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Abstract—The power density in modern Integrated Circuits
(ICs) is tremendous. For example, Multi-Processor Systems-
on-Chip (MPSoCs) nowadays undergo temperature swings of
40 degrees in 100 milliseconds or less, with rapidly emerging
and vanishing sub-millimeter hot spots. As such, not only a
simulation-based cooling assessment is vital, but one has to
simulate the on-chip thermal phenomena jointly with the heat
dissipation system — historically, a challenge. In recent years,
however, the idea of coupling traditional 3D chip simulators with
heat dissipation models written in Equation-Based Modelling
(EBM) languages has proven to be a game changer. EBM lan-
guages allow one to compose a model by assembling components
described in terms of Differential and Algebraic Equations (DAE)
and have the simulation code generated automatically. In this
paper, we take a tutorial viewpoint on the matter just sketched, to
put the reader in the position of exploiting the above technology.
We also present the first nucleus of a model library for cooling
systems, that we release as free software for the scientific and
engineering community.

I. INTRODUCTION

THE unprecedented power density of modern ICs, such
as MPSoCs, has created the need for a new generation

of heat dissipation systems. These include a plethora of
technologies, such as liquid and two-phase cooling, Peltier
elements, evaporative systems, and more. Also, the elements
just mentioned are often combined, composing multi-physics
cooling solutions. The relevance of the entailed problems can
be appreciated by looking for example at recent works in the
MPSoC domain, such as [1]–[4].

Since an incorrect behaviour of the cooling mechanism can
nowadays have a profound impact on the performance and
reliability of a computing system, simulation-based heat dissi-
pation assessments are mandatory. Given the fast dynamics of
the involved thermal phenomena [5], such assessments require
to simulate the said phenomena together with the cooling sys-
tem, as well as with the involved thermal/power/performance
policies aboard the chip, see e.g. [6], [7]. Because of this new
scenario, modelling and simulation of heat dissipation systems
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need a qualitative leap from several viewpoints, most notably
computation speed, accuracy, and model maintainability.

The order to fulfil is tall. The problems to address are
inherently cyber-physical, owing to the presence of hydraulics
and thermodynamics [8] (physical) jointly with cooling circuit
control algorithms and on-chip policies (cyber). Moreover, the
physical part is always multi-domain, and shows so wide a
variety of configurations to make a component-based approach
mandatory. Also, the dimension of the systems to simulate can
be large, as fine-grained spatial resolutions may be in order.
At the same time, finally, the level of modelling detail must
be scalable, to achieve the maximum computational efficiency
in each simulation study.

Indeed, traditional thermal simulation approaches are un-
suitable for such new IC operating scenarii. These approaches
are based on exploiting the peculiarities of dynamic thermal
modelling when applied to the case of ICs. As a result, they
do achieve fast simulation, but at the deliberate expense of
modelling generality: the faster a simulator conceived this way
runs, the narrower the set of cases it can represent is. Modern
alternatives such as Equation-Based Modelling (EBM) suffer
from the symmetric problem: they naturally lend themselves
to representing the heterogeneous physics encountered when
characterising the transient thermal behaviour of cooling sys-
tems but pay for this capability in terms of computational
efficiency.

Recently, we tried to join the best of the two approaches
just mentioned. We made the well-assessed 3D-ICE thermal
simulator capable of performing co-simulation with object-
oriented, equation-based modelling and simulation tools [9].
As such, IC designers can now build simulators in which 3D-
ICE takes care of the chip thermal model and of interfac-
ing with thermal policies, while the cooling system model
is assembled on a per-component basis, where components
can be described in an equation-based manner. We coupled
the above modelling approaches in 3D-ICE 3.0 through the
Modelica language [10], [11] and the Functional Mock-up
Interface (FMI) standard [12], [13]. However, the underlying
ideas are general with respect to the used tools.

Coming to the goal of this paper, the evidenced revolution in
the IC – thus MPSoC – cooling scenario also has a particularly
important cultural consequence. In the past, modelling knowl-
edge was practically needed only on the part of simulation
tool developers; for example, to use 3D-ICE, an MPSoC
designer just had to compile configuration files about the
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chip design, which requires no knowledge about heat model
equations and their solution procedure. Now, this is not fully
applicable anymore. Not only has the cooling physics become
very heterogeneous, but also individual cooling systems are
different from one another. This makes it impossible to provide
a “standard” model to tailor with configuration files and would
require the analyst to set up a completely new simulator,
solution procedure included, for every new case.

As doing so would be practically infeasible, the natural
way to go is not to provide standard “monolithic” cooling
simulators to configure, but instead to offer libraries of their
components (such as pumps, valves, Peltier elements and so
on) for the analysts to assemble their own cooling system
model for the case at hand. Quite intuitively – as will be shown
here as well – assembling a model this way cannot be done
with zero knowledge of the involved physics. However, the
required knowledge is enormously smaller than that needed for
building a new simulator from scratch, or even for modifying
the core of an existing one.

In particular, and fortunately, EBM makes it possible to
cope with the requirement just sketched with an amount of
modelling culture accessible to many, and most important,
with no need for the analyst to learn about the numerical
model solution; we here contribute to putting the reader in
the position of exploiting EBM for the above purpose.

II. SYNOPSIS

As said, modern IC cooling systems give rise to multi-
physics and inherently cyber-physical systems. To address
such systems, it is necessary to touch several subjects. Given
the wide audience we are addressing, each reader most
likely has a differently distributed knowledge of the complete
panorama. Achieving a consistent and streamlined presenta-
tion, suitable for all, is thus a challenging task. We provide
in this section a minimal synopsis of the paper, showing what
experts in one or another subject could quite safely skip, at
least on a first reading.
• Section III provides a minimum of general modelling

background, introducing in particular the idea of declar-
ative – as opposed to imperative – model, and sets the
required terminology. We think everybody should read
this, at least to prevent misunderstandings.

• Section IV introduces EBM by example, to make the
reader capable of mastering the basics enough to follow
the rest of the treatise; references are provided for a
further, more structured study. Experts of EBM can safely
skip this section.

• Section V comparatively discusses declarative and im-
perative modelling, thereby providing evidence that in
MPSoC cooling the two approaches need combining. Few
ideas here would look new to EBM-proficient people.
However, we consider it useful not to skip the section,
at least for the MPSoC-related considerations.

• Section VI reviews the encountered physical phenomena,
and how to describe them as differential equations. Ex-
perts of first-principle modelling – basically for thermo-
hydraulic systems – could in principle go directly to the

next section. Nevertheless, in this section we are also
introducing some domain-specific approximations, and
these may require one to use the section as reference for
the following ones.

• Section VII explains how to describe the thermal phe-
nomena that occur in MPSoC cooling systems using
EBM tools. It also discusses how to handle spatial
discretisations in an optimised way, a matter that could
be of interest also to those already proficient in EBM
modelling.

• Section VIII describes how Modelica models of cooling
systems, typically built with the said library, can be
connected to 3D-ICE — and potentially, to any exter-
nal simulation code that can be endowed with an FMI
interface compatible with the shown one.

• Section IX illustrates some examples of cooling circuits
built with the library, also covering the interfacing with
3D-ICE. We suggest the interested reader to employ the
presented models as a basis for his/her own first ones.

• Section X concludes the paper with some brief consider-
ations and sketches out future developments and research
activities.

We wish that the community will contribute to the develop-
ment process we started, and consequently that the Modelica
library we are presenting will foster the growth of an ecosys-
tem for sharing modelling experiences and results.

For this reason, as well as to allow the reader to reproduce
all of our experiments and to build on our models, we are
releasing the library – both for standalone use and connectable
to 3D-ICE with the provided interface – as free software, under
a 3-clause BSD licence. On the same front, though the library
should work with any Modelica tool, we developed and tested
it with the free and open source translator OpenModelica [14],
available at https://www.openmodelica.org, so that no barriers
exist to using and sharing.

The library and the associated material can be downloaded
at https://github.com/looms-polimi/computer cooling/1.

III. MODELLING BACKGROUND

The word “model” has a wide range of meanings, and more
must be added if we also embrace physical or cyber-physical
simulation, so we first need to set out terminology. In the field
of ICs and their heat dissipation systems as addressed herein,
for model we mean

a mathematical description of a physical or cyber-
physical system, aimed at simulating its behaviour
over time under prescribed initial conditions and
exogenous stimuli.

When one needs to stress that a model replicates the
transient behaviour and not only the steady-state conditions of
a system, that model is called dynamic. In this work all models
are dynamic, however, so hereinafter we drop the adjective.

1The library is continuously developed; we suggest the interested reader to
clone the repository via git and check/download updates with git pull.
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A. First-principle and data-based models

A model is first-principle when written based on the laws
of physics, plus possibly some generally validated empirical
correlations. It is conversely data-based when built by ob-
serving data recorded on the physical system, and suitably
correlating them over time so as to replicate the input-to-output
relationships in the modelled object without any knowledge
or hypothesis about the physics in between. The parameters
of a first-principle model almost always have a direct physical
meaning (such as masses, specific heats, exchange coefficients
and so forth) while those of data-based models hardly ever
admit any such interpretation. Between the two extrema just
mentioned there are many “mixed” modelling paradigms, for
completeness, but a taxonomy of these is not in the scope of
this work; a concise discussion is reported in [15].

