

Permanent link to this version

http://hdl.handle.net/11311/1226012

RE.PUBLIC@POLIMI
Research Publications at Politecnico di Milano

Post-Print

This is the accepted version of:

L. Capra, A. Brandonisio, M. Lavagna
Network Architecture and Action Space Analysis for Deep Reinforcement Learning Towards
Spacecraft Autonomous Guidance
Advances in Space Research, Published online 01/12/2022
doi:10.1016/j.asr.2022.11.048

The final publication is available at https://doi.org/10.1016/j.asr.2022.11.048

Access to the published version may require subscription.

When citing this work, cite the original published paper.

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://dx.doi.org/10.1016/j.jasr.xxxx.xx.xxx
0273-1177/© 2022 COSPAR. Published by Elsevier Ltd All rights reserved.

Available online at www.sciencedirect.com

Advances in Space Research xx (2022) xxx-xxx
www.elsevier.com/locate/asr

Network architecture and action space analysis for deep reinforcement
learning towards spacecraft autonomous guidance

Lorenzo Capraa,∗, Andrea Brandonisioa, Michèle Lavagnab

aPhD Student, Aerospace Department, Politecnico di Milano, Milan, Via La Masa 24, 20156 Italy
bFull Professor, Aerospace Department, Politecnico di Milano, Milan, Via La Masa 24, 20156 Italy

Abstract

The growing ferment towards enhanced autonomy on-board spacecrafts is driving the research of leading space agencies. Concurrently, the
rapid developments of Artificial Intelligence (AI) are strongly influencing the aerospace researches, regarding on-orbit servicing (OOS) activities
above all. Within the wide spectrum of OOS and proximity operations, this work focuses on autonomous guidance of a chaser spacecraft for
the map reconstruction of an artificial uncooperative target. Adaptive guidance is framed as an active Simultaneous Localization and Mapping
(SLAM) problem and modeled as a Partially Observable Markov Decision Process (POMDP). A state-of-the-art Deep Reinforcement Learning
(DRL) method, Proximal Policy Optimization (PPO), is investigated to develop an agent capable of cleverly planning the shape reconstruction
of the uncooperative space object. The guidance algorithm performance are evaluated in terms of target map reconstruction, by rendering the
space object with a triangular mesh and then considering the number of quality images for each face. A major differentiation in the algorithm
implementation is provided by the employment of either a discrete or a continuous action space. The main differences between the two cases
are critically commented and the benefits of a continuous action space are highlighted. The proposed model is trained and then extensively
tested, always starting from random initial conditions, to verify the generalizing capabilities of the DRL agent, by means of the neural network
architecture. On this note, a comparison analysis between a Feed-forward Neural Networks (FFNN) and a Recurrent Neural Network (RNN) is
performed. The better performing model is retrieved from the aforementioned comparisons, and its robustness and sensitivity are sharply analyzed.
This work confirms and develops further the applicability of DRL techniques for autonomous guidance, highlighting in a critical way its possible
implementation in future close proximity scenarios.
© 2022 COSPAR. Published by Elsevier Ltd All rights reserved.

Keywords: on-orbit servicing; relative dynamics; reinforcement learning; imaging; shape reconstruction

1. Introduction1

Spacecraft autonomy is one of the most critical problems2

that nowadays are driving the research of leading space agen-3

cies, since an enhanced spacecraft independence would allow4

for reliable, cost-effective, lower risk services, and for much5

more flexible missions. Autonomous flight operations are par-6

∗Corresponding author: Tel.: +39-333-824-7339;
Email addresses: lorenzo.capra@polimi.it (Lorenzo Capra),

andrea.brandonisio@polimi.it (Andrea Brandonisio),
michelle.lavagna@polimi.it (Michèle Lavagna)

