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Multitrajectory Model Predictive Control for Safe
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Abstract— The problem of navigating an unmanned aerial
vehicle (UAV) in an unknown environment is addressed with
a novel model predictive control (MPC) formulation, named
multitrajectory MPC (mt-MPC). The objective is to safely drive
the vehicle to the desired target location by relying only on
the partial description of the surroundings provided by an
exteroceptive sensor. This information results in time-varying
constraints during the navigation among obstacles. The proposed
mt-MPC generates a sequence of position set points that are fed
to control loops at lower hierarchical levels. To do so, the mt-MPC
predicts two different state trajectories, a safe one and an
exploiting one, in the same finite horizon optimal control problem
(FHOCP). This formulation, particularly suitable for problems
with uncertain time-varying constraints, allows one to partially
decouple constraint satisfaction (safety) from cost function mini-
mization (exploitation). Uncertainty due to modeling errors and
sensors noise is taken into account as well, in a set membership
(SM) framework. Theoretical guarantees of persistent obstacle
avoidance are derived under suitable assumptions, and the
approach is demonstrated experimentally out-of-the-laboratory
on a prototype built with off-the-shelf components.

Index Terms— Learning for control, model predictive control
(MPC), safe autonomous navigation, uncertainty quantification,
unmanned aerial vehicles (UAVs).

I. INTRODUCTION

IN THE last decade, technological advancements have
allowed unmanned aerial vehicles (UAVs) to become more

and more common in our everyday life [1], [2]. Great research
progress has been made across multiple areas, showing that
relatively cheap civil drones can take off, carry out complex
missions, and land without any human intervention. At the
same time, autonomous UAV missions belong to the spectrum
of safety-critical applications, where the use of algorithms that
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do not account for uncertainty and robust constraint satisfac-
tion can lead to catastrophic effects, such as injury to people,
loss or harm to property/equipment, or environmental damage.
The design of motion planning algorithms in safety-critical
applications must trade-off a risk-aware approach, which guar-
antees the safety of the system and the environment, and the
exploitation of the vehicle capabilities without falling into
a too conservative behavior. We consider here the problem
of guaranteeing collision-free autonomous navigation from an
initial point to a target position in an unknown environment.
This problem presents several challenges: from rather usual
requirements, such as the compliance with actuator constraints
and vehicle dynamics [3], to the need to guarantee collision
avoidance despite uncertainties both in the environment and in
the system dynamics and sensing capabilities, at the same time
keeping computational complexity small enough to enable the
real-time applicability of the algorithm in real-world tasks.

A. Related Work
When a description of the environment is available, dif-

ferent approaches can be found in the literature to provide
a collision-free path [4]. Sampling-based techniques, such
as potential field methods [5], [6], cell decomposition [7],
or roadmaps (e.g., A* [8], rapidly exploring random trees [9]),
have been widely studied, providing a reliable way to perform
offline path planning.

To include the vehicle’s dynamics and manage constraints,
model predictive control (MPC) [10], [11] has been inves-
tigated as well. Robust MPC approaches have been widely
explored to consider disturbances and/or model mismatch.
Robustness is usually achieved by tightening the constraints
in the optimization, as shown in [12], [13], and [14].
Bemporad et al. [10] and Richards and How [15] use an
integer variable to account for the intersection of the pre-
dicted trajectory with an obstacle, obtaining in this way a
mixed-integer quadratic or linear program (MIQP or MILP)
to be solved at each time step in a receding horizon fashion.
By under-approximating the free space with convex poly-
topes, instead, it is possible to solve the problem without
using integer variables (see, e.g., [16], [17]). The resulting
linear, but time-variant constraints allow one to use a linear
time-varying MPC formulation to compute a dynamically
feasible and collision-free trajectory. The main drawback of
these approaches is the need for a suitable discretization of
the environment and the increasing complexity of the problem
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with the number of obstacles and/or convex regions used
in the approximation. The inner approximation with convex
sets of safe regions has been widely studied as well. Sev-
eral optimization-based approaches have been proposed (see,
e.g., [16], [18], [19]) where the position of known obstacles
is exploited to obtain the largest convex set in the free area.
These approaches, however, do not guarantee the belonging
of the current vehicle’s position to the obtained set, and they
require an a priori description of the environment, as a set of
convex polytopes or as a map. On the contrary, in this work,
we assume that no map is initially available and exploit only
local sensor measurements.

Indeed, when the environment is partially or totally
unknown, or it could be different from the prior information,
the system must rely on local information collected by the
available sensors to compute a feasible trajectory. Different
approaches can be found in the literature that exploit directly
the available information provided by exteroceptive sensors
either to build a local map of the environment [20], [21]
or for reactive obstacle avoidance (see, e.g., [22], [23]).
Liu et al. [20] use convex optimization to derive piecewise
polynomial trajectories for the navigation of an UAV in a
partially unknown environment. A 3-D light detection and
ranging (LiDAR) is used to build a local map, which is
employed to compute convex connected polyhedra modeling
the obstacle-free space and considered as linear inequality con-
straints in a quadratic program (QP) for trajectory optimiza-
tion. However, the trajectory planning approaches available
in the literature, despite providing an obstacle-free trajectory,
only consider constraints on kinematic quantities and do not
include, in the problem setup, the vehicle’s dynamical response
and the related uncertainty, due to, e.g., model mismatch
or external disturbances. Other existing works dealing with
this problem adopt reinforcement learning (RL) methods [24],
[25], which employ directly the sensor measurements. All
these methods often obtain good performance and the planning
of obstacle-free trajectories but with little regard to safety
guarantees, here considered in the form of constraint satis-
faction and persistent obstacle avoidance. Other approaches
exploit prior knowledge about the system to ensure safety,
by combining optimal control and learning (see, e.g., [26],
[27], [28]). This problem is particularly challenging, since the
feasible path must be replanned online, as new parts of the
environment are discovered. In this case, the control logic has
to balance two conflicting aspects: safety, that is to avoid the
online discovered obstacles, and exploitation, that is to reach
the desired target in short time.

To deal with this balancing issue, in this work, we propose
a novel MPC approach that we find particularly suitable for
time-varying systems or constraints, named multitrajectory
MPC (mt-MPC). To trade-off safety and exploitation in an
intuitive way, the mt-MPC considers different future state
trajectories in the same finite horizon optimal control problem
(FHOCP), enabling a partial decoupling between constraint
satisfaction (safety) and cost function minimization (exploita-
tion). In [21] and [29], a control approach is proposed for
the trajectory planning of a UAV equipped with a sensor that
detects the surrounding partially unknown environment. The

approach also relies in this case on a multitrajectory concept
and proposes the application to several practical scenarios.
On the other hand, the approach only considers a triple
integrator as dynamics of the vehicle and does not provide
theoretical guarantees on constraints satisfaction, which is one
of the objectives of this work. A related MPC formulation
has been proposed in [30], where the FHOCP trades-off the
behavior of a nominal and a contingency model of a self-
driving car. While Alsterda et al. [30] try to find a contingency
maneuver in case of an unexpected change in the system, here,
we consider multiple trajectories to exploit as much as possible
the current knowledge of the environment and to reduce the
conservatism of a guaranteed collision-free approach. Finally,
a preliminary version of the mt-MPC approach appeared in
our recent work [31], where a 2-D navigation problem is
considered and a simulation study is presented. In this article,
we deliver many additional contributions, as described next.

