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Abstract 

The application of Photovoltaic (PV) system in buildings is growing rapidly in response to the 
need for clean energy sources and building decarbonization targets. Nonetheless, enhancing 
PV self-consumption through technical solutions such as Energy Storage Systems (ESS) is 
getting higher importance to increase the profitability of PV plants, by minimizing the building-
grid interaction. In this context, analyzing PV self-consumption of different energy storage 
configurations becomes more relevant and crucial in building energy modeling although it is 
heavily time-consuming and complicated, particularly within a multi-objective optimization 
related to the ESS design. As a solution to resolve this issue, this paper evaluates the accuracy, 
training, and prediction speed of 24 Machine Learning (ML) models to be used as surrogate 
models for analyzing PV self-consumption in smart buildings. Furthermore, the performance 
of short-term Thermal Energy Storage (TES) to increase PV self-consumption is assessed and 
presented using ML models. The results showed the Gaussian Process Regression (GPR), 
Neural Networks (NN) including bilayered and trilayered NN models, Support Vector 
Machines (SVM) including the fine gaussian and cubic SVM models, and Ensembles of Trees 
(EoT) as superior ML models. The results also revealed that TES systems can efficiently 
increase PV self-consumption in the building equipped with electric heat pumps to provide 
heating, cooling, and domestic hot water. Moreover, the TES size optimization regarding the 
Life Cycle Cost (LCC) showed that the LCC-based optimum TES size can yield 7.1% savings 
within 30 years of the building service life. The novelties of this research are first to provide a 
reference to select the most suitable ML models in predicting PV self-consumption, second to 
implement Machine Learning for analyzing the performance of short-term thermal energy 
storage to enhance PV self-consumption in buildings, and third to carry out an LCC-based 
optimization on TES size using ML-based prediction models.  

Keywords: PV self-consumption, Prediction, Machine Learning, Accuracy, Thermal energy 
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Highlights:  
 

1. Machine Learning is known as a reliable technique to predict the energy performance of 
buildings. 

2. The accuracy, training, and prediction speed of 24 ML models are evaluated and compared in 
this study. 

3. Top-ten most accurate ML models in predicting PV self-consumption are introduced by the 
obtained results. 

4. The TES system is an effective solution for improving PV self-consumption in buildings.  
5. The LCC-based optimum size of TES leads to 7.1% saving in the total life cycle cost of the 

building case study.  

 



 

 

1. Introduction 
Within the last few years, the share of Photovoltaic (PV) systems to supply electricity has been 
rapidly growing provoked by building and industrial decarbonization goals (Shukhobodskiy & 
Colantuono, 2020) (Gallego-Castillo et al., 2021). Moreover, the significant decline in the 
market price of PV systems (López Prol & Steininger, 2020) leads to its large-scale installation 
worldwide which has made it the second-leading absolute growth of all renewable sources so 
far (Del Pero et al., 2021). Nevertheless, in the countries where the grid parity for PV power 
plants has already been reached, improving self-consumption is known as the main driver for 
the profitability of photovoltaic systems (Hirschburger & Weidlich, 2020). Enhancing PV self-
consumption yields substantial economic profits and becomes of paramount importance due to 
its potential in improving the environmental performance and grid stability by reducing peak-
power injection to the electricity grid as well as lowering the grid-supplied electricity 
consumption (Ahmadiahangar et al., 2022).  

In this context, several research works are carried out to introduce the concepts, policies, 
indicators, and technical solutions to measure and enhance the PV self-consumption in 
buildings. For instance, Luthander et al. (Luthander et al., 2015)  defined self-consumption as 
the share of the total PV generation directly consumed in the building. They further classified 
the relevant metrics into four categories based on the type of metric and the type of required 
data and highlighted that metrics such as self-consumption and self-sufficiency belong to the 
category named load-matching which deals with the overlap between on-site load and 
generations in the buildings. Several metrics related to the overlap of on-site load and 
generation of electricity in buildings might differ by name and refer to the same concept 
(Luthander et al., 2015).  A recent review discussed the key performance indicators in smart 
buildings including self-consumption highlighting that evaluating such indicators helps to 
underline the effectiveness of energy storage systems in improving buildings’ energy 
performance (Al Dakheel et al., 2020).  
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PV self-consumption can be expressed as the ratio of self-consumed PV generation in the 
building to the total PV generation in the same time frame. While considering the performance 
of Energy Storage Systems (ESSs) in increasing PVself-consumption in buildings, it is 
important not to count the energy losses attributed to the ESSs (Luthander et al., 2015).  

Regarding the growing capacity of installed PV systems around the world, the importance to 
measure and enhance PV self-consumption attracts more attention due to the economic benefits 
of PV systems in the absence of energy subsidies and lower price of feed-in tariffs of PV- 
supplied electricity (Yu, 2021). Moreover, improving PV self-consumption is highly 
encouraged to reduce the feed-in power to the grid to avoid overload and consecutive damage 
to the electricity grid (Amini Toosi et al., 2022). Energy Storage Systems (ESS) are 
recommended as technical solutions to improve PV self-consumption, including electrical and 
thermal storage in buildings (Baniasadi et al., 2020) (Amini Toosi et al., 2022). However, the 
results reported in the published articles vary noticeably due to different PV and ESSs sizes, 
the variety of on-site load, and generation profile in buildings around the world alongside the 
ESSs technology modeled in each study. For instance, Braun et al. (Braun et al., 2009) showed 
that installing 4.6 kWh lithium-ion battery in a residential building with annual electricity 
consumption equal to 5.5 MWh and 5 MWh as the annual PV generation can enhance the PV 
self-consumption from 30% to approximately 50% in Germany (Schreiber & Hochloff, 2013). 
Another study evaluated a building with a lower electricity consumption and PV size that is 
equipped with a larger battery system and showed that the PV self-consumption can be 
enhanced up to 72%, representing 41% improvement compared to the base scenario without 
ESSs (Schreiber & Hochloff, 2013). An extensive review elaborated that the potential of 
improving PV self-consumption in buildings equipped with battery systems ranges between 
approximately 13-24% if the battery capacity ranges between 0.5-1 kWh per kW PV power 
(Luthander et al., 2015). The self-consumption rate of an average Central European household 
equipped with PV can increase to 65-75% utilizing demand-side management and 
decentralized storage systems. However, residential consumers are likely to achieve a self-
consumption rate of around 30% in the absence of such measures (European Commission, 
2015). 

