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Abstract—As PV penetration in the power distribution network
is growing on an unprecedented scale, probabilistic power flow
analysis is becoming crucial to assess the health of network oper-
ation. State-of-the-art probabilistic analysis relies on Stochastic
Response Surface Method and Gaussian Copula for including
PV sources correlation. However, it has been observed how
in the presence of complex statistical distributions of injected
PV powers, such a standard approach can provide inaccurate
evaluations of the output variable distributions. In this article, we
carefully investigate the origins of such a drawback and propose
a novel implementation flow that overcomes the problem. In
order to check the correctness of the proposed methodology, the
results obtained with the Stochastic Response Surface Method are
compared with Monte Carlo simulations. Several investigations,
such as voltage uncertainties, network health and probability
of violating quality constraints are conducted on the same test
network.

Index Terms—Correlated PV, Gaussian Copula, Photovoltaic
generation, Polynomial approximation, Probabilistic load flow,
Stochastic Response Surface Method.

I. INTRODUCTION

THE growing penetration of distributed Photovoltaic (PV)
sources in the power distribution network is leading

to a significant uncertainty in power generation. This can
adversely affect the quality/health of the network leading to
unwanted malfunctioning, such as node over voltage or phase
unbalancing. In order to predict the effects of PV generation
uncertainty on network operation, two main ingredients are
key: 1) a realistic statistical model of PV sources, 2) an
efficient Probabilistic Load Flow methodology [1], [2], [3],
[4] able to include the PV model.

In previous works, the geographically dispersed PV systems
have been modelled using several techniques [5], [6], [7]
that capture the meteorological variability. In many cases,
such techniques fit the power output data to known stan-
dard distributions such as uniform and beta [8], [9], [10].
Unfortunately, data-driven investigations have shown how PV
power generation uncertainty tends to follow non-standard
statistical distributions [11], [12]. Besides that, PV systems
are commonly correlated among them since they depend on
meteorological effects of that day such as the availability
of solar irradiation, temperature and wind speed for cooling
effect.

In order to model correlation in PV power generation,
Copula-based methods [13], [14] are commonly adopted.
In [15], Copula method is exploited to model the solar

irradiation of PV systems that are spatially correlated, similarly
in [16] authors have demonstrated the usage of Gaussian Cop-
ula to handle the correlation among the PV sources represented
by non-standard statistical distributions in connection with
Monte Carlo (MC) simulations. In actual fact, MC simulation,
thanks to its accuracy and versatility, still represents the basic
method for probabilistic load flow (PLF) analyses and the ulti-
mate reference to check the reliability of other techniques [17].

However, due to its slow convergence rate, MC method
commonly requires running tens of thousands load flow sim-
ulations becoming unacceptably time consuming for complex
networks/scenarios.

An effective approach to speed up MC simulations relies on
the adoption of surrogate models of the network response that
employ polynomial chaos expansions [18], [19], [20]. Within
this frame, Stochastic Response Surface Methods (SRSM)
look particularly suitable to power grid analysis since they
can directly provide the detailed PDFs of non elementary
events/quantities affecting network quality, such as overvoltage
or voltage unbalance factor probability. SRSMs have also
been extended to handle the correlations among the physical
variables by means of Copula method [21]. In fact, Copula
allows transforming, i.e. via Nataf transformation, correlated
PV powers into a new set of inner variables that are statisti-
cally independent and Gaussian distributed. A surrogate SRSM
model can thus be derived that approximates the relationship
among inner variables and output variables of interest via
standard Hermite polynomials chaos series expansions.

It has been noted however how in the presence of non-
standard complex statistical distributions of uncertain input
parameters, such a conventional SRSM implementation with
Copula can introduce inaccuracies in evaluating output vari-
ables distributions [22].