B. Contributions
We propose and demonstrate experimentally the use of

mt-MPC to drive safely a multicopter drone, equipped with an
exteroceptive sensor, to a goal point in an a priori unknown
environment. The control structure is hierarchical: at low level,
state-feedback controllers stabilize the vehicle’s trajectories
and track the set points provided by the high-level mt-MPC.
The navigation in an unknown environment leads to time-
varying constraints, such that standard receding horizon strate-
gies do not guarantee recursive feasibility anymore. To address
this problem, we propose a modified receding horizon imple-
mentation and prove the existence of a feasible trajectory at
each time step, hence persistent obstacle avoidance, under the
assumption of time invariant environment. To guarantee this
property also in the presence of model-plant mismatch and
disturbances, we quantify the model uncertainty in terms of
bounds on the prediction error by exploiting a set membership
(SM) framework [32], [33]. Thus, we address both environ-
ment uncertainty and model uncertainty, at the same time
providing a method to quantify the latter from experimental
data. All these aspects are relevant in real-world applications,
yet they are rarely considered altogether in previous contri-
butions, where the focus is either on the environment or on
robust control starting from a given uncertainty model (e.g.,
disturbance bounds or model sets) without mentioning how
this is derived. The resulting MPC law is a dynamic state-
feedback one, in contrast with most of the literature where a
static state-feedback controller is obtained. In addition, we also
address two application-specific problems: the need to derive
a convex under-approximation of the free space around the
drone exploiting only local sensor measurements, in order to
formulate the FHOCP as a convex QP, and the need to navigate
around obstacles that stand between the drone and its target.
Regarding the approximation of the free space, we present
an approach that is computationally efficient and guarantees
that the drone belongs to the derived set, which is needed
to formally guarantee obstacle avoidance. Compared with our
preliminary work [31], the main novel contributions are as
follows: the quantification of model uncertainty from data, the
development and theoretical analysis of a mt-MPC approach
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Fig. 1. Hierarchical structure of the UAV control system and of the proposed approach: an existing low-level position controller tracks the reference
signals provided by a high-level navigation controller. The latter elaborates the sensor readings ρ(k) (Section II-B) and exploits a bound ς̂n on the trajectory
uncertainty (Section III-C) to build a convex under-approximation of the feasible space S̄(k) (Section III-D), which is employed, together with a simplified,
control-oriented model of the drone (Section III-A), by the state-feedback mt-MPC strategy to compute the reference position u(k) (Section IV). The sampling
frequencies employed in our experimental tests are indicated as well.

that guarantees robust obstacle avoidance against such uncer-
tainty, the extension to 3-D motion, and the experimental test
on a real-world, out-of-the-laboratory drone prototype.

This article is organized as follows. After an overview
of the system and the problem formulation in Section II,
in Section III, we describe the employed control-oriented
model, characterize the model uncertainty, and present the
approach to derive a convex under-approximation of the free
space, in order to plan safe trajectories. Then, Section IV is
concerned with the mt-MPC formulation and its properties.
Finally, Sections V and VI provide the simulation and exper-
imental results, respectively, and Section VII concludes this
article.

C. Notation

We denote with t ∈ R the continuous time variable, with
k ∈ Z the discrete time index with sampling time Ts , with N

the set of positive integers, and N
b
a = {n ∈ N | a ≤ n ≤ b}.

Bold symbols indicate vectors, and ·T is the matrix transpose
operation. 0a×b and I

a denote a matrix of zeros with a rows
and b columns and the a-by-a identity matrix, respectively.
||v|| = (vT v)1/2 denotes the two norm of vector v, and
||v||A = (vT Av)1/2 denotes the two norm of vector v weighted
by matrix A ≥ 0 (positive semidefinite). The notations ·̃,
·̂ represent a sample and an estimate of a given variable,
respectively. The sum of two sets A, B ⊆ R

n, denoted as
A ⊕ B, is {a + b | a ∈ A, b ∈ B}, while A � B is
{x ∈ R

n | x + b ∈ A, ∀b ∈ B}. For an ordered set of
points Sv = {Sv

1, . . . ,S v
nv

} ∈ R
3, we denote with chull(Sv )

their convex hull. Finally, let E (W ) = {e : eT W e ≤ 1} be
the ellipsoidal set centered at the origin with shape matrix
W = W T > 0.

II. SYSTEM AND ENVIRONMENT MODELS,
PROBLEM FORMULATION

The three main ingredients defining the problem at hand
are as follows: the autonomous system, the exteroceptive

sensor used to gather information about the environment, and
the environment itself. These elements are presented in the
Sections II-A–II-C culminating in a more precise problem
formulation.

A. Multicopter Vehicle and Preliminary Dataset

We consider an inertial, right-handed coordinate system
(x f , y f , z f ) with origin at ground level, (x f , y f ) coordinates
defining a plane parallel to the ground, and z f coordinate
positive above ground level. The autonomous vehicle features
a hierarchical control structure. From the point of view of the
high-level controller, the control input is the variable

u(k) = �
ux f (k), uy f (k), uz f (k)

�T = pref(k) ∈ R
3 (1)

which is the position reference provided to the low-level
controller; see Fig. 1. The latter is in charge of tracking such a
position reference. Note that any low-level controller (e.g., the
one of a commercial flight controller, as in our experimental
tests) can be considered, as long as it is able to stabilize
the drone’s trajectories and to track the given reference with
good performance (possible tracking errors due to disturbances
are captured by our method to quantify uncertainty, described
in Section III-C). Neglecting the attitude dynamics that are
managed by the low-level control loops, we can represent the
feedback-controlled drone as a nonlinear time-invariant system
featuring as state the vehicle position p(k) and velocity v(k)

x(k) = �
px f (k), py f (k), pz f (k), v x f (k), v y f (k), v z f (k)

�T
(2)

and as input u(k); thus, we have x(k) ∈ R
6 and u(k) ∈ R

3.
We also denote with ā ∈ R

3 and v̄ ∈ R
3 the vehicle’s

maximum acceleration and velocity, respectively. If the drone’s
yaw is relevant, for example, to point a given sensor to a
desired direction, this can be easily added as further state.
Here, for simplicity, we focus on missions that require the
drone to reach a given target position without any yaw angle
specification. We also assume that a finite number of measured
pairs (ũ(k), x̃(k)) are available from preliminary tests, for
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example, carried out by a human operator or, as in our exper-
imental application, by automated step reference sequences.
We denote the collected dataset as follows:

M̃=̇
�
(ũ( j), x̃( j)) ∀ j ∈ N

Ns
0

�
(3)

where Ns + 1 is the number of input–output pairs in the
dataset. We assume that these data are affected both by process
disturbance (e.g., wind) and measurement noise.

Let x (k + j ; ū), j > 0, be the state trajectory of the non-
linear system at time k + j , obtained by applying the constant
reference position ū starting from the initial condition x(k).
Let the scalar r > 0 be a given distance bound. We consider
the following assumption on the feedback-controlled vehicle.

Assumption 1: There exists a convex set PW , such that

∀r ∀x(k) ∀ū : || p(k) − ū|| ≤ r, ∃ j(r) :
×
�

x(k + j ; ū) −
�

ū
03×1

�	
∈ PW ∀ j ≥ j(r).

Assumption 1 states that for any given distance r , there
exists a time instant j(r), such that for all constant references
ū that are closer than r to the starting position p(k), the vector
of position tracking errors at time k + j belongs to the convex
set PW ,∀ j > j(r).

