
SoftwareX 20 (2022) 101252

e
e
a
m

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

lifex: A flexible, high performance library for the numerical solution
of complex finite element problems
Pasquale Claudio Africa
MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, Italy

a r t i c l e i n f o

Article history:
Received 22 August 2022
Received in revised form 14 October 2022
Accepted 27 October 2022

MSC:
35-04
65-04
65Y05
65Y20
68-04
68N30

Keywords:
High performance computing
Finite elements
Numerical simulations
Multiphysics problems

a b s t r a c t

Numerical simulations are ubiquitous in mathematics and computational science. Several industrial
and clinical applications entail modeling complex multiphysics systems that evolve over a variety
of spatial and temporal scales. This study introduces the design and capabilities of lifex, an open
source C++ library for high performance finite element simulations of multiphysics, multiscale, and
multidomain problems. lifex meets the emerging need for versatile, efficient computational tools that
are easily accessed by users and developers. We showcase its flexibility and effectiveness on a number
of illustrative examples and advanced applications of use and demonstrate its parallel performance up
to thousands of cores.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1.5.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
Code Ocean compute capsule N/A
Legal Code License LGPLv3
Code versioning system used git
Software code languages, tools, and services used C++ (standard ≥ 17), MPI, CMake ≥ 3.12.0
Compilation requirements, operating environments, and dependencies deal.II ≥ 9.3.0, VTK ≥ 9.0.0, Boost ≥ 1.76.0
Link to developer documentation/manual https://lifex.gitlab.io/lifex/
Support email for questions pasqualeclaudio.africa@polimi.it

1. Motivation and significance

A broad range of applications in biology, medicine, physics,
ngineering, astronomy, energy, environmental, and material sci-
nces can be described by multiple physical processes interacting
t different spatial and temporal scales [1]. From the mathe-
atical modeling perspective, such systems can be viewed as

E-mail address: pasqualeclaudio.africa@polimi.it.

agglomerations of well-defined physics referred to as core mod-
els. This explains the emerging need to develop new universal
computational frameworks for the numerical simulation of multi-
physics, multiscale, and multidomain problems. Such tools should
easily enable the realization of in silico experiments and pro-
vide a stable and intuitive development environment without
compromising computational accuracy and efficiency.

The development of a tool of this kind plays a central role in
decoupling the software development phase from the
time-consuming process of performing different analyses – from
ttps://doi.org/10.1016/j.softx.2022.101252
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2022.101252
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101252&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00254
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
https://lifex.gitlab.io/lifex/
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
mailto:pasqualeclaudio.africa@polimi.it
https://doi.org/10.1016/j.softx.2022.101252
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

f
u
e
u

s
t
p
i
C
c

b

Fig. 1. lifex official logo. This image is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

orward simulations to sensitivity analysis, optimization, and
ncertainty quantification – and in enabling the simulation of
ach core model in both standalone and various coupled config-
rations [2].
We introduce lifex (pronounced /­laIf"Eks/, official logo

hown in Fig. 1), an open source library for the numerical solu-
ion of partial differential equations (PDEs) and related coupled
roblems, released under the LGPLv3 license terms. It is written
n C++ using modern programming techniques available in the
++17 standard and builds on the deal.II [3] finite element (FE)
ore. lifex aims at providing a flexible and intuitive but robust
and high performance tool simplifying the definition of complex
physical models and their parameters, coupling schemes, and
post-processing.

lifex enables its users to shift the focus from technical nu-
merics and implementation details toward the plain discrete
mathematical formulation of the problems of interest. The library
comes with extensive documentation and several examples and
test cases that cover a wide range of applications and numerical
strategies.

While serving similar purposes as existing multiphysics li-
raries in the open source community, such as FEniCS [4,5],
MFEM [6], MOOSE [7], and preCICE [8], lifex offers several dis-
tinctive features, including the following:

• an intuitive user programming interface with extreme ease
of use;

• modern programming paradigms by design, leveraging the
C++17 standard, and up-to-date versions of third-party de-
pendencies;

• parallel scalability up to thousands of cores;
• interoperability; that is, the possibility of importing and

exporting data and meshes with common file formats, with
particular reference to VTK;

• support for arbitrary FEs, among those available in the
deal.II backend [9];

• the possibility to import meshes with either hexahedral or
tetrahedral elements [3,10];

• a clean and meticulously documented code base.