In this paper, we carefully investigate the reasons of such a
relevant implementation drawback. We show how the problem
is connected to the high degree of nonlinearity introduced by
Nataf transformation when modeling uncertain PV sources.
Hence, we propose a novel implementation of SRSM in
connection with Copula that fixes the problem. In the novel
implementation, Gaussian Copula and SRSM are applied sepa-
rately in a two-step procedure. In fact, at the first step, Copula
is used only as a samples repopulation technique of small
PV powers datasets. At the second step, a SRSM surrogate
model, built on generalized Polynomials Chaos (gPC), is
employed to accurately approximate the mildly (low-order)
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nonlinear relationship linking PV delivered powers to the
output variables of interest.

The novel PLF methodology is applied to a large
power distribution network that resembles an European town
i.e., the Non-synthetic European low voltage test network
(NSELVTN). Network health, in terms of voltage unbalance,
is discussed in connection with different penetration levels
of the PV sources. In addition, the probability of violating
the constraints related to the quality of the power network
is evaluated by considering over voltage [23] and voltage
unbalance due to different PV source penetration.

The original contributions of this article includes:
• The mathematical details of Copula computational flow

when applied to correlated PV sources is reviewed, this
has also a tutorial value.

• It is illustrated how conventional implementation of
SRSM with Copula can provide inaccurate results due
to the (known) limitation of polynomial interpolation in
the presence of high-order nonlinearities.

• A novel implementation is thus provided that overcomes
the drawback. It is based on the idea of applying Copula
and SRSM surrogate model separately in a two-step
computational flow.

• The accuracy and the efficiency of the novel method
is proved by comparing its predictions with those of
MC simulations conducted on the same test network
NSELVTN.

The rest of the article is organized as follows: Section II
investigates the typical features of PV generation statistical
distributions and reviews in details the computational flow of
Gaussian copula. In Section III, we illustrate the mathematical
implementation details of the novel SRSM method highlight-
ing the differences compared to conventional implementation.
Numerical results on the test network are illustrated in Section
IV while Conclusions are drawn in Section V.

II. PV UNCERTAINTY AND COPULA METHOD

In this paper, we are interested in reproducing in simulations
the typical statistical features of PV generation and evaluating
their effect on the distribution grid. The technique that we
propose is general and can be applied to any type of PV
delivered power data set, however for exposition purpose we
refer to the freely-available data set of PV measurements
[24]. Our analysis is done on hourly basis: the active power
delivered by typical PV plants over a hourly time window of
the day, i.e., from 10:00 AM to 11:00 AM, are extracted for
several days. The values of delivered PV (active) power PPV

are normalized to the maximum installed power PM , i.e.

x =
PPV

PM
. (1)

Fig. 1(Top) shows, as an example extracted from [24], the
typical statistical distribution of the normalized active power
for the morning hour 10:00 to 11:00 AM while Fig. 1(Bottom)
reports the distribution for the afternoon hour 3:00 to 4:00 PM.
It is apparent how:

• PV power delivery tends to follow non-standard and quite
complex statistical distributions.
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Fig. 1. Typical probability distributions of PV delivered power: (Top) over
the morning hour 10:00 to 11:00 AM; (Bottom) over the afternoon hour 3:00
to 4:00 PM.

• PV power delivery is a random non-stationary process
since its statistics over different hour time windows are
different among them. This implies that with PV sources,
probabilistic analysis should be repeated for each hour
time window. In addition, since available data for each
single hour can be quite limited in number, some form of
data repopulation is indeed needed in order to generate
the large data set required by probabilistic analysis (e.g.,
Monte Carlo).

In addition, even if not seen in Fig. 1, it is well known
that when passing to consider many geographically-close PV
sources, they exhibit a more or less degree of correlation that
should be accounted for in simulations.

A. Transformation of stochastic physical variables

In its original implementation, stochastic response sur-
face method assumes that stochastic variables are normal
distributed and independent among them [25], [26]. Since
physical variables describing PV power generation do not
satisfy such hypotheses, they need to be first transformed into
a new set of inner variables. The implementation that we now
describe is data-driven since it relies on the availability of
an initial set of simultaneous values assumed by the physical
variables, i.e. the normalized PV delivered powers. From this
initial data set, the Copula model is employed to generate
a much wider set of samples to be used in subsequent
probabilistic analyses.