This assumption is related to the stability of the trajectories
of the system at hand and to the boundedness of exogenous
process disturbances. In the considered application, it is a rea-
sonable assumption, considering the presence of a stabilizing,
reference-tracking low-level position controller. The convex
set PW can be estimated directly from the dataset (3), as shown
in our experimental results in Section VI.

B. Sensor Setup

We assume to receive, at each time step k, the measure-
ments of vehicle’s position p(k) and velocity v(k) together
with the readings of an exteroceptive sensor able to partially
detect the surrounding obstacles. The vehicle position and
velocity can be measured with the use of a global positioning
system (GPS) device or estimated exploiting exteroceptive
sensors and simultaneous localization and mapping (SLAM)
approaches [34]. As for the exteroceptive sensor, we assume
to receive a 3-D point cloud providing a discretization of the
environment around the drone, as shown in Fig. 2. In practice,
this can be achieved with 3-D LiDAR sensors and/or stereo-
cameras. Without loss of generality, we assume to receive
a grid of points lying on directions that are equally spaced
over a unit-sphere centered at the drone’s position, and we
denote with ρ(k) ∈ R

M the vector readings provided at time
k by the sensor. The length of ρ(k) is M = Ma Me =
(2π/αa)(π/αe), where αa and αe are the azimuth and elevation
angular resolutions, respectively. Denoting with ia and ie two
indexes spanning the sampled azimuth and elevation values,
each measurement corresponds to a vector

si (k)

= ρi (k)

⎡
⎣cos (ieαe) cos (iaαa)

cos (ieαe) sin (iaαa)
sin (ieαe)

⎤
⎦, ia ∈ N

Ma−1
0 , ie ∈ N

Me−1
0

(4)

Fig. 2. Example of the point cloud obtained with the exteroceptive sensor.
(a) 2-D view on the plane parallel to ground and containing the UAV position.
(b) 3-D view.

where ρi(k) is the i th entry of vector ρ(k) and i = Maie +
ia. We finally denote with rL the range of the sensor, assumed
for simplicity to be the same along any direction.

C. Environment Model and Problem Formulation

We consider a time-invariant environment composed of
No, generally non-convex, 3-D obstacles with variable cross
section; see Fig. 3 for an example. In this framework, each
obstacle can be described as a compact set Oi ∈ R

3, i =
1, . . . , No. We define the overall obstacles’ set O as follows:

O .=
No�

i=1

Oi . (5)

We are now in position to formalize the problem considered
in this work. Given the dataset M̃, identify a “control-
oriented” model of the feedback-controlled vehicle together
with a bound on the prediction error with respect to the real
system. Then, exploiting these information, design a high-
level discrete-time navigation logic that makes use of the
sensor measurements ρ(k) and the state feedback x(k) to
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Fig. 3. Example of the considered environment.

compute, at each time step k, the input u(k) in order to
move the UAV from a given initial position p(0) /∈ O toward
a target position pt(k) ∈ R

3 in a safe way, i.e., such that
p(k) /∈ O,∀k ≥ 0 despite the various sources of uncertainty.

III. CONTROL-ORIENTED MODEL AND CONVEX

APPROXIMATION OF THE ENVIRONMENT

Two key elements to address the problem at hand are a
suitable model of the system together with the associated
uncertainty consistent with the dataset (3) and the exploitation
of sensor measurements to describe the surrounding envi-
ronment. We describe next these elements, which will be
employed in the mt-MPC formulation described in Section IV.

A. Control-Oriented Model

The considered system is composed of the nonlinear dynam-
ics of the drone in closed loop with the low-level position
controller. From the point of view of the high-level navigation
strategy, linear dynamics well approximate the behavior of
the closed-loop system. Furthermore, the choice of a linear
time-invariant (LTI) model allows us to cast the optimal
control problem as a QP, that we can solve in real time also
on relatively low-power hardware, as shown in Section VI.
To obtain the control-oriented model, we consider the follow-
ing continuous time double integrator with state feedback:�

ṗ(t)
v̇(t)

�
=
�

03×3
I

3

−Kvel Kpos − Kvel

��
p(t)
v(t)

�
+
�

03×3

Kvel Kpos

�
u(t)

p(t) = �
I

3 03×3
�� �� �

Cp

�
p(t)
v(t)

�

v(t) = �
03×3

I
3
�� �� �

Cv

�
p(t)
v(t)

�
(6)

and we denote with

a(t) = Kvel
�
Kpos(u(t) − p(t)) − v(t)

�
(7)

the drone acceleration vector. Kpos ∈ R
3×3 and Kvel ∈

R
3×3 are suitable gain matrices representing the position and

velocity feedback loops that can be tuned by carrying out a
system identification procedure to obtain a closed-loop system
response as close as possible to the one of the actual nonlinear
system. We then convert (6) to discrete time with sampling
time Ts , obtaining the desired control-oriented model of the
form

x(k + 1) = A
�
Kpos, Kvel

�
x(k) + B

�
Kpos, Kvel

�
u(k) (8a)

p(k) = Cp x(k) (8b)

v(k) = Cv x(k) (8c)

where the input u(k) and the state x(k) of the position-
controlled system are defined in (1) and (2). Thus, the LTI
model (8) features u(k) as input, consistently with our setup,
and its state includes both position and velocity, making it
possible to easily include, in the predictive control strategy,
constraints on these quantities and on the accelerations as well,
through the linear, static equation (7). In turn, acceleration
bounds can be chosen to account for the maximum limits on
propellers’ thrust and roll/pitch angles that are used to maneu-
ver, thus achieving coherence between the LTI control-oriented
model and the performance limits of the actual nonlinear
system.

We consider the following assumption on the nominal
model.

Assumption 2:

∀ū ∀x(k) :
�

x(k) −
�

ū
03×1

�	
∈ PW , ∃D = DT > 0.

1) A(Kpos, Kvel)x(k) + B(Kpos, Kvel)ū ∈ E (D).
2) PW ⊆ E (D).
3) E (D) ⊆ V .

Here, V is the set of admissible states accounting for the
drone’s acceleration and velocity limits.

In practice, Assumption 2 is satisfied if the control-oriented
model is asymptotically stable, and it can be verified by taking
the sublevel set of the Lyapunov function V (x) = xT Dx
that contains the polytope PW in its interior (this condition
can be checked via Linear Matrix Inequalities; see, e.g., [35])
and such that state constraints are satisfied for all points in it.
Suitable convex programs can be used to check this condition
as well, as shown in Section VI.

Remark 1: In order to obtain a convex QP in the final
implementation, in the following, we will consider the convex
polytopic outer approximations of the ellipsoidal set E (D),
denoted as PD . Alternatively, one can retain an ellipse, which
leads to a convex quadratically constrained QP (QCQP).

B. Identification of the Control-Oriented Model

Exploiting the dataset (3), we identify the gain matrices
Kpos and Kvel of the control-oriented model. According to
best practices [36], we divide the dataset in two parts: one
is used for the identification phase (identification set), while
performance is assessed on the remaining part (validation
set). We carry out the identification with a simulation error
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method (SEM)

min
Kpos,Kvel

Ns�
k=1


x̂(k) − x̃(k)
2

s.t. x̂(0) = x̃(0)

x̂(k + 1) = A
�
Kpos, Kvel

�
x̂(k)

+B
�
Kpos, Kvel

�
ũ(k)∀k ∈ N

Ns−1
0 . (9)

The use of a simulation error criterion and the fact that
A(Kpos, Kvel) ∈ R

6×6 and B(Kpos, Kvel) ∈ R
6×3 depend

nonlinearly on Kpos and Kvel make (9) a non-LP (NLP).
Remark 2: For the sake of notational simplicity, from now

on, we denote simply with A and B the matrices A(Kpos, Kvel)
and B(Kpos, Kvel) with the parameters identified by solving
the NLP (9).

