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Abstract—Machine Learning (ML) adoption for automated
failure management is becoming pervasive in today’s communica-
tion networks. However, ML-based failure management typically
requires that monitoring data is exchanged between network
devices, where data is collected, and centralized locations, e.g.,
servers in data centers, where data is processed. ML algorithms
in this centralized location are then trained to learn mappings
between collected data and desired outputs, e.g., whether a
failure exists, its cause, location, etc. This paradigm poses several
challenges to network operators in terms of privacy as well as in
terms of computational and communication resource usage, as a
massive amount of sensible failure data is transmitted over the
network. To overcome such limitations, Federated Learning (FL)
can be adopted, which consists of training multiple distributed
ML models at multiple decentralized locations (called “clients”)
using a limited amount of locally-collected data, and of sharing
these trained models to a centralized location (called “server”),
where these models are aggregated and shared again with clients.
FL reduces data exchange between clients and a server and
improves algorithms’ performance thanks to sharing knowl-
edge among different domains (i.e., clients), leveraging different
sources of local information in a collaborative environment. In
this paper, we focus on applying FL to perform failure-cause
identification in microwave networks. The problem is modeled
as a multi-class ML classification problem with six pre-defined
failure causes. Specifically, using real failure data from an
operational microwave network composed of more than 10000
microwave links, we emulate a multi-operator scenario in which
one operator has partial knowledge of failure causes during
the training phase. Thanks to knowledge sharing, numerical
results show that FL achieves up to 72% precision in identifying
an unknown particular class concerning traditional ML (non-
FL) approaches where training is performed without knowledge
sharing.

Index Terms—Microwave networks, failure identification, root-
cause analysis, machine learning, federated learning, data privacy

I. INTRODUCTION

Machine Learning (ML) is transforming failure management
in communication networks by leveraging monitoring data to
automate vital failure-management operations, such as failure
detection, identification, and localization. However, traditional
ML techniques for failure management require gathering data
on one central server. Even if performance might be con-
vincing, the data transfer and process volume are enormous,
making it harder to transmit and preserve data in a centralized
location. Furthermore, data transmission may expose privacy
threats, and as well the central server may be attacked and
release sensitive data. In this regard, Federated Learning (FL)
is a promising candidate to enable distributed data training and

assist in developing high-performance models shared across
many parties and hence preserve data privacy [1]. FL has
already been widely adopted in several contexts where data
owners are concerned about privacy, e.g., in the health sector,
where patients’ data consists of sensitive information that
needs to be protected to comply with legal, administrative or
ethical constraints.

In this study, we focus on the application of FL for failure-
cause identification in microwave networks, assuming that dif-
ferent operators cooperate in a privacy-preserving manner, i.e.,
without sharing detailed information regarding the failures in
their networks. Following the FL approach, failure data can be
gathered and stored in the network equipment of each operator,
where independent training is performed by each operator
using local data. Then, the operators can collaboratively share
their models and allow a central server (e.g., a coordinator) to
aggregate them into a unified model that can be re-distributed
to and adopted by all the operators.

More specifically, we consider a scenario with three mi-
crowave network operators aiming to discriminate between six
failure causes. We assume that one operator (namely, Partial
Knowledge Operator (PKO)) has no historical knowledge (i.e.,
no training data) of one of the failures at a time. Hence,
exploiting knowledge from the other operators and using FL,
we aim to evaluate under which conditions, e.g., failure cause,
the PKO can improve its classification accuracy and preci-
sion. To validate the effectiveness of the FL-assisted failure-
cause identification, we compare its classification accuracy and
precision against two benchmark scenarios, where i) all the
operators know all failure causes and perform independent
training without sharing any data or ML model, and ii)
available data from all the operators are used by a central
server that performs training with global data.

This article is organized as follows. In Section II relevant
existing work is discussed. Section III provides background
information on Federated Learning. Section IV formally de-
fines the problem addressed in this paper. In Section V the
proposed FL-assisted failure-cause identification framework is
discussed. Finally, we provide numerical results in Section VI
and draw paper conclusion in Section VII.