Let us denote the physical random variables as xk , for k =
1, . . . , N and the associated empirical CDF as Fk(xk). Such
a CDF can be determined/evaluated from data through well
known kernel expansion techniques [27].

We have that the uk random variables defined as

uk = Fk(xk) (2)

are uniformly distributed in [0, 1]. Hence, we can define a set
of middle variables zk, that are joint Gaussian, by means of
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Nataf’s transformation [28].

zk = Φ−1(uk)) = Φ−1(Fk(xk)) (3)

where Φ(·) denotes the Gaussian cumulative distribution. The
samples of zk derived from the data set of xk through (3)
allow one to compute the empirical correlation matrix Cz

among zk variables. Finally, the zk variables, that for notation
compactness are collected into vector �z, are decorrelated via
the following linear transformation

�z = L �ξ (4)

where L is the square root of correlation matrix Cz of vector
�ξ calculated with the Cholesky decomposition. While vector
�ξ collects N Gaussian-distributed and independent variables
ξk. Such normal distributed variables are the inner variables
of the model.

B. Generating/Computing correlated samples

The transformation flow described in the previous subsec-
tion can be followed backward for generating a large set of
samples of physical variables xk with the prescribed marginal
distributions and correlation as described in the Repopulation
flowchart shown in Fig. 2. In fact, starting now from a sample
(realization) of the normal distributed random variables �ξ we
first determine the related middle variables �z by means of
(4). Second, the associated physical variables xk are computed
through:

xk = F−1
k [Φ(zk)] (5)

Fig. 2. The flowchart explaining the procedure to generate the large sample set
of physical input variables xk applying Gaussian copula on the PV profiles.

The Repopulation computational flow establishes a deter-
ministic relationship linking the inner variables to the physical
ones, i.e.:

xk = hk(ξ1, . . . , ξN ) (6)

It is worth noticing how such a relationship hk(·) can exhibit
a high degree of non linearity since it incorporates the applica-
tion of normal CDF Φ(·) and of the inverse CDF F−1

k (·). As a
result, the numerical approximation of hk(·) with polynomials
can introduce inaccuracy even when high-order polynomial
degrees are adopted.

C. PLF with MC

The Copula computational flow can be exploited to perform
PLF simulations of the power grid with Monte Carlo (MC).
To this aim, we denote with y a quantity of interest in the
power grid or observable variable that we want to describe
statistically. Relevant observable variables y are node voltage
module, node phase, line current or more complicate figure of
merit describing grid power quality such as Voltage Unbalance
Factor (VUF). The generic observable variable is related to the
statistical physical ones via the deterministic relationship:

y = l(x1, . . . , xN ) (7)

determined by grid power flow balance and Kirchhoff’s laws.
It is worth noting that: commonly, the function l(·) relating
generated powers to observable variables (e.g., node voltages)
is almost linear and is well approximated by polynomials in
xk of order ≤ 2 [1].

III. PLF WITH STOCHASTIC RESPONSE SURFACE
METHOD (SRSM)

A. Conventional SRSM

The most straightforward way to apply conventional SRSM
[25], [26] in connection with Copula is that of using the
surrogate model to approximate the multi-variate relationship
between Copula inner parameters ξk and grid observable
variable y. Such a relationship is the result of a function
composition. In fact, due to Copula transformation, physical
variables xk can be seen as a nonlinear function of inner
parameters ξk via (6). Since observable variable y depends
on injected normalized powers xk, it turns out that output y
ultimately depends on Copula inner variables ξk through the
following input-output relationship:

y = l(x1, . . . , xN ) = h̃(ξ1, . . . , ξN ) (8)

In its conventional implementation with Copula, the
surrogate SRSM model approximates the h̃(·) relationship
with the polynomial chaos expansion:

y = h̃(�ξ) ≈
Nb−1∑
i=0

c̃iHi(�ξ), (9)

formed by Nb multi-variate basis functions Hi(�ξ). The ad-
vantage of this approach is the ease of implementation: the
inner stochastic parameters ξk are standard normal distributed
and thus the associated polynomial basis functions Hi(�ξ) are
standard Hermite polynomials [29].