C. Derivation of Prediction Uncertainty Bounds

The identified model is a linear, low dimensional approxi-
mation of the nonlinear system dynamics. To obtain a navi-
gation logic able to robustly guarantee safety, we, thus, need
to derive bounds on the prediction error due to linearization,
process and measurement disturbances, and neglected dynam-
ics. On the other hand, the uncertainty bounds shall be not
too conservative, to avoid unnecessary performance degrada-
tion. In most contributions on robust MPC, these bounds are
initially given together with the model, but, in practice, they
have to be derived from data. We provide here a systematic
procedure to do this, in an SM framework. Since we are
interested in prediction bounds on the drone’s position, let
us consider the output equation (8b).

The n-steps-ahead predictor of the control-oriented
model (8) for the i th output, denoted as p̂n,i , is

p̂n,i(k) = Cp,i An x̃(k)

+Cp,i

n�
j=1

A j−1 B ũ(k + n − j) (10)

where Cp,i is the i th row of the output matrix Cp in (8b) and
i = 1, 2, 3. We define the measured regressor ϕ̃n ∈ R

6+3n as
follows:
ϕ̃n(k) = �

x̃(k)T ũ(k)T ũ(k + 1)T · · · ũ(k + n − 1)T
�T

(11)

and the vector of the identified parameters for the i th output
θ̂n,i ∈ R

6+3n is

θ̂n,i =
�
Cp,i An Cp,i An−1 B Cp,i An−2 B · · · Cp,i AB Cp,i B

�T
.

(12)

We can then reorganize the dataset M̃ for each n-steps-ahead
prediction n = 1, . . . , N , where N ∈ N is the considered
prediction horizon, by collecting sampled regressors and cor-
responding output values

M̃n,i=̇
��

ϕ̃n(k), p̃n,i(k)
� ∀k ∈ N

Ns
0

�
(13)

where p̃n,i(k) is the i th component of the sampled n-steps-
ahead position, available in the dataset.

Then, (10) can be compactly rewritten as follows:
p̂n,i(k) = ϕ̃n(k)T θ̂n,i . (14)

We can now estimate the error bound between the measured
position and the corresponding n-steps-ahead prediction given
by a linear model via the following LP:

λn,i = min
θn,i , λ∈R+

λ (15a)

s.t. | p̃n,i − ϕ̃T
n θn,i |

≤ λ ∀�ϕ̃n, p̃n,i
� ∈ M̃n,i . (15b)

This LP is always feasible and returns a positive value when
the constraints generated by the data (15b) are informative
enough to support from below the bound λ; otherwise, we have
λ = 0. As proven in [33], due to the finiteness of the dataset
M̃n,i , the computed value of λ

n,i
is an under-approximation of

the global (with respect to all possible regressors) error bound
ε̄n,i . To estimate the latter, we, thus, include a scaling factor
μ > 1

ˆ̄εn,i = μλn,i , μ > 1. (16)

We are now in position to define the feasible parameter set
(FPS), i.e., the set of all the possible parameters of a predictor
of the form (14) compatible with the available information.
This set is the following convex polytope:

�n,i=̇
�
θn,i : | p̃n,i − ϕ̃T

n θn,i | ≤ ˆ̄εn,i ∀�ϕ̃n, p̃n,i
� ∈ M̃n,i

�
.

(17)

The FPS can be finally used to compute, for each prediction
step n, the wanted worst case prediction error bound associated
with the identified model (14) with parameters θ̂n,i

τn,i = max
k=0,...,Ns

max
θ∈�n,i

��ϕ̃n(k)T
�
θ − θ̂n,i

���+ ˆ̄εn,i . (18)

Namely, this bound is the worst case discrepancy between the
prediction provided by the identified linear model and that of
any other model that is consistent with the data up to the error
bound (16). Since also τn,i is an under-approximation of the
actual bound, a second scaling factor η > 1 is introduced to
account for the finite dataset

τ̂n,i = η

�
max

k=0,...,Ns

max
θ∈�n,i

��ϕ̃n(k)T
�
θ − θ̂n,i

���	+ ˆ̄εn,i , η > 1.

(19)

The estimation procedure is carried out for each row of matrix
Cp in (8b), eventually obtaining the 3-D worst case prediction
error bound ς̂ n .

Remark 3: Larger scaling factors μ and η result in larger
uncertainty bounds to take into account possible new data that
may invalidate the prior assumptions and/or estimated bounds.
In a real application, it is easy to observe when these factors
are too small by checking if the FPS (17) becomes empty
when new data (i.e., additional inequalities) are considered.
On the other hand, to understand if μ and η are too large, one
can evaluate empirically the conservativeness with ad hoc tests
or directly by analyzing the data of the system in operation
and comparing it with the bounds, as we show in Section VI.
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Algorithm 1 Convex Under-Approximation of the Free Space

D. Convex Under-Approximation of the Free Space

Let us denote with L(k)
.= {s0(k), . . . , sM−1(k)} ∈

R
3 the M readings (4) of the exteroceptive sensor at time k. Let

dstep > 0 be a user-defined distance. Moreover, we consider
the user-selected quantities βa > αa and βe > αe, i.e., azimuth
and elevation angular resolution intervals defining a number
nv of equally spaced candidate vertices on the unit sphere
centered at the drone position. Then, the proposed routine to
build a convex under-approximation of the obstacle-free region
is given by Algorithm 1.

First (lines 1–5), a regular polyhedron with nv vertices lying
on the ball B( p(k), dmin(k)) = {w ∈ R

3 : 
w − p(k)
 =
dmin(k)} is built. Then (lines 6–15), an arbitrarily chosen vertex
is radially translated outward with respect to the center by
the user-defined quantity dstep, and a convex hull of the new
sequence of vertices is computed. If the obtained hull does not
contain any points of L(k) and its vertices are closer than the
maximum detection range rL , the polyhedron Sv is updated
(line 10), and the next vertex is considered for the expansion.
Otherwise, the last expansion is removed and the position of
that vertex is blocked (line 12). The cycle stops when all the
auxiliary variables γi are true (line 7), which means that either
all vertices are blocked or they have reached the maximum
distance rL from the drone.

When the process is completed for all the vertices, the
algorithm returns the wanted polytope S(k). To take into
account the size of the drone, its maximum encumbrance is
removed from the sensor readings. As an example, Fig. 4
shows a few iterations of Algorithm 1.

Fig. 4. Example of construction of the convex under-approximation of the
free region: intermediate steps (dashed-dotted gray lines) and final result (blue
lines). Exteroceptive sensor readings are shown as red points.

Remark 4: Differently from other approaches in the liter-
ature, Algorithm 1 ensures by construction that the current
position of the drone, p(k), is always in the interior of
S(k), i.e., in the safe set. Moreover, this approach returns a
valid convex under-approximation of the free space also when
stopped at an intermediate step, which is an advantage when a
strict real-time implementation is needed. The parameters βa

and βe can be tuned to trade-off the polytope accuracy with the
required computational time, their limit being the resolution
of the sensor.