II. RELATED WORK

ML-assisted failure network management continues to at-
tract the attention of academic and industrial research com-
munities due to the proven capabilities of ML in solving a
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Fig. 1: Illustration of HFL where the overlapping features from
data samples held by different participants are taken to train
a model jointly [18].

wide range of failure management problems [2]–[4]. Most
of the works focusing on ML-assisted network management,
however, consider centralized ML schemes [5]–[10]. For in-
stance, Ref. [5] investigates the problem of microwave link
failure detection using a Long/Short-Term Memory (LSTM)-
based feature fusion network. In our previous work [6], we
tackle the problem of failure-cause identification in microwave
networks in a semi-supervised fashion, and in Ref. [7] we
exploit explainable artificial intelligence to explain ML-based
models for failure-cause identification. Moreover, Refs. [9]
and [10] focus on detecting link anomalies, while Ref. [3]
investigates failure detection in cellular data networks.

The application of FL for network management has started
to receive attention only recently [11]–[15]. Moreover, the
existing literature is very limited and is mainly focused on the
application of FL to preserve the data privacy of different data
owners in a multi-operator (or several data owners) network
scenario. For failure network management, Ref. [16] proposes
an FL-based solution that enables operators to collaboratively
develop an ML model for quality-of-transmission estimation
in optical networks while preserving data privacy. Similarly,
Ref. [12] demonstrates the benefits of an FL framework among
different operators and data owners while preserving data
privacy. With respect to these works, our work leverages
the application of FL to improve the knowledge of one
operator that suffers from an incomplete data set (has no
historical knowledge of one of the failures) by exploiting the
knowledge of other operators. To the best of our knowledge, no
prior works exploited FL to evaluate under which conditions
one operator (or data owner) can improve its knowledge by
exploiting that of other data owners in the learning federation.

III. BACKGROUND ON FEDERATED LEARNING

FL is an approach based on collaborative ML among differ-
ent players, called clients, that cooperates by performing ML-
model training using local data. In this paradigm, a centralized
server (or coordinator) distributes an initial model to local data
owners, who train a model using their respective local dataset
and then share trained models with the server. The centralized
server is in charge of aggregating the different models obtained
from the clients and then sharing a unique aggregated model.
We call each exchange of data between clients and the server
a round. This way, data owners do not expose their data to a
central server or any other data owner in such a context [17].

A. Types of FL based on the distribution of the data

Two primary forms of FL exist, Horizontal and Vertical
FL (HFL and VFL, respectively). The form of FL adopted
indicates how data is distributed between the clients. Fig. 1
shows an FL setting where the x-axis shows the feature space
of the samples of each client. We can see an overlapping area
where clients share overlapping data features. However, the
y-axis shows the client’s samples’ space where all the sample
points are; it depicts that the samples differ in most parts. In
HFL, data features are aligned across the participants, but they
differ in data samples.

Different from HFL, VFL applies to the case where the
participants share overlapping data samples, i.e., the data
samples are aligned amongst the participants, but they differ in
data features. For example, two banks can store data related to
a shared set of clients, but different information (i.e., different
sets of features) is available for each client. It resembles the
situation where data is vertically partitioned inside a tabular
view [18], [19]. In our work, we refer to HFL as we consider
a scenario in which different microwave network operators
represent clients of the FL architecture. Since operators do
not share links and usually the features of the links are the
same in every working site, we can say that they have no
overlapping samples yet several (if not all) similar features.

B. FL Algorithms

The three main flavors of FL algorithms are: Federated
Stochastic Gradient Descent (FedSGD), Federated Learning
with Dynamic Regularization (FedDyn), and Federated aver-
aging (FedAvg) [20]. FedSGD uses gradient descent, a first-
order iterative optimization algorithm, to find a local minimum
of a differentiable function. The idea is to take repeated steps
in the opposite direction of the gradient of the current point
to find the local minimum. In stochastic gradient descent,
gradients are computed on a random subset of the dataset and
are then used to make one step of the gradient descent [21].
The algorithm converges when the update to the gradient at
each step is small enough.

FedDyn is concerned with minimizing communication, al-
lowing for significantly more processing and optimization at
the client level. Specifically, the model dynamically modifies
the client’s objective with a penalty term in each round. When
model parameters converge, they do so to stationary points of
the global empirical loss.