When models are used to design some new physical equip-
ment there is obviously no recorded data yet. Hence, one has
to stick to the first-principle setting, as we dominantly do in
this work; we shall therefore drop the “first-principle” attribute
as well.

B. Declarative and imperative models

In our context as just sketched, a model starts out as a
set of dynamic balance equations – e.g., the derivative with
time of the mass in a volume equals at any instant the
sum of the flow rates through its boundary – and algebraic
physical correlations, like for example the Colebrook one
to relate the pressure drop across a duct and the flow rate
through it. Mathematically, the result is a DAE (Differential
and Algebraic Equations) system, in general nonlinear and in
some cases even discontinuous.

We call such a model declarative, as it holds all the infor-
mation needed to simulate the modelled system but cannot be
used as is to compute its behaviour — strictly speaking unless
the DAE system can be solved analytically, but for models of
engineering interest this is never the case.

A model that can be used for computing the system be-
haviour – i.e., with a slight simplification acceptable here, a
solution algorithm for the DAE system – is conversely said to
be imperative, as it can be unambiguously turned into a set of
computer instructions to run.

The Declarative-to-Imperative (D2I) translation of a model
is thus a necessary step for its simulation. The D2I transla-
tion is in general a complex and potentially critical process,
however, hence it plays a prominent role in the following
discussion.

C. Monolithic and modular declarative models

For simulating a system, its DAE model needs solving as
a whole. Fortunately, however, this does not mean that the
DAE must be written by the human as a single, comprehensive
system, that is, be monolithic.

On the contrary, to tame the complexity of most systems
it is far more convenient to build a (declarative) model by
assembling components, that in turn may be the composition
of other components in a hierarchical manner. We call models
built this way modular.

In a modular modelling context, components must have
interfaces so that the analyst can compose them together.

D. Causal and a-causal declarative models

We say that a model is causal when its interface with the
outside consists of inputs and outputs: knowing the inputs
(plus the internal states, as we deal only with dynamic models)
is sufficient to know the outputs.

It is important to avoid confusing “causal” with “impera-
tive”. For example, a continuous-time transfer function model
is causal – because it has an input and an output – but is still
declarative until the choice of a numeric integration method
turns it into an imperative procedure to compute state and
output. Causal models must be closed, i.e., they must have as
many equations as unknowns.

Conversely, a model is a-causal when its variables are not
inputs or outputs per se but assume either role when the model
is connected to others. For example, a resistor of resistance R
is ruled by Ohm’s law v = Ri; if it is connected in parallel
to a voltage generator then voltage v is prescribed (hence it
is the input) and current i is the output, while the opposite
occurs if the resistor is in series to a current generator. A-
causal models need not be closed: for example, the above
resistor model has two unknowns (v and i) and one equation.
In an a-causal model, the equations that specify its behaviour
independently of how that model is connected to any other (in
the resistor case, v−Ri = 0 for maximum clarity) are called
the constitutive equations.

The interface of an a-causal model is made of ports, not
inputs and outputs. Ports naturally lend themselves to represent
physical connection points, like the pins of a resistor. They
carry variables, that can be of two kinds: effort variables, that
make sense with respect to a reference or as the difference
between two points (such as voltage or temperature) and flow
variables, that conversely make sense through a surface (such
as current or heat rate). There is a third kind of variables
named stream, but this is better introduced later on.

When connected, ports generate connection equations.
These equations state that all their effort variables with the
same name (think of the voltages in a set of pins soldered
together) are equal, while all their flow variables with the
same name (think of the currents in the same set and with
uniform convention, e.g., positive if entering the pin) sum to
zero. Together with the constitutive equations, the connection
ones give rise to a closed compound model.

IV. MINIMAL INTRODUCTION TO EBM

This section is devoted to a nutshell-size and operational
introduction to EBM. We employ to this end a simple example,
with which we also start introducing the Modelica syntax. In
the example we refer to an electrical case for simplicity, as
such a system is most likely familiar for the reader. The goal
is first to introduce the core modelling concepts required in
this research. Of course, starting from the next section, we
will switch to thermal models.

Coming to the example, we want to model a simple cir-
cuit made of step voltage generators, conductors, capacitors
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and ground. Listing 1 defines the required components from
scratch, in declarative form. For completeness, we have to say
that all the components in Listing 1 are already available as
part of the Modelica Standard Library (MSL for short), that we
shall mention again later. For a complete and self-contained
explanation, however, at line 1 we here took from the MSL
just the definition of physical quantities – voltage, current and
so on – and their SI units of measurement (UoM).

1 import Modelica.SIunits.*; // type and UoM definitions
2 f
3 connector pin "Electric pin"
4 Voltage v "voltage";
5 flow Current i "current, positive if entering";
6 end pin;
7

8 partial model TwoPin "Generic two-pin component"
9 pin a,b;

10 Voltage v;
11 Current i;
12 equation
13 a.i+b.i = 0; // current balance
14 a.v-b.v = v; // voltage across
15 a.i = i; // current through (utiliser convention)
16 end TwoPin;
17

18 model Conductor "Ideal conductor"
19 extends TwoPin; // inherit base class
20 parameter Conductance G = 1e-3; // default value
21 equation
22 0 = i - G*v; // add Ohm’s law
23 end Conductor;
24

25 model Capacitor "Ideal capacitor"
26 extends TwoPin;
27 parameter Capacitance C = 1e-6;
28 parameter Voltage v_ini = 0; // initial voltage
29 equation
30 0 = i - C*der(v); // diff. equation
31 initial equation
32 0 = v - v_ini; // initialise
33 end Capacitor;
34

35 model StepVoltage "Ideal step voltage generator"
36 extends TwoPin;
37 parameter Voltage V0 = 0 "v before step";
38 parameter Voltage V1 = 10 "v after step";
39 parameter Time t_step = 0 "time of step";
40 equation
41 v = if time<t_step then V0 else V1;
42 end StepVoltage;
43

44 model Ground "Ideal ground"
45 pin a;
46 equation
47 a.v = 0;
48 end Ground;

Listing 1: EBM introductory example – components.

Note the presence of inheritance, typical of object-oriented
languages like Modelica: lines 8–16 define a generic compo-
nent with two pins, and then this is specialised to be con-
ductor, capacitor and voltage generator. By just inheriting (in
Modelica, extending) TwoPin and adding the convenient v
to i relationship, one can obtain resistor, inductor, diode, and
so forth. Note also (line 41) the availability of conditional
equations. Finally, line 22 could obviously be written as
i=G*v, and analogously for lines 30 and 32, but we wanted
to stress that component models contain equations and not
assignment statements.

The Modelica listing on the right in Figure 1 shows how
the defined components are used to build the simple circuit on
the left, also overriding some parameter defaults. One can of
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connection sets

1 model Circuit_01
2 StepVoltage S(t_step=0.1);
3 Capacitor C(C=1e-5);
4 Conductor G(G=1e-4);
5 Ground gnd;
6 equation
7 connect(S.a,G.a); // red
8 connect(G.b,C.a); // green
9 connect(S.b,gnd.a); // blue

10 connect(C.b,gnd.a); // blue
11 end Circuit_01;

Fig. 1: EBM introductory example – a complete model.

Entity Variables introduced Equations introduced
S 6 (a.v,a.i,b.v,b.i,v, i) 4 (1+3 from TwoPin) C

O
N
S
T

G 6 (a.v,a.i,b.v,b.i,v, i) 4 (1+3 from TwoPin)
C 6 (a.v,a.i,b.v,b.i,v, i) 4 (1+3 from TwoPin)
gnd 2 (a.v,a.i) 1
Running total 20 13
red set none 2 C

O
N
N

green set none 2
blue set none 3
Total 20 20

TABLE I: EBM introductory example – variables and equa-
tions (CONSTitutive and CONNection).

course insert more occurrences of the same component, each
with its own parameter values. The connect statements at
lines 7–10 join connectors (pins) into three connection sets.
As said, a set of n ≥ 2 connectors generates n equations per
effort variable to set all its values equal, and one per flow
variable to set the sum of its values to zero. For example, the
blue connection set (of 3 pins) generates

S.b.v = gnd.a.v,
C.b.v = gnd.a.v,

S.b.i+C.b.i+gnd.a.i = 0.
(1)

An open pin would be treated as a connection set with n= 1,
resulting in the one equation i = 0 without any inconsistency.

The overall equations/variables balance for the model of
Figure 1 is given in Table I. As can be seen, the individual
component models are not closed, while thanks to the connec-
tion equations the compound one is.

Though we have just scratched the surface of EBM, and
Modelica in particular, we can observe that constitutive equa-
tions – besides being in declarative form – do not depend on
connections, while connection equations do not depend on the
behaviour of the connected models. This allows us to point
out a few relevant facts for the following discussion.
• There is a clear interface/behaviour separation, hence

models are interchangeable as long as the interface (i.e.,
the connector structure) is preserved. This is particularly
useful when the detail of a model (or part of a model)
needs tailoring for the simulation study to conduct.