IV. MULTITRAJECTORY MPC
When the environment is unknown and the vehicle has to

rely only on real-time local information, a common approach
to guarantee safety in a receding horizon framework is to
consider a trajectory able to stop the vehicle inside the
obstacle-free set S(k) within the prediction horizon N ∈ N;
see, e.g., [37]. This can be achieved imposing an admissible
steady state, or, as in our case, a safe terminal set at the end of
the predicted trajectory. Furthermore, a robust approach must
be adopted to account for the model uncertainty. To this regard,
robust and stochastic MPCs have been widely studied [38].
In these approaches, the optimal trajectory is conservatively
computed to include all, or a statistically representative part
of, possible uncertainty realizations. However, in this case, the
use of such approaches can lead to a too conservative behavior.
Moreover, the safe set S(k) considered at each time step k is
a convex under-approximation of the free space that generally
changes over time and can possibly evolve in a favorable way
for the sake of pursuing the given target. Therefore, on the
one hand, we want to robustly guarantee safety at each time
step, ensuring that there exists a maneuver able to keep the
vehicle in a safe area before a collision occurs. On the other
hand, we want to limit the conservativeness of the approach
considering a possible, hopefully favorable, evolution of the
safe set at the next time step. The proposed mt-MPC technique
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Fig. 5. Example illustrating the predicted state evolution with the multi-
trajectory concept (left) versus a single-trajectory one (right). Blue line with
“*”: exploiting trajectory. Green dashed line with “◦”: safe trajectory. Black
dashed-dotted line with “�”: single-trajectory approach. Red “♦”: target.
Colored polytopes represent the safe sets S(k).

aims at managing these conflicting objectives, by planning
two trajectories: a “safe” one, guaranteed to be contained in
the safe set and to reach a safe state also considering the
model uncertainty, and an “exploiting” one, which assumes
that the current constraints are too conservative and can, thus,
violate them. The two trajectories feature the same input at
the current step and separate only afterward in the prediction.
To better illustrate this concept, let us consider the 2-D
example in Fig. 5, showing on the left the multitrajectory
approach and on the right a standard, single-trajectory one.
The trajectories shown are computed by solving an FHOCP
using the control-oriented model (8) and aiming to reach
a target beyond the safe set. The single-trajectory approach
forces all the predicted trajectory to lie within the safe set,
minimizing the average distance from the target. This solution
is optimal for the current safe set, but it does not consider a
possible favorable evolution of the latter at the next time step.
On the other hand, the multitrajectory approach plans a much
better (yet currently unfeasible) exploiting trajectory, but still
retaining a safe alternative in case the constraints’ set does not
expand toward the target. Since the approach is implemented
in receding horizon, the potential advantage is apparent by
comparing the position reached at the first predicted time step
by the two approaches; see Fig. 5.

Let us denote with x I
i|k the state of the exploiting trajectory

of system (8) at time k + i predicted at time k, and with x I I
i|k

that of the safe trajectory. Considering a finite horizon N ∈ N,
such that N ≥ j(rL) (see Assumption 1), we introduce the two
input sequences

U I =
�
u I T

0|k u I T

1|k · · · u I T

N−1|k
�T

(20)

U I I =
�
u I I T

0|k u I I T

1|k · · · u I I T

N−1|k
�T

(21)

pertaining to the exploiting and safe trajectories, respec-
tively. We consider the following cost function to track a

target pt(k):

J
�
x(k), U, pt(k)

� =
N�

i=1


 pI
i|k − pt(k)
2

Q (22)

where Q ∈ R
3×3 is a symmetric positive-definite weighting

matrix, and vector U = [U I T
U I I T ]T ∈ R

3(2N).
To include in the FHOCP the worst case prediction error

bound ς̂ n computed in Section III-C, we tighten along the
horizon N the set S(k) computed with Algorithm 1. To this
end, let us define the uncertainty hyper-rectangles at each
prediction step n as follows:

Tn = �
p ∈ R

3 : | p| ≤ ς̂ n
� ∀n ∈ N

N−1
1 (23)

TN =
�

p ∈ R
3 : | p| ≤ max

n=1,...,N
ς̂ n

�
(24)

where all inequalities are elementwise.
Then, the polytope S(k) is tightened along the horizon as

follows:
Si (k) = S(k) � Ti ∀i ∈ N

N
1 (25)

leading to the sequence of convex polytopes

S̄(k) = �
Si (k) ∀i ∈ N

N
1

�
. (26)

We are now in position to formulate the multitrajectory
FHOCP, denoted as P(x(k), S̄(k), pt (k))

min
U

J
�
x(k), U, pt (k)

�
(27a)

s.t. uI
0|k = uI I

0|k (27b)

x I,I I
0|k = x(k) (27c)

x I,I I
i+1|k = Ax I,I I

i|k + BuI,I I
i|k ∀i ∈ N

N−1
0 (27d)

pI,I I
i|k = Cp x I,I I

i|k ∀i ∈ N
N
0 (27e)

v
I,I I
i|k = Cv x I,I I

i|k ∀i ∈ N
N
0 (27f)

− v̄ ≤ v
I,I I
i|k ≤ v̄ ∀i ∈ N

N
0 (27g)

− ā ≤ aI,I I
i|k ≤ ā ∀i ∈ N

N−1
0 (27h)

pI I
i|k ∈ Si (k) ∀i ∈ N

N
1 (27i)

u I I
i|k = u I I

i−1|k ∀i ∈ N
N−1
N−1− j (rL ) (27j)

pI I
N |k ∈ SN � PD (27k)

where all equalities and inequalities are elementwise, the
predicted acceleration ai|k pertaining to the exploiting and

safe trajectories is defined as aI,I I
i|k = Kvel(Kpos(u I,I I

i|k −
pI,I I

i|k ) − v
I,I I
i|k ), and ā and v̄ are the maximum acceleration

and velocity vectors, respectively. Constraints (27c)–(27h) are
meant to be applied to both safe and exploit trajectories. The
FHOCP (27) is a convex QP that, if feasible, can be solved
efficiently for a global minimizer. We denote its solution as
U∗(x(k), S̄(k), pt (k)) = [U I ∗T

U I I ∗T]T and the corresponding
optimal predicted state trajectories, with all elements stacked
in single column vectors, as X I∗(x(k), S̄(k), pt(k)) ∈ R

6N

and X I I∗(x(k), S̄(k), pt (k)) ∈ R
6N . The optimal control prob-

lem results to be divided in two predictions: 1) the trajectory
X I , considered in the cost function, pointing to the desired
reference and 2) the trajectory X I I , which, instead, satisfies
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Algorithm 2 Multitrajectory MPC

tightened state and terminal constraints (27i), (27j), and (27k)
ensuring the existence of an obstacle-free trajectory.

At any time k, let us denote with l(k) < k the lat-
est sampling instant, such that the FHOCP P(x(l(k)),
S̄(l(k)), pt (l(k))) was feasible and with m(k) ∈ [1, N − 1]
a counter used inside our algorithm. Then, we propose the
following receding horizon strategy.