ticularly attractive in the context of on-orbit servicing (OOS) 7

activities (Tatsch et al., 2006), which refers to all those opera- 8

tions in space that a servicer conducts on another resident space 9

object (RSO), called client. The client may then be cooperative, 10

meaning that it provides useful information to the servicer di- 11

rectly, or to ground-stations, thus facilitating the operations, or 12

it could be non-cooperative, when it does not share any signif- 13

icant information with the servicer. Among OOS activities, the 14

spectrum of proximity operations studies has constantly grown 15

in the last decade, but not even remotely at the same rate of 16

modern Machine Learning (ML), and specifically Reinforce- 17

ment Learning (RL). The field of Artificial Intelligence (AI) is 18

2 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

moving a lot faster than space research, so the presented work19

aims at shrinking this gap, by applying state-of-the-art RL tech-20

niques to understand the feasibility of these different mathemat-21

ical approaches, with the aim to improve spacecraft autonomy.22

In the last years, several AI tools have been applied in the23

Guidance, Navigation and Control (GNC) chain, to help au-24

tomatizing some spacecraft operations or exploiting higher per-25

formances in classical problems. Concerning the navigation26

technology, for example, machine learning have greatly pushed27

the development of vision-based techniques especially for lu-28

nar landing problem. Emami et al. (2019) and Downes et al.29

(2020) exploit convolutional neural networks (CNN) to detect30

lunar craters in camera images. Furfaro et al. (2018) exploit31

deep learning to automatize the landing, while Silvestrini et al.32

(2022), taking advantage of CNN crater detector, design an ab-33

solute lunar landing navigation algorithm. Some very interest-34

ing and promising results have been achieved also exploiting35

neural networks to enhance the spacecraft guidance and con-36

trol in relative motion scenarios for safe autonomous maneu-37

vers between formation flight satellites (Silvestrini & Lavagna,38

2021b), and distributed system reconfiguration (Silvestrini &39

Lavagna, 2021a). In (Sullivan & Bosanac, 2020), reinforce-40

ment learning is exploited to design, with low-thrust propul-41

sion, a multi-body system transfer trajectory. Instead, the first42

formulation and design of a spacecraft guidance as a Partially43

Observable Markov Decision Process (POMDP) problem was44

proposed by Pesce et al. (2018) and then developed further by45

Chan & Agha-mohammadi (2019) and Piccinin et al. (2022),46

who adopted Reinforcement Learning (RL) to plan the trajec-47

tory of a chaser spacecraft for small-bodies imaging. Major48

contribution to the application of RL techniques is given by49

Gaudet et al. (2020a), Gaudet et al. (2020b) and Hovell & Ul-50

rich (2021), where planetary landing and close proximity op-51

erations are investigated. In Brandonisio et al. (2021), DRL52

techniques were firstly exploited for the shape reconstruction53

of artificial objects.54

Within this context, this and its previous works want to de-55

velop an innovative approach for spacecraft trajectory path-56

planning around uncooperative and unknown space objects, for57

the shape and map reconstruction in a relative motion sce-58

nario. Indeed, the spacecraft shall autonomously explore the59

surrounding environment and plan the following actions to take.60

Thus, the problem falls in the active Simultaneous Localization61

and Mapping (SLAM) (Durrant-Whyte & Bailey, 2006) frame-62

work, since the planning operations is also performed. SLAM63

may be phrased as a POMDP, which entails an agent interact-64

ing with the environment and exchanging information with it.65

The goal is to solve for the decision-making policy of the agent,66

and to do so Deep Reinforcement Learning (DRL) techniques67

are employed. Reinforcement Learning (RL) algorithms are68

a powerful tool when dealing with decision-making problems69

and the combination with Neural Networks (NN) in DRL al-70

lows to improve the generalizing capabilities of the resulting71

policy, and to solve more complex problems characterized by72

high-dimensional, continuous state and action spaces and par-73

tial observability (Sutton & Barto, 2018). This approach is74

preferred to fuzzy logic or evolutionary algorithm, especially75

because DRL and NNs are more suitable for prediction prob- 76

lems, and in dealing with continuous data environment. More- 77

over, the capability of neural networks to generalize their be- 78

haviour and follow non prescribed rules has been considered 79

determinant for the methodology choice. Brandonisio (2019- 80

2020) and Capra (2020-2021) are regarded as reference points 81

for this study and the aim of this work is to take a step forward 82

in the autonomous mapping of uncooperative artificial space 83

objects problem, advancing some of the current research lim- 84

itations, exploring more complex network architectures, juxta- 85

posing different action space dimensions of the same method, 86

confirming and validating the applicability of DRL techniques 87

in such context. A state-of-the-art Deep Reinforcement Learn- 88

ing algorithm, Proximal Policy Optimization (PPO), developed 89

by Schulman et al. (2017), is investigated to solve for the chaser 90

decision-making policy, mapping the input observations to the 91

output action to take. Extensive training and testing campaigns 92

are carried out, to verify the models used and the obtained re- 93

sults, comparing different implementations performance level. 94

The problem architecture has already proved to be feasible in 95

Brandonisio (2019-2020), therefore this work wants to analyze 96

directly the DRL performance, in terms of algorithm imple- 97

mentation and neural networks model. In particular, this paper 98

is focused on the examination of two different neural network 99

models, feed-forward (FFNN) and recurrent (RNN), aiming to 100

understand the advantages and disadvantages of both in terms 101

of training performance and stability. Moreover, this work also 102

deeply analyses the DRL action space distinguishing between 103

agents employing either discrete or continuous action spaces, 104

as developed by Capra (2020-2021). To complete the study, the 105

main DRL model is tested in order to assess the robustness and 106

sensitivity of the trained agent to unseen conditions and scenar- 107

ios. 108

1.1. Paper Overview 109

The sections of this work are structured as follows: in 110

Sec. 2, the overall tool architecture and scenario are presented; 111

in Sec. 3, the autonomous guidance problem is defined as a 112

Partially Observable Markov Decision Process (POMDP); in 113

Sec. 4, the DRL algorithm used is presented and explained, 114

while Sec. 5, declines the problem in the different DRL ac- 115

tors. After this overview, useful to understand the base of the 116

work, in Sec. 6 and Sec. 7, the two paper pillars, the compar- 117

ison between different network models and algorithm action 118

space models are presented. At last, in Sec. 8 some robust- 119

ness and sensitivity analysis performed on the trained model 120

are discussed. 121

2. Problem statement 122

The goal of this research is the autonomous path-planning 123

strategy for the shape reconstruction of an uncooperative and 124

unknown space object, in a close proximity relative motion sce- 125

nario. The development of an autonomous guidance algorithm 126

depends on the overall GNC architecture, which is described 127

in Fig. 1. Note that the image processing and pose estimation 128

Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx 3

block are out of the scope of this work, which considers their129

outputs as the necessary information for the development of the130

autonomous guidance algorithm. As such they have not been131

implemented.132

Fig. 1: Fly-around planning architecture.

The problem scenario is defined to have as inputs to the guid-133

ance block the relative motion between the chaser and the target134

and the attitude of the uncooperative object. These may come135

from image processing and pose estimation techniques, which136

may work with a vision-based system. This could be devel-137

oped by either implementing visible-only (VIS) imagery, or by138

employing both visible (VIS) and thermal infrared (TIR) imag-139

ing to improve the navigation accuracy. The latter has been140

proposed by Civardi et al. (2021) in the framework of small-141

bodies, and it demonstrated the effectiveness of combining im-142

agery from different bands. This allows to avoid problems of143

illumination condition typical of VIS-only systems. The work144

here developed considers and discusses the RL formulation in145

both cases, as will be deeply described in Sec 5.3. The imple-146

mentation of the navigation system is out of the scope of the147

presented work, that only focuses on the development of the148

guidance algorithm; therefore, the information regarding rela-149

tive motion and target attitude will be assumed to be known at150

each step. The image acquisition, for this particular problem151

statement, is not only needed by the navigation block, but can152

also be used to reconstruct the shape of the unknown object.153

In order to do so, different techniques can be considered, such154

as stereophotoclinometry (SPC) developed by Gaskell (2001).155

To correctly define the problem, the target surface is subdivided156

into maplets, via triangular mesh, and a visibility model is de-157

fined to constantly compute the relative orientation between the158

cameras on the chaser and the target to understand which faces159

are illuminated (if necessary) or in the cameras field of view160

(FOV). With a sufficient number of images for each face, the161

target map is considered complete. A better clarification on162

how the map is reconstructed is given in Sec. 5.3.163

So, the overall objective of the problem, independently164

from the resolution strategy adopted, is a spacecraft that au-165

tonomously plans the trajectory to be followed to efficiently 166

reconstruct the shape of the uncooperative object. Machine 167

learning, and specifically Reinforcement Learning, can be ex- 168

ploited to model the guidance block and solve for the spacecraft 169

decision-making behavior, taking advantage of all its benefits, 170

that are discussed in the next sections. 171

3. Autonomous guidance 172

The autonomous exploration and trajectory planning in an 173

unknown environment is formulated as an active Simultaneous 174

Localization and Mapping (SLAM) problem, in which an agent 175

builds a map of its surroundings while concurrently estimating 176

its positions and planning the next actions to take. These prob- 177

lems can be phrased as a Partially Observable Markov Decision 178

Process (POMDP) (Kurniawati, 2021). The next section aims 179

at developing the mathematical tools necessary to understand 180

the problem and how it is solved. 181

3.1. Partially Observable Markov Decision Process 182

A Markov Decision Process (MDP) is a problem formulating 183

an agent decision making in a stochastic and sequential envi- 184

ronment. The essence of the model is that the agent inhabits an 185

environment that changes accordingly to the actions taken, and 186

the state of this environment affects the reward signal as well as 187

the probability to transition to a certain new state. A POMDP is 188

a MDP with state uncertainty, meaning the agent cannot know 189

the true state, but only a belief state using observations. This 190

formulation is valid whenever the agent senses the environment 191

via on-board sensors, which inherently introduce errors in their 192

measurements, or when it may not be able to observe all the 193

state variables describing the environment. 194

A POMDP is characterized by a 6-tuple (S, A, R, T, Ω, O): 195

• S is the space of all possible states s in the environment; 196

• A is the space of all possible actions a that can be taken in 197

all the states of the environment; 198

• R is the reward function, guiding the action selection to 199

maximize it; 200

• T (sk+1| sk, ak) is the transition function governing the 201

probability of moving from one state to the next, given 202

the current state and an action at timestep k; 203

• Ω is the space of possible observations; 204

• O (ok+1| ak, sk+1) is the probability of making a particular 205

observation, taking an action that leads to a particular new 206

state. 207

This type of problems is quite complex to solve and may 208

become computationally intractable if not reduced to a simpler 209

MDP. This can be done including the history h, that plays the 210

role of an archive of past actions and observations. The new 211

formulation, known as belief-space MDP, is described by a 4- 212

tuple (B, A, R, T): 213

4 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

• B is the belief space, where the belief is defined as b =214

p(s|h), so it is the probability of being in a certain state s215

after the history h.216

Solving a POMDP means computing a policy π, which rep-217

resents the mapping function from states s to actions a that the218

agent is employing at each step k. This decision-making fea-219

ture is said to be ”optimal” if the agent concurrently maximizes220

the reward function, which mathematically expresses the prob-221

lem objectives. Thus, maximizing the reward signal received is222

equivalent to reaching the goal set by the designer, depending223

on the problem at hand. In case of an infinite horizon problem,224

the optimal policy is defined as in Eq. 1:225

π∗ = argmax
π

Eπ

 ∞∑
k=0

γkR(ak, bk)

 (1)

where γ ∈ [0, 1] is the discount factor, introduced as a mech-226

anism to control how myopic or short-sided is the agent, ex-227

ponentially decaying the effect of rewards far away in time. R228

represents indeed the reward signal, depending on the action a229

and belief b at step k.230

Considering the proposed work, a direct link between the231

elements describing a POMDP and the autonomous guidance232

problem characters can be highlighted:233

• the agent is the chaser spacecraft, interacting with the sur-234

rounding environment, governed by the problem dynamics235

and visibility model, discussed in Sec. 5;236

• the belief space b is computed from the sensors measure-237

ments, passed to the image processing and pose estimation238

steps;239

• the action space a is the result of the available actuators240

activity, such as the force exerted by switching on some241

spacecraft thrusters;242

• the reward function strictly depends on the objectives, so243

in this case the shape reconstruction of the uncooperative244

target.245

4. Deep Reinforcement Learning246

Reinforcement Learning is a widely employed tool for solv-247

ing MDPs (Sutton & Barto, 2018), and its combination with248

Neural Networks, pioneered by Mnih et al. (2015), for function249

approximation, allows to solve many complex problems char-250

acterized by high-dimensionality and partial observability. A251

state-of-the-art Deep Reinforcement Learning algorithm, Prox-252

imal Policy Optimization (PPO) (Schulman et al., 2017), is ex-253

amined to solve for the spacecraft decision-making policy.254

4.1. Proximal Policy Optimization255

PPO is a policy-gradient method, belonging to the Actor-256

Critic family (Mnih et al., 2016). It outclasses most of the other257

DRL algorithms in many typical benchmark problems, because258

of its improved training stability. It builds up from the Trust259

Region Policy Optimization (TRPO) method (Schulman et al., 260

2015), retaining its reliability and data efficiency, but then han- 261

dles the loss function in a much simpler and well-planned fash- 262

ion. Starting from the TRPO loss function, which exploits the 263

probability ratio, as in Eq. 2, between the policy πw at two sub- 264

sequent timesteps, PPO increases training robustness by clip- 265

ping the objective function and limiting the possible update, so 266

that the policy does not change drastically. The simple expres- 267

sion for the PPO loss function LCLIP(w) is reported in Eq. 3. 268

pk(w) =
πw (ak |sk)
πw (ak−1|sk−1)

(2)

LCLIP(w) = Êk
[
min (pk(w) , clip (pk(w), 1 − ϵ, 1 + ϵ))

]
Ak

(3)

