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Abstract 

Sequential Linear Analysis (SLA) has been recognized by researchers as a valid alternative for the 

analysis of brittle materials compared to incremental-iterative finite element solutions. The elastic no-

tension masonry-like material model, with infinite strength in compression and negligible tensile 

strength, has been implemented in plane stress conditions within the SLA framework. 

The isotropic no-tension masonry-like material is replaced with an orthotropic one, which exhibits a 

negligible response along material axis where the principal stress reads positive. In the SLA 

framework, a series of linear elastic analyses are carried out, sequentially aligning material axes with 

principal stress directions, and reducing directional stiffness at the critical material points where 

positive stresses are found. This process is carried out up to the point when the change in the total 

strain energy finds a plateau. The implementation follows a combined application of a user subroutine 

in Abaqus with Matlab and Python scripts. 

Several cases dealing with self-weight, settlements and horizontal loading are developed to 

demonstrate its applicability. The results demonstrate the possibility to generate compressive stress 

fields, with tensile stresses virtually vanishing at all material points. 

 

  



1 Introduction 

Masonry-like materials are unable to withstand (significant) tensile stresses. From a mechanical point 

of view, this means that the stress field is semi-definite negative all over the body. Two subclasses of 

no-tension (NT) material models have been developed in the literature: (i) the Rigid No-Tension 

(RNT) and (ii) Elastic No-Tension (ENT) model.  

The simplest version is the RNT material model, which is a unilateral model that assumes the material 

to be infinitely stiff in compression, but unable to carry tensile stresses [1]. This model was firstly 

introduced within the framework of the theory of plasticity by Heyman [2], and then further 

developed to be implemented in computer programs for practical applications based on energy 

minimisation principle [3-5], or accounting for large displacements [6]. The RNT model requires no 

material properties, and the results are exclusively depending on loads and geometry. A number of 

authors have applied this material model to compute the limit load of masonry walls, arches and 

vaults [2, 7, 8], or to investigate the effect of ground settlements [9, 10].  

A second subcategory of NT materials corresponds to the ENT model, which considers finite stiffness 

in compression [1, 11]. This model to compute the limit load of masonry-like structures, as well as for 

the analysis under service loads. Strains can be positive or negative: positive strains are fully inelastic, 

whereas negative strains correspond to elastic, compressive deformation. Therefore, the model 

requires only the modulus of elasticity (in compression) as input parameter.  

In the last decades a number of refined models have been developed for masonry structures based on 

the theory of plasticity and damage mechanics [12, 13]. Although they have been shown to be quite 

accurate in simulating the mechanical behaviour of masonry specimens or small-scale buildings tested 

in the laboratory, they require many parameters which are usually unavailable for practical 

applications. On the other hand, NT material models are very attractive, since they require no or few 

parameters. A comparison between limit analysis solutions and finite element methods for the 

stability assessment of masonry structures is addressed in [9, 14].  

Despite the apparent simplicity of the linear ENT model, the need to treat discontinuities in the stress 

and displacement fields gives rise to several numerical problems, which results in many convergence 

issues [7]. In fact, application of NT material models remains still limited. Readers are referred to 

Angelillo [15, 16], who proposed a FE solution based on a complementary energy theorem for ENT 

bodies, or to Bruggi and Taliercio [17, 18] who reformulated the analysis of 2D and 3D NT structures 

as a topology optimization problem.  

The present work fits into the path of the latter contributions [17-19]. The solution of the inherent 

non-linear problem is tackled herein by resorting to the concept of Sequential Linear Analysis (SLA), 

instead of implementing the energy-based procedure that were originally proposed to this goal. SLA 



was developed as a robust alternative to incremental-iterative finite element solutions for brittle 

materials [20, 21], and is herein extended in this study to ENT masonry-like material. In the present 

version, the approach is limited to 2D bodies, with some generalization to 3D structures. The 

procedure is a step-by-step approach, considering a series of linear elastic analyses with updated 

mechanical parameters from the previous analysis. The original isotropic material is replaced by an 

orthotropic one, which exhibits a negligible response along any material axis when the principal stress 

tends to become positive. The process of updating material axis orientation and reducing the local 

stiffness continues sequentially until convergence is achieved. 

The paper is organized as follows. Section 2 describes the methodological framework, the governing 

equations of the NT material model, the SLA procedure, and the algorithm of the current 

implementation. Sections 3 focuses on several applications demonstrating the capabilities of the ENT 

model in the case of structures subjected to gravity loads, horizontal loads, and soil settlements. The 

results show the possibility to generate compression stress field with vanishing tensile stresses. 

Furthermore, the computations yield good prediction of the limit load compared to analytical and 

experimental benchmarks. Finally, the main results are critically discussed in section 4, and the main 

conclusions are summarized.  

 

2 Methodology 

2.1 Governing equations for ENT material 

Details on the ENT material model can be found in a number of papers (see e.g., [1, 11, 22]). 

Hereafter, the governing equations of the ENT model are only briefly recalled. The mechanical 

constraints that a linear ENT material must fulfil can be described mathematically as follows. The 

stress tensor must be negative semidefinite: 

𝜎𝜎𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚−, 

where 𝑆𝑆𝑆𝑆𝑚𝑚− is the closed cone of the negative semi-definite symmetric second order tensors. 