Since, for a time-invariant environment, the safe set gen-
erated by Algorithm 1 depends only on x(k), the mt-MPC
approach results in a dynamic, state-feedback control law with
internal states l(k) and m(k) and input pt (k)

m(k + 1) = ζ (x(k), l(k), m(k))

l(k + 1) = ξ(x(k), l(k))

u(k) = κ
�
x(k), l(k), m(k), pt (k)

�
(28)

where functions ζ : R
6 × N × N → N, ξ : R

6 × N → N,
and κ : R

6 × N × N × R
3 → R

3 are implicitly defined by
Algorithm 2. The resulting closed-loop system is

m(k + 1) = ζ (x(k), l(k), m(k))

l(k + 1) = ξ(x(k), l(k))

x(k + 1) = x
�
k; κ

�
x(k), l(k), m(k), pt (k)

��
. (29)

In Algorithm 2, the role of variable l(k) and of the corre-
sponding set S̄(l(k)) is to keep track of the last polytopic
approximation of the free space that yielded a feasible prob-
lem. This is introduced to cope with the time-varying nature of
the safe convex set S(k). The role, instead, of variable m(k) is
to select, if needed, suitable control inputs in the safe trajectory
to guarantee that an input leading to an obstacle-free trajectory
can be issued notwithstanding the measurement noise and
prediction uncertainty. Such a guarantee holds, however, only

when unknown but static obstacles are considered, as in our
problem. In the presence of time-varying obstacles, additional
assumptions and different approaches would be required, cur-
rently subject of our research.

The mt-MPC approach guarantees an obstacle-free trajec-
tory, as shown by the following result.

Lemma 1: Assume that the FHOCP (27) at time k = 0 is
feasible and that p(0) /∈ O, i.e., the drone is initially in the
obstacle-free region. Moreover, assume that for all x(k) and
all sequences [u I I T

0|k , uI I T

1|k , . . . , uI I T

N−1|k]T , we have that the
estimated uncertainty bounds are not violated, i.e., pI I (k +
n) ∈ pI I

n|k ⊕ ς̂ n, ∀n ≤ N . Then, the trajectory of the close loop
system (29) is such that p(k) /∈ O, ∀k > 0.

Proof: At k = 0, problem P(x(0), S̄(0), pt(0)) is solved,
m(1) is set to 1, and l(1) is set to 0. For any k ≥ 0, let us
denote with U I I∗ = [uI I∗T

0|k , uI I∗T

1|k , . . . , u I I∗T

N−1|k]T the optimal
safe input sequence computed by the mt-MPC algorithm, be it
by solving P(x(k), S̄(k), pt (k)) or P(x(k), S̄(l(k)), pt(k))

(see Algorithm 2), with x I I∗
j |k the j th element of the safe

trajectory and pI I∗
j |k = Cp x I I∗

j |k the corresponding position.
Then, at each k > 0, there are three possibilities.
1) If P(x(k), S̄(k), pt (k)) is feasible, then at time k + 1,

we have p(k + 1) ∈ pI I∗
1|k ⊕ ς̂ 1 ∈ S(k); see (27d), (27i),

and (25).
2) Conversely, if P(x(k), S̄(k), pt (k)) is not feasible, but

problem P(x(k), S̄(l(k)), pt(k)) is feasible, the latter
is solved. Thus, in this case, we have p(k +1) ∈ pI I∗

1|k ⊕
ς̂ 1 ∈ S(l(k)).

3) Finally, if both P(x(k), S̄(k), pt(k)) and P(x(k),
S̄(l(k)), pt (k)) are not feasible, we apply the m(k)th
element in the tail of the safe optimal input
sequence obtained with the last feasible problem
P(x(l(k)), S̄(l(k)), pt (l(k))), i.e., uI I∗

m(k)|l(k) .

Since P(x(l(k)), S̄(l(k)), pt(l(k))) satisfies constraint

(27i), we have p(k + 1) ∈ pI I∗
m(k)+1|l(k) ⊕ ς̂m(k)+1 ∈ S(l(k)),

∀m(k) ≤ N − 1. Therefore, we have that, in all cases 1)–3),
p(k + 1) belongs to a set S( j), with j ≤ k. Now, by con-
struction (see Algorithm (1)), whenever p( j) /∈ O, then
the corresponding set S( j) is an under-approximation of the
obstacle-free region, i.e., S( j) ∩ Oi = ∅, ∀i = 1, . . . , No,
meaning that in all cases 1)–3), we have p(k + 1) /∈ O.
We, thus, demonstrated that p(k) /∈ O ⇒ p(k + 1) /∈
O. The result is then proven by induction, considering that
p(0) /∈ O by assumption. Finally, if case C) is encountered
repeatedly, the last feasible safe set point may be applied
until the end of the horizon. In this case, the drone state
ends up in a positively invariant set because of constraint
(27k). Then, p(k) ∈ SN (l(k))�PD , leading to a new feasible
problem P(x(k), S̄(l(k)), pt (k)) [case 2)], where constraints
(27c)–(27k) are satisfied by the trivial safe trajectory U I I =
[uI I∗T

N−1|l(k), . . . , u I I∗T

N−1|l(k)]T by Assumption 2. �
Remark 5: The FHOCP (27), from an implementation point

of view, can be simplified by imposing a terminal equality
constraint instead of (27j), imposing that the last step of the
safe trajectory is a steady state and, then, artificially extending
the horizon by a time interval larger than j(rL ). In this case,
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Fig. 6. Example of situation where the drone might stop in front of an
obstacle, and the proposed temporary target shifting is adopted. Blue star:
p̂t (k). Red star: pt (k). Black dashed lines: sensor measurements with index
i /∈ I(k). Red solid lines: sensor measurements with index i ∈ I(k).

to take into account the model mismatch, (24) should be
modified to include the horizon i = 1, . . . , N + j(rL ).

A. Temporary Target Shifting Strategy

A common problem in optimization-based autonomous nav-
igation without mapping is the possibility that the system
is in front of an obstacle that is between the current drone
position and the target, as shown in Fig. 6. In such a situation,
if no countermeasure is taken, the drone might simply stop
at a locally optimal position, because any allowed lateral
movement would temporarily imply a growth of distance from
the target. To avoid this situation, we propose a strategy named
temporary target shifting. Let f t = pt (k) − p(k) be the
vector connecting the drone to the target. When the sensor
readings whose angular position is closest to that of direction
f t do not detect any obstacle (up to the maximum range

rL ), the original target pt (k) is used. Otherwise, a temporary
target p̂t (k) is chosen as follows. Consider the set of indexes
corresponding to the sensor readings reporting the maximum
distance

I(k) =
�

j̄ : j̄ = arg max
i=0,...,M−1

ρ i(k)

�
. (30)

Then, the temporary target is obtained as the sensor reading,
among those with index j̄ ∈ I, that is closest to the target

p̂t (k) = min
j̄∈I


s j̄(k) − f t
. (31)

This strategy is illustrated in Fig. 6 as well. The temporary
target p̂t (k) is then held constant until the drone reaches it
within a certain tolerance, or until the target direction becomes
obstacle-free again, whichever condition happens first. This
choice avoids situations where the drone starts moving back
and forth behind an obstacle, because the temporary target is
periodically switched between the two visible edges. If more
than one solution to (31) exists, we take the one with smallest
index j̄ . This approach yields good results in most cases
with bounded obstacles, but still does not guarantee that the
target is eventually reached if the obstacles’ shapes are too

TABLE I

PARAMETERS EMPLOYED IN THE NUMERICAL SIMULATIONS WHERE md
IS THE MASS OF THE VEHICLE, ld IS THE HALF OF THE DISTANCE

BETWEEN TWO OPPOSITE MOTORS, Ixx , Iyy , AND Izz ARE THE

DIAGONAL COMPONENTS OF THE INERTIA MATRIX I ,
AND cd AND ct ARE THE DRAG AND THRUST

COEFFICIENTS, RESPECTIVELY

complicated. In those cases, a mapping strategy shall be added,
to incrementally explore the environment and save information
on it until finding the path to the target. Mapping is outside
the scope of this work, but can be well combined with our
approach.