Although numerous studies have evaluated the effectiveness of battery systems to improve PV 
self-consumption, few studies have addressed the potential of Thermal Energy Storage (TES) 
for this purpose. While thermal energy storage has been proved to be also effective for 
enhancing PV self-consumption (Thygesen & Karlsson, 2014), a recent study by Amini Toosi et 
al. (Amini Toosi et al., 2022) showed that the TES application in buildings equipped with 
electric heat pumps can be yield higher economic and environmental benefits when the PV 
system is designed to supply heat pumps’ electricity consumption for heating, cooling, and 
domestic hot water demand.  

Apart from the lack of assessing the potential of TES in evaluating PV self-consumption, the 
complexity of energy modeling in this field where several electrical and thermal systems are 
modeled leads to a high computational time, especially in the case of multivariable/ objective 
optimization of building energy systems. Artificial Intelligence (AI) based models such as 
Machine Learning (ML) are of those techniques to resolve this complexity which replaces a 
simulation-based model with a prediction model to forecast the performance of the whole 
scenarios in a design process based on few known results as the input of prediction model 
(Amini Toosi et al., 2022). 



Although ML models are well-known and widely applied in the field of energy modeling, 
further investigations are required to verify the accuracy of different algorithms to be employed 
in an ML-based optimization model. Therefore, this paper aims to evaluate the accuracy and 
performance of several available ML models and propose the most reliable ones for energy 
modeling applications. The main novelties of this research are first, assessing the accuracy of 
multiple ML models in predicting PV self-consumption, second, evaluating the potential of 
thermal energy storage systems to improve PV self-consumption in buildings and third 
implementing an ML-based optimization model of TES size regarding the Life Cycle Cost 
(LCC) of the building case study. 

In the following sections, the state of the art in ML application in energy modeling is briefly 
reviewed and a case study is developed to measure the accuracy and performance of 24 ML 
models in predicting PV self-consumption alongside demonstrating the performance of TES in 
enhancing PV self-consumption in buildings and LCC-based optimization of TES size.  

2. Machine Learning for predicting building energy performance 
Predicting the energy performance of buildings is of utmost importance to assist designers and 
engineers in defining their designs’ energy, economic and environmental performance under 
different circumstances and uncertainties (Pham et al., 2020). Predicting energy performance 
can be carried out by physics-based, statistical, and Machine Learning models; although the 
first is accurate but requires considerable time and computation power. On the other hand, 
statistical models are easier to implement but may lack accuracy (Yu et al., 2020). In this 
agenda, the accuracy and efficiency of Machine Learning models draw researchers’ attention 
to advance the buildings' energy demand predictions (Walker et al., 2020).  

Machine Learning as an application of Artificial Intelligence (AI) can be described as a process 
by which the machine learns from past experiences and previous input data and realizes the 
correlation among input variables and outputs without a massive effort for preparing 
simulation-based results or programming (Hong et al., 2020) (Bourhnane et al., 2020).  

Machine Learning algorithms can be categorized into supervised and unsupervised learning 
algorithms (Bourhnane et al., 2020). The supervised ML algorithms aim to create a model for 
predicting outputs based on previous experiences using a set of known labeled input and output 
data. They can be further categorized into classification and regression learning algorithms, 
which can be used to predict discrete and continuous responses, respectively. Regression 
techniques predict continuous responses, for example, changes in temperature or fluctuations 
in power demand. They can be further categorized into six ML models categories including 
Regression Trees (RT), Ensembles of Trees (EoT), Linear Regression Models (LR), Gaussian 
Process Regression models (GPR), Support Vector Machines (SVM), and Neural Networks 
(NN) (Mathworks, 2022).  

 

 



Table 1 Summary of the papers that implement Machine Learning models to predict energy performance of building 

 

Author Building Type ML algorithm ML prediction target Highlights/ Notes 
(Zhou & Zheng, 2020) Office  Multiple linear regression,  Support Vector Machine (SVM), 

backpropagation neural network 
Building energy load Predicting electricity consumption of heating, 

cooling, lighting, and devices 
(Yu et al., 2020) Educational Nonlinear autoregressive with exogenous inputs and Artificial 

Neural Network NARX-ANN 
Building thermal load  

(Yang et al., 2020) Office-educational Nonlinear autoregressive exogenous-ANN Control HVAC A model predictive control system with ML for 
building automation and control  

(Wang & Hong, 2020) Non-residential  Generative Adversarial Network (GAN) Electrical load profile The model tested on the data of numerous 
buildings 

(Walker et al., 2020) 47 Commercial 
buildings 

Multiple ML algorithms: boosted three, random forest, SVM-
linear, quadratic, cubic, fine gaussian, ANN 

Electricity demand  Compared the performance of different 
algorithms 

(Jonas et al., 2020) Office  
 

Differential evolution online sequential extreme learning machine 
(DE-OSELM) 

Occupants’ presence  

(Vela et al., 2020) Residential and gym k-Nearest Neighbor (kNN), Support Vector Machine (SVM), 
Decision Trees (DT) 

Occupancy level Predicting occupancy level by 3 ML model based 
on temperature, humidity, and pressure  

(Sajjad et al., 2020) Residential Gated Recurrent Unit (GRU),  Support Vector Machine (SVR) Heating/cooling load Multiple output prediction 
(Sadeghi et al., 2020) Residential Deep Neural Network (DNN), ANN Heating/cooling load Accuracy of ANN and DNN are compared 
(Ruiz et al., 2020) Educational Trees,  Support Vector Machine (SVR), Neural Network Energy consumption ML algorithms are compared  
(Pham et al., 2020) Multiple buildings Random Forest (RF) Short term hourly energy consumption  
(Parzinger et al., 2020) Residential Autoregressive with Exogenous variables (ARX) Fault detection in HVAC  
(Ngarambe et al., 2020) Simulated Test room Generalized linear model, Deep Neural Network (DNN), random 

forest, gradient boosting model 
Indoor daylight illuminance  

(Mawson & Hughes, 
2020) 

Manufacturing 
buildings sector 

Deep Neural Network: feedforward and recurrent Energy consumption, air temperature, 
and humidity 

The accuracy of two DNN algorithms is 
compared.  