The strain tensor is assumed to consist of two parts: an elastic part 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒  and an inelastic (latent) part 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐  

accounting for cracking: 

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 . 

Finally, the elastic strain is related to the stress 𝜎𝜎ℎ𝑘𝑘 through the generalized Hooke’s law defined by 

the elasticity tensor 𝐶𝐶𝑖𝑖𝑖𝑖ℎ𝑘𝑘, while the latent part of the strain, 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 , follows the normality condition: 

    𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 = 0,    and    𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚+, 

where 𝑆𝑆𝑆𝑆𝑚𝑚+ is the closed cone of the positive semi-definite symmetric second order tensors. 



2.2 Material model 

An isotropic Elastic No-Tension ENT masonry-like material has no strength in tension and infinite 

strength in compression. Therefore, it requires only two mechanical parameters: a) modulus of 

elasticity E0, and b) Poisson’s ratio ν0. In the uniaxial case, the stress-strain law is illustrated in Fig. 1. 

Negative strains correspond to elastic compressive deformations, while positive strains correspond to 

cracking strains. The inherent non-linearity is implemented as a series of stiffness reductions, 

following the violation of a stress criterion at each integration point, until a negligible stiffness 𝐸𝐸𝑛𝑛 is 

attained (Fig. 1).  

 

Fig. 1. Uniaxial law for linear elastic no-tension material. 

In the 2D case, under plane stress conditions, the isotropic material is replaced by an equivalent 

orthotropic one, with a vanishing stiffness along any principal tensile stress direction. A 4-node plane 

stress element with one integration point is used in Abaqus simulations (Fig. 2a). The symmetry axes 

�̃�𝑧1, and �̃�𝑧2 of the equivalent orthotropic material and the principal stress directions 𝑧𝑧𝐼𝐼, and 𝑧𝑧𝐼𝐼𝐼𝐼 of the 

no-tension solid share the same orientation with respect to the general reference system 𝑂𝑂𝑧𝑧1𝑧𝑧2 (Fig. 

2b). This is achieved through a process of alignment of the symmetry axes of the equivalent 

orthotropic material with the principal stress directions, �̃�𝑧𝛼𝛼, α=I, II, detected in the no-tension 

medium. 

The principal stresses are computed as the eigenvalues of the stress tensor at the Gauss points, 

whereas the principal directions are found as the relevant eigenvectors. In the plane stress case, the 

principal stresses are related to the Cartesian stresses by: 

𝜎𝜎𝐼𝐼,𝐼𝐼𝐼𝐼 =
𝜎𝜎11 + 𝜎𝜎22

2
± ��

𝜎𝜎11 − 𝜎𝜎22
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�
2

+ 𝜎𝜎122  



whereas the orientation of the principal stress direction �̃�𝑧𝐼𝐼 is rotated with respect to the axis 𝑧𝑧1 of the 

global reference system of an angle: 

𝜃𝜃 =
1
2

tan−1 �
2𝜎𝜎12

𝜎𝜎11 − 𝜎𝜎22
�. 

The matrix that transforms the 2D principal stresses into Cartesian stresses reads: 

𝐓𝐓 = �
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃 −2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃
𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 −𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 − 𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃
�. 

In order to track cracking strains, at each Gauss point, two nondimensional material densities 𝜌𝜌𝑖𝑖 ∈

(0,1], i = 1,2, are introduced along the material symmetry axes �̃�𝑧1 and �̃�𝑧2. The material densities 𝜌𝜌𝑖𝑖 

govern the stiffness penalization of the orthotropic material and are related to the damage variables 

𝐷𝐷𝑖𝑖, i = 1,2, though the expression 𝐷𝐷𝑖𝑖 = (1 − 𝜌𝜌𝑖𝑖). If one of the principal stresses becomes positive, the 

material density variable is initialized with a nonzero value, 𝜌𝜌0 = 0.1, while further reductions are 

performed using a quadratic reduction factor: 

𝜌𝜌𝑘𝑘+1,𝑖𝑖 = 1 − �1 − 𝜌𝜌𝑘𝑘,𝑖𝑖�
2, 𝑠𝑠 = 1,2. 

Similar criteria are also proposed in the literature in [23] [24]. In this process, the initial elastic 

modulus, 𝐸𝐸0, is penalized in the i-th principal stress direction by the nondimensional material density 

𝜌𝜌𝑖𝑖 ∈ (0,1]. In each direction, the model can capture negative, elastic compressive strains, or positive 

strains which correspond to cracking strains. In the latter case a scaled stiffness is computed in the 

direction where the principal stress would become positive, in order to account for cracking. Hence, 

the updated values of the Young’s moduli, 𝐸𝐸�1, 𝐸𝐸�2 and the shear modulus are reduced at each Gauss 

point when the criteria is violated: 

𝐸𝐸�1 = 𝜌𝜌1𝐸𝐸0,    𝐸𝐸�2 = 𝜌𝜌2𝐸𝐸0,    𝐺𝐺�12 = 𝜌𝜌1𝜌𝜌2
𝐸𝐸0

2(1+𝜈𝜈0)
 

At the same time also the initial Poisson’s ratio 𝜈𝜈0 is updated by means of the same factors 𝜌𝜌𝑖𝑖: 