The drawback of such an implementation is due to the
nonlinear nature of the xk = hk(ξ1, . . . , ξN ) relationship
determined by Copula transformation when dealing with PV
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delivered powers. In this case, polynomial approximation (9)
can provide a quite poor approximation. To better explain
this concept, we now present and example where we employ
Hermite polynomials, of growing order, to interpolate the re-
lationship of type (5) established by the Copula computational
flow:

h(ξ) = F−1 [Φ(ξ)] (10)

where ξ is a normal distributed random variable, Φ(·) denotes
the Gaussian cumulative distribution while F−1(·) is the
inverse CDF of normalized PV power whose PDF is shown
in Fig. 1(Bottom). Fig. 3 shows function h(ξ) interpolation
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Fig. 3. (Continuous line) the nonlinear relationship h(ξ); (Dashed line) Order-
2 Hermite polynomial interpolation.
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Fig. 4. (Continuous line) the nonlinear relationship h(ξ); (Dashed line) Order-
5 Hermite polynomial interpolation.

with an order-2 Hermite polynomial while Fig. 4 shows the
order-5 polynomial interpolation. According to Theory, as
interpolation points, we select the Gaussian quadrature nodes
(the number of nodes is equal to polynomial Order plus 1)
[29]. We can see how polynomial interpolation results to
be rather inaccurate far from the interpolation points and
that when polynomial order is increased to 5, interpolation
oscillations appear at the borders of the domain (well known
problem of over-fitting) [30].

B. The idea behind novel SRSM

The novel technique we propose overcomes the drawback
of conventional implementation by applying Gaussian Copula

and SRSM surrogate model in two separate steps. At the first
step, the Repopulation computational flow of Copula sketched
in Fig. 2 is used to enlarge the small data sets of PV delivered
powers available over each considered window time. At the
second step, a polynomial SRSM surrogate model is employed
to accurately approximate the mildly nonlinear relationship
linking normalized PV delivered powers to observable output
y:

y = l(x1, . . . , xN ) (11)

The SRSM can then be used as an efficient way of evaluating
y = l(x1, . . . , xN ) in place of running a large number
of deterministic Load Flow. The advantage of SRSM novel
implementation compared to conventional one relies on the
usage of low order polynomials, which results in much more
accurate approximations. The price to pay with the proposed
implementation is that now surrogate SRSM cannot be built
with standard polynomial chaos bases since variables xk are
not standard distributed. Instead, proper generalized basis
functions associated to xk statistical variables have to be
precalculated. This can be achieved via a three-term recurrence
relation and iterative Darboux’s formula as illustrated in [31],
[32].

C. Mathematical implementation

A truncated series expansion of an order-γ as given in (12) is
formed by Nb multi-variate generalized basis functions Ψi(�x)
weighted by unknown coefficients ci.

y = l(�x) ≈
Nb−1∑
i=0

ci Ψi(�x), (12)

Each multi-variate basis function Ψi(�x) is given by the
product

Ψi(�x) =

N∏
k=1

ψik(xk) (13)

where ψik(xk) are the uni-variate polynomials of degree ik
associated to the random variable xk having non-standard
marginal probability density function (PDF) fk(xk).

The uni-variate polynomials for non-standard distributed
physical variables xk are obtained through a three-term re-
currence relation applied to the empirical (i.e., data-driven)
PDFs [31].