(Martínez-Comesaña 
et al., 2020) 

Public library  eXtreme Gradient Boosting (XGBoost), Support Vector 
Regression (SVR) and Multi-Layer 
Perceptron (MLP) neural network 

Heat Loss Coefficient (HLC)  

(Maljkovic & Basic, 
2020) 

District level Regression trees, random forest,  Support Vector Machine  (SVM)  Ranking the importance of parameters 
affecting heat consumption in district 
heating systems  

 

(Liu et al., 2020) Residential  Holt winters-Exterme learning machine network (HW-ELM) Electricity consumption  
(Ivanko et al., 2020) Residential ANN, Prophet, and XGBoost Domestic Hot Water (DHW) heat use  
(Hwang et al., 2020) Educational Deep learning, Gradient boosting, Random forest Electricity consumption, coefficient of 

performance of heat pumps 
 

(Bui et al., 2020) Residential  Electromagnetism-based Firefly Algorithm - Artificial 
Neural Network (EFA-ANN) 

Heating/ cooling load  

(Zekić-Sušac et al., 
2021) 

Public Deep ANN, Decision trees, and random forest Energy consumption  

(Sha et al., 2021) Institutional  Gradient tree boosting Cooling load  
(Amasyali & El-
Gohary, 2021) 

Multiple buildings  Classification and regression trees (CART), ensemble bagging 
trees (EBT), artificial neural networks (ANN), and deep neural 
networks (DNN). 

Energy consumption  

(Alduailij et al., 2021) Multiple buildings long short term 
memory (LSTM) network, Artificial Neural Network 

Peak energy demand  



 

 

Table 2. Summary of Machine Learning application in the field of photovoltaic systems 

Author ML algorithm ML prediction target Highlights/ Notes 
(Shivam et al., 2021) Naïve, SVM, ANN, Res-DCNN PV generation, energy load Residual dilated causal convolutional network (Res-DCCN) has a higher 

accuracy followed by SVM and ANN 
(Zhou et al., 2020) SVM, BPNN, ELM, SDA-SVM, SDA-BPNN, SDA-ELM, SDA-GA-

ELM 
PV power output The new hybrid SDA-GA-ELM prediction model has higher accuracy 

than others 
(Feng et al., 2020) ELM, SVM, GRNN, M5T, AE Daily global solar radiation  The new proposed hybrid PSO-ELM prediction model has a higher 

accuracy 
    
(Barthwal & Rakshit, 2021) ANN Annual thermal and exergy 

output 
 

(Natarajan et al., 2021) DBN, BPNN, ANN, RBNN PV generation The new proposed RBNN model has higher accuracy than others 
(Ramadhan et al., 2021) SVR, RF, RNN, LSTM, GRU Solar irradiance, PV power LSTM and GRU, which are specialized for modeling sequential data 

and powerful for handling a large volume of data, were recommendable 
(X. Wang et al., 2022) Bayesian Ridge Regressor, Linear Regressor, Gaussian Process 

Regressor, MLP Regressor, SVR, Gradient Boosting Regressor, 
Random Forest Regressor, Lasso, Regressor, Ridge Regressor,  

PV power output based on 
weather type classification  

Results showed that in general, Lasso regressor, Random forest regressor, 
Gradient boosting regressor and SVR has a better accuracy. However all 
ML models have high accuracy when the local meterological conditions 
are relatively stable. If not, the SVR model has higher accuracy.  

(Khan et al., 2022) ANN, LSTM, Bagging and DSE-XGB (an improved generally 
applicable stacked ensemble algorithm proposed based on utilizing 
two deep learning algorithms namely artificial neural network (ANN) 
and long 
short-term memory (LSTM) as base models 

PV generation  The proposed DSE-XGB model has a higher accuracy compared to the 
other models and results in improving R2  by 10-12% regardless of 
weather variations.  

(Visser et al., 2022) Regression, SVR, Ensemble learning, Deep learning and physical 
based techniques 

PV power Ensembles and Deep learning performs better form a technical viewpoint 

(Jia et al., 2022) SVM, Generalized linear modeling, Random Forest  Daily global and diffuse solar 
radiation 

SVM has a higher accuracy than other models and demonstrate a high 
reliability under slight pollution and stable weather conditions  

(Abubakar Mas’ud, 2022) kNN, Multiple Regression and Decision Trees Regression PV power  kNN outperformed other models while all tested ML models 
demonstrated reasonable accuracy  

(Ramos et al., 2022) Random Forest, Gradient Tree  Boosting, SVM PV generation and export to the 
grid 

They showed that Gradient Tree Boosting has a higher accuracy for 
predicting PV generation and export than other models.  

(Zazoum, 2022) Gaussian Process Regression, SVM PV power The results showed that GPR_Matern 5/2 has a higher accuracy to predict 
PV power based on weather data as the predictors. 

    



 

 

Numerous studies have already implemented Machine Learning to predict building 
performances from multiple perspectives and at different levels. A recent review (Fathi et al., 
2020) showed that most published research works concentrated on forecasting electricity 
consumption and heating cooling load by 44% and 39% of all published works, respectively. 
They also elaborated that Artificial Neural Network (ANN), Support Vector Regression (SVR), 
and Random Forest (RF) are the most popular ML algorithms implanted in forecasting the 
energy performance of buildings.  

Table 1 represents the implemented ML algorithms in the selected scientific articles published 
in 2020 and 2021. As shown in table 1, most research papers implemented the ML models to 
predict the electricity consumption, heating, and cooling load of residential and other building 
types. Moreover, the literature covers other prediction targets such as occupant behavior and 
presence, daylight illuminance, and HVAC fault detection. As an essential requirement of the 
efficient operation of smart buildings, the peak energy demand, HVAC control parameters, 
electricity load profile prediction, etc., are also included in the literature.  