Finally, FedAvg is a generalization of FedSGD that allows
local nodes to perform more than one batch update on local
data and exchanges the updated weights rather than the gradi-
ents. In our work, we use FedAvg, which employs more mini-
batches than FedSGD, resulting in reduced communication
overhead. Note that FedDyn can be used for heterogeneous
datasets, which are not considered in our work. Three essential
parameters govern the amount of computation in FedAvg: i)
ρ, the fraction of clients that perform computation during each
round; ii) S, the number of training steps each client performs;
and iii) M , the mini-batch size used for client updates. During
each round, FedAvg picks a ρ-fraction of participants and



computes the weights across all of the players’ data [22].
FedAvg optimizes the finite-sum objective:

min
w∈Rd

f(w), f(w) :=
1

n

n∑
i=1

fi(w) (1)

where w is a vector that contains d model parameters. In
supervised learning, we treat the function fi(w) as loss
function fi(w) = l (xi, yi;w), where an input-output pair
(xi, yi) is one of n given labeled examples, often referred to as
training examples. The objective function fi(w) is defined by
the model parameters w conditioned on n labeled examples.
The problem can thus be interpreted as finding the value of w
which minimizes the average loss over all n training examples.

In an FL setting, data is distributed among k clients, with
their respective data P0, P1, ...Pk. The number of training
examples held by client k is denoted by nk = |Pk|. Each client
then holds a part Pk of all training examples and computes
FK(w), the average loss on client k, and then we can rewrite
the objective function as a weighted sum over all Fk(w):

f(w) =

K∑
k=1

nk

n
Fk(W ), where Fk(w) :=

1

nk

∑
i∈Pk

fi(w) (2)

Distributing the data and computational burden leads us to
re-formulate the objective function f(w) from Eq. 1 to 2 [23].

IV. PROBLEM SETTINGS AND DATA DESCRIPTION

A. Problem Statement

We model failure identification as a multi-class FL-based
classification problem to identify the failure root cause with
distributed datasets. The classifier is trained collaboratively
between several clients, with the features described in Sec.
IV-C model. We adopted FL to emulate a scheme with N
clients (Network Operators) holding some certain amount of
data but with one of the clients missing a failure type (we refer
to this client as Partial Knowledge Operator (PKO)). These N
clients aim to build a robust classifier without sharing data and
help the other operators recognize the missing failure type.

B. Failure Causes

The structure of a microwave communication link includes
a microwave radio at the transmitter site, connected to a
directional antenna via a transmission line. Because of physical
restrictions and changes in the propagation environment, the
signal quality of the microwave may fluctuate over time.
These variations may cause network breakdown and make
the network unavailable. To measure the unavailability of a
microwave link, the “UnAvailability Seconds (UAS),” measure
is defined, which accounts for the number of seconds when the
system is unavailable in a given observation interval [24]. The
UAS value in the considered observation interval is computed
as the sum of all the time intervals containing at least ten
consecutive severely errored seconds.

Six distinct failure root causes are considered in our work.

1) Deep Fading consists of a significant rise in channel
attenuation, resulting in a significant loss in signal-to-noise
ratio. Heavy rain, snow, or fog are all possible causes, resulting
in the multipath and shadowing effects.

2) Extra Attenuation occurs when received power falls con-
siderably below a certain power threshold. Many factors can
cause this problem, including route blockage (due to perma-
nent barriers), antenna misalignment, and mounting/screwing
difficulties.

3) Interference takes place when a receiving antenna re-
ceives numerous bitstreams owing to the overlap of other
transmissions at the same frequency used by the receiver, or
unexpected reflections from other links, leading it to fail to
differentiate the bitstream meant for it.

4) Low Margin occurs when the connection is misconfigured
due to a human mistake, resulting in UAS incidents. As
a countermeasure, distant human interaction is necessary to
configure the link’s parameters appropriately.

5) Self-Interference happens when the connection generates
local signal reflections and spurious signals that are carried to
the receiver’s radio component owing to hardware deteriora-
tion, resulting in random UAS on the link.

6) Hardware failure consists of either a temporary or
permanent breakdown of equipment countermeasure. Human
action is required on-site to replace the hardware equipment
causing the failure.