At this stage, the following observation is in order. When
variables xk are mutually independent, the multi-variate poly-
nomials of (13), given by the product of uni-variate ones,
provide a set of orthogonal basis functions that allow approx-
imating the smooth y(�x) with a high accuracy and in addition
to extract the statistical moments of observable y analytically.
When variables xk are not independent, as it is our case,
the multi-variate polynomials in (13) are no more orthogonal
among them so the expansion given in (12) cannot be used for
analytical computations. To this aim, a new set of orthogonal
polynomial basis might be derived by applying a Gram-Smith
orthogonalization process [33].

However, when (12) is simply used as a surrogate model
for accelerating MC method, polynomials orthogonalization is



5

Fig. 5. Detail of the NSELVTN feeder where correlated PV generators are
injected into Phase A and Phase C.

not required anymore. In fact, multi-variate functions of (13)
continue to preserve excellent approximation capabilities of
the smooth relationship y(�x) even in the presence of correlated
variables. Thus they can still be adopted as basis functions in
the proposed response surface model given by (12).

The expansion coefficients ci in (12) can be calculated
with a Least Square regression technique in which Ns ≥ Nb

samples are generated for �x. In each sample �xj the observable
variable value yj = l(�xj) is calculated by running a deter-
ministic load flow analysis. The coefficients ci minimize the
squared difference between the observable variables and the
gPC evaluated at the samples, i.e.:

ci ≈ argmin
c̃i

1

Ns

Ns∑
j=1

(
yj −

Nb−1∑
i=0

c̃iΨi(�xj)

)2

(14)

(14) is solved by introducing the experiment matrix as given
in (15), it collects the Nb multi-variate polynomials evaluated
at the Ns samples.

M =

⎡⎢⎣ Ψ0(�x1) . . . ΨNb−1(�x1)
...

. . .
...

Ψ0(�xNs) . . . ΨNb−1(�xNs)

⎤⎥⎦ (15)

In vector form, it results in the linear system as given in ( 16).

(MTM)

⎡⎢⎣ c0
...

cNb−1

⎤⎥⎦ = MT

⎡⎢⎣ y1
...
yNs

⎤⎥⎦ (16)

IV. RESULTS

A. Definitions and Test network

A power distribution network with deterministic loads
and uncertain PV generators is employed for validating the
method. The network is the NSELVTN [34] that represents
a real distribution network of an European town, it operates
at 230V, 50Hz frequency. In order to investigate the impact
of PV generation, PV sources representing PV power plants
are inserted with different penetration factors. The penetration

factor is defined as the ratio between the installed peak
photovoltaic PPV power and the total peak power of the loads
PL ([35]). The PL is 350kW for each phase.

First, in the following sub-section IV-B the method is
applied considering four PV sources with realistic degrees of
mutual correlations. Later in the sub-section IV-C, the impact
of PV penetration on grid power quality is studied.

To define grid power quality, several indicators go into
defining the metrics that characterize network quality [23],
[36], [37]. We have chosen in this article to look at only
two of these indicators: Voltage Deviation (VD) and Voltage
Unbalance Factor (VUF) [38] evaluated at some critical buses
into the network.

B. Validation of the proposed method

In order to validate the proposed method, one feeder of the
NSELVTN is modified with the injection of PV sources. This
feeder is made by 90 buses and we focus the observations
only on 29 of them as shown in the detail of Fig. 5. This
feeder represents a small portion of the larger network that
we simulate. The PV sources are connected to Phase A and
Phase C as described in Table I and shown in the Fig. 5. These
PVs will inject power into the lines assuming PV penetration
of 5.7% in phase A and of 3.4% in the phase C. The source
are correlated and the correlation coefficients are shown in
Table II.