V. SIMULATION RESULTS

The effectiveness of the proposed approach has been eval-
uated first via numerical simulations according to the layout
reported in Fig. 1. In this case, the nonlinear drone dynamics
with the low-level position controller have been simulated
with the model described in [39]. The employed system and
control parameters are reported in Table I. The QP (27) is
solved using MATLAB1 quadprog running on a Quad-Core
Intel Core i7 (3.6 GHz, 32 GB) on MATLAB 2020b under
MS Windows. Fig. 7 shows the UAV during navigation in a
typical simulation test where the convex under-approximation
S(k), the “safe” trajectory, and the “exploiting” one can be
easily distinguished. The approach exhibits good performance,
driving quickly the drone to its target without collisions. On
average, in our tests, the numerical solution of the QP (27)
required about 45 ms per sampling step and about 0.1 s
in addition to run Algorithm 1. As mentioned in Remark 4,
the latter can also be safely interrupted if a strict real-time
implementation is needed, at the cost of smaller safe set.

We compared the mt-MPC approach with a standard MPC,
which still employs Algorithms 1 and 2, however, with a single
trajectory in the FHOCP, subject to all the operational and
safety constraints. We used the same tuning parameters in
the cost function for the two approaches (see Table I). In the
single-trajectory MPC, the following FHOCP is considered:

min
U

N�
i=1

|| pi|k − pt (k)||2Q

1Registered trademark.
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Fig. 7. Simulation of the mt-MPC approach. Light blue polytope: set S(k).
Red points: exteroceptive sensor measurements. Red dashed line with “∗”:
safe trajectory. Blue solid line with “◦”: exploiting trajectory. Red star: target
pt . Blue rectangles: past drone positions. Obstacles beyond the LiDAR’s field
of view are not shown.

Fig. 8. Simulation results. Trajectories obtained with mt-MPC (blue solid
line with “◦”) and MPC (dashed-dotted red line with “�”).

s.t. x0|k = x(k)

xi+1|k = Axi|k + Bui|k ∀i ∈ N
N−1
0

pi|k = Cp xi|k ∀i ∈ N
N
0

vi|k = Cv xi|k ∀i ∈ N
N
0

−v̄ ≤ vi|k ≤ v̄ ∀i ∈ N
N
0

pi|k ∈ Si (k) ∀i ∈ N
N
0

−ā ≤ ai|k ≤ ā ∀i ∈ N
N−1
0

ui|k = ui−1|k ∀i ∈ N
N−1
N−1− j(rL )

xN |k ∈ SN � PD .

To ensure persistent obstacle avoidance, we applied again
Algorithm 2. Fig. 8 shows a comparison between the resulting
closed-loop trajectories. Both drive the UAV to its target
without collisions, however, obtaining different paths. For

a more thorough comparison, we ran a series of Nsim =
1000 problems with randomly generated initial state, obsta-
cles, and target, but all presenting a layout qualitatively
similar to that of Fig. 8, i.e., where the drone has to tra-
verse an area with many unknown obstacles. In each test
i , we measured the cumulative closed-loop tracking error
Ji = �Ti

k=0 || p(k) − pti ||2.
Furthermore, we considered the following average quantity as
performance indicator:

J̄ = 1

Nsim

Nsim�
i=1

Ji .

Finally, we also compared the computational effort required
to solve the FHOCP in the two cases. The obtained results
indicate that the mt-MPC improves the average tracking error
(−7.2%) with respect to the standard MPC technique, how-
ever, with a higher computational time [+32% to solve the QP
(27)]. The presented results, together with the simulations in a
2-D scenario presented in [31], thus, confirm that the approach
has good potential in terms of performance improvement,
at the cost of higher computational effort in this application.

VI. EXPERIMENTAL RESULTS

To demonstrate the performance of the presented mt-MPC,
we implemented it on an autonomous multicopter drone and
carried out experiments out-of-the-laboratory in our test site.

A. Test Site and Prototype Drone
We ran the experiments in an outdoor facility of Politecnico

di Milano at Spino d’Adda (45.4◦ N , 9.5◦ E), near Milan,
Northern Italy. A view of the site test is shown in Fig. 9(a).
We conducted experiments with a DJI S1000+ octocopter,
shown in Fig. 9(b). The frame has a diagonal wheelbase of
1045 mm with eight motors that rotate at 400 rpm/V.

The drone is equipped with two planar LiDAR SICK
T i M5xx series sensors, each one with 270◦ range fused
together to obtain a 360◦ field of view. Each sensor has a
scanning frequency of 15 Hz, a range of rL = 10 m, and an
angular resolution of αs = 0.33◦. Due to the planar nature of
the sensors used, we fixed the reference vertical position to a
constant value in the tests. The low-level position controller
is provided by a DJI A3 flight control unit equipped with a
built-in inertial measurement unit (IMU) featuring a standard
GPS compass. We implemented the high-level controller on an
Odroid-XU4 embedded system, featuring an octa-core Exynos
5422 big.LITTLE processor running Linux Ubuntu 18 and
robot operating system (ROS) Melodic. The flight controller
has an ROS interface via the DJI onboard SDK, allowing
the Odroid to send reference commands and receiving sensors
feedback via ROS to/from the A3 unit.

B. ROS Implementation

An overview of nodes and topics communication through
an ROS graph diagram is shown in Fig. 10. The two
LiDARs provide to the /s1000_interface node their
measurements at a frequency of 15 Hz. The node elabo-
rates the measurements and publishes a message of type
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Fig. 9. (a) View of the test site at Spino d’Adda, Lombardy, Italy. (b) DJI S1000+ octocopter during field test.

Fig. 10. ROS simplified graph diagram showing various nodes (ellipses) and topics (rectangles) involved in the approach.

LaserScan with the merged measurements, together with
a PoseStamped message defining the desired final posi-
tion target. The /temp_target_generator node is in
charge of providing the temporary target to the /mt_MPC
node following the procedure described in Section IV-A at
a frequency of 5 Hz. The node exploits the LiDAR mea-
surements, the final target, and the GPS position of the
drone published by the /dji_sdk node at a frequency
of 50 Hz. The LiDAR measurements are also exploited by
the /polytope_matrices_generation node, where
Algorithm 1 is implemented, that publishes the polytope S(k)
with a custom message PolytopeMatricesStamped at
a frequency of 5 Hz. Finally, the /mt_MPC node receives
the target, the free polytope, and the state feedback, and
it executes Algorithm 2 and publishes a position reference
at a frequency of 3 Hz. The latter is then sent to a
/position_controller node that publishes a velocity
reference to the /dji_sdk node. The ROS implementation
of the approach is available at https://github.com/
DaniloSaccani/mt_MPC.