In both Eq. 2 and Eq. 3, w refers to the networks parame- 269

ters (i.e. their weights and biases). The parameter ϵ indicates 270

the clipping factor, while Ak is the advantage function, retained 271

from the Advantage Actor Critic (A2C) (Mnih et al., 2016) for- 272

mulation and representing how better a selected action is com- 273

pared to all the others at a given state. It is simply computed 274

as the difference between the discounted reward signal r and 275

the state value function V , computed by the critic network and 276

depending on the current state sk. This concept is described in 277

Eq. 4. 278

A(sk, ak) =

 T∑
j=k

γ j−kr(sk, ak)

 − V(sk) (4)

In Eq. 3 the clipping function clip limits the probability ratio 279

to be inside the range define by 1 + ϵ and 1 − ϵ. Therefore, 280

thanks to the objective function clipping, multiple epochs of 281

gradient descent can be run on the sample data without causing 282

destructively large policy updates, and squeezing every ounce 283

of information it can learn from. 284

Common practice in PPO algorithms is the addition of an en-
tropy regularization term multiplying the state sk to the clipping
objective function, as in Eq. 5, to ensure a sufficient exploration
level during training:

LPPO(w) = LCLIP(w) + c2S (πw)sk (5)

where S (πw) is the entropy bonus term, that is function of the 285

current policy, and c2 a scalar multiplying factor that determines 286

the influence of the entropy term on the overall loss function. 287

The critic network is itself trained by means of optimizing 288

a simple mean squared error (MSE) objective function, defined 289

in Eq. 6. 290

Lcritic =

N∑
i=1

V(si
k) −

 T∑
j=k

γ j−kr(si
j, a

i
j)

2

(6)

To avoid confusion, in the previous equation, the subscript 291

k stands for the considered time-step instant; while the super- 292

script i stands for the current batch used for the loss function 293

computation. Regarding the practical implementation of the 294

Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx 5

method, a number of hyperparameters need to be introduced295

and detailed. For an in depth description of all the parameters296

refer to the original PPO paper (Schulman et al., 2017). The297

main ones are now discussed:298

• the discount factor γ is the one presented in Sec. 3.1, ruling299

how farsighted is the agent;300

• the Generative Adversarial Estimator λ also contributes to301

reward shaping;302

• the clipping factor ϵ corresponds to the acceptable thresh-303

old of divergence between the old and new policies during304

gradient descent updating. Setting this value to a small305

number will result in more stable updates, but will also306

slow the training process;307

• the entropy coefficient β acts as a regularizer and prevents308

premature convergence which in turn may prevent suffi-309

cient exploration;310

• the batch size corresponds to how many experience time-311

steps are used for each gradient descent update;312

• the buffer size corresponds to how many experiences313

should be collected before gradient descent is performed314

on them all. This should be a multiple of the batch size,315

otherwise a batch is truncated and may poorly affect the316

optimization step. Typically larger buffer sizes correspond317

to more stable training updates;318

• the number of epochs is the number of passes through the319

experience buffer during gradient descent. The larger the320

batch size, the larger it is acceptable to make this. De-321

creasing this will ensure more stable updates, at the cost322

of slower learning.323

A brief analysis of the algorithm working principles is now324

commented and the pseudo-code for the PPO algorithm is pre-325

sented in Algorithm 1.

Algorithm 1 Proximal Policy Optimization

1: Initialize actor and critic networks parameters w0, ϕ0
2: Initialize batch
3: while batch step i ≤ batch size do
4: Collect set of trajectories Tk by running policy πk =

π(wk) in the environment
5: Compute rewards Rk

6: Compute Advantages Ak based on the current value Vk

7: end while
8: Compute the probability ratio pk(wk)
9: Update the policy by maximizing the clipped objective

function via stochastic gradient descent
10: Update the value function via regression on MSE

326

The algorithm loops until it has collected a certain batch size327

of data, obtained through the interaction of the agent with the328

environment. At each step it stores a set of observations, actions329

taken by the agent, rewards output by the surrounding environ- 330

ment and the advantages values. Once it retrieves a number of 331

transitions specified by the batch dimension of the experience 332

buffer, the probability ratio and consequently the loss functions 333

for both the actor and the critic are computed as in Eq. 2, Eq. 3 334

and Eq. 6. With these losses the two neural networks are then 335

updated via backpropagation with an Adam optimizer. This way 336

the networks adjust their parameters to better fit the problem 337

objectives. 338

5. Reinforcement Learning framework 339

The work proposes an innovative decision-making process 340

to autonomously plan the pseudo-optimal guidance around an 341

uncooperative and unknown space object through Deep Rein- 342

forcement Learning. This is coupled with a pre-processing 343

phase, representing the navigation part of a GNC algorithm, 344

in which information coming from the external environment, 345

sensors and the object conditions are elaborated to estimate 346

the state. It is worth to underline that the navigation process 347

is given for granted, directly outputting the state information. 348

This is then fed to the autonomous guidance agent which crafts 349

the control policy to maximize the reward, affecting the envi- 350

ronment and all the others information providers. In the next 351

sections, a detailed and critical description of all the architec- 352

ture components is presented, according to a DRL framework. 353

Indeed, three main characters emerge from the decision-making 354

problem just reviewed: the state, the agent policy, and the re- 355

ward function. 356

5.1. State space model 357

The state space model is the set of information coming from 358

the environment. For the scope of this work, it is assumed that 359

the agent perfectly knows the state variables at each timestep, 360

while in practice these data are measured with sensors, inher- 361

ently introducing precision errors. The state vector fed to the 362

agent should be tailored in such a way that it contains only es- 363

sential information for the decision-making process, to build a 364

policy capable of selecting the appropriate action in every con- 365

dition the agent may find itself. Eq. 7 defines the state model 366

used for this work. 367

S =

d
v
θ
θ̇

 =

x
y
z
ẋ
ẏ
ż
θx

θy
θz
θ̇x

θ̇y
θ̇z

(7)

Two main factors have been considered in order to identify 368

the state space information: the possibility of estimating these 369

6 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

quantities by means of on-board instruments (fundamental for370

an autonomous spacecraft) and the compatibility of these data371

to ease the agent learning in identifying the close proximity sce-372

nario. The vector in Eq. 7 contains the relative motion (position373

and velocity vectors d and v) between the chaser and the target,374

together with the attitude information about the uncooperative375

space object, in terms of angles θ and angular velocities θ̇. The376

selected variables are exactly the ones that describes the rela-377

tive pose between the two objects, under the assumption of the378

chaser spacecraft always pointed towards the object. As a con-379

sequence, this state dictates how the surrounding environment380

changes over time.381

The orbital dynamics of the system, describing the relative382

translational motion between the spacecraft and the object, is383

based on the linearized eccentric model proposed by Tillerson384

Inalhan et al. (2002), reported in Eq. 8 in the Local Vertical Lo-385

cal Horizontal (LVLH) reference frame centered in the target:386
ẍ = 2µ

r3 x + 2ωẏ + ω2x + ax

ÿ = −µr3 y − 2ωẋ − ω2y + ay

z̈ = −µzr3 + az

(8)

where r in this case is the radius of the target orbit, µ is the
primary attractor gravitational parameter, andω = ḟ , in Eq. 9, is
the time derivative of the target true anomaly and it is expressed
as follows:

ω = ḟ =
n(1 + e cos f)2

(1 + e2)
3
2

(9)

with f being the target true anomaly, e its orbit eccentricity, and387

n =
√
µ

r3 the mean motion.388

In particular, note the relative motion between the two ob-389

jects is directly affected by the agent actions that influence the390

set of equations by means of an acceleration vector [ax, ay, az].391

As for the target object attitude dynamics, Euler equations
are used, assuming the small angles approximation and express-
ing them in the LVLH frame, as in Eq. 10.

Ixθ̈x + n(Iz − Iy − Ix)θ̇y + n2(Iz − Ix)θx = 0
Iyθ̈y + n(Ix + Iy − Iz)θ̇x + n2(Iz − Ix)θy = 0
Izθ̈z = 0