More in detail, Table 2, summarizes the selected scientific articles published between 2020 to 
2022 that implemented Machine Learning models in predicting photovoltaic systems 
performance. As shown in table 2 most papers employed ML models to predict PV power/ 
generation based on the variation of weather data in different locations.  

Several researchers employed different ML models and compared their accuracy in predicting 
PV power/ generation. For instance, Zazoum (Zazoum, 2022) showed that GPR_Matern 5/2 is 
superior to predict PV power compared to the SVM models. Another study performed by 
Mas’ud (Abubakar Mas’ud, 2022) concluded that kNN has a higher accuracy among the three 
tested ML models including multiple regression and decision trees regression models.  While 
Visser et al. (Visser et al., 2022) highlighted the higher accuracy of Support Vector Regression 
models in operational day-ahead solar power forecasting. Some authors also put effort to 
propose and develop novel hybrid ML models for predicting solar radiation, PV power, and 
generation in different climatic and geographical conditions and prove the advantage of their 
proposal by comparing the prediction precision of existing models (Zhou et al., 2020). 

ML models are vastly employed to forecast solar radiation, PV power, and generation under 
different weather conditions (table 2). Nonetheless, predicting PV self-consumption is less 
addressed in the literature and the application field of ML-based prediction models. Moreover, 
although several researchers have compared the accuracy of different ML models and provides 
insightful information, few papers reported and compared a comprehensive set of existing ML 
models. In this context, support vector machines are the most tested models while several ML 
models are less evaluated and compared. Therefore, the state of the art barely demonstrates a 
clear and comprehensive comparison among existing ML models’ accuracy for predicting 
photovoltaic performance.  

Furthermore, regarding the supporting solutions to improve PV self-consumption such as 
ESSs, there are almost no scientific articles demonstrating the performance of ML models in 
designing thermal/ electrical energy storage systems. 

Thus, the three research gaps including the lack of ML application in predicting PV self-
consumption, the lack of employing Machine Learning as predictive models in designing ESSs 
for improving PV self-consumption, and the absence of a comprehensive comparative 



 

 

assessment of existing ML models’ accuracy are chosen as the main objectives and novelties 
of this research. The following sections present a case study to compare the accuracy of 24 ML 
models in predicting PV self-consumption of different TES capacities. 

 

3. Materials and methods 
Aiming at evaluating the accuracy of multiple ML models in predicting PV self-consumption, 
first a parametric energy model of the building case study is developed allowing a parametric 
analysis to measure the energy consumption of the building to provide heating, cooling, and 
Domestic Hot Water (DHW) demand. The parametric model is also enabled to measure the 
amount of required electricity to be imported and exported from and to the electricity grid in 
different configurations of ESSs. The building is equipped with air-water heat pump units and 
photovoltaic panels to supply the building’s energy heating/ cooling and DHW energy demand. 
The size of Thermal Energy Storage (TES) tanks is chosen as the design variable in this study. 

A massive number of combinations of TES sizes for heating/cooling and DHW is usually 
allowable, which requires considerable time to conduct simulation-based analysis. Thus, 
instead of simulating all design scenarios, Machine Learning is used to enable the designer to 
analyze the whole design scenario through a prediction process based on simulation-based 
results of a few design scenarios of TES size.  Therefore, six groups of ML models containing 
24 different ML algorithms are trained and used to predict the PV self-consumption in each 
design scenario. Then, these algorithms are evaluated by comparing the statistical indicators 
and computational time efficiency including each algorithm’s training time and prediction 
speed. Finally, the most accurate ML model is utilized to predict PV self-consumption of all 
possible TES sizes. Given the accurate surrogate model to predict PV self-consumption, the 
selected ML model will be used to find the cost optimum size of TES.  

 

3.1.Building energy system configuration 
The proposed case study is a multi-family residential building located in Bagnolo in Piano, 
Reggio Emilia, Italy (figure 1). The building was constructed in 1985 and retrofitted in 2022 
as part of the Horizon 2020 HEART project (HEART, 2022). It consists of four floors including 
three residential floors with 12 apartments and a total net surface area of 636 m2. The HVAC 
system is equipped with high-efficiency air-water heat pumps coupled with a water loop 
emission system (i.e. decentralized water to air heat pumps) able to increase the heating/cooling 
temperature of the water loop connected to the centralized heat pump, reducing at the same 
time the distribution losses. 

Building’s envelope and energy systems features are presented in table 3. Figure 2, illustrates 
the general operational schemes of the building, including PV and TES (filled with PCM 
materials) components. To reduce the uncertainty and complexity of the analysis related to the 
technical plants, in this study, the building energy performance is simulated parametrically in 
Grasshopper and EnergyPlus considering a traditional emission system (i.e. standard fancoil 
units) rather than the water loop one and neglecting the PCM storage capacity. The thermal 
energy demand of the building for heating, cooling, and DHW is 28,884 kWhth, 10,785 kWhth, 



 

 

and 13,226 kWhth respectively and the total electricity consumption by heat pump units is 
estimated at 22.51 kWh/m2.year.  

 
The Coefficient of Performance (COP) of heat pump units is calculated by the equation in table 
3 based on the performance map of the components (Miglioli et al., 2019) (Amini Toosi et al., 
2022). The TES system is made of two thermal storage tanks to store the thermal energy 
required for heating/cooling and DHW separately. The size of TES is modeled parametrically 
as the design variable between 0 to 5000 liters according to the space constraints in the building.   

 Table 3. Building and energy system characteristics, Ƞ: efficiency, U value: thermal transmittance 

Parameters Values 

Internal Floors U value = 1.18 W/m2K 

Ground Floor U value = 3.49 W/m2K 

Roof U value = 0.55 W/m2K 

External Walls U value = 0.266 W/m2K 

Windows U value = 1.2 W/m2K,  
Solar heat gain coefficient = 0.6 

COP of HP units = 0.001 (water_temp - Ext_temp+10)² - 0.17 (water_temp - Ext_temp+10)+10 

EER of HP units = COP - 1 

Ƞdistribution, Ƞregulation, Ƞemission 0.95 

Inlet water temperature to HP units 15◦C 

Outlet water temperature from HP units 
 

35◦C in space heating mode 
10◦C in space cooling mode 
45◦C in DHW mode 

Thermal transmittance of TES envelope U value = 0.35 W/m2K 

TES size for heating/ cooling Variable (0 to 5000 liters) 

TES size for DHW Variable (0 to 5000 liters) 

Type of the fluid in TES Water 

Thermal energy storage period 1 day ahead 

PV peak power 8.5 kWp 

PV systems losses 14% 

 

Figure 1. Case study residential building, Bagnolo, 
Italy 

 Figure 2. General operational scheme of 
the building 



 

 

The thermal energy storage is foreseen for 1 day ahead and the control logic estimates the 
amount of excess PV generation and activates charging of the TES concerning the predicted 
electricity need during the next day and the TES capacity as illustrated in figure 3.  