C. Input Data Description

Our raw data comprises measurements from an Italian mi-
crowave network with 10841 radio links. For each data sample,
we consider the power measurements in the 15-minute window
affected by the failure, in conjunction with information on their
evolution in the previous 30-minutes windows. In total, we use
35 features, grouped as follows (please refer to [6] for further
details):

Design information (x1 ÷ x3): G.828 performance mea-
sures ES and SES for the three 15-minutes slots

Propagation Measures [x4 ÷ x35]: The performance and
power measure sampled during the last 15-minutes windows
in which there is at least a UAS.

A human expert labeled each data sample, indicating one
of the failures causes described earlier in Section IV-B.

V. METHODOLOGY

This section describes our methodology. We assume to have
three operators (referred to as clients), each with a subset of
the data. Also, we have a central server in charge of receiving
and averaging the received weights from clients. Fig. 2 shows
the overall framework for failure identification using FL, and it
consists of three main steps. First, we split the data among the
clients. Second, we define the stopping conditions and run the
hyper-parameter search for the FedAvg algorithm. Finally, we
train and test the model obtained using the FedAvg algorithm
described in Sec. III-B. We describe the three phases in detail
below.



Fig. 2: Overview of the steps to taken to obtain a prediction using FedAvg algorithm.

A. Dataset separation

To emulate a realistic scenario, we split our dataset among
the three operators guaranteeing that information on each mi-
crowave link is available to one operator only, i.e., we assume
that the operators do not share the physical infrastructure.

Moreover, to be fair to all clients and to be able to quantify
the impact of using FL (whether it degrades or improves
accuracy) when a specific failure type is missing from one
client, we split the data set uniformly into three sub-datasets
in terms of the number of data points per failure type, as shown
in Tab. I. This can happen in realistic scenarios, e.g., when an
operator does not have full knowledge of all types of failure
that may occur. Finally, to evaluate FL performance, for the
datasets of each client, we consider an 80/20% training/testing
split.

TABLE I: Dataset distribution across the different clients.

Label N. Failure Type Points in c1 Points in c2 Points in c3
0 Deep Fading 76 76 75
1 Extra Attenuation 155 155 154
2 Interference 13 12 12
3 Low Margin 51 50 50
4 Self-Interference 50 49 49
5 Hardware Failure 326 325 325

TABLE II: Convergence time with different conditions.

% No. of rounds duration (min)
0.1% 50 ∞
1% 50 ∞

0.1% 30 42
1% 30 35

0.1% 20 28
1% 20 20

B. Stopping condition

FedAvg can be terminated in three ways: 1) a specified
maximum time has passed since running the algorithm without
meeting the convergence conditions, 2) a maximum number of
rounds is reached (in our work, we consider 104 rounds), or 3)
the algorithm converges (i.e., convergence condition has been

met). We experimented with several convergence conditions
specified by the percentage of change of the loss function and
the number of iterations that the loss function stays within
a defined percentage change. The percentage of change of
0.1 within 20 rounds provided a fair compromise between the
model’s accuracy and the time spent, as indicated in the Table
II1. It is worth noting that after 1000 cycles of learning, all of
these prerequisites will be valid.

C. Hyperparameter Search

We chose Artificial Neural Network (ANN) as an ML
algorithm, assuming all clients know the selected algorithm.
With the number of hidden layers equal to 5, the number
of nodes per layer is equivalent to 100 and uses Relu as an
activation function.

The hyperparameters tuned for FedAvg are ρ, S, M , and
the learning rate η. We will not halt the algorithm until it has
completed 500 rounds.

TABLE III: Hyperparameters for the FedAvg Algorithm

hyperparameter Range value
ρ [0.1, 0.001, 0.00001, 0.0000001] 1
S [10, 100, 200 , 500] 500
M [32, 64, 128] 64
η 0.00001

D. Training Procedure

The training procedure of FedAvg is as follows: first, the
central server sends the model’s hyper-parameters to all three
clients. Then, clients locally train the ML model with the
hyper-parameters and then send a copy of the achieved weights
of the ML model to the central server after completing the
training procedure. After receiving all three sets of weights, the
server averages them and sends the averaged weight to all three
clients. This method will repeat until the stopping condition
specified is fulfilled. At the end of the training procedure, all

1Measurements were collected using an Apple MacBook with 8 GB
Memory, 2133 MHz LPDDR3 and a Quad-Core Intel Core i5 Processor at
1.4 GHz.
The ∞ indicates that the algorithm did not meet the convergence condition
in the specified time



three clients will have the FL model, which they may test on
their local test set.