(10)

with Ix, Iy, Iz being the principal components of inertia of the392

target.393

This equation refers specifically to the target rotational mo-394

tion, which is exploited to retrieve the orientation of the object395

mesh faces at each time step. Then, from the normal vector396

to each face, it is possible to evaluate which parts of the target397

are in visibility of the cameras and consequently build the map.398

More on this is later explained in Sec. 5.3.399

As already underlined, please note that this work is based400

on the main assumption of spacecraft cameras always pointed401

towards the target center of mass. Therefore, the chaser attitude402

dynamics is neglected, simplifying the formulation of the al-403

ready quite complex problem. A small remark should be made404

regarding the Euler equations formulation for the target: since405

the object could ideally be unknown, the necessity of finding its406

center of mass to place the principal axis frame may be prob- 407

lematic. At the current stage, since the main concern is proving 408

the applicability of the proposed architecture, this assumption 409

seems reasonable, but should be kept in mind when refining 410

further the model. 411

In conclusion. as explained in Sec. 3.1, the environment 412

is only partially observable, therefore the here defined state 413

space corresponds to the POMDP observation space, represent- 414

ing only part of the overall information that would be needed to 415

reconstruct the full environment. 416

5.2. Agent policy 417

The agent interacts with the surrounding environment, re- 418

ceiving the state observations and a reward signal and selecting 419

accordingly the action to take. It is characterized by its pol- 420

icy, which governs the decision-making strategy adopted. As 421

explained in Sec. 3.1, the goal is to optimize the policy π, to 422

maximize the reward function. In the next paragraphs the ele- 423

ments defining the agent policy are presented. 424

Action space model. The action space represents all the pos- 425

sible decisions that the agent could take at each timestep with 426

its policy. Through its action, the agent can interact with the 427

surrounding environment, entering the equations of motion in 428

Eq. 8 by means of an acceleration vector coming from the 429

thruster. 430

This section encapsulates one of the main dichotomies with 431

respect to the agent decision-making strategy. Indeed, depend- 432

ing on its dimensionality, the action space can be either discrete 433

or continuous. In the former case, the action is selected among 434

a predefined set of possible fixed thrust impulses. In the second 435

case, instead, the control action is directly the acceleration vec- 436

tor. One of the main goals of this work is to compare the two 437

possible action spaces, in terms of performance and stability. 438

In the discrete case, the action is selected between the pre- 439

defined thrust impulses fixed both in direction and magnitude, 440

defined in Eq. 11. 441

A =
[
+Tx, −Tx, +Ty, −Ty, +Tz, −Tz, 0

]
(11)

where +Tx represents an impulsive maneuver along the pos- 442

itive direction of the spacecraft x-axis, −Tx represents an im- 443

pulsive maneuver along the negative direction of the spacecraft 444

x-axis; the same is applicable for the other components. The 445

impulse maneuver assumes a constant acceleration value equal 446

to a = 0.001m/s2. At each timestep the actor network chooses 447

the most suitable action with a softmax activation function on 448

the output set in Eq. 11. This is a simpler implementations, 449

which would result in a fast training process, because of the 450

limited options available to the spacecraft. In this case, a cold- 451

gas thrusters propulsion system is considered as baseline, as 452

used in (Brandonisio, 2019-2020). 453

With a continuous action space, instead, the control action 454

is a tridimensional vector pointing ideally to any direction in 455

space. Since it is continuous, the magnitude of the thrust vec- 456

tor can vary inside the limits specified by the propulsion system 457

Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx 7

on-board. For this analysis, a single thruster electric propul-458

sion (Martı́nez et al., 2019) is employed and the most notable459

attributes affecting the action selection are the maximum thrust460

(Tmax) and the minimum impulse bit (MIB), since they define461

the range inside which the decision-making policy can select462

the magnitude of the action. The actor network in this case sam-463

ples the three components of the thrust vector from a Gaussian464

distribution defined by a mean value µ and a standard deviation465

σ, which is connected to the exploration/exploitation dilemma466

in RL (Sutton & Barto, 2018) and defines the confidence level467

of the policy in the selected action. This solution is more re-468

alistic, but also more computationally expensive, as the action469

space dimensionality is practically infinite.470

Beyond the space definition, another important parameter471

for the action model is the control interval ∆t, that defines the472

time elapsing between two subsequent control actions. Setting473

it entails a trade-off between fidelity of the control frequency474

and computational burden.475

5.3. Reward model476

The reward function is one of the main characters, if not477

the main one, when talking about Reinforcement Learning. It478

drives the agent policy, that aims at maximizing it, by means of479

positive and negative scores, which should incentivize a specific480

agent behavior. It should phrase the objectives and constraints481

of the problem in mathematical form. For this work, several482

scores have been defined to create the reward model; differ-483

ent selections of scores can be used to design different reward484

models, depending on the case or training considered. The fol-485

lowing list collects all the scores the authors used to defined the486

different reward models.487

• distance score: in the case of proximity operations, a gen-
eral and intuitive idea is that the chaser spacecraft shall
not crash onto the target, nor escape far away from it.
This constraint is formulated adopting a lower and upper
limit in terms of relative distance between the two objects
(specifically between their center of masses). In this way
it is intrinsically introduced safety in the operations, by in-
centivizing the agent to avoid dangerous regions of space,
in which the mission would completely fail. The asso-
ciated mathematical expression and score are reported in
Eq. 12:

rd =

−100 if d ≤ Dmin or d ≥ Dmax

1 otherwise
(12)

where d in this case indicates the norm of the distance488

vector between chaser and target center of masses, with489

Dmin = 50m and Dmax = 500m.490

• incidence angle score: regarding the main goal of the pre-
sented work, the agent should maximize a reward function
that enables it to better map the target. This request is
connected to the adopted mapping technique, that would
require to assert some specific conditions in terms of inci-
dence angle and number of quality images per mesh face,

as discussed in Sec. 2. At each timestep the agent keeps
track of the target rotation and re-computes the normal di-
rection for each of the mesh faces. First, a screening of the
faces that are in the field of view of the spacecraft’s cam-
eras is performed. Then, the angle between each of the
normal directions of the faces in visibility and the camera
vector, assumed as continuously pointing the target cen-
ter, is calculated. A score is formulated on this resulting
incidence angle ε and reported in Eq. 13:

rε =

1 if 10◦ ≤ ε ≤ 50◦
1
5ε − 1 if 5◦ ≤ ε ≤ 10◦

6 − 1
10ε if 50◦ ≤ ε ≤ 60◦

0 otherwise

(13)

• emission angle score: the Sun incidence angle η is the an-
gle between the Sun direction and the normal vectors to
the target mesh faces. The same considerations made for
the incidence angle, regarding the relation to the mapping
technique and the computation of η, are still valid. This
angle should be between 20◦ − 60◦, to avoid shadows or
excessive brightness, that may affect the good quality of
the image. Some margin is added, as expressed in Eq. 14.

rη =

1 if 20◦ ≤ η ≤ 60◦
1
10η − 1 if 10◦ ≤ η ≤ 20◦

7 − 1
10η if 60◦ ≤ η ≤ 70◦

0 otherwise

(14)

• map percentage score: to better reconstruct the target ge-
ometry and shape, a reward on the current level of the map
is necessary. The overall map is fragmented into a number
Np of quality photos for each face constituting the mesh,
where quality is to be intended with respect to the inci-
dence angles ε and, depending on the case, emission angle
η between the camera and the face. At each time step, the
map percentage can be computed counting the number of
quality pictures (rε , 0 and rη , 0) available for each
face Nq up to that moment and dividing this quantity by
Np times the number of mesh faces n f aces, as in Eq. 15.
Quality pictures are to be intended in terms of the inci-
dence and emissivity angles defined before. At each time
step, the algorithm checks which faces of the mesh are in
visibility of the camera, and a picture of one of these faces
is said to be of “good quality” if the reward signals rε and
rη associated to that single face are greater than zero.

M%,k =
Nq

Np ∗ n f aces
(15)

rm =

1 if M%,k > M%,k−1

100 if M%,k = 100
0 otherwise

(16)

In Eq. 16, note how the agent is rewarded for improving 491

the map level and it is also given a big bonus for complet- 492

ing the map reconstruction. 493

8 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

Once all the mathematical expressions, defining the prob-
lem objectives, are detailed, the overall reward function is sim-
ply the sum of these terms. Different reward models have been
used for the training and testing phases. For example, in terms
of vision-based navigation and imaging system. two different
models have been established, depending on the usage of only
a visible camera (VIS) or the sensor fusion between a visible
and thermal cameras (VIS+TIR). The former is referred to as
RVIS , while the second as RVIS ,T IR.

RVIS = rd + rε + rη + rm (17)

RVIS ,T IR = rd + rε + rm (18)

In the second expression the reward regarding the emission494

incidence angle is neglected, since the vision-based architec-495

ture assumes the presence of also thermal infrared imaging, thus496

nullifying the problems of shadowing and poor illumination.497

6. Neural Network models comparison498

Neural Networks (NN) are a powerful tool for function ap-499

proximation and, as such, they become attractive in the DRL500

context to simulate the agent policy. NNs have indeed the abil-501

ity to learn and model non-linear and complex relationships,502

and to generalize the results, meaning that they can infer input-503

output mappings on unseen data. These key advantages make504

them a solid and robust candidate when in need to approximate505

a certain behaviour, and depending on they architecture they506

gain specific characteristics.507

One of the main goal of this work is the performance com-508

parison between two agents defined by two different neural net-509

work models: a simple and classic multi-layers feed-forward510

neural network architecture, already developed in (Brandonisio,511

2019-2020), and a recurrent neural network architecture. For a512

complete overview of this analysis please refer to (Brandonisio513

& Lavagna, 2021). An illustrative comparison between the two514

networks models can be inferred looking at Fig. 2 and Fig. 3.515

Feed-forward neural networks (FFNN) allow signals to
travel one way only: from input to output. There are no feed-
back (loops); i.e., the output of any layer does not affect that
same layer. The most widely used and studied FFNN is the
Multi-Layer Perceptron (MLP), which is also the one employed
in this work. The simple mathematical expression relating the
input to the output between two adjacent layers is reported in
Eq. 19.

qi+1 = σ
(
Wiqi + bi

)
(19)

where qi+1 represents the vector of activation values for the neu-516

rons in layer i+ 1, σ is the activation function, Wi is the matrix517

containing all the weights connecting neurons in layer i and518

i + 1, qi is the vector of activation values for the neurons in519

layer i, and bi is the vector of biases for neurons in layer i. For520

a more detailed discussion about MLP refer to Goodfellow et al.521

(2016).522

Differently from FFNN, recurrent neural networks (RNN)523

introduce loops: computations derived from earlier inputs are524

Fig. 2: Graphic representation of the FFNN architecture.