The parametric energy model for TES size optimization is developed using Grasshopper and 
EnergyPlus and the surrogate ML-based energy model to predict all possible scenarios 
(different combinations of TES sizes) is developed in Matlab. The ML-based surrogate models 
are trained by 121 simulation-based results (representing around 5% of the whole design space) 
to predict all combinations of design variables which helps reduce the computational time and 
preserve accuracy. 

 
 

3.2.Indices definition 
In general, three types of indices are used for this study. First and foremost, PV self-
consumption is chosen to measure the impact of different TES sizes on the building energy 
performance. PV self-consumption can be calculated using the following equation which 
indicates the share of PV-generated electricity directly used in buildings. PV self-consumption 
is known as an accepted index to evaluate the optimum sizing of energy systems in buildings 
for maximizing the use of Renewable Energy Sources (RES) and minimizing the building-grid 
interaction which will also result in lower dependency on the grid-supplied electricity to 
operate building energy systems. Equation 1 is used to quantify PV self-consumption in the 
present assessment.  

Equation 1. PV self-consumption 

𝑃𝑉 𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 ൌ  
 𝑀ሺ𝑡ሻ𝑑𝑡
௧ଶ
௧ଵ

 𝑃ሺ𝑡ሻ𝑑𝑡
௧ଶ
௧ଵ

 

Where:  
𝑀ሺ𝑡ሻ ൌ 𝑚𝑖𝑛ሼ𝐿ሺ𝑡ሻ,𝑃ሺ𝑡ሻሽ 
𝑃ሺ𝑡ሻ ൌ 𝑚𝑖𝑛ሼ𝐿ሺ𝑡ሻ,𝑃ሺ𝑡ሻ  𝑆ሺ𝑡ሻሽ 
L(t) is instantaneous building power consumption 
P(t) is on-site PV power generation 
S(t) is the power to and from the storage unit (negative during the charging phase) 
 

Moreover, five statistical indices are used to measure the accuracy of predictions by ML models 
including the coefficient of determination (R2), Root Mean Square Error (RMSE), Mean 
Squared Error (MSE), Mean Absolute Error (MAE), and Relative Error (RE) which can be 
calculated by the following equations:  

Equation 2. R Squared 

𝑅 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 ൌ 1 െ  
∑ ൫𝑌 െ 𝑌ప൯
ଵ

∑ ሺ𝑌 െ 𝑌തሻ
ଵ

 

 
Equation 3. Root Mean Square Error 



 

 

𝑅𝑀𝑆𝐸 ൌ  ඨ
∑ ൫𝑌 െ 𝑌ప൯

ଶ
ୀଵ

𝑛
 

 
Equation 4. Mean Squared Error 

𝑀𝑆𝐸 ൌ  
1
𝑛

  ൫𝑌 െ 𝑌ప൯
ଶ

ୀଵ
 

 
Equation 5. Mean Absolute Error 

𝑀𝐴𝐸 ൌ  
∑ ห𝑌ప െ 𝑌ห
ୀଵ

𝑛
 

 
Equation 6. Relative Error  

𝑅𝐸 ൌ
𝑌ప െ 𝑌
𝑌

 ൈ 100 

Where:  
𝑌 is the actual simulation-based value of scenario i 
𝑌ప  is the predicted value of scenario i 
𝑌ത is the mean value of observations 
𝑛 is the total number of observation/ prediction values 
 

Finally, the Net Present Value (NPV) index as the most used economic indicator in LCC 
studies (Amini Toosi et al., 2021) is used to find the life cycle cost optimum size of TES. 
NPV as a recommended economic index by EN 16627 (EN_16627, 2015) for life cycle cost 
analysis can be calculated using equation 7.  

 

Equation 7. Net Present Value 
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Where: 
Investment: the initial investment of the TES systems 
Operational Cost:  the annual cost of electricity considering purchasing electricity from the grid and 
reimbursement for the feed-in electricity to the grid in the first year. 
El_PIR: the electricity price inflation rate 
DR:  the discount rate 
n:  the study period (service life) considered in the case study 
 
Table 4. Economic parameters to calculate NPV 

Economic parameter Value Unit 
Electricity price (import from the grid) 0.18 Euro/kWh 
Electricity price (export to the grid) 0.10 Euro/kWh 
TES investment  300 + (TES volume in litres/ 2) Euro 
Electricity price inflation rate 2.1% - 
Discount rate 3.68% - 
Study period 30  Years 
The useful technical life span of TES 30  Years 

 



 

 

As shown in table 4, the electricity tariffs for purchasing electricity from grid and the feed-in 
tariff for electricity are selected from previous studies equal to 0.18 and 0.1 Euro per kWh 
electricity (Miglioli et al., 2019). It should be noted that the current electricity price has a higher 
value than that considered in the present study, however, it should be considered a temporary 
situation. Furthermore, the 10 years average discount rate and electricity price inflation rate in 
Italy are taken from previous studies equal to 2.1% and 3.68% (Amini Toosi et al., 2020). The 
life cycle cost analysis is carried out for 30 years of service life of the building equivalent to 
the average useful life span of the TES components.  

 

3.3.ML modeling and evaluation process  
The process starts with creating a parametric building model including the building fabric, 
HVAC systems, RES, and TES, presented in table 3. The parametric model analyzes the hourly 
energy consumption, PV generation, direct use of PV-generated electricity, charging and 
discharging of TES, imported and exported electricity from and to the grid as well as PV-self 
consumption ratio for the various sizes of TES components. 