  𝜈𝜈�12 = 𝜌𝜌1𝜈𝜈0,    𝜈𝜈�21 = 𝜌𝜌2𝜈𝜈0 

Transformation regarding the reduction of stiffness along the symmetry axes of the material are 

discussed by a number of authors [19, 25, 26]. The process and its stages are described in Fig. 2. In 

particular, the stress-strain law written in the material system of the equivalent orthotropic medium 

reads: 

𝝈𝝈 = 𝑫𝑫 𝜺𝜺, 

where the arrays that gather the 2D Cartesian stress and strain components are 𝝈𝝈 = [𝜎𝜎11  𝜎𝜎22  𝜎𝜎12]𝑇𝑇, 

𝜺𝜺 = [𝜀𝜀11  𝜀𝜀22  2𝜀𝜀12]𝑇𝑇 and: 



𝑫𝑫 = 𝑻𝑻(𝜃𝜃)  𝑫𝑫�   𝑻𝑻(𝜃𝜃)𝑻𝑻. 

The stiffness matrix in the material (principal stress) reference system can be written as: 

𝑫𝑫� = 1
1−𝜈𝜈�12𝜈𝜈�21

�
𝐸𝐸�1 𝜈𝜈�12𝐸𝐸�2 0

𝜈𝜈�21𝐸𝐸�1 𝐸𝐸�2 0
0 0 𝐺𝐺�12(1 − 𝜈𝜈�12𝜈𝜈�21)

�, 

where: 

𝐸𝐸�1, 𝐸𝐸�2 = the elastic moduli along the equivalent material axis �̃�𝑧1, �̃�𝑧2. 

𝐺𝐺�12 = the in-plane shear modulus, 

𝜈𝜈�12, 𝜈𝜈�21 = the Poisson’s ratios; the symmetry condition 𝜈𝜈�12𝐸𝐸�2 = 𝜈𝜈�21𝐸𝐸�1 holds. 

It is noted here that the implemented approach resembles a smeared crack model, where 

discontinuities are captured in terms of strains in the continuum model. In a no-tension material, 

cracking strains represent all the crack opening since the material cannot elastically deform in tension, 

whereas in other types of materials it is the sum of crack opening and deformation of the material 

between the cracks [27].  

 
        a)     b)    c) 

Fig. 2. State of stress transition in a plane stress element: a) initial state, b) damage onset normal to positive principal 
stress, c) void phase with biaxial damage. 

 

2.3 Implementation workflow 

The implementation is based on a combined use of the Abaqus User Field Subroutine USDFLD, the 

Abaqus User-Subroutine-defined initial solution-dependent state variable fields SDVINI, Python and 

Matlab scripts. The Matlab script is the central element of this process, which updates the Abaqus 

input files and launches the Abaqus analysis. 

The User Field Subroutine, USDFLD, is used to define field variables 𝜌𝜌𝑖𝑖 at the integration points as 

functions of any of the stresses, 𝜎𝜎11 and 𝜎𝜎22, which coincide with the principal stresses. In each 

analysis, for each of the finite elements, the vector (𝜌𝜌𝑖𝑖  ,𝜃𝜃) is given, where 𝑠𝑠 = 1, 2 defines the damage 



direction. The material density parameters can vary in the range 𝜌𝜌𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜌𝜌𝑖𝑖 ≤ 1. The minimum value 

𝜌𝜌𝑚𝑚𝑖𝑖𝑛𝑛 is a strictly positive value, so as to avoid numerical instability. 

The second parameter is the rotation 𝜃𝜃. Stresses are exported in Matlab through a Python script and 

are postprocessed to calculate the in-plane principal stress direction. The new rotations are updated in 

the orientation section of the input file before the subsequent analysis is launched. 

The alignment of the symmetry axes of the fictitious orthotropic material w.r.t. the principal stress 

directions of the no-tension medium is achieved in a number of steps. The results show that usually 

convergence is achieved in 15 iterations. The change in orientation for each element (excluding the 

void elements) in the last step of the convergence of this alignment procedure is usually less than 0.1 

degree. This could be used as a termination criterion. Alternatively, it was preferred to adopt a 

criterion based on the change in strain energy 𝜓𝜓, which reads:  

𝛥𝛥𝜓𝜓 =
𝜓𝜓𝑖𝑖+1 − 𝜓𝜓𝑖𝑖

𝜓𝜓𝑖𝑖
< 𝜀𝜀 

The value of 𝜀𝜀 is typically set to 10-3 of the current value of the energy. 

In order to prevent singularities and excessive deformations, the elements with fully penalized 

stiffness in both directions are removed from the simulation. This is achieved with the element 

deletion technique. It is used for elements with biaxial damage (void phase with 𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌𝑚𝑚𝑖𝑖𝑛𝑛). 

Deleted elements have no ability to carry stresses and, therefore, have no contribution to the stiffness 

of the model. A third state variable SDV3 is added as an element deletion flag. 

The User subroutine SDVINI is used to initialize the solution-dependent state variable fields at each 

material point. The state variables controlling the damage computed in the previous analysis, SDV1, 

SDV2, are exported to a text file and imported afterwards in the new analysis, through the SDVINI 

subroutine. 

This process is summarized though algorithm 1, Solve. 