Fig. 3: Graphic representation of the RNN architecture (Paramasivan, 2021).

fed back into the network, and then fed forward to be processed 525

into outputs. Thus, they could take advantage of time correla- 526

tion in the data and be more stable. Among the different types 527

of RNN, in this work, the Long Short-Term Memory (LSTM) 528

recurrent layer is exploited. For each input vector the recurrent 529

layer perform the following computations: 530

it = σ(Wixt + bi +Wi
hht−1 + bi

h)

ft = σ(W f xt + b f +W f
hht−1 + b f

h)
gt = tanh(Wgxt + bg +Wg

hht−1 + bg
h)

ot = σ(Woxt + bo +Wo
hht−1 + bo

h)
ct = ft ⊙ ct−1 + qt ⊙ gt

ht = ot ⊙ tanh(ct)

(20)

where ht, ct and xt are the hidden state, the cell state and 531

the input at time t, ht−1 is the hidden state of the layer at time 532

Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx 9

t-1; it, ft, gt and ot are the input, forget, cell and output gates533

respectively. σ is the sigmoid activation function and ⊙ is the534

Hadamard product. The overall process followed in Eq 20 can535

be visualized in Fig. 4, where a single LSTM cell schematic is536

shown. For a more detailed explanation about LSTM refer to537

Sak et al. (2014).538

Fig. 4: LSTM scheme. Source: https://commons.wikimedia.org/wiki/
File:LSTM.png

The idea behind the formulation of the PPO with recurrent539

neural network is related to the potential benefits that such an540

architecture can have in terms of training and performance. In-541

deed, recurrent networks have the capability to store past states542

information, thus it may strongly affect the agent safe trajecto-543

ries planning to faster achieve the mission goals. In addition,544

training an RNN may be beneficial to refine the agent’s envi-545

ronmental conditions sensitivity, increasing its robustness, re-546

gardless the specific operational environment. Therefore, we547

considered important to compare both architectures to under-548

stand if an improvement of the stability and sensitivity can be549

possible with respect to the particular conditions in which the550

problem is solved. In the next subsections the two models will551

be described and afterwards the results will be presented. For552

this particular analysis, the discrete action space model is used,553

with a reward model based only on a visible camera (RVIS).554

The target object, in this case, is shaped as a simple rectangular555

parallelepiped.556

In this PPO implementation, both the policy and the value557

functions (actor and critic networks) are learned concurrently.558

The action space models is discrete, thus implies the use of a559

softmax activation function to select the action at each time560

step, among the different possible options, previously described561

in Sec. 5.2. The output of the softmax activation function is a562

multi-categorical distribution, among which the policy samples563

the action to take during the optimization process. The main564

parameters related to the loss functions are the reward discount565

factor γ, the terminal reward discount factor λ, and the clipping566

parameter ϵ. The first is the factor that multiplies the reward at567

each time step of a simulation episode, as defined in Sec.3.1;568

it is set to 0.99. Instead, the second parameter λ, is the factor569

the multiplies the overall sum of rewards at the end of a single570

episode simulation and it is set to 0.94. The clipping factor,571

defined in Sec. 4, is 0.2. The optimization periodically updates 572

the policy and value functions with information collected dur- 573

ing 10 episodes trajectories. Afterwords, the data are divided 574

in batch of dimension 32, and used for 5 epochs updates. The 575

terminal conditions for an episode are the complete acquisition 576

of the target object map, the spacecraft escape from the region 577

defined by the minimum and maximum distance from the tar- 578

get and lastly the exceeding of the time window, even if this last 579

option is very unlikely to occur. 580

6.1. Feed-forward Neural Network Architecture 581

The feed-forward neural network architecture for the policy 582

and value functions are equally defined. They are composed 583

by three linear layers with tanh and Leaky-ReLU as activation 584

functions. The architecture is described in Table 1 and Table 2, 585

where dim obs is the observation state dimension (correspond- 586

ing to the state vector dimension, defined in Sec. 5.1), dim act 587

is the action space dimension and nh1, nh3 are the first and third 588

hidden layer dimensions respectively. In order to improve the 589

convergence and avoid saturation problem the tanh-layers are 590

initialized as semi-orthogonal matrices, as suggested by Saxe 591

et al. (2014). 592

Policy Network

Layer Elements Activation

1st Hidden Layer (h1) 10*dim obs tanh

2nd Hidden Layer (h2)
√

nh1 ∗ nh3 tanh

3rd Hidden Layer (h3) 10*dim act Leaky-ReLU

output dim act softmax

Learning rate 10−5

Table 1: Policy Network Architecture: Linear Case

Value Network

Layer Elements Activation

1st Hidden Layer (h1) 10*dim obs tanh

2nd Hidden Layer (h2)
√

nh1 ∗ nh3 tanh

3rd Hidden Layer (h3) 10*dim act Leaky-ReLU

output dim act linear

Learning rate 10−5

Table 2: Value Network Architecture: Linear Case

6.2. Recurrent Neural Network Architecture 593

In the recurrent network case, the architecture is defined cou- 594

pling one LSTM recurrent layer and two drop-out linear layers 595

(Sak et al., 2014). The models for the policy and value networks 596

are shown in Table 3 and Table 4. Also here the activation func- 597

tions are equally selected for both networks. 598

https://commons.wikimedia.org/wiki/File:LSTM.png
https://commons.wikimedia.org/wiki/File:LSTM.png

10 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

Policy Network

Layer Elements Activation

LSTM Layer 24 -

1st Hidden Layer (h1) 64 ReLU

2nd Hidden Layer (h2) 32 ReLU

output dim act softmax

Learning rate 10−5

Table 3: Policy Network Architecture: Recurrent Case

Value Network

Layer Elements Activation

LSTM Layer 24 -

1st Hidden Layer (h1) 64 ReLU

2nd Hidden Layer (h2) 32 ReLU

output dim act linear

Learning rate 10−5

Table 4: Value Network Architecture: Recurrent Case

6.3. Results599

In order to bound the problem some characteristics have600

been maintained constant during the overall training procedure.601

In particular the camera field of view (FOV) is fixed as 10◦, that602

can be considered as a common FOV for space optical cameras;603

the integration time is fixed at 30s and the accuracy level Np for604

the map is fixed at 25 correct photos per face. The scenario ini-605

tial conditions are random in terms of Sun initial phase, target606

object orbital true anomaly and rotational dynamics (angle po-607

sition and velocity). In Figure 5, the training of the two models608

is shown. In the plot the average map level trends of the feed-609

forward and recurrent policy architectures are compared in a610

training simulation of 15000 episodes length.611

Some important remarks can be derived from the presented612

results:613

• The linear policy seems to learn and converge faster then614

the recurrent policy. Nevertheless, the linear-case curve615

presents more oscillations and an overall lower stability616

with respect to the recurrent curve policy behaviour.617

• Concerning the final result of the simulation, the recurrent618

policy converges to a slightly higher map level in the same619

training length of the linear policy. On average the map620

level reached by the two policies is around 70%-80%.621

• The fact that the learning curve of the recurrent policy622

grows gradually confirms, as expected, that the learning623

process is slower but safer and more stable. Indeed, the624

potential robustness of a recurrent network was one of the625

main reason that drove this kind of analysis.626

(a) Feed-forward Network

(b) Recurrent Network

Fig. 5: Comparison between feed-forward and recurrent architectures in the
simplest random conditions case.