Figure 3. Parametric modeling and machine learning evaluation process 



 

 

To train the ML models and test their accuracy, 15% of the whole design space (possible 
combination of TES sizes) is initially simulated and divided into training (A) and test (B) sets. 
The training set (A) representing 5% of the whole design space is used to train 24 ML models. 
These trained models are then employed to predict PV self-consumption of the test set (B) to 
measure the accuracy of ML predictions by comparison to the simulation-based results.  

Then the most accurate ML model can be applied to predict the whole design scenarios which 
assists designers in finding the optimum solutions with high accuracy and minimum 
computation time and effort. Figure 3 illustrates the evaluation process, including the 
parametric energy modeling of energy storage systems, training, and testing of multiple ML 
models.  

4. Results and discussion 
The initial results of assessing the effectiveness of TES application for improving PV self-
consumption showed a significant potential, especially during the midseason and summer 
period when hourly PV generation is higher than the electricity demand of building energy 
systems for heating, cooling, and DHW. Moreover, the results showed that the application of 
TES systems is highly beneficial even during winter except for days with very low solar 
radiation.  

For instance, the comparison between the application of TES (3000 liters for heating/cooling 
and 1500 liters for DHW) with the base scenario without TES shows that the TES system can 
increase PV self-consumption from 41.03% to 62.07% leading to 23.19% reduction in imported 
electricity from the grid. Figure 4 illustrates the energy profile of the building on 21st June as 
an example day in which the application of TES enhanced the PV self-consumption up to 
99.39%. As shown in figure 4, all PV generation during this day is either used directly to supply 
instantaneous electricity demand or stored in TES to cover the thermal energy demand within 
the day ahead however the PV self-consumption cannot practically reach 100% due to the 
energy losses in the TES system.  

 

Figure 4. Hourly energy profile on 21st June,  
Left) without TES application 
Right) with 3000 liters and 1500 liters of TES for heating/cooling and DHW 



 

 

The next sections will present the results of testing ML models’ accuracy in predicting PV self-
consumption for different TES sizes. Such prediction models help to create and estimate the 
energy profile of buildings for any TES size configuration to realize the impact of different 
TES sizes on PV self-consumption with lower computational time and cost during the design 
phase. 

 

4.1.ML models’ prediction accuracy 
As described in the methodology section, 392 simulation-based results were obtained through 
hourly energy simulation, representing around 15% of all possible combinations of TES size 
as the design variables. After training Machine Learning models on 5% of simulated scenarios 
(A: train set), 24 ML models were evaluated regarding the prediction accuracy in terms of R2, 
RMSE, MAE, MSE, and RE by comparing the predicted and simulated results on around 10% 
of the remaining simulated scenarios (B: test set).  

With respect to the coefficient of determination (R2), it is revealed that in general ML 
algorithms belonging to Gaussian Process Regression (GPR), Neural Network (NN) bilayered 
and trilayered models, Ensembles of Trees (EoT), and fine gaussian SVM represent higher 
accuracy among all other ML algorithms. Table 5 summarizes the evaluation results of all 
employed algorithms.  

 

Table 5. Statistical indices for accuracy assessment of ML-based prediction models 

Model Type ML algorithms R2 RMSE MSE MAE 

Regression Trees 
Fine_Tree 0.95 1.27 1.620 0.843 
Medium_Tree 0.918 1.833 3.361 1.237 
Coarse_Tree 0.660 3.684 13.572 3.027 

Ensembles of Tress 
Boosted_Trees 0.988 2.305 5.314 2.158 
Bagged_Trees 0.981 1.373 1.885 1.013 

Linear Regression 
Models 

Linear 0.747 2.987 8.923 2.366 
Linear_Interactions 0.759 2.945 8.671 2.341 
Linear_Robust 0.744 3.112 9.682 2.347 
Linear_Stepwise 0.747 2.987 8.923 2.366 

Gaussian Process 
Regression Models 

GPR_Rational Quadratic 1.000 0.108 0.012 0.082 
GPR_Squared Exponential 0.998 0.254 0.065 0.202 
GPR_Matern 5/2 1.000 0.072 0.005 0.053 
GPR_Exponential 0.999 0.158 0.025 0.080 

Support Vector 
Machines 

SVM_Linear 0.728 3.413 4.304 2.417 
SVM_Quadratic 0.901 2.075 4.304 1.505 
SVM_Cubic 0.967 1.050 1.103 0.895 
SVM_Fine Gaussian 0.990 0.804 0.647 0.607 
SVM_Medium Gaussian 0.961 1.309 1.713 0.867 
SVM_Coarse Gaussian 0.821 3.002 9.015 1.897 

Neural Networks 

NN_Narrow 0.747 2.987 8.923 2.366 
NN_Medium 0.961 1.211 1.467 1.011 
NN_Wide 0.961 1.211 1.467 1.011 
NN_Bilayered 0.998 0.236 0.056 0.194 
NN_Trilayered 0.997 0.328 0.107 0.250 

 



 

 

Regarding the coefficient of determination (R2), Linear Regression (LR) models, along with 
Coarse_Tree, SVM_Linear and NN_Narrow are found among the models with the lowest 
accuracy to predict the energy performance of design scenarios. Amongst the models belonging 
to the Regression Trees, the Fine Tree showed a higher accuracy with R2 equal to 0.95. On the 
other side, Gaussian Process Regression Models represent a significant accuracy. All GPR 
models along with NN_Bilayered, and NN_Trilayered belonging to the Neural Network 
models, SVM_Fine_Gaussian, SVM_Cubic, Boosted Trees, and Bagged_Trees are found 
among the top-ten most accurate ML models in this case study.   



 

 

 

Figure 5, compares the actual simulation-based values and the predicted values by all employed 
ML models. Gaussian Process Regression  models result in a negligible deviation between 
predicted and simulated results, which highlights a significant precision to predict PV self-

Figure 5. Actual simulation-based values versus the predicted values by all employed ML models 



 

 

consumption. In contrast, the ML algorithms in Linear Regression and Regression Trees do not 
perform accurately. 