C. Model Identification and Error Bound Estimation

To test the presented approach, we have collected position
step responses in closed loop, recording the position and
velocity of the vehicle with a sampling frequency of 100 H z,
while the high-level control unit was sending predefined
position references to the low-level DJI A3 flight controller.
We identified the control-oriented model (8) as described in

Section III-B. Fig. 11 shows a comparison between the mea-
sured p̃x f and ṽ x f and the estimated model. Then, we exploited
the dataset to estimate the worst case prediction error bound
ς̂ n considering the scaling factors μ = η = 1.02. Fig. 12
shows the obtained values of λn,i (15) and the worst case
prediction error bound τ̂n,i (19) along x f and y f for an horizon
N = 30 in the validation dataset. As it can be noticed, the
worst case simulation error bound τ̂n,i has a maximum value
of about 3 m, which is reasonable considering the GPS noise,
the presence of little wind, and the model-plant mismatch. The
constant j(rL ), that represents the settling time of the low-level
position controller to reach a target placed at a distance rL ,
can be roughly estimated from the ratio (rL/v̄) and in our
case is j(rL) = 16. We estimated the set PW from the data
by taking the convex hull of the steady-state samples of the
tracking error, as shown in Fig. 13

PW = chull
�

x̃(k + j ; ˜̄u) −
�

˜̄u03×1
��

.

As pointed out in Section II-A, in practice, Assumption 1 is
satisfied if the low level controller is properly tuned, and it is
able to stabilize the drone’s trajectories and to track the given
reference.

D. MPC Implementation

We translated the developed algorithms in Python and
integrated them within ROS [40]. To obtain a strictly convex
optimization problem, which improves the solution speed and
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Fig. 11. Comparison of the identified “control-oriented” model (blue solid line) and the validation dataset (orange dashed line). Position in (a) and velocity
in (b) along the direction x f . In (a), the black dashed-dotted line is the position reference along x f , i.e., ux f .

Fig. 12. Estimated error between the measured output and the generic n-steps-ahead predictor λn,1 (blue line with “♦”), ˆ̄εn,1 considering a scaling factor
μ = 1.2 (light blue line with “�”). Estimated worst case prediction error bound τn,1 (red line with “◦”) and τ̂n,1 considering the scaling factors η = 1.02 and
μ = 1.02 (light red line with “�”) along (a) direction x f and (b) y f . Gray dashed lines show the trajectories of the estimation error in the validation dataset.

numerical stability, we included in the cost function (22) a
term that penalizes the rate of change of the input

J
�
x(k), U, pt (k)

� =
N�

i=1


 pI
i|k − pt(k)
2

Q +
N−1�
i=0


�u I,I I
i|k 
2

�R

(32)

where �R ∈ R
3×3 is a suitable weight matrix for the input

variation. To avoid unnecessary conservativeness in the input
variation, we have chosen a weight Q much larger than �R to
prioritize the tracking of the desired target, i.e., Q = 6 · I3 and
�R = 0.5 · I

3. The set PD has been selected as a polytopic
outer-approximation of the ellipsoidal set xT Dx ≤ δ, where
δ and D have been obtained with the following optimization
problem that returns the minimum-volume sublevel set of a
Lyapunov function {x ∈ R

6|xT Dx ≤ δ} containing the convex
hull of the steady state error samples (33), as shown at the

bottom of the next page. Fig. 13 shows the sets PW and
E (D) together with the steady state data considered (x̃(k +
j ; ˜̄u) −

 
˜̄u

03×1

!
), ∀ j > j(rL), and the evolution of the sim-

ulated tracking error according to the model (8). To assess
the belonging of the ellipsoidal set E (D) to the admissible
set V according to acceleration and velocity constraints as
described in Assumption 2, the following two checks have
been performed:

ack < ā, vck < v̄

where ack and vck are the solutions of the following two
problems, formulated componentwise:

ack = max
x(k)

|a(k)|
s.t. x(k) ∈ E (D)
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Fig. 13. Estimated sets PW (light blue polytope) and E (D) (blue ellipsoid) projected onto the subspace (a) v = 03×1 and (b) v = 03×1, pz f − uz f = 0.

Blue dots represent the steady-state errors (x̃(k + j; ˜̄u) −
�

˜̄u03×1
�
), ∀ j > j (rL ). The colored lines inside the polytopes are the tracking error trajectories of

model (8) with initial condition inside PW and subject to constant references ˜̄u.

Fig. 14. Experimental test of the mt-MPC approach. Trajectory obtained
with mt-MPC (blue line with “♦”). Safe set S(k) at different time steps k in
red.

vck = max
x(k)

|v(k)|
s.t. x(k) ∈ E (D)

where a(k) = Kvel(Kpos(u(k) − p(k)) − v(k)) as described
in (7).

Remark 6: Assumption 2 implies the stability of the iden-
tified control-oriented model. We checked this condition after
the identification procedure, and, as highlighted in (33),
we have considered the system’s trajectory starting from
steady-state error samples that satisfy the constraints obtained
from experimental data.

Fig. 15. Computational time required for Algorithm 1 and QP (27) during
experimental tests.

As mentioned in Remark 5, we have replaced the con-
straint (27j) in the FHOCP (27) with a terminal zero-velocity
constraint v I I

N |k = 03×1, and we have then artificially extended
the horizon N by j(rL ) time steps when needed, to reduce the
computational effort required to solve the problem.

Fig. 12 presents a visualization of the prediction horizon
and of the uncertainty bounds until the terminal step N +
j(rL). The optimization problem (27) has been solved with
Operator Splitting Quadratic Program (OSQP) solver [41] in
the ROS node of the MPC law. We have properly selected
the horizon N and the sampling time Ts in order to obtain a
real-time implementation of the algorithm while still capturing
the dynamic motion of the drone. In particular, using Ts = 0.3s
and N = 8, the average execution times per sampling step of
the QP (27) is about 0.1 s, and about 20 ms in addition to run
Algorithm 1 with the available 2-D LiDAR. Fig. 14 shows the
trajectory obtained with the mt-MPC approach and some of

min
D,δ

log det D−1

s.t. AT D A − D < 0,

D > 0

"
x̃
�
k + j ; ˜̄u

�−
 

˜̄u

03×1

!#T

D

"
x
�
k + j ; ˜̄u

�−
 

˜̄u

03×1

!#
≤ δ ∀ j > j(rL) (33)
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the safe sets at different time steps during the tests. Videos of
the experimental setup and mt-MPC trajectories computation
are available at https://youtu.be/-_kOhl6AI68.

Fig. 15 shows the boxplots of the execution times during
experimental tests. Note that the computation time required
to solve Algorithm 1 is drastically smaller in this implemen-
tation than in the one required in the simulations presented
in Section V, due to the planar nature of the considered
exteroceptive sensor.

VII. CONCLUSION

A novel MPC formulation, named mt-MPC, has been pre-
sented, where multiple trajectories are considered in the same
optimization problem to trade-off conflicting objectives. The
approach has been applied to the autonomous navigation of a
multicopter drone in a priori unknown environment. An SM
approach has been used to estimate the prediction error of
a model obtained from measured data. A novel approach
to approximate the feasible set with a convex polytope
exploiting only real-time measurements of an exteroceptive
sensor has been used, together with a strategy to guaran-
tee obstacle avoidance in case of time-invariant environment
and considering the computed prediction uncertainty. The
obstacle-avoidance property has been theoretically proven and
demonstrated experimentally. The experiments and simulation
results show that mt-MPC can be implemented in real time
on the considered low-cost hardware and safely navigate
the system to destination, consistently with our theoretical
analysis. Current research is aimed to apply the mt-MPC
concept to reconfigurable and/or nonlinear systems, to include
additional learning components in the problem, and to consider
dynamic obstacles in the environment.
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