• Viewed differently, the separation is between internal
behaviour and boundary conditions. A model is written
independently of how it will be connected to others.
Together with the declarative approach, this makes mod-
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els resemble very closely the way they appear, e.g., as
equations in a textbook.

V. DECLARATIVE AND IMPERATIVE PROS/CONS

In Section III-B we anticipated the importance of the D2I
translation process. We now revisit the matter to evidence pros
and cons of declarative and imperative modelling, coming at
the end of this section to set the focus on ICs and their cooling
systems. To do so, we need to introduce some details on how
declarative models are translated into imperative ones by an
EBM language automated translator — or how a modeler
would have to translate models by hand if not using EBM
tools. To this end we consider and discuss a couple of D2I
translations, here too referring to simple purposed cases.

A. D2I – Example 1

In this example we consider a one-dimensional heat transfer
problem in a solid, namely a rod heated at one side by a
prescribed power Pp(t) – t is time – and connected to a
prescribed temperature Tp(t) on the other side, the lateral
surface being adiabatic. We denote by S the rod uniform
section, by L its length, and by ρ , c, λ its constant density,
specific heat and thermal conductivity.

. . .

. . .

Fig. 2: D2I example 1 – the modelled system.

Approximating the continuous rod with a sequence of vol-
ume lumps, each one with its own temperature and exchanging
heat with the previous and the following one, we readily get
to the declarative model schematised in Figure 2 and written
as the system of differential equations


CṪ1(t) = Pp(t)−G(T1(t)−T2(t))
CṪi(t) = G(Ti−1(t)−2Ti(t)+Ti+1(t)) i = 2 . . .N−1

CṪN(t) = G
(
TN−1(t)−3TN(t)+2Tp(t)

) (2)

where the dot indicates derivative with time, N is the number
of volumes (or lumps) into which the rod is divided, Ti is the
temperature (assumed spatially uniform) of the i-th lump, and

C = ρcSL/N, G = λSN/L (3)

are respectively the heat capacity of one lump and the centre-
to-centre inter-lump thermal conductance. Since (2) is linear
in Ti, Pp and Tp, we can write it in the compact matrix form

Ṫ (t) = AT (t)+Bu(t) (4)

where

T (t) =

T1(t)
...

TN(t)

 , u(t) =
[

Pp(t)
Tp(t)

]
(5)

and

A =
G
C



−1 1 0 · · · · · · 0
1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1
0 · · · · · · 0 1 −3


, B =

1
C


1 0
0 0
...

...
0 0
0 2G

 .
(6)

A possible way to translate (4) into imperative code (there
are many but in this example we stick to one for simplicity)
is to decide a time step h for computing the evolution of the
state variables (those under time derivative) and replace all
time derivatives with incremental ratios over h. We can do
this explicitly or implicitly, that is, assuming either of the two
approximations

x(kh)− x((k−1)h)
h

≈

{
ẋ((k−1)h) explicit
ẋ(kh) implicit

(7)

whatever x is, where the integer k counts the time steps at
which the solution is computed. Writing for compactness x(k)
to mean x(kh), again whatever x is, the two approximations
in (7) respectively transform (4) into

T (k) = (I +hA)T (k−1)+hBu(k) expl.
T (k) = (I−hA)−1T (k−1)+(I−hA)−1hBu(k) impl.

(8)
Based on this, a possible imperative model is provided by

Algorithm 1. Observe that in this example it is reasonably
easy to carry out the translation once and leave the task of
specialising the model for a specific rod to a configuration
file with physical parameters and the explicit/implicit choice.
Analogously, initial conditions for a particular run can reside
in the configuration file as well, and the inputs u(k) can be
acquired either from a file or by running some other simulation
algorithm synchronously.

Summing up, as long as the problem to study concerns a rod
under the stated conditions – we shall call this the coverage
of the dynamic model we just wrote – the analyst can use that
model by (i) compiling configuration, initialisation and possi-
bly input files, and if needed (ii) writing another algorithm to
suitably govern some inputs (for example, modulate Tp so that
none of the Ti ever exceeds a threshold in the face of a time-
varying Pp). Said otherwise, the analyst needs no knowledge
of the internals of the model, nor of the underlying principles.
Also, and most relevant for the following discussion, the
introduced matrix compact form makes the D2I translation
just parametric in the number of lumps: the matrices change
in size, but their form is still the same.

B. D2I – Example 2

We now consider two resistors R1,2 in parallel subjected
to a prescribed voltage v(t), that dissipate heat by Joule
effect toward an air duct where R2 comes downstream, hence
receiving air already heated by R1. The modelled system is
illustrated in Figure 3.

We denote by Ct1,2 the thermal capacities of the two resis-
tors, by ca the specific heat of air, and by Gt1,2 the resistors-to-
air thermal conductances; for simplicity we assume all these
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Algorithm 1: D2I example 1 – imperative model.

/* Problem acquisition & setup */
1 read L, S, N, ρ , c, λ , h, explicit from config file;
2 read initial values for Ti from init file;
3 compute matrices A and B as per (6);
4 if explicit then
5 Adiscrete time← I +hA;
6 Bdiscrete time← hB;
7 else
8 Adiscrete time← (I−hA)−1;
9 Bdiscrete time← (I−hA)−1hB;

10 end
/* Initialisation */

11 k← 0;
12 Tprevious← initial values for Ti;
/* Simulation */

13 while simulation not finished do
14 t← kh;
15 acquire or compute u(k);
16 T ← Adiscrete timeTprevious +Bdiscrete timeu(k);
17 write t to output file as t(k);
18 write T to output file as T (k);
19 Tprevious← T ;
20 k← k+1;
21 end

Fig. 3: D2I example 2 – the modelled system.

physical parameters constant, but we account for resistance
variations due to temperature, i.e., we write

R1,2(T1,2) = R01,2
(
1+α1,2(T1,2−T01,2)

)
(9)

where T1,2 are the resistor temperatures, α1,2 their temperature
coefficients, and R01,2 the resistance values at the reference
temperatures T01,2. We neglect heat storage in the air, assume
the duct walls to be adiabatic, and indicate with wa(t) and
Tai(t) the air mass flow rate and inlet temperature, respectively.
This said, we can express the time derivatives of T1 and T2
and then obtain the imperative model by approximating these
with incremental ratios as we did above.

For this example, however, we do not really need to perform
the D2I translation. It is enough to look at the expressions of
Ṫ1(t) and Ṫ2(t), that respectively read

Ṫ1(t) =
1

Ct1

(
v2(t)

R01
(
1+α1(T1(t)−T01)

) +Gt1

(
Tai(t)−T1(t)

+
v2(t)

cawa(t)
(
R01
(
1+α1(T1(t)−T01)

)))) (10)

and

Ṫ2(t) =
1

Ct2

(
v2(t)

R02
(
1+α2(T2(t)−T02)

) +Gt2

(
Tai(t)−T2(t)

+
v2(t)

cawa(t)
(
R01
(
1+α1(T1(t)−T01)

))
+

v2(t)
cawa(t)

(
R02
(
1+α2(T2(t)−T02)

)))), (11)

to make two immediate considerations. First, the obtained
expressions are nonlinear, hence the path to the imperative
code will be inherently more complicated and error-prone
than it was in Example 1 above. Second, and again most
relevant, changing the number of cascaded “resistor in duct”
elements changes the form of the equations, not only the size
of some matrix: one just needs to observe (10) and (11) to
conclude that the derivative of each temperature depends on
that temperature and on all the upstream ones in the air duct.
Also, the derivative expressions would change significantly
should one for example insert a resistance in the electric
supply line between R1 and R2 instead of assuming them
perfectly in parallel or place them side by side (instead of
downstream one another) in the air duct. Summing up, then,
one could still get to an algorithm that can be used by just
compiling configuration files, but this would entail accepting a
coverage that is narrow indeed. If the analyst has to experiment
with a variety of solutions trespassing the said coverage,
the D2I translation must be re-done each time. This can be
effort-heavy, and apparently requires knowledge of both the
modelling principles to apply, and how to solve the obtained
equations numerically.

C. Examples 1 and 2 the declarative way

1) Example 1: As shown in Listing 2, making the rod a
Modelica component and using it to assemble an example
model is quite straightforward once the HP (heat port) connec-
tor is defined; notice the similarity to the electric pin. Notice
also the natural separation between the models of the rod and
of the boundary conditions, incidentally.

2) Example 2: Besides nonlinearity, the presence of a
moving fluid gives rise in example 2 to the transport of thermal
properties with the fluid itself. This requires some equations
to be conditional with respect to the direction (i.e., the sign)
of flow rates. Most typically, in an energy equation, the flow
rate through a volume boundary port must be multiplied by the
enthalpy inside the volume if the fluid is exiting, and by the
mix of enthalpies appearing at the port outside if the fluid is
entering. The management of this complexity source is offered
in Modelica by declaring transported variables as stream in
a connector with one flow variable. Then, a model using that
connector has to assign to each stream variable the value it
takes inside the component, and when that variable appears
in a balance equation, to apply to it the actualStream
operator; the tool will generate all the required conditional
equations transparently.