Figure 6, represents the Relative Error (RE) of predictions by different ML models. RE 
indicated the extent to which each predicted result is overestimated or underestimated 
compared to the actual results produced by simulation-based analysis.   

Boosted_Trees and Bagged_Trees performed differently in terms of accuracy. Boosted_Trees 
algorithm mainly underestimated the results in comparison to the actual results. In contrast, 
Bagged_Trees always estimates the values higher than the values predicted by Boosted_Trees 
and in some cases higher than the actual simulated results. 

The Linear Regression (LR) model’s algorithms presented a lower precision compared to 
Regression Trees (RT), except for the coarse_tree which is found as the least precise model in 
this case study. SVM algorithms perform more precisely in general compared to LR algorithms 
except for SVM_Linear and SVM_Coarse_Gaussian models that represent an accuracy as low 
as LR models. The most accurate SVM model is SVM_Fine_Gaussian representing R2 equal 
to 0.99.  

 

The results shown in Figure 6 along with those presented in figure A1 in appendix A illustrate 
comparable and detailed information about the accuracy of each ML model tested in this case 
study. As shown in figure A1, the relative error of an overwhelming majority of results 
predicted by GPR models, bilayered and trilayered neural networks fall between -1% to 1% 
confirming the precision and the reliability of these ML models implemented in the present 
study.  

RT EoT LR GPR SVM NN 

Figure 6. Relative error of predictions, RT: Regression Trees, EoT: Ensembles of Trees, LR: Linear 
Regression, GPR: Gaussian Process Regression, SVM: Support Vector Machines, NN: Neural Networks 



 

 

Figure 7 shows a complicated relationship between the ML models’ accuracy and training time.  
While some low-accurate algorithms such as Coarse_Tree or SVM_Coarse Gaussian offered a 
significant training speed, there are other ML models such as GPR models that provide high 
accuracy and training speed simultaneously. The results show accuracy and training time are 
not correlated in ML models. This fact highlights the importance of considering both accuracy 
and training speed for a smart selection of ML algorithms. The suitable ML algorithm must be 
chosen amongst the most accurate ones while considering the one with the lowest training time. 
Likewise, the prediction speed is an important performance indicator of ML algorithms, 
particularly for case studies with a giant number of predictions. 

 

Figure 8 illustrates the prediction speed of all tested ML models and their R2 as an accuracy 
indicator. Like training speed, some models such as Medium_Tree or SVM_Coarse Gaussian 
offered a high prediction speed however due to the lack of accuracy they cannot be 
recommended as appropriate ML models in this case study. On the other hand, most GPR and 
Neural Network models provided relatively high prediction speed and significant accuracy 
simultaneously nominating them as suitable ML algorithms for the performance prediction in 
this case study.  

 

 

 

 

Figure 7. Training time and R squared of tested ML models 
Note: Linear model is excluded due to its high training time  



 

 

 

 

 

Figures 7 and 8 deliver useful information on ML models concerning their accuracy, training 
time, and prediction speed and therefore can be utilized as a reference to select the most suitable 
ML algorithms for building energy performance prediction. For the case studies with a high 
required number of predictions, rapid forecasting becomes significantly important as a criterion 
to select the ML algorithms. Although the accuracy of prediction should not be compromised, 
the training and prediction speed must also be considered when a large number of predictions 
are expected.  

Finally, it can be realized that amongst those ML models providing a coefficient of 
determination (R2) higher than 0.99, all GPR models alongside bilayered and trilayered neural 
networks outperform in terms of training and prediction speed. In addition to the 
aforementioned ML models, SVM_Fine Gaussian, SVM_Cubic, Boosted_Trees, and 
Bagged_Trees are found among the top-ten most accurate ML models.  

 

4.2.PV-self consumption of different TES scenarios 
Given the results provided in the previous sections to evaluate the accuracy, training time, and 
prediction speed of different Machine Learning models in forecasting the PV self-consumption 
for multiple design scenarios of thermal energy storage, GPR_Matern 5/2 is selected in this 
section.  The trained GPR_Matern 5/2 model in the previous section is used to predict the 

Figure 8. Prediction speed and R squared of tested ML models 



 

 

results of all possible combinations of TES sizes including 2601 scenarios. Figure 9 illustrates 
the results both for the simulated results and the predicted ones.  

 

 

As shown in figure 9, the GPR_Matern 5/2 model produced the results for whole possible 
combinations of TES sizes with significant accuracy as examined in the previous section. The 
application of the ML model in this case study accelerated the whole design/ assessment 
process around 20 times faster than the simulation-based process. The results also show that 
the application of TES systems is effectively improving the PV self-consumption. The annual 
PV self-consumption can be improved from 41.03% for the base scenario (no TES installation) 
up to 63.4% for the maximum size of the TES tanks. The application of TES can also increase 
the PV self-consumption by more than 90% on certain days as elaborated in the previous 
section. The minimum TES size to reach at least 60% as the PV self-consumption rate is found 
as 1700 liters and 1200 liters for heating/cooling and DHW respectively in this case study. 
Increasing the TES size beyond this volume to the maximum allowed size can improve PV 
self-consumption by only around 3% since the excess size of TES will not be fully utilized, 
considering the hourly profiles of building electricity demand, PV generation, and the control 
logic illustrated in figure 3.  

PV self-consumption also depends on the installed power of PV systems and the period of 
thermal energy storage which in this case study is one-day storage. Increasing the storage 
period to more than one day can also increase the PV self-consumption by application of any 
type of ESSs. This section provided the results of PV self-consumption for different TES 
capacities and the next section uses the same methodology for the life cycle cost optimization 
of TES size.   

 

Figure 9. PV self-consumption for different TES sizes, 
Left: The actual simulation-based results,  
Right: Predicted results for whole design scenarios by GPR_Matern 5/2 model. 