TABLE I
PEAK VALUE OF THE PV SOURCES ACTIVE POWER AND TOTAL VALUE OF

THE DISTRIBUTED LOAD FOR EACH PHASE. THE cos φ IS EQUAL TO 0.9

Parameter Phasing Bus P
name [kW]

1−ph PV Generator 1 A 7 10
1−ph PV Generator 2 A 9 10
1−ph PV Generator 3 C 11 6
1−ph PV Generator 4 C 13 6

1−ph Loads A Distributed 125
1−ph Loads B Distributed 70
1−ph Loads C Distributed 60

TABLE II
CORRELATION COEFFICIENT AMONG PV GENERATORS

PV Generator PV1 PV2 PV3 PV4
PV1 1.00 0.68 0.72 0.48
PV2 0.68 1.00 0.94 0.87
PV3 0.72 0.94 1.00 0.72
PV4 0.48 0.87 0.78 1.00

As observable variable, we select the node voltage at bus
12, Phase C. We compute the PDF of such a variable with:

1) The reference Monte Carlo (MC) method conducted
with 10,000 samples.

2) the conventional SRSM implementation;
3) the novel SRSM presented in this paper.
The Fig. 6 shows a comparison among the results provided

by the methods. When compared to the reference MC, we see
how the conventional SRSM, even though was implemented
with order-5 Hermite polynomials, fails to approximate the
results accurately in case of non standard distributions as
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TABLE III
METHODS COMPARISON

reference MC Conventional SRSM New SRSM
LF Numb. 10,000 36 15

Sim. time [s] 291 16.5 5.9
Rel. Error — ≈ 10 % < 0.4 %

inputs. By contrast, the proposed novel SRSM, implemented
with generalized order-2 polynomials chaos, fits with great
accuracy the MC simulation result that runs 10, 000 samples.
Table III compares the three methods in terms of number of
Load Flow simulations required, simulation time and PDF
accuracy (with respect to reference MC method). The PDF
computed with novel SRSM implementation has a relative
error versus the one computed with MC that is < 0.004 in
all points. Furthermore, in this example, the novel SRSM
introduces a remarkable ≈ 50× speed up factor compared
to MC simulation for the same accuracy.
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Fig. 6. Comparison of Phase C voltage distribution at bus 12 computed
with the methods: a) Monte Carlo simulation with 10,000 samples (reference
method); b) conventional SRSM using order-5 Hermite polynomials; c) novel
SRSM using order-2 generalized polynomial chaos.

Thanks to its numerical efficiency as well as accuracy,
the novel SRSM method can thus be exploited for compre-
hensive and reliable investigations about several observable
variables/figures of merit of interest and for different hourly
time windows of the day. For instance, the voltage distributions
at phase A and C at the same bus are shown in Fig. 7 and
in Fig. 8, respectively, for different time slots. An increase
in voltage magnitude is seen with a maximum in the middle
hours of the day due to the increase of the injected PV power.

As a second example, we calculate the statistical distribution
of VUF. VUF is defined as the ratio of the negative voltage
sequence component to the positive voltage sequence compo-
nent and is known to be a key figure of merit in order to
assess network health. Fig. 9 reports VUF calculated at bus
12: interestingly it is seen how VUF mean value reduces in the
middle hours of the day where PV power injection is larger.
This is because, in the considered scenario, the network with
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Fig. 7. Box diagram for the hourly voltage distribution of Phase A at bus 12.
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Fig. 8. Box diagram for the hourly voltage distribution of Phase C at bus 12.

no PV injection is unbalanced by loads while PV injection
tends to compensate such an unbalance.

C. Study of violation of power grid quality due to PV pene-
tration

Finally, in this last section, we are going to show how
the proposed numerically-efficient SRSM can be exploited to
rapidly evaluate the probability of violation of some network
constraints versus the penetration rate of PV sources. In fact,
by means of joint evaluations of several metrics it is possible
to define the quality of the grid variables and determine the
critical value that should not be reached in order to keep a
good quality of the distribution network. In our example, we
consider two cases in which we insert six PV sources on phase
C line. In the case 1, the penetration index for the phase
C is fixed to 10.3% while, in the case 2, it is enhanced to
17.2%. The value and the total amount of PV power sources
is shown in Table IV while the correlation coefficients assumed
in simulation are given in Table V. The positions of the PV
generators are highlighted in the Fig. 10 In this example, we
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Fig. 9. Box diagram for the Voltage Unbalance Factor at bus 12 in percentage.

assume as critical bus the bus number 14 in Fig. 10 where the
node voltages are employed as observable variables to check
the network quality in terms of voltage deviations (VD) and
voltage unbalance factor (VUF) indicators. In simulations, the
VD threshold is assumed 0.03%p.u. while VUF threshold is
3%.

