ≥ 1
regardless of the value of the input uk. It means that
the state-space representation of Σ̃ is not minimal (i.e., Σ̃
can be described with fewer states). Though not strictly
necessary, let us consider a minimal realization of (17a).
To this end, consider the orthogonal projection ṽk of vk
onto the orthogonal complement of the subspace spanned
by 1. Let S ∈ RpN×p(N−1) be the matrix whose columns
form an orthonormal basis of such orthogonal complement.
Then S>1 = 0, S>S = Ip(N−1) and SS> = IpN − J . We

thus have ṽk = S>vk and we can rewrite (17a) as

Σ̂ :


[
ek+1

ṽk+1

]
=

[
I 0
0 0

] [
ek
ṽk

]
+

[
1
N 1>

S>

]
uk

ỹk =
[
1 −S

] [ek
ṽk

]
+ uk

(19)

which is a minimal state-space realization of Σ̃.

3.3. Passivity of the Linear Part

We next focus on the linear part Σ̂ and prove that it is
a passive system by showing that its transfer matrix G(z)
is positive real, [20, Section 3]. Passivity will then follow
by the KYP Lemma, [20, Lemma 3]. Let

A =

[
I 0
0 0

]
, B =

[
1
N 1>

S>

]
, C =

[
1 −S

]
, D = I. (20)

The transfer matrix of the discrete-time system Σ̂ is

G(z) = C(zI −A)−1B +D

=
[
1 −S

] [ 1
z−1I

1
z I

] [
1
N 1>

S>

]
+ I

= 1
z−1

1
N 11> − 1

zSS
> + I

=
(

1
z−1 + 1

z

)
J +

(
1− 1

z

)
I, (21)

where z ∈ C is the complex argument. The poles of G(z)
are in z = 0 and z = 1 and all elements of G(z) are analytic
for each z such that |z| > 1.

Recalling the properties of S, we can define the (or-
thonormal) transformation matrix T = [ 1√

N
1 S] ∈

RpN×pN which jointly diagonalizes J and IpN as

J = T

[
Ip

0p(N−1)

]
T>, IpN = T

[
Ip

Ip(N−1)

]
T>.

This fact can be used in (21) to get

G(z) = T

[
z
z−1Ip

z−1
z Ip(N−1)

]
T>

and

1
2

(
G(z) +G(z)>

)
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= 1
2T

[(
z
z−1 + z̄

z̄−1

)
Ip (

z−1
z + z̄−1

z̄

)
Ip(N−1)

]
T>

=
(
|z|2 −<[z]

)
T

[
1

|z−1|2 Ip
1
|z|2 Ip(N−1)

]
T> � 0

for all z ∈ C such that |z| > 1. This shows that G(z) is

discrete positive real and, hence, system Σ̂ is passive.

3.4. Proof of Theorem 2.1

Since the linear dynamical part Σ̂ and the nonlinear
static part are both passive, it is well known that also
their feedback interconnection is passive too. Moreover,
by [20, Lemma 3], the system matrices of Σ̂ in (20) satisfy

P −A>PA = L>L (22a)

A>PB = C> − L>U (22b)

B>PB = D +D> − U>U, (22c)

for some positive-definite matrix P and matrices L and U .
This means that there exists a positive-definite Lyapunov
function V (sk) = 1

2s
>
k Psk with sk = [e>k ṽ>k ]> satisfying

V (sk+1)− V (sk) = ỹ>k uk
(18)

≤ 0

− 1
2 ‖Lsk + Uuk‖2 . (23)

Let Φ(sk) denote the right-hand side of (23) (recall that
both uk and ỹk are functions of the state sk). Clearly, it
is negative semidefinite. To prove asymptotic stability, we
shall show that Φ(·) is also negative definite. To this end,
we show that Φ(sk) = 0 implies sk = 0.

If Φ(sk) = 0, then from (23) we can write

Lsk = −Uuk, (24a)

ỹ>k uk = 0. (24b)

Let us focus on (24a) first. By definition of A and B
in (20), one can easily check the following identity[

Ip 0p×p(N−1)

]
A> =

[
Ip 0p×p(N−1)

]
= 1>B>, (25)

which can be used together with (22b) and (22c) to get[
I 0

]
A>PB

(22b)
=

[
I 0

] (
C> − L>U

)
(25) =

1>B>PB
(22c)
= 1>

(
D +D> − U>U

)
.