 

 

4.3. The LCC-based optimum size of TES 
Improving PV self-consumption in buildings by application of TES yields economic profits by 
reducing the required electricity purchase from the grid while the Life Cycle Cost (LCC) of 
TES scenarios depends on both the initial investment of TES installation and the subsequent 
savings achieved by higher PV self-consumption rate. Thus, the GPR_Matern 5/2 model is 
trained on the economic performance of simulation-based results (test set) and implemented to 
forecast the LCC performance of whole TES scenarios in terms of Net Present Value (NPV) to 
find the LCC-based optimum size of TES in this case study. Figure 10, presents the LCC results 
of the different combinations of TES sizes. The GPR_matern 5/2 offered a high accuracy in 
predicting the NPV of TES scenarios representing an R2 equal to 1. Nonetheless, even the 
application of an accurate ML-based surrogate model into a decision-making process may lead 
to a quasi-optimum solution instead of the actual optimal solutions if the difference among the 
scenarios’ performance is very small. Therefore, the quasi-optimum solutions determined by 
ML prediction are re-evaluated using the simulation-based process to obtain the actual results 
and compare them to the ML-based predicted results. As shown in figure 10.b and 10.c, the 
optimal TES size obtained from ML predicted results is 2700 liters while the optimum size 
according to the actual simulation-based is 2600 liters. Nevertheless, both results are enough 



 

 

close to the best economic performance based on the NPV indicator and therefore could be 
considered the optimal solution.  

 

More in-depth, the optimum size of TES to minimize the NPV (i.e. the discounted costs of each 
TES scenario including initial investment and operational energy cost over the 30 years of the 
building’s life span) is found as 1600 liters and 1000 liters for heating/cooling and DHW 
respectively. The optimum TES size can yield 7.1% saving in the net present value of the 
building’s life cycle costs with respect to the electricity tariffs, price of the components, and 
the macroeconomic parameters (discount and inflation rates) used in this study.  

The LCC-based optimum size of TES improves the PV self-consumption rate up to 59.4% and 
reduces the electricity consumption by approximately 20.27% compared to the base scenario. 
The optimal scenario also decreases the annual electricity export and the peak power injection 

to the electricity grid by 31.73% and 21.23% respectively which benefits the grid stability.  The 
results show that although increasing TES size beyond the cost optimum scenarios will improve 

Figure 10. Life cycle cost of different TES sizes  
a) LCC results of the whole design space, 
b) LCC results of quasi-optimum scenarios (based on the prediction by GPR_matern 5/2 model) 
c) LCC results of quasi-optimum scenarios (based on actual simulation) 

a) ML-based Predicted results 

b) ML-based Predicted results c) Simulation-based results 



 

 

the self-consumption rate marginally, it will cause higher life cycle costs due to a larger initial 
investment. The LCC calculation is carried out based on the economic parameters provided in 
the previous section while considering lower installation cost for TES components, lower 
discount rate, and higher electricity price inflation rate over the building life span in LCC 
calculation can justify larger TES size as the LCC-based optimum scenario. Moreover, 
extending the storage period (e.g. more than one day) or the service life (e.g. 50 years) might 
result in economic justification for larger TES size as well, although the cost of replacing TES 
components should also be taken into account in case the service life of the building is assumed 
longer than TES technical life span.  

 

5. Conclusion 
In this paper, the precision and performance of 24 different Machine Learning models 
areevaluated. The accuracy, training time, and prediction speed of the ML algorithms as the 
main performance criteria were chosen in this evaluation. The evaluation was conducted on 
predicting PV self-consumption for various TES sizes of a residential building. Therefore, first, 
a parametric energy model of the building case study was created to analyze five percent of all 
possible combinations of energy storage sizes to feed and train the ML models, and then the 
predicted results by each model were assessed and compared to the actual simulation-based 
results for realizing the prediction accuracy.  

The evaluation confirmed that some ML models are noticeably superior. Almost all linear 
Machine Learning algorithms showed lower accuracy in this case study compared to other 
tested models. Furthermore, in general, Support Vector Machine algorithms outperformed all 
Linear Regression models and offered a high precision still providing lower accuracy compared 
to Gaussian Regression Process and most Neural Network models. In summary and according 
to the R2 of each prediction model, the GPR models including GPR_Matern 5/2, 
GPR_Rational_quadratic, GPR_Exponential, and GPR_Squared_exponential alongside 
NN_Bilayered, and NN_Trilayered belonging to the Neural Network models, SMV models 
including SVM_Fine_Gaussian, and SVM_Cubic, and EoT models containing Boosted_Trees 
and Bagged_Trees and are found as the top-ten most accurate ML models in this case study. 

Although all tested ML algorithms showed significant training and prediction speed, an 
intelligent selection of suitable ML algorithms must also consider not only the models’ 
accuracy but also the training and prediction speed. In this study, no linear relation is found 
between the accuracy and training/prediction speed which indicates that higher 
training/prediction speed does not necessarily lead to higher or lower accuracy and could be 
recommended as independent selection criteria, particularly in the cases with huge numbers of 
required predictions where the training and prediction speed matter.  

The results provided in this paper can be used as a reference for researchers and practitioners 
to understand the performance variation among several existing Machine Learning models and 
therefore help choose the most suitable ML models for predicting the energy performance of 
buildings during the design process. 

The application of TES as a solution to improve PV self-consumption was found to be 
noticeably beneficial. For instance, as the results of ML-based analysis presented, PV self-
consumption in this case study can be improved from 41.03% to 62.07% by installing TES 



 

 

with 3000 liters and 1500 liters for heating/cooling and DHW respectively. Moreover, the 
optimum size of TES regarding the life cycle cost analysis in this case study is found as 1600 
liters and 1000 liters for heating/cooling and DHW respectively. The LCC-based optimum size 
of TES yields both a high PV self-consumption rate (59.4%) and 20.27% reduction in the grid-
supplied electricity consumption leading to 7.1% decrease in the total life cycle cost.  

Future studies can extend this research by testing hybrid ML models, application of ML models 
to other energy systems’ configurations, and replicating the proposed methodology in various 
geographic areas to assess PV self-consumption and the life cycle costs during designing the 
buildings and the energy systems using Machine Learning-based surrogate models.  
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Appendix A: The frequency of relative errors in the predicted results of the test set 

Figure A1. The frequency of relative error in each ML model’s predicted results for the test set  
(only the relative errors between -10% to +10% are shown) 



 

 

 

Figure A1 [continue]. The frequency of relative error in each ML model’s predicted results for the test set  
(only the relative errors between -10% to +10% are shown) 
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