 
Algorithm: Solve 
------------------------------------------------------------- 
 
INPUT: 

Youngs’s Modulus 𝐸𝐸0 
Poisson’s ratio 𝜈𝜈0 
Maximum number of iterations 𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 
Initial Strain Energy 𝜓𝜓1 = 0 
Current step, 𝑠𝑠 = 1 

 
Run 1st Abaqus Elastic Analysis 
Read Stress Values (via Python script) 
Compute Principal Stresses 



Update Material Axis Rotation 
Create New Input file 
Run Abaqus Analysis (with USFLD subroutine) 
Read Strain Energy 𝜓𝜓 
 
 
while 𝛥𝛥𝜓𝜓 > 𝜀𝜀 and  𝑠𝑠 < 𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 
 

Read Stress Values (via Python script) 
Read State Variable SDV (via Python script) 
Compute Principal Stresses 
Update Material Axis Rotation 
Update Damage matrix 
Create New Input file 
Run i-th Abaqus analysis (with USFLD & SDVINI subroutine) 
Read Energy 𝜓𝜓 

end while 
------------------------------------------------------------- 
 
2.4 Collapse load tracking 

The approximated collapse load is calculated using a procedure inspired by the bisection method. The 

central idea is that due to the monotonic trend of a pushover curve for a linear elastic no-tension 

structure, equilibrium is lost between a step successfully converged and a step that did not converge. 

A similar procedure was proposed previously by Bruggi and Taliercio in [18] using an energy-based 

solution for the ENT problem. The authors demonstrated that the collapse multipliers evaluated using 

the bisection method and a classical incremental approach are very similar. Typically, the horizontal 

shear force is plotted versus the displacement of a control point. The limit load is evaluated at the 

plateau of the curve, where small increments in load are matched by remarkable displacement 

increments, which prelude the loss of equilibrium of the system.  

In the recent years, when dealing with the seismic performance definition of existing buildings beside 

the evaluation of the limit load, the evaluation of the displacement capacity has emerged as a crucial 

issue. A limit displacement may be conveniently related to failure of the material in compression. To 

this goal the displacement capacity is assumed to be attained when the applied load induces a 

compressive stress equal to the strength of the material in compression, fc, in any finite element of the 

model. The criterion, although quite conservative, turns to be in line with the brittle nature of masonry 

(see section 3.1). 

The collapse load is tracked with the algorithm 2, Limit Load. In principle, the algorithm 

monotonically increases a chosen load up to the activation of a collapse mechanism that causes loss of 

equilibrium in the system. Depending on the case study, the loads can be horizontal forces (simulating 

earthquake loads in a seismic analysis), gravity loads, vertical forces simulating vehicle load in the 

case of bridges, etc. 



The procedure starts with the initialization of several variables as force increment 𝛥𝛥𝛥𝛥, force tolerance 

𝛥𝛥𝑡𝑡𝑡𝑡𝑡𝑡, maximal number of steps 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, and the limit load, 𝛥𝛥0. The iterative search of the collapse load 

proceeds until the force increment, 𝛥𝛥𝛥𝛥, is smaller than a predefined force tolerance, 𝛥𝛥𝑡𝑡𝑡𝑡𝑡𝑡, or a stop 

criterion defined by a maximum number of iterations 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚. 

At each iteration, convergence is searched for the load 𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡. At the beginning the trial load is 

increased from 0, with a standard predefined increment 𝛥𝛥𝛥𝛥. The value 𝛥𝛥𝛥𝛥 is kept fixed if the 

procedure Solve converges. If it does not, at each iteration within a step, i, the value of 𝛥𝛥𝛥𝛥 is 

decreased. In this case, the trial force 𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 is defined by the bisection method, as the average of the 

previous successful trial load and the current unsuccessful trial load. At each converged step of the 

procedure Solve, the limit load and the monitored displacements are saved. Finally, the limit load, the 

displacement vector and the number of steps required to achieve the solution are printed. 

Algorithm: Limit Load 
------------------------------------------------------------- 
INPUT: 

Force increment 𝛥𝛥𝛥𝛥 
Force tolerance 𝛥𝛥𝑡𝑡𝑡𝑡𝑡𝑡 
Max number of steps 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 
Limit load, 𝛥𝛥0 = 0 
Current step, 𝑠𝑠 = 1 

 
𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 = 𝛥𝛥0 + 𝛥𝛥𝛥𝛥 
 
while 𝛥𝛥𝛥𝛥 > 𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡𝑡𝑡 and j< 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 
 
Run Solve for 𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 

 
If Solve converged then  

𝛥𝛥𝑖𝑖 = 𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 
Save 𝑢𝑢𝑖𝑖 
𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 = 𝛥𝛥0 + 𝛥𝛥𝛥𝛥 
𝑠𝑠 = 𝑠𝑠 + 1 

 
else 

  𝛥𝛥𝛥𝛥= (𝛥𝛥𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑡𝑡 − 𝛥𝛥𝑖𝑖)/2 
𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 = 𝛥𝛥𝑖𝑖−1 + 𝛥𝛥𝛥𝛥 

 end if 

end while 

print (𝛥𝛥𝑖𝑖, 𝑢𝑢𝑖𝑖, 𝑠𝑠) 

------------------------------------------------------------- 

 



3 Applications 

A series of analyses with the ENT material were carried out, aiming at testing the applicability of the 

model to the study of unreinforced masonry walls. The main results are shown hereafter. 

Two application categories are considered:  

a) Lateral load capacity analysis, and 

b) Settlement analysis. 