This capability is exploited in Listing 3, which also employs
some of the electric components defined in Listing 1. Thanks
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1 import Modelica.SIunits.*; // type and UoM definitions
2

3 connector HP "Heat port"
4 Temperature T "temperature";
5 flow Power Q_flow "thermal power, + if entering";
6 end HP;
7

8 model LumpedRod "1D lumped solid rod"
9 HP a,b;

10 parameter Length L = 0.1;
11 parameter Area S = 1e-4;
12 parameter Density ro = 7600;
13 parameter SpecificHeatCapacity c = 450;
14 parameter ThermalConductivity lambda = 45;
15 parameter Integer lumps = 10;
16 parameter Temperature T_ini = 293.15;
17 Temperature T[lumps](each start=T_ini);
18 protected
19 final parameter HeatCapacity C=ro*c*S*L/lumps;
20 final parameter ThermalConductivity G=lambda*S*lumps/L;
21 equation
22 C*der(T[1]) = a.Q_flow-G*(T[1]-T[2]);
23 a.T = T[1]+2*G*a.Q_flow;
24 for i in 2:lumps-1 loop
25 C*der(T[i]) = G*(T[i-1]-2*T[i]+T[i+1]);
26 end for;
27 C*der(T[lumps]) = G*(T[lumps-1]-T[lumps])+b.Q_flow;
28 b.T = T[lumps]+2*G*b.Q_flow;
29 end LumpedRod;
30

31 model PrescribedT
32 HP a;
33 parameter Temperature T=293.15;
34 equation
35 a.T = T;
36 end PrescribedT;
37

38 model PrescribedQ
39 HP a;
40 parameter Power Qout=1;
41 equation
42 a.Q_flow = -Qout; //exiting must be negative
43 end PrescribedQ;
44

45 model Example
46 PrescribedQ PQ(Qout=10);
47 LumpedRod rod(lumps=20);
48 PrescribedT PT;
49 equation
50 connect(PQ.a,rod.a);
51 connect(rod.b,PT.a);
52 end Example;

Listing 2: D2I example 1, the declarative way.

to the manipulation capability already mentioned as a pecu-
liarity of EBM tools, the Example model shows how simple
and fast it is to mode a cascade of an arbitrary number of
“resistor in duct” elements — apparently, an almost prohibitive
(or at least much more time-consuming) task to carry out in
imperative form directly.

D. Abstracting with an eye on IC cooling

We start from some general facts, that the examples above
should have clarified. First, as EBM tools allow to write
declarative models, the analyst is relieved from the D2I burden.
This burden can be high, and in general must be re-incurred
every time the structure of the model is modified.

On the other hand, if one accepts to do the D2I translation
manually, most often the obtained imperative code will be
significantly more efficient than that generated by a declarative
model translated by an EBM tool. We do not explain the
reasons here as this would be quite long and inessential for
our purposes; the interested reader can refer, e.g., to [16].

1 import Modelica.SIunits.*; // type and UoM definitions
2

3 connector pwh "port for fluid flow"
4 Pressure p "pressure";
5 flow MassFlowRate w "mass flow";
6 stream SpecificEnthalpy h "transported with w";
7 end pwh;
8

9 model ResistorInDuct
10 pwh air_a,air_b;
11 pin a,b;
12 parameter SpecificHeatCapacity ca = 1020;
13 parameter Resistance R0 = 1;
14 parameter Real alpha = 0.005;
15 parameter Temperature T0 = 293.15;
16 parameter HeatCapacity Ct = 10;
17 parameter ThermalConductance Gt = 5;
18 parameter Temperature T_ini = 293.15;
19 Temperature T(start=T_ini);
20 Temperature Ta;
21 Resistance R;
22 Power Pe,P2a;
23 equation
24 air_a.p - air_b.p = 0; // no pressure drop
25 air_a.w + air_b.w = 0; // no mass storage
26 // air energy balance (static, no storage)
27 0 = air_a.w*actualStream(air_a.h)
28 +air_b.w*actualStream(air_b.h)
29 +P2a;
30 P2a = Gt*(T-Ta); // power to air
31 air_a.h = ca*Ta; // stream management
32 air_b.h = ca*Ta;
33 // electric equations
34 a.i+b.i = 0;
35 a.v-b.v = R*a.i;
36 R = R0*(1+alpha*(T-T0));
37 Pe = (a.v-b.v)*a.i;
38 // heating resistor energy balance
39 Ct*der(T) = Pe-P2a;
40 end ResistorInDuct;
41

42 model PrescribedpaTa "prescribed air p and T"
43 pwh air_a;
44 parameter Pressure p = 101325;
45 parameter Temperature T = 293.15;
46 parameter SpecificHeatCapacity c = 1020;
47 equation
48 air_a.p = p;
49 air_a.h = c*T;
50 end PrescribedpaTa;
51

52 model PrescribedwaTa "prescribed air w and T"
53 pwh air_a;
54 parameter MassFlowRate w = 1e-5;
55 parameter Temperature T = 293.15;
56 parameter SpecificHeatCapacity c = 1020;
57 equation
58 air_a.w = -w;
59 air_a.h = c*T;
60 end PrescribedwaTa;
61

62 model Example
63 parameter Integer n=5 "cascaded duct elements";
64 PrescribedwaTa src;
65 ResistorInDuct rids[n];
66 PrescribedpaTa snk;
67 StepVoltage S;
68 Ground gnd;
69 equation
70 connect(src.air_a,rids[1].air_a);
71 for i in 2:n loop // ducts cascaded to one another
72 connect(rids[i-1].air_b,rids[i].air_a);
73 end for;
74 connect(rids[n].air_b,snk.air_a);
75 for i in 1:n loop // all resistors in parallel
76 connect(rids[i].a,S.a);
77 connect(rids[i].b,gnd.a);
78 end for;
79 connect(S.b,gnd.a);
80 end Example;

Listing 3: D2I example 2, the declarative way.
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Now let us focus on ICs, and reconsider Examples 1 and
2 above. Example 1 is in fact a toy version of a 3D chip
thermal model (1D geometry instead of 3D, only one heat
source, constant material properties, and so on). Building
on Algorithm 1, it is possible to create an extremely fast
imperative model, realistic enough for a real chip, and that can
be adapted to any case at hand by just compiling configuration
files; the D2I translation can still be costly but is needed only
once. With further additions not relevant at this point, such a
configurable model is exactly what 3D-ICE and similar tools
provide.

Example 2 is an equally toy version of an air cooling
network inside a rack (only one stream, no pressure drops
described, no air humidity, and so on). In such a context, for
the imperative approach it would be evidently prohibitive to
follow the variety of possible cooling network (thus model)
topologies — let alone, for example, extensions to fluid phase
changes, electro-mechanical impelling, or multiple interacting
fluid circuits. Here, as the example should have proven, there
is simply no “writing a general code and then specialising
it with configuration files”; the D2I translation can be even
more costly than in Example 1, owing to nonlinearities, and
is needed for every case.

The so outlined scenario explains why EBM – that con-
versely can manage heterogeneous model complexity by suit-
ably abstracting modular declarative components – needs
bringing into play for modelling modern IC cooling. Of course,
doing so requires a bit more consciousness of modelling
principles than just compiling configuration files, but first this
is inevitable given the variety of cases to address, and then –
as the burden of manual D2I translation is avoided – it can
be made accessible to many, as we are going to discuss in the
following.

VI. MPSOC/IC COOLING – MODELLING PRINCIPLES

In this section we define and discuss the principles on
which a modelling solution for the cooling of modern ICs
– like MPSoCs – must be grounded, and how to apply those
principles to the addressed domain. The reader interested in
more details about the used modelling methodologies can
refer, e.g., to [17]–[19] or many analogous works. In the
following we just report a few references relative to the
considered phenomena and their dynamic description.

A. Substances

Any first-principle equation has to do with properties of
materials. In MPSoC cooling these include the following.
• Solids, whose thermodynamic state in the conditions of

interest for us is fully described by their temperature T ,
and that are physically characterised by a density ρ , a
specific heat c and a thermal conductivity λ that one can
assume constant in the said conditions [20].

• Single-phase (subcooled) liquids, whose state is described
by their pressure p and specific enthalpy h, and whose
physical properties (density, specific heat, thermal con-
ductivity) can be assumed constant in any case of inter-
est [21].

• Gases that behave (almost) ideally, i.e., whose state is
described by their pressure p and temperature T (or
equivalently, specific enthalpy h) and whose behaviour
is ruled by

p
ρ
= R∗T, e = cvT, h = e+

p
ρ
, (12)

where ρ is density, e is internal energy, and R∗, cv are
respectively the considered gas constant and its constant-
volume specific heat [21].