The two models have been trained also with an higher ran- 627

domness level adding random conditions for chaser-target ini- 628

tial relative position. Their relative position is however con- 629

strained to have both the x, y and z coordinates positive. The 630

rational behind this assumption derives from the will of contain- 631

ing the complexity of the problem in order not to saturate the 632

neural network learning capabilities and also simulate a possi- 633

ble real scenario, in which the initial condition is constrained in 634

a specific space without knowing a priori the correct engage- 635

ment position. In Figure 6, the results obtained are shown. 636

In the plot the average trends of the feed-forward and recur- 637

rent policy architectures are compared again for 15000 episodes 638

length simulation. The level reached by the two policies is com- 639

parable and it settles around 55%. Also here, as in the previ- 640

ously analysis, the characteristics of the different architectures 641

hold. Considering the fact that the state space is much bigger 642

now, due to the randomness in the initial relative position, the 643

average map level is lower than the one achieved in the previous 644

case for the same amount of training episodes, as expected. 645

7. Continuous Action Space agent 646

In this section, the transition from discrete action space to 647

continuous is discussed (Capra, 2020-2021). The major dif- 648

Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx 11

(a) Feed-forward Network

(b) Recurrent Network

Fig. 6: Comparison between feed-forward and recurrent architectures in the
most complex random conditions case.

ferences between the two have already been highlighted in649

Sec. 5.2, and now a PPO agent working in continuous action650

space is developed, in a slightly different scenario with respect651

to the previous one. This type of control workspace is much652

more realistic with respect to a discrete one, but at the same653

time it is much more computationally expensive, due to the high654

dimensionality that the policy needs to analyze.655

A feed-forward network, similar to the one in Sec 6.1, is im-656

plemented and the architecture adopted is reported in Table 5,657

for both the actor and the critic networks.658

For this analysis the reward function considers a vision-659

based system employing multi-spectral cameras, so both visible660

and thermal infrared. Therefore, all the results are referred to661

the RVIS ,T IR reward expression. Notably this objective function662

is simpler, but this selection is justified by the intrinsic complex-663

ity of having a continuous action space, which would require a664

much longer training.665

Moreover, a different target is considered, replacing the ar-666

tificial rectangular parallelepiped with a triangular mesh of667

VESPA (Vega Secondary Payload Adapter), which is a space668

object orbiting the Earth as a debris, and it is gaining much669

interest by space agencies, targeting it for future missions (Sil-670

vestrini et al., 2021). The simulation conditions, as well as the671

PPO parameters are the same as of the previous discrete analy-672

Actor Critic

Layer Neurons Neurons

Input dim obs dim obs

1st hidden layer 256 256

2nd hidden layer 256 256

Output 3 1

Learning rate 10−5 5 × 10−5

Activation function Tanh Tanh

Table 5: Actor & Critic Network specifications with a continuous action space.

sis in Sec 6, except for the batch size, as a larger value of 512 673

for its dimension is found to be more suitable in the case of a 674

continuous action space. 675

The agent training is performed on Nepisodes = 30000, which 676

is exactly double the episodes for the discrete action space sce- 677

nario. Once again this is justified by the much higher dimen- 678

sionality of the problem, and by the generality of the initial con- 679

ditions, which are generated randomly for both the relative po- 680

sition and target attitude, as in Table 6. 681

Variable Range

d 2Dmin < d < 0.5Dmax

α 0◦ < α < 360◦

δ −90◦ < δ < 90◦

v 0 m/s

θi 0◦

θ̇i −0.001rad/s < θ̇1 < 0.001rad/s

Table 6: State variables initial condition ranges.

d and v are the relative position and velocity between the 682

chaser and the target, α and δ represents the azimuth and the 683

elevation angle respectively, and finally θ and θ̇ expresses the 684

rotation angles and velocity of the target, with i ∈ [1 : 3] speci- 685

fying the axis. Dmin and Dmax are the two boundaries defined in 686

Sec. 5.3. 687

The average map level profile during the training is reported 688

in Fig. 7. 689

Some notable remarks are critically commented next: 690

• the performance level is good, peaking at about 95% of 691

covered map, so the training step can be considered suc- 692

cessful; 693

• the profile of the average map increases over the span of 694

the episodes, and seems to be still improving, suggesting 695

that a longer training could be beneficial. 696

An example of trajectory, completing 100% of the map, is 697

shown in Fig. 8. 698

12 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

Fig. 7: Average map percentage covered during the agent training.

Fig. 8: Example trajectory.

7.1. Benchmark testing699

This section reports the tests carried out to assess the perfor-700

mance of the model discussed up to now, against some simple701

benchmarks, to check the effectiveness of the learning step and702

of the reward function design. The first two comparisons are703

against no-learning models, which essentially means that they704

have not gone through the training procedure:705

• the first simply propagates the free-dynamics from the ran-706

dom i.c.;707

• the second is a random control model.708

The average map percentage obtained by both models, start-709

ing from random initial conditions, is reported in Table 7.710

Free-Dynamics Random Control

52.9% 55.5%

Table 7: Baseline models map percentage.

The principal model performs much better than both of711

them, verifying the training effectiveness.712

A further benchmark test is performed by comparing the per- 713

formance with a model that undergoes the training step, but 714

with a simpler reward function, entailing just the chaser-target 715

distance objective. As such, the agent learns how to remain 716

in proximity of the target, keeping itself in the safe region of 717

space, but it does not learn how to map the it efficiently, because 718

no information regarding the map level and the quality of im- 719

ages is fed to its policy network. This will be referred to as the 720

”simple” model, to differentiate it from the principal one. The 721

simple model performs worse than the principal one (reaching 722

about 73% of average map level), confirming the good design of 723

the reward function, which incentivizes the agent to better per- 724

form the shape reconstruction. Moreover, this new agent takes 725

much longer, on average, to complete the map, as it can be seen 726

in Table 8, since its main objective is to simply remain inside 727

the boundaries in space. 728

Principal model Simple model

t100%[s] 1595 3150

Table 8: Average time to complete the map.

The principal model takes nearly half the time to cover 100% 729

of the target map, thus confirming that it has learnt a differ- 730

ent, more efficient strategy for mapping VESPA, than simply 731

remaining inside the limits. 732

7.2. Discrete vs Continuous Action Space comparison 733

As both the discrete and the continuous action space PPO 734

agents have been designed, the aim of this section is to com- 735

pare the results obtained by these two models. To keep the 736

comparison consistent, they have to be applied in the same sce- 737

nario, which for the scope of this analysis is the one presented 738

in Sec 7. The two models are trained for the same amount of 739

episodes, and the result of the discrete action space agent is re- 740

ported in Fig 9. Note that the same result for the continuous 741

action space agent is the one discussed before in Fig 7. 742

Fig. 9: Average map percentage profile during discrete action agent training.

The output map level profiles are now commented in details: 743

Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx 13

• the discrete agent reaches training convergence much744

faster, peaking after a few thousands episodes. This is due745

to the much simpler and exceedingly smaller action space746

in the discrete case, since the agent can select between just747

7 thrust control impulses, as in Eq. 11, instead of practi-748

cally infinite possibilities as it happens in a continuous ac-749

tion space. Thus, the training is much faster and requires750

fewer episodes;751

• in terms of performance level, it gets to about 90% of aver-752

age map level, which, apart from the fact that the scenario753

is different, is much higher than the previous test in Sec. 6.754

This is due to the removal of the reward constraint on the755

emission angle, linked to the illumination conditions. In756

this scenario it is easier to obtain quality images of the tar-757

get mesh faces;758

• peaking at 90% of average map level, it falls just a little759

short of the continuous action space model. This could be760

imputed to the greater flexibility guaranteed by a continu-761

ous action space.762

This comparison sets an important step towards a more realistic763

and refined control of the spacecraft motion with Deep Rein-764

forcement Learning, at the expenses of a longer and computa-765

tionally heavier training.766

8. Robustness & Sensitivity analysis767

In this section the performance of the continuous action768

space agent developed in Sec. 7 are evaluated against previous769

unseen scenarios, verging on the following aspects:770

• swap the linearized eccentric dynamics used during train-771

ing with more complex nonlinear models, that should rep-772

resent with more fidelity the real evolution of the relative773

motion between the chaser and the target;774

• introduce random noise in the relative motion estimation.775

The pose is retrieved from navigation with the sensors on-776

board (in this case vision-based), which are affected by777

errors in their measurements;778

• a sensitivity analysis on the rotational velocity of the tar-779

get is carried out, by investigating the effects of a faster780

attitude motion.781

8.1. Nonlinear dynamics782

Two nonlinear relative dynamics models are considered: un-783

perturbed (Sullivan et al., 2017) and J2 perturbed (Xu & Wang,784

2008).785

The difference between these two models and the linearized786

eccentric employed during training, can be appreciated in787

Fig. 10, where the free dynamics is propagated from the same788

initial conditions.789

Note that the difference between the models is quite negligi-790

ble, thus suggesting that the agent should be capable of per-791

forming well also when the dynamics is not the one it was792

Fig. 10: Comparison between linearized eccentric and non linear free dynamics.

trained on. This logic assumption is supported by the results 793

in terms of average map obtained running the simulation tests 794

and reported in Table. 9. 795

Map [%]

Linearized Eccentric 95.12%

Unperturbed Nonlinear 94.37%

J2 Perturbed Nonlinear 94.57%

Table 9: Map percentage comparison between different models.