We compare the performance of the FedAvg technique to
our two benchmarks given in V-E to determine which one is
most suited for categorizing a new point (i.e., a 45-minutes
window inside UAS in the latest 15-minutes slot) in different
use situations.

E. Benchmark

We benchmark the performance of the proposed FL ap-
proach against two baseline methods, Local model and Global
model. The three approaches are described as follows:

• FedAvg model: The FL model was trained collaboratively
among all three clients.

• Local model: This model trains each client with its local
data, resembling the situation where sharing data between
clients is not possible.

• Global model: We train this model on the aggregated
dataset of the three clients.

We employ ANN with hyperparameters as V-C as the
foundation technique and stochastic gradient descent for op-
timization in all three approaches. For FL, we utilized the
FedAvg method with hyperparameters described in III.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Performance evaluation for partial knowledge operator

For numerical evaluations, we consider six scenarios where
the PKO lacks the knowledge of one of the failure classes
during the training phase. The lack of points in the PKO’s
training dataset of a specific failure emulates a situation where
the PKO aims to exploit FL to gain knowledge of the failure-
cause class it lacks from other parties (clients two and three).

We compare the performance of FedAvg to that of the bench-
mark scenarios (Global and Local) in terms of i) precision of
the class with missing data points inside PKO’s train set (this
metric allows us to evaluate the benefit of using FedAvg for
detecting the class which PKO lacks knowledge of), and ii)
overall model’s accuracy, to quantify the impact of FedAvg
on the overall model’s performance (considering all classes of
failure).

Model’s precision in detecting the class of missing labels:
Fig. 3 shows the model’s precision in detecting the class which
PKO lacks the knowledge of in the three considered models
and in the six different scenarios, indicated with L0, L1, ...,
L5, according to the label (i.e., the failure type) that we assume
as missing during training phase for PKO. Note that the Global
scenario, which is the case with global knowledge, represents
an upper bound in terms of all metrics, and it ranges between
69% (for L0) and 98% (for L5).

Regarding Local, as expected, we can see that the precision
is near zero, as PKO does not know a specific failure cause
during training. In the test phase, the data points with ground
truth as that of the missing label, resulting in a random
classification into one of the known failure causes.

As for FedAvg, precision reaches 72% for the case of L5,
which is the class with the highest number of data points in
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Fig. 3: Precision comparison for PKO for the three approaches
for the six different scenarios.
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Fig. 4: Accuracy comparison for PKO for the three approaches
for the six different scenarios.

the data set. Conversely, in the case of L2, there is no such
advantage in precision because it is the class of failure with
the lowest number of data points in the dataset (only 12 data
points of L2 are present in each client’s data set). This shows
that when full-knowledge operators have limited knowledge
of the label PKO misses, PKO does not benefit from the FL
setting. On the contrary, the PKO can benefit more from other
parties when their data sets are abundant in data points of a
label.

Outcome 1: FedAvg allows for improving the precision of an
unseen class of failure type, and the improvement corresponds
to the knowledge other parties in FL exhibit.

Overall model’s accuracy: We now compare the overall
model’s accuracy of the three approaches for the six sce-
narios. Specifically, we would like to quantify whether the
improvement in precision in detecting unseen failure-cause
class translates into an improvement in accuracy (and if so,
to what extent) for the Local model.