• Phase-transitioning species such as refrigerating fluids,
not treated in this tutorial owing to complexity and space
limits. For these the same modelling considerations given
above apply, however, provided relationships are available
to compute their properties based on pressure p and
specific enthalpy h. Notable examples are the water-steam
tables, included in the MSL, or the ExternalMedia
package [22] to interface Modelica with external fluid
property calculation software Like, e.g., REFPROP [23]
and CoolProp [24].

• Fluid mixtures, most notably moist air, not treated herein
either. These are handled in the same way above once
analogous relationships are available (such as Mollier-like
ones, to compute moist air properties based on pressure
p, temperature T and absolute humidity X).

We now proceed to write the most important equations for
the phenomena of interest: the hypotheses just made apply
throughout, hence are not repeated for brevity.

B. Mass storage

Dynamic mass balances can refer to closed volumes filled
with fluid (e.g., a pipe), to closed ones not completely filled
(e.g., a gas pressuriser for a liquid circuit), or to open ones
(e.g., a vented tank). Here we only treat the completely filled
case with liquid and gas, and the vented case with liquid [25].

In the filled liquid case the equation is trivial, as the
contained mass is constant. Denoting by wi the generic mass
flow rate through the i-th out of np volume port (e.g., the
flanges of a pipe or of a header) the equation is therefore

np

∑
i=1

wi = 0. (13)

while pressure is determined by some of the other components
of which the complete model is made.

In the filled gas case, denoting by V the volume, the con-
tained mass is ρV , hence (recall that the dot means derivative
with time) the equation reads

V ρ̇ =
np

∑
i=1

wi, (14)

that recalling (12) becomes

V
R∗

d
dt

( p
T

)
=

np

∑
i=1

wi. (15)

In (15) T can be considered constant or come from some
thermal equation, see Section VI-E.
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In the vented liquid case, the contained mass is represented
by a level ℓ, so that denoting by A the base area of the volume
(assumed cylindrical for simplicity) we get

M = ρAℓ (16)

whence

ρAℓ̇=
np

∑
i=1

wi (17)

while pressure depends on level by the Stevinus law

p = ρgℓ, (18)

g being the gravity acceleration. Note that p in (18) is relative
(or gage) pressure: if absolute pressure is needed one has to
add the atmospheric one.

C. Mass transfer

The transfer of fluid mass can happen spontaneously owing
to pressure differences like in pipes and valves, or be caused
by some impelling mechanism like in pumps and fans [26]. In
both cases the pressure drop ∆p across the element is related
to the mass flow rate w through it by an equation grounded in
the conservation of momentum. In any situation relevant to us
it is acceptable to neglect the effect of the fluid inertia, which
allows writing algebraic equations in the form

∆p = ∆p0(θ ,u)+ f (w,θ ,u) (19)

where ∆p0 is a flow-rate-independent term due to external
forces like gravity and/or the zero-flow-rate pressure difference
in active elements like pumps, while function f accounts
for friction losses and can take various forms (owing e.g. to
laminar or turbulent flow) with f (0,θ , ·)= 0; vector θ contains
the physical parameters of interest, relative to the fluid, to the
element in which the motion occurs (e.g., the flow coefficient
of a valve or the static head of a pump) and sometimes to the
installation conditions (e.g., the inlet-outlet height difference
for a pipe). Input u may be present to represent a command
when one exists (e.g., valve opening or pump speed set point).

D. Energy transfer with mass

A means to transport energy, of paramount importance in
cooling, is by transporting mass [26]. When a mass stream
enters or exits a volume, there are two effects: one is the energy
contribution owing to the internal energy e of the entering or
exiting fluid, the other is the (signed) mechanical work exerted
by the stream on the fluid in the volume. This work can alter
the pressure in the volume, thus be viewed in differential form
as pdv= pd(1/ρ) – where v= 1/ρ is specific volume – which
is often termed “pressure work”, or maintain the fluid flow
across the volume, thus be viewed as d p/ρ which is named
“impelling work”. Summing the two differentials we obtain
d(pv) = d(p/ρ), which explains why enthalpy is the natural
thermodynamic variable to associate with energy transfers that
occur by mass transfer.

Denoting by w the mass flow rate through a port and by h
the enthalpy on the side of the port from which the fluid is
coming, the energy rate at the port is therefore wh (with the
sign dictated by the fluid direction as just noted).

E. Energy storage

Dynamic energy balances can refer to the same cases we
classified mass balances with, and take the form

d
dt

(Me) =
np

∑
i=1

wihi +
mp

∑
j=1

Qi, (20)

where M is the mass in the volume, e its specific energy, wi
and hi are the exchanged flow rate and specific enthalpy at
the i-th port (out of np) where energy is given or taken by
transport of mass, see Section VI-D, and Qi the exchanged
power at the j-th port (out of mp) where energy is given or
taken without mass transport, see Sections VI-F and VI-G.

For solid elements M is ρV – hence it is constant – and e
is cT , which makes temperature the natural state variable.

For the filled liquid volume case M is constant, but for the
reasons in Section VI-D the natural state variable is h, hence
e is expressed as h− p/ρ (although the p/ρ term is largely
dominated by e, that is cT , in any case relevant for us).

The situation is analogous for the filled (ideal) gas volume
case, expressing M as ρV where ρ , p, e, h and T are
related by (12). The energy balance can still be written in
the form (20), however, thanks to the symbolic manipulation
capabilities of Modelica tools.

For the open liquid volume case, finally, M is not constant,
see (16), but here too (and for the same reason above) the
balance can be written in the form (20), with e = h− p/ρ .

F. Spontaneous heat exchange

Heat flows spontaneously by conduction, convection and
radiation (which we do not treat in this work owing to its low
relevance in MPSoC cooling).

In our context, conduction is relevant only within solids
because fluids move around, and energy transfers with mass
make conduction within them negligible [27]. Also, in MPSoC
cooling circuits the only solid elements are fluid containment
ones, and for them conduction is only relevant in the direction
orthogonal to the surface in contact with the fluid. The reason
is again that fluids move around: considering for example a
pipe wall as a sequence of annular elements, the heat trans-
ported from an element to the downstream one by the moving
fluid by convection largely dominates the heat transferred by
the former to the latter through solid-to-solid contact.

As a result, in cooling circuits we only have to do with
one-dimensional conduction between two surfaces, in planar or
cylindrical geometry. For the planar case we can neglect border
effects and compute the thermal conductance Gt between two
identical surfaces of area A, separated by a layer of thickness
s of a material with thermal conductivity λ as

Gt = λ
A
s

(21)

while for the cylindrical case, considering an annulus of length
L, inner radius ri and outer radius re, we get

Gt = λ
2πL

log(re/ri)
. (22)
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In both cases, denoting by T1 and T2 the two surface
temperatures and by Q12 the conductive heat rate from surface
1 to surface 2, we have

Q12 = Gt(T1−T2). (23)

Convection is a more complex phenomenon, as it involves
the motion of a fluid in contact with a solid. In particular, we
need to distinguish laminar and turbulent flow. In a nutshell
and thinking of a pipe, laminar flow is when fluid particles
proceed aligned in the direction of the pipe axis, pushed by
pressure difference and subject to mutual friction with the
adjacent ones (or the wall). This happens at low speeds and
results in a parabolic speed profile, with the fastest particles
at the pipe centre. At higher speeds, the order of laminar flow
breaks. Particles still move on average along the tube axis, but
instead of proceeding pretty much like in parallel lanes they
also continuously mix up with the neighbouring ones, resulting
in an almost flat speed profile. As turbulence apparently helps
giving or taking heat, owing to fast fluid particle turnover in
the vicinity of the wall, turbulent convection is significantly
more efficient than laminar one.

We thus compute the fluid to solid convective heat rate Q f s
referring to a bulk (average) fluid temperature Tf and a surface
one Ts for the contacting solid, in the form

Q f s = γA(Tf −Ts) (24)

where A is the contact surface and γ the convective heat
transfer coefficient, computed from the fluid properties and
motion conditions with correlations like the well-established
Dittus-Bölter one. Notice that contrary to the conduction case
γ is not constant; it depends on other variables in the system,
most typically fluid speed and thus flow rate, making the
phenomenon nonlinear.

G. Work-driven heat exchange

Heat pumps, which include Peltier elements, are machines
that employ mechanical or electrical power to seemingly
violate the second principle of thermodynamics by transferring
heat from the colder to the hotter.

For simulating and evaluating a cooling system there is
no need to represent the internal physics of such devices:
it is more practical to describe them based on the nominal
external characteristics provided by manufacturers. These are
an efficiency and a Coefficient of Performance (COP), either
constant or – more frequently and realistically – depending on
the operating conditions.

Denoting by Qc the heat rate taken from the cold side of
the pump, by Qh the heat rate released to the hot side and by
Wp the net power to the pump, we define the COP as the ratio
of the desired effect to the spent effort, i.e.

COPheat =
Qc

Wp
, COPcool =

Qh

Wp
, (25)

depending on whether the pump is devoted to heating or
cooling; notice that COPheat = COPcool + 1, since obviously
Qh = Qc +Wp. In our context we are always cooling, hence
we drop the subscript and define COP = Qc/Wp.