Each analysis considers two steps. In the first load step, the self-weight and a possible vertical 

precompression (dead loads) are applied. The second step considers the application of the horizontal, 

live load, or prescribed vertical settlements. 

In the case of the lateral loading analysis, the applied horizontal force and the displacement of the top 

corner node were monitored to obtain the force-displacement curve. In all the simulations the 

principal stresses are visualized and, in some cases, also the “void” elements (with D1=D2≈1). Both 

can be compared with the experimental crack pattern, if available. The comparison must be made with 

due care, as the model captures distributed cracking strains rather than discrete cracks. 

 

3.1 Lateral load capacity analysis 

3.1.1 Panel under vertical precompression and horizontal loading 

A slender masonry panel with dimensions 2.7m x 1.1m x 0.102 m (Fig. 3a), similar to that tested at 

TU Delft in experiment TUDCOMP-20, is adopted to validate the proposed numerical procedure [28, 

29]. The panel is loaded vertically with a precompression 0.63MPa. The pressure is applied through a 

horizontal steel beam mounted at the top of the wall and is kept constant for the entire duration of the 

experiment. Consequently, a cyclic horizontal displacement is applied at the steel beam through 

actuators. As reported in [28], the rocking response with heel tension and toe crushing were observed 

during the final stages. This is an expected response when testing slender panel under lateral loading. 

The numerical model is shown in figure Fig. 3b. At the top, a row of elastic elements is inserted to 

consider the steel beam (white elements in Fig. 3b). The domain is discretised with square 100 mm x 

100 mm elements. The top steel beam is allowed to rotate similarly to the experimental setup. The 

same test was considered previously also in [20], to test SLA procedures. The material properties are: 

E0=4972 MPa, 𝜈𝜈0=0.16, fc=6.35 MPa. The precompression is applied through a distributed load equal 

to 64.26 N/mm, which corresponds to a vertical stress of 0.63 MPa. 

 



     

Fig. 3.a) TUDCOMP-20 test panel, b) Numerical model of the TUDCOMP-20 test. 

The numerical model with the ENT material shows the tensile cracking since the early stages of the 

analysis. A compression diagonal strut occurs within the wall, which transmits the actuator force to 

the base (Fig. 4). As the load increases, the width of the lower part of the strut dramatically decreases, 

in conjunction with the development of heel tension and the increase in compressive stress at its tip. 

In Fig. 4 the distribution of the principal stresses and the void phase (in blue) at the final converged 

stage, corresponding to the numerically predicted collapse, are shown. At the toe, the compressive 

strength limit, 6.35 MPa, is attained. 

The capacity curve is defined using the algorithm presented in section 2.4, by using an initial guess 

𝛥𝛥𝛥𝛥 = 5 𝑘𝑘𝑁𝑁 and a tolerance 𝛥𝛥𝑡𝑡𝑡𝑡𝑡𝑡 = 0.02𝑘𝑘𝑁𝑁. Convergence is achieved in 5 successful steps. 

 

Fig. 4. TUDCOMP-20 test panel. Left: distribution of the principal stresses in the wall, at the final stage; right: distribution 
of the “void” elements, i.e. with biaxial damage (in blue). 



The estimated collapse load is 12.77 kN and matches fairly well the sub-horizontal experimental 

branch, which occurs at about 12.4 – 12.8 kN. 

A hand calculation of the collapse load of a simple panel overturning under vertical precompression 

and horizontal loads gives a value of 14.4 kN if the hinge is formed at the toe, or 13.1 kN if the hinge 

is at 50 mm from the wall edge. The second value is more representative of our case, as in the 

numerical model the hinge can activate at half the width of the toe finite element, that is, 50mm. 

Therefore, the numerical collapse load and the analytical value differ by 2.4%. 

Regarding the displacement capacity, the limit analysis can predict only the limit load. Nevertheless, 

if considered a finite strength in compression, fc=6.35 MPa, the predicted displacement in the last 

stable increment is 13.2 mm. The estimated drift is 0.49%, is in line with considerations on the 

normative EN 1998-3:2005 where the capacity of an unreinforced masonry wall controlled by shear 

expressed in terms of drift is equal to 0,4%. Compared to the experimental results, the value of the 

drift of 0,4% considered in the codes, is too conservative if referred to the values that can be observed 

in experimental tests that are often in the range 5-10% of the height.  

 

  

Fig. 5. TUDCOMP-20 test panel: comparison of the experimental [28] and numerical capacity curves. 

 

3.1.2 Portal frame under vertical precompression and horizontal loading 

The capacity of a masonry portal formed by two piers and a spandrel is considered in this section. The 

geometry of the model is reported in Fig. 6a. The portal is discretised with a mesh of 150 x 150 mm 

square elements (Fig. 6b). The wall thickness is 350mm. The material properties are: E0=2500 MPa, 

𝜈𝜈0=0.2. The strength in compression fc is assumed to be infinite. 
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The system is loaded with a vertical pre-compression q=15kN/m and a horizontal force 𝛥𝛥 = λ𝑝𝑝𝑝𝑝2 

that increases up to collapse. The top right corner is used as control point to monitor the lateral 

displacements. The horizontal, live load λp is applied along the top edge of the masonry pier, and its 

reference value is expressed as: 

𝑝𝑝 =
𝑞𝑞(𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3)

𝑝𝑝2
=
𝑞𝑞(1800 + 1200 + 1200)

600
= 105𝑘𝑘𝑁𝑁/𝑚𝑚 

(see Fig. 6a). The solution obtained using the proposed ENT model will be compared with the 

analytical solution that was previously developed in [18], where the collapse multiplier was found to 

be 0.3545, and the corresponding limit load F=λ𝑝𝑝𝑝𝑝2 =22.334kN. 