Fig. 4 shows the accuracy of the three approaches for PKO
in the six different scenarios. As expected, Global represents



the highest achievable accuracy (on average, Global has a 20%
higher accuracy than the FedAvg). Comparing the accuracy
of FedAvg and Local, we see that neither of the models
outperforms the other in all scenarios. For L0 and L5, FedAvg
shows a higher accuracy than that of Local, while Local
outperforms FedAvg in the remaining scenarios. This shows
that FedAvg can enhance Local’s accuracy only under specific
conditions (in our scenario in the case when PKO lacks
knowledge on deep fading (L0) and hardware failure (L5)
only). In particular, for the case of Hardware Failure (L5),
the improvement in accuracy is due to the fact that i) L5
class has a high number of data points (around 50% over the
entire dataset) with more than 300 points in each client, and
ii) Hardware Failure phenomena produce very different effects
on the used features compared to the other types of failures
(L0 to L4) that are all related to propagation phenomena.
On the other hand, for the cases where Local outperforms
FedAvg, we notice that the significant loss in accuracy is for
L2 (interference). We relate that to the fact that the number of
points categorized as L2 is deficient (lowest among all classes)
and that the knowledge gained by PKO in the FL settings of a
new label with few points seems to do more harm than good
(it distracts the attention from other labels, resulting in a worse
detection by FedAvg of other classes).

Outcome 2: FedAvg’s improvement in detecting the class of
a failure that is unknown by the PKO does not necessarily
translate into an improvement in accuracy, as FedAvg fails to
see other failure causes as good as with the Local model.

Interpreting the impact of FedAvg on the model’s ac-
curacy: To examine in more detail the outcomes so far, we
provide the confusion matrix of FedAvg for the scenarios when
Interference (L2) and Hardware failure (L5) are absent from
PKO (Fig. 5(a) and (b) respectively).

Fig. 5(a) shows that FedAvg was unable to categorize any
points of Interference (L2). The PKO has no knowledge
of interference, and there are only a few L2 points in full
knowledge operators (each has 12 points). As a result, PKO
did not benefit from full knowledge operators as intended.
Fig. 5(b) shows the confusion matrix for PKO when it lacks
knowledge of Hardware failure (L5). Here, we can see that
PKO successfully classified 32% of the points, thanks to
full knowledge operators. This further confirms how crucial
the knowledge of other clients in FL can be for a partial-
knowledge client.

B. Effect of FedAvg on Full Knowledge Operators

We now focus on the impact of FL on full knowledge
operators, whose datasets do not miss samples from any of the
labels during the training phase. Fig. 6 shows the accuracy of
the three models for operators two (a) and three (b). Results
show that FedAvg performance is comparable to that of the
Local model. Results also show that full knowledge operators
can achieve high accuracy (in some cases, the highest) with
their local models and that they can also benefit from FedAvg
in some cases. For instance, in the case of L4, we can observe

(a)

(b)

Fig. 5: Confusion matrix for the scenario where PKO is not
having label two (a) and label five (b) in its train set.

a 3% improvement in accuracy in both clients compared to the
Local model.

In some cases, this means that FedAvg can allow both clients
to build a more robust and accurate model. Yet, the fact that
PKO misses knowledge of some of the labels might impact
the capability of FedAvg, causing the accuracy (including that
of client two and client three) to drop. Finally, we note that
full knowledge operators can either use FedAvg or rely on
their Local model. In the latter case, the participation of full
knowledge operators as a party in the FL settings can be due
to other factors (e.g., economical) rather than the improvement
of model performance.

VII. CONCLUSION

We designed an FL-based classification model using the
FedAvg algorithm and applied it to automate the identification
of six different failure causes in microwave networks. We
consider a scenario with three other operators, where one
operator (i.e., one “client” in FL terminology) only partially
understands the failure-cause throughout the training phase.
We assess the influence of knowledge sharing enabled by FL
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Fig. 6: Accuracy for clients two (a) and three (b)

on classification performance when a failure cause is unknown
to one operator throughout the training phase. All of the
models are trained using real-world data instances. Where
Deep Fading and Hardware Failures’ data points were lacking,
we saw a gain in overall accuracy for partial knowledge
operator of 3% and 10%, respectively, compared to the Local
model. The accuracy of hardware failure has grown since the
number of points in this class is high, which can benefit
complete knowledge customers and raise the accuracy of
partial knowledge clients. We also achieved a maximum of
72% for Hardware Failure. In future work, we plan to explore
federated transfer learning to obtain more consistent benefits
in accuracy.
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