The above established, we can describe a heat pump as

Qh = Qc +Wp
Qc = COP ·Wp
Wp = ηW

COP = fCOP(Th,Tc)

(26)

where Tc and Th are the cold and hot side temperatures, and
fCOP a function – most frequently the interpolation of some
measured points – to obtain the COP; η , in general reasonably
constant, accounts for losses that cause the absorbed power
W to be greater than Wp. The COP is limited by the Carnot
efficiency, that expressing temperatures in Kelvin degrees for
the cooling case reads

COPCarnot =
Tc

Th−Tc
. (27)

Real heat pumps rarely achieve a COP above 40–50% of the
Carnot one (a useful information for first-cut sizing). More-
over, notice that the COP – not only the Carnot one, clearly –
diminishes as the pump temperature difference ∆T = Th−Tc
increases. This brings into play the heat exchangers connecting
the pump to the cold and hot environments, as summarised in
Figure 4.

spontaneous heat flow

spontaneous heat flow

heat flow

forced

by pump
 useful

effect

pump

Fig. 4: Temperatures and flows in a heat pump.

Heat needs to first flow spontaneously – by conduction or
convection – from the cold environment (the one to cool) at
temperature Tce to the cold side of the pump at Tc. Then,
together with the absorbed energy, this heat will be transported
to the hot side at temperature Th, from which it will flow –
here too spontaneously – to the hot environment at The. The
useful cooling effect obviously occurs from Tce to The, but if
the thermal conductance relative to spontaneous flows is not
large enough, this effect can result in a pump ∆T significantly
higher than the effect itself, to the detriment of the COP.

VII. A APPLYING THE PRESENTED CONCEPTS USING EBM

In this section we show how to turn the principles and
equations described in Section VI into functional EBM models
for cooling system components. In this respect, it must be
noted that modelling can be applied either to gain insight into
existing systems, or to design entirely new ones. In this work,
compared to our previous papers such as [9], we focus on
presenting a modelling approach – also in the form of a support
library – that can be applied to either case. Consequently,
our library is modularised in generic components, that can
be validated individually and then reused to compose models
for arbitrary cooling systems.
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A. Defining connectors
We already defined some connectors for the examples in

Section V; we here re-collect the definitions for the reader’s
convenience, and add a few comments. From now on, we
assume Modelica.SIunits.* imported in all listings.

1 /* For compatibility with other libraries we use the
2 heat port defined in the MSL, namely in package
3 Modelica.Thermal.HeatTransfer.Interfaces,
4 where temperature is T and heat rate Q_flow
5 */
6

7 connector pwh "port for fluid flow"
8 Pressure p "pressure";
9 flow MassFlowRate w "mass flow";

10 stream SpecificEnthalpy h "transported with w";
11 end pwh;
12

13 connector vHP "vector heat port"
14 parameter Integer n=3 "default size";
15 Temperature T[n] "T vector";
16 flow Power Q_flow[n] "Q_flow vector";
17 end vHP;
18

19 connector mHP "matrix heat port"
20 parameter Integer nr=3 "default rows";
21 parameter Integer nc=3 "default columns";
22 Temperature T[nr,nc] "T matrix";
23 flow Power Q_flow[nr,nc] "Q_flow matrix";
24 end vHP;

Listing 4: Connectors useful for modeling cooling circuits.

Vector and matrix heat ports serve when spatially distributed
phenomena come into play, for example to represent the
temperature profile along an exchanging duct, or the power
distribution over a surface; this matter is addressed in Sec-
tion VII-C.

B. Storage and transfer components
In this section, tightly related to the following Sec-

tion VII-C, we introduce an important distinction. Although
the storage and transfer of mass and energy take place contex-
tually in both time and space, for an effective modularisation
of models it is convenient to distinguish “storage” and “trans-
fer” components and to give them a standardised structure, as
depicted in Figure 5 and explained below.

1) Storage components: these contain dynamic balances
of mass and energy, and correspond to a control volume in
which the properties of the contained fluid are considered
spatially uniform. Denoting by θ a vector containing the
required physical parameters such as geometric dimensions
and material constants, these components have the structure
reported below, and along which the reader can build his/her
new components.
• At lest one pwh connector, see Section VII-A; we denote

by n the number of such connectors.
• If the containment boundary is not adiabatic, at least one

heat port (scalar version of vHP in Section VII-A, with
one T and one Q f low); we denote by m the number of
such connectors.

• Two equations to compute the contained mass M and the
contained energy E, most frequently in the form

M = ρ(p,h)V

E = M
(

h− p
ρ(p,h)

) (28)

 ENERGY TRANSFER W/O MASS

  

 

 MASS AND ENERGY TRANSFER

  

  

  

 

           MASS AND ENERGY STORAGE

          ,  ,


          ,


          ,

            ,

            .


connect:
 - pressures are equal
 - flows sum to zero
 - enthalpy is transported with flow

connect:
 - temperatures are equal
 - heat rates sum to zero 


      ENERGY STORAGE

      


      

      

Fig. 5: Storage and transfer components and interconnections
thereof.

where V is the volume and the other symbols have the
known meaning; ρ(p,h) represents the dependence of
density on pressure and specific enthalpy as dictated by
the model of the contained substance (in our context a
single species).

• Two equations to compute the time derivatives of M and
E, that is,

Ṁ = ∑
n
i=1 wi

Ė = ∑
n
i=1 wi actualStream(hi)+∑

m
j=1 Q f low, j

(29)

where wi is the flow rate at the i-th pwh connector and
Q f low, j the heat rate at the j-th heat port; the Modelica
clause actualStream takes the correct enthalpy (that
of the contained flow or that presented from outside the
connector) depending on the sign of each wi.

• Equations to present at connectors the thermodynamic
state (p,h) of the contained fluid, i.e.,

pi = p i = 1 . . .n
hi = h i = 1 . . .n
Tj = T (p,h) j = 1 . . .m

(30)

Listing 5 illustrates (omitting unnecessary Modelica lines)
how the above applies to describing a volume containing an
ideal gas, with two pwh connectors pwh_a, pwh_b and one
heat port hp.

C. Managing spatial discretisation

In the context we address, one often encounters variables
with a spatial distribution: think for example of the pressure
and temperature profiles along a pipe in a heat exchanger, or
the temperature field in a silicon die. Such variables depend
on both time and space, hence in the most general case on
four independent coordinates, one temporal and three spatial.
Moreover, their behaviour depends on transport phenomena,
i.e., their value at a certain point in space is influenced by
values at infinitely close other points. As a result, when
spatially distributed variables come into play, models contain
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1 ...
2 parameter Volume V;
3 parameter MolarMass MM;
4 parameter SpecificHeatCapacity cv;
5 parameter Pressure pstart;
6 parameter Temperature Tstart;
7 Pressure p(start=pstart);
8 Temperature T(start=Tstart);
9 Density d;

10 SpecificInternalEnergy e;
11 SpecificEnthalpy h;
12 Mass M;
13 Energy E;
14 protected
15 final parameter SpecificHeatCapacity
16 Rgas = Modelica.Constants.R/MM;
17 final parameter SpecificHeatCapacity
18 cp = cv+Rgas;
19 equation
20 p/d = Rgas*T;
21 e = cv*T;
22 h = cp*T;
23 M = V*d;
24 E = M*e;
25 der(M) = pwh_a.w+pwh_b.w;
26 der(E) = pwh_a.w*actualStream(pwh_a.h)
27 +pwh_b.w*actualStream(pwh_b.h)
28 +hp.Q_flow;
29 pwh_a.p = p;
30 pwh_a.h = h;
31 pwh_b.p = p;
32 pwh_b.h = h;
33 hp.T = T;
34 ...

Listing 5: Example component code – volume with ideal gas.

partial differential equations, where derivatives with time and
with spatial coordinates appear.

Few modelling languages offer native support for partial
derivatives, and when present, this support tends to be geared
to a particular domain (a notable case is gPROMS [28] for the
process industry). As such, in general it is the task of the model
and library developer to take care of spatial discretisation to
represent the distributions with a finite number of variables.

There are two main approaches to this problem, namely
the finite-volume and the finite-element one. We stick here to
the former, in which the region of space where variables are
distributed is decomposed in volumes, where the value of the
distributed variables is assumed uniform, and that exchange
energy and possibly mass with the neighbouring volumes
and/or the region boundaries. There is a lot of mathematics
involved that we are not discussing in this paper; the interested
reader can refer, e.g., to [29], [30], as well as to works
like [31], [32] for the case of modern ICs.

Below we briefly treat the one-dimensional case, typically
found in fluid elements as happens, e.g., for the temperature
along a duct, and the three-dimensional case, which is typically
seen when modelling temperature distributions in solids. The
reason is that in ducts we can assume thermal properties to be
constant over a surface orthogonal to the duct axis, whence the
1D case, and that we do not need to model three-dimensional
fluid motion, whence the 3D case for solids only. The two-
dimensional case is only found in connectors to describe
contact surfaces.