 

(a)     (b) 

Fig. 6. a) Geometry of the panel according to [18], b) Finite element mesh. 

The first simulation with ENT material includes only vertical precompression. The simulation shows 

the formation of an arch-like mechanism (Fig. 7a). The central area of the spandrel behaves as a void 

phase, where both principal stresses are positive (blue elements in Fig. 7b). These elements are 

deactivated from the simulation using the element deletion technique of Abaqus. The compressive 

stresses in the strut in the right pier are slightly higher, because of its reduced dimensions compared to 

the left pier. 

  
(a)       (b) 

Fig. 7. Distribution of principal stresses in masonry due to vertical precompression, b) “Void” elements, with biaxial 
damage (in blue). 
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Starting from the dead load only (Fig. 7), as the horizontal pressure increases different types of 

compression struts occur in each pier. The left strut changes from prismatic-shaped to fan-shaped, 

while the right pier strut maintains the bottle shape strut up to the end (Fig. 8). The distribution of the 

compression stresses at the base of each pier becomes triangular (Fig. 8), until complete hinges form 

at the onset of collapse. Collapse corresponds to a sort of sway mechanism, with hinges also atop the 

two piers (Fig. 8). 

  (a) (b) 
    

 (c) 

Fig. 8. Principal stresses at different values of the load multiplier: a) F=10 kN and λ=0.097, b) F=20 kN and λ=0.317, c) 
F=22.695 and λ=0.36.  

The limit load is estimated using the algorithm presented in section 2.4, by using an initial guess, 

𝛥𝛥𝛥𝛥 = 10 𝑘𝑘𝑁𝑁 and a tolerance, 𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡𝑡𝑡 = 0.04𝑘𝑘𝑁𝑁 (Fig. 9). 

Convergence is achieved in 11 iterations, with a total of only 5 converged steps. The computed limit 

load is F=22.695 kN, and the collapse multiplier λ=0.36. The difference with respect to the analytical 

value is only 1.62%. 

 
Fig. 9. Comparison of experimental and numerical shear vs displacement capacity curves. 
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3.1.3 Masonry façade under vertical precompression and horizontal loading: Pavia 

experiment 

The “Pavia experiment” [30] is a well-known benchmark for masonry buildings under horizontal 

loading. A two-story masonry façade is tested under horizontal cyclic loading. The geometry of the 

building façade is reported in Fig. 10a. Beside the masonry self-weight, an additional gravity load is 

applied at each floor level, resulting in 248.4 kN for the first floor and 236.8 kN for the second floor. 

The reported crack pattern, which is related to cyclic loading is shown in Fig. 10b. 

The façade is discretized by square, 230 mm-side elements, for a total of 616 linear plane stress 

quadrilateral elements with reduced integration, labelled CPS4R according to Abaqus nomenclature 

(Fig. 10c). Three other mesh discretization are addressed for a mesh sensitivity study, namely two 

structured mesh with 115 mm- and 300 mm- side elements, and an unstructured mesh with elements 

having average side equal to 230 mm. The lintels are assumed to behave elastically (white elements in 

Fig. 10c), as no cracking is expected here, while the ENT material is used elsewhere. In the numerical 

simulations, first the gravity load is applied and then kept constant; in a second step, a horizontal load 

is applied and monotonically increased until collapse is attained (as described in section 2.4). 

         

Fig. 10. Façade of the “Pavia building” [25]: a) Geometry, b) Experimental damage pattern, c) Numerical model 
discretization. 

Considering the mesh with 230 mm-side elements, an average compressive stresses of 0.4 – 0.5 MPa 

is computed under gravity load (Fig. 11), similarly to what reported in [30]. Slightly higher values are 

computed locally close to lintels. However, no important cracking is found in the spandrels due to the 

presence of elastic lintels (compare with Fig. 7 b in section 3.1.2). 

 



 

Fig. 11. “Pavia experiment”, simulation of gravity load: Principal stresses in masonry: a) gravity load, b) horizontal load 
100 kN. 

The capacity curve up to the limit load is computed using the algorithm presented in section 2.4, by 

using an initial guess, 𝛥𝛥𝛥𝛥 = 50 𝑘𝑘𝑁𝑁 and a tolerance, 𝛥𝛥𝑡𝑡𝑡𝑡𝑡𝑡 = 2𝑘𝑘𝑁𝑁. The limit load is found to be 178kN, 

corresponding to reaching the compressive strength in the right pier. 

The solutions obtained at two values of the lateral load F are reported in Fig. 13a, b. The first one 

corresponds to a lateral load of 100 kN. In these conditions the structure behaves nearly elastically. 

Slight cracks are noted in the ground piers due to heel tension and some others in the connecting 

spandrel of the first floor. The second value of F corresponds to the limit load, here estimated, 178 

kN. It exceeds the experimental peak load by 18%, but this can be motivated considering that a 

monotonic numerical capacity curve is compared with the experimental envelope of the cyclic load-

displacement diagram. At this load, the minimum (compressive) principal stress is about 3 MPa, 

corresponding to the reported strength in compression of masonry. The lateral load is supported nearly 

entirely by the central and the right pier, while at this stage the left pier is nearly completely damaged. 