8.2. Navigation uncertainty 796

During the training and testing, the state variables were as- 797

sumed to be correct and perfectly known. However, in a more 798

realistic scenario, uncertainty is strongly present due to the er- 799

rors, for as small they are, in sensors measurements. Moreover, 800

modeling errors are always present and affect the truthfulness 801

of computer simulations. The aim of this section is to investi- 802

gate what happens to the performance if noise is added at each 803

time-step between the estimated value coming from navigation 804

and the guidance block. Specifically, noise is added to the rel- 805

ative position and velocity vector components, sampling from 806

Gaussian distributions defined by the following standard devia- 807

tions: 808

σpos = 10 m σvel = 0.1 m/s

The first test is a simulation in which noise is applied to 809

both variables and the performance level experience a reduc- 810

tion, reaching about 80% of average map level. 811

The same test is performed applying distinctively the two 812

uncertainties, first on the relative position and then on the ve- 813

locity. Table. 10 summarizes the results of all tests. 814

The model is not so robust in this scenario, so a deeper anal- 815

ysis is deemed necessary to better understand how uncertainty 816

affects the performance level. 817

14 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

Position + Velocity Position Velocity

80.38% 84.07% 87.58%

Table 10: Map percentage comparison with navigation uncertainty.

8.3. Target attitude analysis818

The range for the starting target attitude motion was selected
looking at the values in Table. 6, which defined the initial condi-
tions. In this section a sensitivity analysis on the angular veloc-
ity is carried out, by comparing the results of two simulations:
fast target attitude and slow target attitude. The case of slow
attitude is the one studied up to now, while for the fast case, the
range, from which the initial attitude motion gets sampled, is
enlarged:

|θ̇i| < 0.001 rad/s −→ |θ̇i| < 0.005 rad/s

The principal model is then tested with this modification and819

the performance level falls off a cliff with respect to the results820

in the nominal training case, as the agent can only cover 69%821

of the map on average. There are two main reasons associated822

to this result:823

• the state space is greatly augmented;824

• the agent policy network adjusted its parameters heavily825

influenced by the target rotational velocity. This seems to826

be intuitive, since the agent selects its next actions depend-827

ing on how VESPA is rotating, to plan a trajectory that can828

inspect the faces it has yet to see.829

To solve for this issue, a new model training is set-up, keep-830

ing the same architecture and parameters used before and sim-831

ply enlarging the rotational velocity range to the one employed832

during the test.833

Fig. 11: Average map percentage during fast attitude training.

Notable remarks are now discussed:834

• the agent improves its performance level, reaching about835

80% on average of map reconstructed, as visible in Fig. 11;836

• the performance level is lower than the one obtained for 837

the principal model, but this is expected. Indeed, the state 838

space has been greatly expanded, so a training procedure 839

with the same number of episodes will inevitably bring to 840

worst results; 841

• the agent is still capable of learning a quality policy and if 842

trained for a higher number of episodes, the result would 843

be most probably even better. 844

Therefore, a faster target rotational dynamics does not seem 845

to be a bottleneck for the model performance, but rather this 846

extension of the state space simply makes the required training 847

step longer. 848

9. Conclusion 849

This work presented an in depth analysis of an innovative 850

autonomous guidance algorithm for the shape reconstruction of 851

an uncooperative space object, developed via Deep Reinforce- 852

ment Learning. 853

Starting from the reference point set by Brandonisio (2019- 854

2020), the method has been refined, by comparing the perfor- 855

mance obtained with different neural network architectures, in 856

the case of a discrete action space. Specifically, RNNs improves 857

training stability and reduces oscillations, although with respect 858

to simple MLPs, the end result is almost the same. 859

A further important step forward in the investigation of Prox- 860

imal Policy Optimization for solving the spacecraft decision- 861

making policy is made, by implementing it with a continuous 862

action space, to simulate more realistically the actuator control 863

on the chaser motion. The two models, discrete and continu- 864

ous action space, are then compared in the same scenario, and 865

the result is critically commented. The continuous action space 866

model is then extensively tested to asses its performance, ro- 867

bustness and sensitivity against unseen conditions. 868

As a result, the work confirmed and developed further the 869

applicability of DRL algorithms to the spacecraft autonomous 870

guidance problem, applied for the shape reconstruction of an 871

uncooperative target. 872

9.1. Future developments 873

Starting from the results obtained by this work, further im- 874

provements can be made and a few possibilities are reported in 875

the following. 876

Modeling of the chaser attitude dynamics would bring sev- 877

eral benefits: 878

• make the model more representative of real conditions; 879

• the agent could also select autonomously when it is the 880

right moment to perform a slew maneuver, or switch the 881

cameras on, depending on if the target is in the field of 882

view or not; 883

• elongated objects could be considered since the cameras 884

are no more restricted to point towards the target center of 885

mass. 886

Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx 15

Further developments could be made augmenting the reward887

function, by introducing an expression to incentivize a faster888

map reconstruction, lower propellant consumption (Brandon-889

isio & Lavagna, 2021), or new tasks that the spacecraft should890

perform.891

Uncertainties in the pose estimation, as well as intrinsic er-892

ror due to the selected models need to be analyzed in greater893

details. Concerning this aspect, a Model-Based Reinforcement894

Learning (MBRL) framework could be set-up to help guiding895

the agent and decrease sensitivity to noise in the measurement896

by online learning the underline dynamics.897

Finally, in systems with limited hardware resources, like a898

small spacecraft, effective pruning and shrinking techniques899

might be a solution to the problem of high computational cost900

and memory consumption, that are limiting the applicability of901

Deep Reinforcement Learning algorithms.902

References903

Brandonisio, A. (2019-2020). Deep Reinforcement Learning to Enhance Fly-904

around Guidance for Uncooperative Space Objects Smart Imaging. Master’s905

thesis Politecnico di Milano.906

Brandonisio, A., & Lavagna, M. (2021). Sensitivity analysis of adaptive guid-907

ance via deep reinforcement learning for uncooperative space objects imag-908

ing. In 2021 AAS/AIAA Astrodynamics Specialist Conference (pp. 1–20).909

Brandonisio, A., Lavagna, M., & Guzzetti, D. (2021). Reinforcement learn-910

ing for uncooperative space objects smart imaging path-planning. The911

Journal of the Astronautical Sciences, 68(4), 1145–1169. doi:10.1007/912

s40295-021-00288-7.913

Capra, L. (2020-2021). Deep Reinforcement Learning towards adaptive Vision-914

Based autonomous Guidance. Master’s thesis Politecnico di Milano.915

Chan, D. M., & Agha-mohammadi, A.-a. (2019). Autonomous imaging and916

mapping of small bodies using deep reinforcement learning. In 2019 IEEE917

Aerospace Conference (pp. 1–12). doi:10.1109/AERO.2019.8742147.918

Civardi, G. L., Piccinin, M., & Lavagna, M. (2021). Small bodies ir imaging919

for relative navigation and mapping enhancement. In 7th IAA Planetary920

Defense Conference.921

Downes, L. M., Steiner, T. J., & How, J. P. (2020). Lunar terrain rela-922

tive navigation using a convolutional neural network for visual crater de-923

tection. In 2020 American Control Conference (ACC) (pp. 4448–4453).924

doi:10.23919/ACC45564.2020.9147595.925

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and926

mapping: part i. IEEE Robotics Automation Magazine, 13(2), 99–110.927

doi:10.1109/MRA.2006.1638022.928

Emami, E., Ahmad, T., Bebis, G. et al. (2019). Crater detection using unsuper-929

vised algorithms and convolutional neural networks. IEEE Transactions on930

Geoscience and Remote Sensing, 57(8), 5373–5383. doi:10.1109/TGRS.931

2019.2899122.932

Furfaro, R., Bloise, I., Orlandelli, M. et al. (2018). Deep learning for au-933

tonomous lunar landing. In 2018 AAS/AIAA Astrodynamics Specialist Con-934

ference (pp. 3285–3306). Univelt volume 167.935

Gaskell, R. W. (2001). Automated landmark identification for spacecraft navi-936

gation. Advances in the Astronautical Sciences, 109, 1749–1756.937

Gaudet, B., Linares, R., & Furfaro, R. (2020a). Deep reinforcement learn-938

ing for six degree-of-freedom planetary landing. Advances in Space939

Research, 65(7), 1723–1741. doi:https://doi.org/10.1016/j.asr.940

2019.12.030.941

Gaudet, B., Linares, R., & Furfaro, R. (2020b). Terminal adaptive guidance via942

reinforcement meta-learning: Applications to autonomous asteroid close-943

proximity operations. Acta Astronautica, 171, 1–13. doi:https://doi.944

org/10.1016/j.actaastro.2020.02.036.945

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.946

http://www.deeplearningbook.org.947

Hovell, K., & Ulrich, S. (2021). Deep reinforcement learning for spacecraft948

proximity operations guidance. Journal of Spacecraft and Rockets, 58(2),949

254–264. doi:10.2514/1.A34838.950

Inalhan, G., Tillerson, M., & How, J. P. (2002). Relative dynamics and control 951

of spacecraft formations in eccentric orbits. Journal of Guidance, Control, 952

and Dynamics, 25(1), 48–59. doi:10.2514/2.4874. 953

Kurniawati, H. (2021). Partially observable markov decision processes 954

(pomdps) and robotics. CoRR, abs/2107.07599. URL: https://arxiv. 955

org/abs/2107.07599. 956

Martı́nez, J., Rafalskyi, D., & Aanesland, A. (2019). Development and testing 957

of the npt30-i2 iodine ion thruster. In 36th International Electric Propulsion 958