In light of the definition of C and D in (20), the latter
chain of equalities translates into

1>U>U = 1> +
[
I 0

]
L>U. (26)

Given the sparsity pattern imposed by (22a), we know
that L = [0pN×p L2], which implies Lsk = L2ṽk and
[I 0]L>= 0p×pN which, in turn, can be used in (24a)
and (26) to get

L2ṽk = −Uuk, (27a)

1>U>U = 1>. (27b)

From (22b) we also have that L>2 U = −S>, irrespectively
of P . This fact can be used in (27a) to obtain

U>Uuk = Sṽk (28)

which, together with (27b), yields

1>uk = 1>U>Uuk = 1>Sṽk = 0. (29)

By definition of uk in (14b), condition (29) implies

1>uk = c1>(Hdx
+ −Hdx?) = c (Hx+ − b) = 0, (30)

meaning that x+ satisfies the coupling constraints (1c).
We now add condition (24b) to show that sk = 0. By [1,

Lemma 4.1, p. 257], x+ satisfies

f(x+)+[1λ?+ ỹk]>Hdx
+ ≤ f(x)+[1λ?+ ỹk]>Hdx, (31)

for all x ∈ X. Setting x = x? in (31) and using the
definition of uk, the previous relation can be rephrased as

f(x+) + λ>? 1>[Hdx
+ −Hdx?]

=Hx+−b

+ 1
c ỹ
>
k uk ≤ f(x?).

Since ỹ>k uk = 0 by (24b) and Hx+ − b = 0 by (30),
then f(x+) ≤ f(x?), meaning that x+ is both feasible
and achieves the optimal cost of problem (1). Hence,
x+ = x? and uk = 0. Left-multiplying (28) by S> gives
0 = S>U>Uuk = S>Sṽk = ṽk. Since uk = 0 and ṽk = 0,
then ỹk = 1ek = 1(λk − λ?), which can be used in (31) to
obtain f(x+) + λ>k Hx+ ≤ f(x) + λ>k Hx, for all x ∈ X.
Subtracting λ>k b on both sides of the previous inequality
yields f(x+) +λ>k (Hx+− b) ≤ f(x) +λ>k (Hx− b), for all
x ∈ X, meaning that f(x?) = f(x+) + λ>k (Hx+ − b) =
minx∈X L(x, λk) = q(λk), where the first equality is due
to optimality of x+. Since, by strong duality (cf. Assump-
tion 1.1), q(λ?) = f(x?), then λk achieves the optimal dual
cost and is, therefore, the optimal dual solution. This
means that we can set λk = λ? and, thus, ek = 0 and
sk = 0. Therefore Φ(·) is negative definite and, thus, by
the Lyapunov theorem, the equilibrium s = 0 is globally
asymptotically stable for system (17), and, in light of their
equivalence, also for system (14).
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of accelerated first-order algorithms for strongly convex opti-
mization problems, IEEE Trans. on Automatic Control 66 (6)
(2020) 2480–2495.

[7] S. Michalowsky, C. Scherer, C. Ebenbauer, Robust and struc-
ture exploiting optimization algorithms: an integral quadratic
constraint approach, Intern. Journal of Control (2020) 1–24.

[8] D. Gramlich, C. Ebenbauer, C. W. Scherer, Convex synthe-
sis of accelerated gradient algorithms for optimization and sad-
dle point problems using Lyapunov functions, arXiv preprint
arXiv:2006.09946 (2020).

[9] L. Lessard, B. Recht, A. Packard, Analysis and design of op-
timization algorithms via integral quadratic constraints, SIAM
Journal on Optimization 26 (1) (2016) 57–95.

[10] M. Fazlyab, A. Ribeiro, M. Morari, V. M. Preciado, Analysis
of optimization algorithms via integral quadratic constraints:
Nonstrongly convex problems, SIAM Journal on Optimization
28 (3) (2018) 2654–2689.

[11] M. Bin, I. Notarnicola, L. Marconi, G. Notarstefano, A sys-
tem theoretical perspective to gradient-tracking algorithms for
distributed quadratic optimization, in: IEEE Conference on De-
cision and Control (CDC), 2019, pp. 2994–2999.

[12] I. Pejcic, C. N. Jones, Accelerated ADMM based on accelerated
Douglas-Rachford splitting, in: European Control Conference
(ECC), 2016, pp. 1952–1957.

[13] P. Giselsson, S. Boyd, Linear convergence and metric selection
for Douglas-Rachford splitting and ADMM, IEEE Trans. on
Automatic Control 62 (2) (2016) 532–544.

[14] E. Ghadimi, A. Teixeira, I. Shames, M. Johansson, Optimal pa-
rameter selection for the alternating direction method of mul-
tipliers (ADMM): quadratic problems, IEEE Trans. on Auto-
matic Control 60 (3) (2014) 644–658.

[15] G. Franca, D. Robinson, R. Vidal, ADMM and accelerated
ADMM as continuous dynamical systems, in: International
Conference on Machine Learning (ICML), 2018, pp. 1559–1567.

[16] S. Hassan-Moghaddam, M. R. Jovanović, Proximal gradient
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