1) One-dimensional case: The reader may notice that in
fact we already used the finite-volume approach, thanks to its
intuitiveness, when modelling the rod of Section V-A. In the

more general case where fluid motion is present, like in pipes,
one can resort to a scheme like the one in Figure 6.

MET1

ES1

MES1

ET1

MET0 MET2

ES2
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ET2

METn

ESn

ETn

MESn

Fig. 6: One-dimensional exchanging fluid stream, modelled as
a series of alternating storage and transfer components, with
containment wall; see Figure 5 for the definition of component
types and their roles.

In the shown example, a pipe is represented by a sequence
of storage elements, summing up to the entire volume of the
pipe, alternated with transfer elements to model the transport
of fluid along the pipe. Figure 6 also comprehends the pipe
wall, in the form of a sequence of (solid) storage elements with
one side exchanging heat with the fluid, and the other exposed
with a vHP connector to the outside environment. It is worth
noticing that the structure in Figure 6 does not depend on
the internals of the composing elements taken from Figure 5,
hence being general with respect to the involved substances
property calculation and to the used exchange correlations.
This is another example of how EBM relieves the analyst from
repetitive and error-prone modelling tasks.

2) Three-dimensional case: this is typically seen when
modelling temperature distributions in solids, that adopting
the finite-volume approach are decomposed into parallelepiped
elements. For simplicity we discuss here the uniform grid
case, i.e., all the elements have the same size: generalisation
to structured grids is straightforward but would add further
complexity and obfuscate the concepts being presented.

Though model optimisation is beyond the scope of this tu-
torial, we have to notice here that a naı̈ve modelling approach
would impact computational efficiency up to a relevant extent.
We thus first show the most natural and human-readable way
to proceed, then explain why with present Modelica tools this
produces inefficient code, and finally suggest a (less readable)
efficient modelling alternative, to be preferred until compilers
evolve to close the evidenced gap.

The most human-readable approach to finite-volume 3D dis-
cretisation consists of first creating a model of the individual

top

rightleft

front
bottom

rear

Fig. 7: Basic building block of a naı̈ve spatial discretisation.
Finite volume model with six thermal ports.
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volume with connectors on each side, as shown in Figure 7,
and then building a 3D array of such models, using for
loops with connect statements. For the individual volume,
denoting by T the temperature of one such element, by ℓx, ℓy
and ℓz its dimensions along the three Cartesian axes, and by
the subscripts top, bottom, left, right, front and rear the
six heat ports HPf for its faces, one gets to the model

ρc(T )Ṫ = ∑ f={to,bo,le,ri, f r,re}HPf .Q f low

HPf .T = T +G f HPf .Q f low, f = {to,bo, le,ri, f r,re}

G f =


λ (T ) ℓxℓy

0.5ℓz
, f = {to,bo}

λ (T ) ℓyℓz
0.5ℓx

, f = {le,ri}

λ (T ) ℓxℓz
0.5ℓy

, f = { f r,re}
(31)

where c and λ are respectively the material specific heat and
thermal conductivity, possibly temperature-dependent, while
the density ρ is taken as constant. Centre to face conductances
are here approximated assuming a planar geometry, which is
acceptable for the typical purposes of our models; of course
more precise approximations could be used without impairing
the structure of the model and the consequent modularity.

Once the element is described as per (31), constructing
a parallelepiped solid just amounts to connect elements via
three sets of three nested for loops each, using connect
statements to link volumes with their neighbours along the
three axes. As an example, the following code shows the loops
required for connection along the vertical axis.

for j in 1:M loop
for k in 1:P loop
for i in 1:N-1 loop
connect(vol[i,j,k].bo,vol[i+1,j,k].to);
end for;

end for;

end for;

In principle the presented modeling strategy should be
handled efficiently by Modelica compilers, however to date
Modelica tools are not able to infer arrays of variables from
arrays of components that contain those variables and thus
perform optimisations across components. Naı̈ve models such
as the one just presented thus generate a large number of
unnecessary algebraic equations arising from the interconnec-
tions of conductances at the faces of the finite volumes, thus
resulting in a significant simulation overhead.

This issue can be overcome by structuring the 3D discreti-
sation model as a single component containing a 3D array
of state variables – temperatures in this case – and writing
exchange equations referring directly to the state variables
without involving the temperatures at the faces of the finite
volumes. This approach has the joint effect of a priori reducing
the total number of equations in the model and avoiding
algebraic equations, both factors contributing to improved
simulation speed.

The trade-off is the complexity of having to handle the solid
boundaries explicitly. In fact, while the naı̈ve finite volume
model handled unconnected ports automatically, in this case
we need to handle separately all possible cases where one or
more of the volume faces is facing outwards of the solid.

Fig. 8: Volume decomposition for optimised 3D spatial dis-
cretisation via uniform grid.

A graphical representation of all the different cases is shown
in Figure 8, where the different element colours evidence the
need for seven groups of for loops, plus eight individual
equations for the solid vertices (that do not require loops).
For example, denoting by N,M,P the number of elements
along the three axes and by T the 3-dimensional array of
volume temperatures, the equations for the inner volumes
(green elements in Figure 8) in Modelica read

for i in 2:N-1 loop
for j in 2:M-1 loop
for k in 2:P-1 loop
der(T[i,j,k]) = 1/C*(

Gx*(T[i-1,j,k]-2*T[i,j,k]+T[i+1,j,k])
+Gy*(T[i,j-1,k]-2*T[i,j,k]+T[i,j+1,k])
+Gz*(T[i,j,k-1]-2*T[i,j,k]+T[i,j,k+1]));

end for;
end for;

end for;

As said, a current research line in the field of Modelica
compilers aims to make them array-aware (see e.g. the research
presented in [16]), so next-generation Modelica compilers will
be capable of handling the human-readable alternative equally
efficient, but until then, manual optimisation is required.

VIII. INTERFACING WITH 3D-ICE

3D-ICE is a free and open source thermal simulator specif-
ically designed for ICs. Its purpose is to model a silicon die,
together with an optional heat spreader, through finite volume
discretisation. The model is configurable in terms of material
properties, dimensions, finite volume sizes and number of
layers. Numerical integration of the resulting differential equa-
tions is performed using the implicit Euler method, optimised
to efficiently produce high-resolution transient temperature
maps.

To model arbitrary heat dissipation systems, we recently
introduced in 3D-ICE support for co-simulation [9] with Mod-
elica models through the FMI (Functional Mockup Interface)
standard [12]; FMI provides a co-simulation interface that
allows Modelica models to be exported as shared libraries, to
be loaded by the 3D-ICE pluggable heat sink infrastructure.
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A typical co-simulation workflow begins with the modelling
of a heat dissipation system through the graphical user in-
terface of a Modelica environment such as OpenModelica.
Modelling is assisted by the use of Modelica libraries of
components such as those provided as part of the 3D-ICE
distribution, the library we are presenting as part of this
paper, as well as the Modelica standard library. In order to
be suitable for co-simulation, the Modelica model of the heat
dissipation system will need to expose a specific interface
that will be described shortly. Once the model is ready, co-
simulation with 3D-ICE entails abandoning the graphical user
interface of Modelica environments, and integrating with the
3D-ICE build system. We omit low-level details about this
topic that can be found in the 3D-ICE documentation, but we
remark that as part of the Modelica library we are releasing
we provide a complete co-simulation example with 3D-ICE
along with detailed instructions on setting up the co-simulation
environment.

A. Co-simulation interface

1 partial model Heatsink
2 parameter Temperature initialTemperature(fixed=false);
3 parameter ThermalConductance cellBottomConductance;
4 parameter Length bottomLength;
5 parameter Length bottomWidth;
6 parameter Integer bottomRows;
7 parameter Integer bottomCols;
8 HeatPort_a bottom[bottomRows, bottomCols];
9 end Heatsink;

Listing 6: Heat sink component interface for 3D-ICE
interfacing

To be co-simulated with 3D-ICE, a Modelica model of a
heat dissipation system, however complicated, needs to be
wrapped into a single model component exposing the heat
sink bottom surface to 3D-ICE by means of implementing
the interface of Listing 6. As Modelica is an object-oriented
language, the Heatsink interface is provided as part of 3D-
ICE in the HeatsinkBlocks library and can simply be
inherited by every heat sink model.

This interface is composed of 6 parameters, and a matrix of
heat port connectors to model heat transfer between the chip
and heat sink. The interface assumes that the heat sink bottom
side is discretised using at least one layer of finite volumes,
and requires to connect the heat port array to the centre of
the volume cells of the (bottommost) layer. Additionally, the
heat sink model must set the cellBottomConductance
parameter to reflect the value of the thermal conductance
between the centre and the bottom surface of the (bottommost)
layer. The reason for not exposing the bottom surface directly
through the matrix connector lies in the need for 3D-ICE to
perform grid-pitch adaptation, a feature that will be discussed
shortly. Additional parameters need to be set by the heat sink
model to inform 3D-ICE of the bottom surface length and
width, as well as the number of finite volumes the surface is
discretised in.