Conference. doi:10.6084/m9.figshare.11931363. 959

Mnih, V., Badia, A. P., Mirza, M. et al. (2016). Asynchronous methods for deep 960

reinforcement learning. International conference on machine learning, (pp. 961

1928–1937). arXiv:1602.01783. 962

Mnih, V., Kavukcuoglu, K., Silver, D. et al. (2015). Human-level con- 963

trol through deep reinforcement learning. Nature, 518(7540), 529–533. 964

doi:https://doi.org/10.1038/nature14236. 965

Paramasivan, S. (2021). Deep learning based recurrent neural networks to 966

enhance the performance of wind energy forecasting: A review. Re- 967

vue d’Intelligence Artificielle, 35(1), 1–10. doi:https://doi.org/10. 968

18280/ria.350101. 969

Pesce, V., Agha-mohammadi, A.-a., & Lavagna, M. (2018). Autonomous nav- 970

igation and mapping of small bodies. In 2018 IEEE Aerospace Conference 971

(pp. 1–10). doi:10.1109/AERO.2018.8396797. 972

Piccinin, M., Lunghi, P., & Lavagna, M. (2022). Deep reinforcement learning- 973

based policy for autonomous imaging planning of small celestial bodies 974

mapping. Aerospace Science and Technology, 120, 107224. doi:https: 975

//doi.org/10.1016/j.ast.2021.107224. 976

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory based 977

recurrent neural network architectures for large vocabulary speech recogni- 978

tion. arXiv:1402.1128. 979

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2014). Exact solutions to the 980

nonlinear dynamics of learning in deep linear neural networks. International 981

Conference on Learning Representations, . arXiv:1312.6120. 982

Schulman, J., Levine, S., Abbeel, P. et al. (2015). Trust region policy opti- 983

mization. In F. Bach, & D. Blei (Eds.), Proceedings of the 32nd Interna- 984

tional Conference on Machine Learning (pp. 1889–1897). Lille, France: 985

PMLR volume 37 of Proceedings of Machine Learning Research. URL: 986

https://proceedings.mlr.press/v37/schulman15.html. 987

Schulman, J., Wolski, F., Dhariwal, P. et al. (2017). Proximal policy optimiza- 988

tion algorithms, . arXiv:1707.06347. 989

Silvestrini, S., & Lavagna, M. (2021a). Neural-aided gnc reconfiguration algo- 990

rithm for distributed space system: development and pil test. Advances in 991

Space Research, 67(5), 1490–1505. doi:https://doi.org/10.1016/j. 992

asr.2020.12.014. 993

Silvestrini, S., & Lavagna, M. (2021b). Neural-based predictive control for safe 994

autonomous spacecraft relative maneuvers. Journal of Guidance, Control, 995

and Dynamics, 44(12), 2303–2310. doi:https://doi.org/10.2514/1. 996

G005481. 997

Silvestrini, S., Piccinin, M., Zanotti, G. et al. (2022). Optical navigation 998

for lunar landing based on convolutional neural network crater detector. 999

Aerospace Science and Technology, 123, 107503. doi:https://doi.org/ 1000

10.1016/j.ast.2022.107503. 1001

Silvestrini, S., Prinetto, J., Zanotti, G. et al. (2021). Design of robust 1002

passively safe relative trajectories for uncooperative debris imaging 1003

in preparation to removal. In Advances in the Astronautical Sciences 1004

(p. 4205 – 4222). volume 175. URL: https://www.scopus.com/ 1005

inward/record.uri?eid=2-s2.0-85126240899&partnerID=40& 1006

md5=6a51911e8e10ed060ac72ea48b7bbcb5 cited by: 0. 1007

Sullivan, C. J., & Bosanac, N. (2020). Using reinforcement learning to design 1008

a low-thrust approach into a periodic orbit in a multi-body system. In AIAA 1009

Scitech 2020 Forum. doi:10.2514/6.2020-1914. 1010

Sullivan, J., Grimberg, S., & D’Amico, S. (2017). Comprehensive survey 1011

and assessment of spacecraft relative motion dynamics models. Journal 1012

of Guidance, Control, and Dynamics, 40(8), 1837–1859. doi:10.2514/1. 1013

G002309. 1014

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. 1015

MIT press. 1016

Tatsch, A., Fitz-Coy, N., & Gladun, S. (2006). On-orbit servicing: A brief sur- 1017

vey. In Proceedings of the IEEE International Workshop on Safety, Security, 1018

and Rescue Robotics (SSRR’06) (pp. 276–281). 1019

Xu, G., & Wang, D. (2008). Nonlinear dynamic equations of satellite relative 1020

motion around an oblate earth. Journal of Guidance, Control and Dynamics, 1021

http://dx.doi.org/10.1007/s40295-021-00288-7
http://dx.doi.org/10.1007/s40295-021-00288-7
http://dx.doi.org/10.1007/s40295-021-00288-7
http://dx.doi.org/10.1109/AERO.2019.8742147
http://dx.doi.org/10.23919/ACC45564.2020.9147595
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1109/TGRS.2019.2899122
http://dx.doi.org/10.1109/TGRS.2019.2899122
http://dx.doi.org/10.1109/TGRS.2019.2899122
http://dx.doi.org/https://doi.org/10.1016/j.asr.2019.12.030
http://dx.doi.org/https://doi.org/10.1016/j.asr.2019.12.030
http://dx.doi.org/https://doi.org/10.1016/j.asr.2019.12.030
http://dx.doi.org/https://doi.org/10.1016/j.actaastro.2020.02.036
http://dx.doi.org/https://doi.org/10.1016/j.actaastro.2020.02.036
http://dx.doi.org/https://doi.org/10.1016/j.actaastro.2020.02.036
http://www.deeplearningbook.org
http://dx.doi.org/10.2514/1.A34838
http://dx.doi.org/10.2514/2.4874
https://arxiv.org/abs/2107.07599
https://arxiv.org/abs/2107.07599
https://arxiv.org/abs/2107.07599
http://dx.doi.org/10.6084/m9.figshare.11931363
http://arxiv.org/abs/1602.01783
http://dx.doi.org/https://doi.org/10.1038/nature14236
http://dx.doi.org/https://doi.org/10.18280/ria.350101
http://dx.doi.org/https://doi.org/10.18280/ria.350101
http://dx.doi.org/https://doi.org/10.18280/ria.350101
http://dx.doi.org/10.1109/AERO.2018.8396797
http://dx.doi.org/https://doi.org/10.1016/j.ast.2021.107224
http://dx.doi.org/https://doi.org/10.1016/j.ast.2021.107224
http://dx.doi.org/https://doi.org/10.1016/j.ast.2021.107224
http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1312.6120
https://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://dx.doi.org/https://doi.org/10.1016/j.asr.2020.12.014
http://dx.doi.org/https://doi.org/10.1016/j.asr.2020.12.014
http://dx.doi.org/https://doi.org/10.1016/j.asr.2020.12.014
http://dx.doi.org/https://doi.org/10.2514/1.G005481
http://dx.doi.org/https://doi.org/10.2514/1.G005481
http://dx.doi.org/https://doi.org/10.2514/1.G005481
http://dx.doi.org/https://doi.org/10.1016/j.ast.2022.107503
http://dx.doi.org/https://doi.org/10.1016/j.ast.2022.107503
http://dx.doi.org/https://doi.org/10.1016/j.ast.2022.107503
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126240899&partnerID=40&md5=6a51911e8e10ed060ac72ea48b7bbcb5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126240899&partnerID=40&md5=6a51911e8e10ed060ac72ea48b7bbcb5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126240899&partnerID=40&md5=6a51911e8e10ed060ac72ea48b7bbcb5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126240899&partnerID=40&md5=6a51911e8e10ed060ac72ea48b7bbcb5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126240899&partnerID=40&md5=6a51911e8e10ed060ac72ea48b7bbcb5
http://dx.doi.org/10.2514/6.2020-1914
http://dx.doi.org/10.2514/1.G002309
http://dx.doi.org/10.2514/1.G002309
http://dx.doi.org/10.2514/1.G002309

16 Lorenzo Capra etal / Advances in Space Research xx (2022) xxx-xxx

31(5), 1521–1524. doi:https://doi.org/10.2514/1.33616.1022

http://dx.doi.org/https://doi.org/10.2514/1.33616

	Introduction
	Paper Overview

	Problem statement
	Autonomous guidance
	Partially Observable Markov Decision Process

	Deep Reinforcement Learning
	Proximal Policy Optimization

	Reinforcement Learning framework
	State space model
	Agent policy
	Reward model

	Neural Network models comparison
	Feed-forward Neural Network Architecture
	Recurrent Neural Network Architecture
	Results

	Continuous Action Space agent
	Benchmark testing
	Discrete vs Continuous Action Space comparison

	Robustness & Sensitivity analysis
	Nonlinear dynamics
	Navigation uncertainty
	Target attitude analysis

	Conclusion
	Future developments