 

Fig. 12. Comparison of the numerical capacity curves obtained after mesh variations with the envelope of the experimental 
cyclic load-displacement curve (the dashed part of the curves correspond to violation of the compressive strength criterion). 
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Upon mesh variation the capacity curve based on the ENT material model remains nearly unchanged. 

The computed displacements are found to slightly increase up to 1% within 70% of the limit load, and 

up to 5% as the collapse load is approached. This has nearly no impact for practical applications. The 

most important difference is observed on the computed maximum principal compressive stress, which 

tends to increase at the corner regions upon mesh refinement. The compressive strength of 3 MPa is 

reached at 190 kN, 178 kN and 150 kN lateral load, depending on the mesh dimension (300 mm, 230 

mm, 115 mm), Fig. 13.  

 

Fig. 13. Pavia building: principal stresses in the ENT material at a lateral load of: a) 178kN (230 mm mesh)), b) 150 kN 
(115 mm mesh). 

3.2 Ground settlement analysis 

3.2.1 2D wall affected by ground settlements 

The aim is now to evaluate the ability of the ENT model to simulate the effects of ground settlements 

at the base of a masonry wall. Consider a wall 3.2 m long, 0.6 m deep and 0.1 m thick, resting over a 

strip foundation. Only the central part of the foundation, 1.2 m long, is affected by ground settlements 

(Fig. 14). The modulus of elasticity of masonry is assumed 1020 MPa. The panel is discretized with a 

mesh 75 x 75 mm2. The wall is analyzed under gravity load, and ground settlements are simulated by 

removing any constraint at the nodes of the central region. 

 

Fig. 14. Masonry wall scheme. 

The numerical simulations show that a relieving arch occurs (Fig. 15), as commonly observed in 

unreinforced masonry structures. At the ends of the region experiencing settlements, higher inclined 

compressive stresses occur. In the rest of the model, which is unaffected by settlements, only vertical 

compressive stresses develop. 
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Fig. 15. Masonry wall experiencing ground settlements: principal stresses from the ENT simulation. 

The formation of the arch-like compressive stress path has a marked effect on the distribution of the 

displacement field. In fact, compared to the elastic case (Fig. 16a), where settlement affect also the 

neighbouring regions, in an ENT wall displacement are localized beneath the internal arch (Fig. 16b). 

The zone above the arch experiences reduced displacements, while the rest of the model is virtually 

undeformed. This is in line with the schemes proposed by Mastrodicasa [31] regarding the effects of 

ground settlements in masonry walls (Fig. 16c). 

          

    

Fig. 16. Masonry wall experiencing ground settlements: contours of the displacement a) in the elastic model or b) in the 
ENT model; c) Schematic crack pattern after Mastrodicasa [31]. 

3.2.2 Intersecting walls experiencing ground settlements 

This case is the 3D extension of the previous one. The geometry of the intersecting walls is created 

through a rotation of 90° of one of the walls about its symmetry axis (Fig. 14).  

A small modification is carried out to the FE code by adopting shell elements. The structure of the 

code remains the same, the only change being that the damage values (or material densities) are 

computed at different section points along the shell thickness (5 points, in the application shown 

hereafter). Through these modifications, it is possible to obtain ENT solutions for plane structures in 

3D configurations.  



In the present example, the domain is discretised with 3D shell elements, labelled S4R in Abaqus 

Standard. Similarly to what observed in the 2D case, an arch-like stress flow (Fig. 17) is observed in 

both walls in the region affected by ground settlements (Fig. 18). 

 

Fig. 17. Intersecting walls experiencing ground settlements: principal stresses. 

 
Fig. 18. Intersecting walls experiencing ground settlements: contours of the displacement. 

3.2.3 Masonry façade experiencing ground settlements  

The example of the Pavia case is here resumed, by assuming a hypothetical inelastic settlement over 

the central support. The aim is to test the formation of the internal arch mechanism which is typically 

observed in masonry structures. An inelastic settlement of 2 mm is prescribed at the central pier, 

while the boundary conditions remain fixed in the two other piers. A similar test was performed 

previously also in [16, 32]. Three types of structured mesh dimensions are tested, 300 mm, 230 mm, 

and 115 mm, in addition to a 230 mm unstructured mesh (Fig. 19).  



        
     (a)       (b) 

              
   (c)          (d) 

          
   (e)          (f) 

            
   (g)            (h) 

Fig. 19. Masonry façade with central settlement: left column – principal stresses; right column – void 

regions (elements in blue). a, b) mesh size 300 mm, c, d) mesh size 230 mm, e, f)  mesh size 230 mm 

(unstructured), g, h) mesh size 115 mm.The numerical results show that the arch-like stress flow 



deviates to increase the load in the solid masonry regions between the openings (Fig. 19). The void 

regions which can be related to the crack pattern are localized below the arch, as well as in the 

spandrels under the windows. Upon mesh refinement the observed settlement mechanism remains the 

same, with the formation of the internal arch and the internal load-redistribution. Differences are 

mostly related to the extension of the void regions (Fig. 19). In particular, in the unstructured mesh a 

slightly non symmetric distribution of damage can occur. This, however, could be kept under control 

by discretizing with elements of similar size or further mesh refinement. After the redistribution of the 

loads due to the settlements, the internal pier is mostly loaded by the weight of the first floor and by 

its self-weight. Accordingly, the maximum stress in the outer piers is nearly three times higher than 

that under self-weight only. In particular, higher values of stresses are noted at the corner regions 

when undergoing homothetic mesh refinement (Fig. 19c, e). Depending on the quality of masonry 

(compressive strength), this can become an important issue [33]. 