TABLE IV
PV GENERATORS AND ITS PENETRATION RATIO FOR PHASE C

PV Penetration for phase C Active power Total number of
Ratio [%] [kW] PV generators

Case I 10.3% 36 6 units
Case II 17.14% 60 6 units

TABLE V
CORRELATION COEFFICIENT AMONG 6 PV GENERATORS

PV Generator PV1 PV2 PV3 PV4 PV5 PV6
PV1 1.00 0.19 0.82 0.74 0.18 0.82
PV2 0.19 1.00 0.47 0.63 0.90 0.49
PV3 0.82 0.47 1.00 0.97 0.46 0.95
PV4 0.74 0.63 0.97 1.00 0.62 0.98
PV5 0.18 0.90 0.46 0.62 1.00 0.48
PV6 0.82 0.49 0.95 0.98 0.48 1.00

Fig. 11 reports the statistical distribution (i.e., the PDF) of
the VD indicator, as computed with the novel SRSM, for the
two different levels of PV penetration considered in case 1
and 2. Hence, by calculating the portion of the areas of the
two PDFs corresponding to Voltage > 0.03 p.u. we determine
that the probability of VD indicator violation are 51.1% and
62.6% in case 1 and 2, respectively.

Similarly, Fig. 12 shows the statistical distribution of VUF%
indicator as computed with the numerically-efficient SRSM.
The likelihood of VUF violation is 11% in case 1 while it
increases to more than and 52% in case 2.

Exploiting the SRSM, we also calculate the joint probability
of VD and VUF simultaneous violations that results in 11% in
case 1 and 52% in case 2. This confirms that VUF indicator
is strictly correlated to VD so that when the first indicator
violation occurs also VD is over the threshold.

Fig. 10. PV generators connected to Phase C of the network with the
penetration ratio as in case1. Buses with the PV generators are in blue, the
bus without PV generator but critically violating the set thresholds than all
other buses is in Red and called as critical bus.
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Fig. 11. The voltage deviation in bus 14 for the two analyzed cases

V. CONCLUSION

In this paper, we have provided an accurate and numerically-
efficient technique for evaluating the statistical uncertainty
of power grid electrical variables due to the penetration of
PV distributed sources. The proposed technique combines the
Gaussian Copula method, for handling correlation among PV
sources, with an original implementation of the stochastic
response surface method (SRSM) able to deal with non-
standard statistical distributions. The main feature of the
novel approach is a two-step implementation of Copula and
SRSM that allows the employment of low-order generalized
polynomial chaos in place of high-order standard Hermite
polynomials (as it is the case for conventional SRSM im-
plementations). The accuracy/efficiency of the novel SRSM
methodology have been checked via probabilistic simulations
of the Non-synthetic European low voltage test network and
validated through comparisons with the reference Monte Carlo
(MC) method. For the examples presented in the paper, the
novel SRSM introduces an almost two-orders of magnitude
speed-up factor compared to MC, for the same accuracy. This
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Fig. 12. The VUF% distribution in bus 14 for the two analyzed cases

reduces significantly the computational time needed to explore
several scenarios for assessing the quality of the grid due to
an increase of PV sources installed. More specifically, it has
been shown how SRSM allows fast probabilistic calculations
of important grid quality indicators, such as voltage deviation
or voltage unbalance, with the determination of the probability
that such indicators violate prescribed quality thresholds.
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