It should be noted that the physical dimensions and number
of volumes of the matrix heat port exposed by the Modelica

model do not need to be -and most commonly is not- equal to
the physical dimension and number of volumes of the silicon
die/heat spreader modeled by 3D-ICE. For what concerns
physical dimensions, a heat sink is usually significantly larger
than a silicon die or a heat spreader. Also, when considering
finite volume discretisation, the silicon die often needs to be
simulated at a very fine level of discretisation to observe hot
spots and the temperature of different functional units in the
IC floorplan, while a heat sink can be simulated at a much
coarser grid size. For this reason, 3D-ICE includes a grid pitch
adaptation layer allowing to perform co-simulation between
a chip and a heat sink of different sizes and with different
discretisations. For what concerns different discretisations the
mapping is completely transparent, while the size mapping
allows specifying the chip location with respect to the sink
bottom surface. Figure 9 shows a pictorial view of the grid
pitch mapping across the co-simulation interface.

4

Chip or heat spreader top layer

Heat sink bottom layer

43

Intra-grid conductances

Inter-grid conductances

1

1 2

2

3

Volume
boundaries

Volume
centres


Fig. 9: Grid mapping across the co-simulation interface be-
tween Modelica and 3D-ICE; the four blue conductances 1–4
connect the top left green grid volume to the four orange grid
volumes its facing surface overlaps with, as the orange ones
do with the top centre green volume — and so forth.

The final parameter of the interface is the
initialTemperature, representing the temperature
of the heat sink at the start of the simulation. It should
be noted that in Modelica, the keyword fixed does not
mean constant, and in particular fixed=false applied to a
parameter means it can be left without a value, and the actual
value will be set externally before starting the simulation. In
this case, 3D-ICE also has an initial temperature parameter,
set through its configuration file. This feature is thus used
to avoid the need to write the initial temperature both in
Modelica and in 3D-ICE, avoiding the burden of keeping
those values in sync.

IX. SIMULATION EXAMPLES

We have established that nowadays, for high-performance
systems, the design of the cooling circuit must often be tailor-
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made. We have also established that the said circuit needs
assessing prior to facing potentially destructive stress, by joint
simulation with the chip and the policies aboard. However,
when designing the cooling circuit, sizing its components and
setting up its controls, the above joint simulation is quite
often not necessary owing to the band separation between on-
silicon and circuit dynamics. It is apparently desirable that
the same cooling circuit models can be used for any of the
above activities, i.e., both with and without a connection to
chip simulation codes like 3D-ICE.

Said otherwise, the workflow for designing a cooling sys-
tem should start by concentrating on sizing heat sinks and
hydraulic components, having in this initial phase the chips to
cool just represented as prescribed thermal powers. Then, once
the above and its controls are assessed, the obtained model
needs to be connected to detailed chip simulators to investigate
the behaviour of on-chip policies and perform the necessary
fine tuning.

In this section we show a few examples to demonstrate how
our approach – and as a consequence the presented library –
do fully support such a workflow, that needs to concentrate
sometimes on the chip alone, sometimes on the cooling alone,
and sometimes on the compound of the two.

We would like to point out that the models here presented
are custom cooling loops built with parts that have not yet been
manufactured. Therefore, the reported examples demonstrate
one of the major strong points of component-based simulation,
i.e., the possibility to assess the performance of new solutions
prior to their realisation. The reader interested in how our
models are validated, and which accuracy can be achieved,
can refer to the previous work [9]. In the research presented
therein we modelled a specific water block, using the same
approach and equations adopted in the following examples.
In that case we could carry out a laboratory validation, and
the average temperature error observed was 0.9◦C, while the
maximum error – temporary and during a transient – 5◦C.
Such a result is more than adequate for the intended purpose.

A. Example 1

We start with an all-Modelica example (i.e., no chip simu-
lator is involved) to show the approach capability to address
quite complex cooling circuit models including controls. The
used model is shown in Figure 10: a centrifugal pump (a) feeds
three modulating valves (b) to govern the flow rate through
three waterblocks (c) connected each to one of three CPU-
spreader compounds (d); three water-air exchangers (e) and a
vented storage tank (f) close the circuit. Three PI regulators
(g) control the three spreader temperatures, also governing the
pump speed based on the water request. Boundary conditions
are the external air temperature (h) and the power traces for the
three CPUs (i). The DAE model corresponding to the scheme
in Figure 10 has 1901 equations and 207 state variables.

As said, CPUs are modelled as prescribed powers, and
only a spreader layer is represented: the relevant thermal
characteristics and the TDP (91W) were taken from an Intel
Core i5-6600K. Application traces have been collected using
an Intel Core i5-6600K processor instrumented with a shunt

Fig. 10: Example 1 – Modelica diagram.

resistor between the 12V power supply and the connector
on the motherboard dedicated to powering the CPU, thus
excluding interference from the RAM and motherboard power
consumption. Power traces were collected while running the
Cloverleaf mini-application [33] from the UK Mini-App Con-
sortium, which employs an explicit second order method for
the resolution of compressible Euler equations, a representa-
tive application for the high-performance computing domain.
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Fig. 11: Example 1 – simulation results.

Thermal simulations were instead performed on an Intel
Core i9-12900K running Ubuntu 20.04.4, using OpenModelica
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1.20.0∼dev-155-g379c110. The simulation results shown in
Figure 11 demonstrate the opportunity of endowing modern
cooling with controls, thanks to which good temperature
management is achieved on the scale of some seconds; this
cannot replace millisecond-scale control, typically via DVFS,
but certainly helps. It is worth noticing that the 4-hour-long
simulation took only 84 seconds, which is approximately 170×
faster than real time.

B. Example 2

We now present an example including detailed chip sim-
ulation with 3D-ICE. The simulated system is composed of
a waterblock heat exchanger fed by a chiller that provides a
constant water inlet temperature of 24◦C and a flow rate of
0.12 litres/minute. The waterblock is modelled in Modelica
as a 1D cavity with a finned base of 3×3cm, in which
turbulent water flow induces a convective heat exchange ruled
by the Dittus-Bölter equation [34]. The waterblock Modelica
model is connected, by means of the 3D-ICE 3.0 co-simulation
interface, with the 3D-ICE model of a square flip chip with a
side of 1.024cm. The chip floorplan features an array of 4x4
heat generation areas, each split in two, so as to model our
Thermal Test Chip (TTC) platform [35].

Figure 12 shows two steady-state chip temperature maps
with different heating patterns, both totaling a power of 60W.
The upper temperature map comes from a uniform power
distribution across the 16 heating elements. In this case, the
maximum temperature of 66.7◦C is observed in the central
heating elements; temperatures in the bottom part of the chip
map are slightly lower as this is where the water inlet is
located.

The second simulation instead shows a hotspot scenario,
where the heating elements are turned on in a chessboard
pattern, and dissipate 7.5W each to still total 60W. As can
be seen the steady-state temperatures are higher, reaching a
maximum of 79.1◦C, but also the temperature distribution
changes: the highest temperatures are now at the corners, not
at the center. The reason is that central heating elements can
effectively spread heat laterally through the cold parts of the
chip, thus reaching a lower temperature than the elements at
the corners.

Both simulations were performed on a Core i9-12900KF
server running Ubuntu 20.04.4 LTS, OpenModelica
1.20.0∼dev-155-g379c110 and 3D-ICE 3.1. The simulation
time is 72s: 95% is spent in 3D-ICE for the high-resolution
chip simulation, and only 5% by Modelica for the heat
sink simulation, thanks to the different spatial discretisation
granularities for the chip and the sink models [9].

X. CONCLUSIONS AND FUTURE WORK

We considered the problem of simulating modern MP-
SoC cooling circuits, that comprehend several heterogeneous
physic domains, possibly together on-chip thermal policies.
We showed that for an effective design of the entire system,
the analyst must be able to concentrate sometimes on the
chip, sometimes on the cooling system, and sometimes on the
compound. We pointed out that the above requires a modelling

Fig. 12: Example 2 – simulation results: steady-state chip tem-
perature maps with uniform (above) and chessboard (below)
power distribution.

framework capable of scaling the model complexity based on
the study at hand, and that an enabling technology for this
purpose is provided by the EBM paradigm.

In a recent paper we made the 3D-ICE simulator capable
of cooperating with EBM tools, namely in the Modelica
language, by exploiting the FMI standard for co-simulation. In
this paper we complemented our contribution with a tutorial
on how to write Modelica models for cooling circuit elements,
illustrating the underlying principles and providing convenient
examples. We also carried out laboratory validation activities,
the description of which we did not repeat in this work.

To support our research, we have also initiated the devel-
opment of a Modelica library of cooling component models.
We hope that this library can become the first nucleus of an
ecosystem of simulation models for modern cooling systems
applied to MPSoCs and high-power ICs in general. We also
hope – or better, we set as objective – that the availability
of accurate, efficient, flexible and scalable simulators will in
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turn enable the creation and assessment of innovative control
strategies for optimal system operation. For this reason, as
said, we are releasing our library (that is being continuously
developed) as free software.
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