3.2.4 Experimental settlement-induced cracks in a scaled masonry façade 

The experiment carried out by Giardina et al. [34, 35] on a 1/10th scaled masonry façade subjected to 

tunnel-induced settlement is adopted to test the ENT material model. The façade is 1428mm long, 

1186mm deep and 50mm thick. The upper openings are 126mm wide, while the one in the ground are 

336 mm wide (Fig. 20a). Wooden lintels support masonry atop the openings. The façade is supported 

by steel beam, 1700 mm long. The beam is fixed for 115mm, while roller supports have been placed 

at the left end of the base and below the right door (Fig. 20b). The point loads reported by Giardina in 

[34] are applied to simulate floor loads. The experimental crack pattern shows cracks distributed in 

part of the façade at the right side of the central support (Fig. 20). The left part of the façade is 

reported to move and rotate almost rigidly, with no major cracks appearing [34] (Fig. 20b). 

   

Fig. 20. Façade tested by Giardina et al. [34, 35]: a) Geometry of experimental setup [mm], b) Reported damage pattern at 
2.5mm. 
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The numerical model developed in the present study has 3495 elements, with sides having a length 

between 17 and 20mm. Two element types are used: B31 for the beam and CPS4R for the wall, 

according to Abaqus’ nomenclature. The present simulation assumes plane stress conditions; beam 

and plane stress elements are supposed to be tied. 

The simulation results are reported in Fig. 21 The principal stresses show the presence of internal 

arches above the main openings (Fig. 21a). The crack pattern is relatively well matched by the void 

regions in the right part of the model (Fig. 21b), whereas in the left part the predicted cracks are more 

extended than in the experiment. Indeed, a no-tension material model is expected to predict more 

damage with respect to the cracks observed in masonry constructions, as the tensile strength is 

nonzero although small. 

In terms of kinematics, there is a nearly perfect matching regarding the vertical displacement of the 

monitored point (Fig. 22a). In the horizontal direction, the agreement is good up to 5mm, whereas, as 

the load increases, the discrepancy between predicted and measured displacements becomes more 

significant (Fig. 22b). 

 

Fig. 21. Façade tested by Giardina et al. Simulation of a 2.5mm settlement: a) Principal stresses, b) Void regions (in blue). 

 

Fig. 22. Façade tested by Giardina et al.: a) Vertical displacement applied of point A vs vertical displacement at point B; (b) 
vertical displacement applied at point A vs horizontal displacement at point C. 

 



4 Conclusions 

The implementation of the Elastic No-Tension (ENT) material model within the framework of 

Sequential Linear Analysis has been presented. The proposed implementation aims at solving 

structural problems related to masonry structures. The limited number of parameters required by the 

ENT model makes it very appealing for the analysis of unreinforced masonry constructions compared 

to more refined mathematical models, since data and resources for experimentation are limited. The 

ENT model can predict collapse loads computed by means of Rigid No-Tension models with no a 

priori assumption on the kinematics. Also, it can be conveniently used to deal with ground 

settlements.  

The implementation is developed through the combined application of a user subroutine in Abaqus, 

Python and Matlab scripts. In the SLA framework, a number of elastic analyses are launched 

sequentially. During this step-by-step process, the isotropic material is substituted with an orthotropic 

one, which exhibits negligible stiffness along the material axis (or axes) where a positive principal 

stress is found. The equivalent orthotropic material shares the same symmetry directions with the 

principal stresses. Convergence of this sequential process is achieved when the strain energy of the 

system finds a plateau. 

A number of benchmark cases, considering dead and live vertical loads, lateral loads and ground 

settlements, have been analysed to assess the capabilities of the proposed model. In the case of lateral 

loads, the capacity curves match the experimental curves satisfactorily up to the collapse load. When 

dealing with horizontal loading, it has been shown that a finite strength in compression is necessary in 

order to account for the phenomenon of toe crushing. Furthermore, this can account for the prediction 

of limit displacements by interrupting the simulations when a given value of the compressive stress is 

found somewhere in the model. In the case of ground settlements, the distribution of cracking strains 

mostly agrees with the crack pattern at the onset of collapse, whereas in service conditions the 

simulation predicts cracking more severe than what experimentally observed. This is likely to be 

related to the assumption that the material has no tensile strength. The numerical predictions of the 

capacity curves were found to be quite unaffected by mesh refinement and layout, which confirms the 

inherent robustness of the proposed model. As expected, finer meshes can be conveniently adopted to 

increase the accuracy in the approximation of the stress field. 

Based on the above observations, the proposed approach can be conveniently used to preliminary 

investigate the behaviour of masonry constructions, especially historical buildings with negligible 

tensile strength.  

Future developments of the research will be focused on the implementation of the ENT model for 3D 

solids, as well as on a full coding through Fortran subroutines in Abaqus, to avoid the need for 

auxiliary scripts in order to speed up the simulations. 
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