Each of these features is outlined below.

2. Software description

lifex was conceived in 2019 as an academic research li-
brary within the framework of the iHEART project (see Acknowl-
edgment) at the Politecnico di Milano, with a primary focus
on mathematical models and numerical schemes for integrated
simulations of cardiac function.

Since its initial design, many modules for the simulation of
different core models have been added to the code base. The
development of lifex was founded on strict coding conventions
and practices [11]. The rapid increase in the number of developers
and users testifies to the shallow learning curve of its kernel; it
is fast and general enough to be used for diverse applications and
merits being released as a standalone library.

Third-party dependencies of lifex include the following:
deal.II (configured with support to PETSc [12] and Trilinos [13]),

VTK, and Boost. lifex can be configured to use, by default, linear
algebra data structures and algorithms from PETSc, Trilinos
(either through the interfaces exposed by deal.II or directly)
or deal.II itself; where needed, a specific datatype or solver
provided by one of the three backends may also be hard-coded,
disregarding the default type with which lifex was configured.
All the code is natively parallel through the message passing
interface (MPI); following a distributed memory paradigm, the
global mesh is partitioned so that each MPI process owns and
stores only a subset of cells.

This library aspires to maximum portability, having being
deployed successfully on Linux, Windows, and macOS operat-
ing systems. This has motivated the use of advanced deploy-
ment technology, more specifically mk [14] (a set of portable,
pre-compiled scientific packages for x86-64 Linux systems),
lifex-env [15] (a set of build-from-source shell scripts explicitly
inspired by candi), and Spack. Pre-built Docker images with all
dependencies installed are also ready for download and use. More
details can be found on the lifex documentation.

2.1. Software architecture

Structurally, the key features of lifex can be grouped into
three main components:

1. An abstraction layer built on top of the deal.II FE
library, exposing abstract numerical helpers as essential
building blocks that foster the development of advanced
data structures and numerical schemes for time integra-
tion, linearization, solving and preconditioning linear sys-
tems, imposing boundary conditions, and mesh handling.

2. A framework for multiphysics coupling, with functionali-
ties enabling the transfer of solution fields and data from
one core model to the other, either in the same domain or
across multiple domains.

3. A seamless user interface through several advanced in-
put/output (I/O) capabilities, with a focus on importing
data coming from the post-processing of experimental re-
sults, imaging techniques, or other numerical simulations,
such as with the help of the VTK library.

The main code components falling into these three categories,
their classes, and their interactions are schematized in Fig. 2.

2.2. Software functionalities

All lifex executables are classified as follows:

apps: Generic applications that are not model-specific, such as
tools for printing mesh statistics or converting between
compatible file formats.

examples: Problems and solvers that define specific model or
geometric parameters, such as boundary conditions, initial
conditions, domain, and so on.

tests: Executables used for automatic testing (run via CTest),
automatically run on continuous integration (CI) services
at each git push on GitLab remote. Tests also include
2

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://vtk.org/
https://vtk.org/
https://vtk.org/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://trilinos.github.io/
https://trilinos.github.io/
https://trilinos.github.io/
https://trilinos.github.io/
https://trilinos.github.io/
https://trilinos.github.io/
https://trilinos.github.io/
https://trilinos.github.io/
https://vtk.org/
https://vtk.org/
https://vtk.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://github.com/elauksap/mk
https://github.com/elauksap/mk
https://gitlab.com/lifex/lifex-env
https://github.com/dealii/candi
https://github.com/dealii/candi
https://github.com/dealii/candi
https://github.com/dealii/candi
https://github.com/dealii/candi
https://spack.io/
https://spack.io/
https://spack.io/
https://spack.io/
https://spack.io/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://lifex.gitlab.io/lifex/
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Testing%20With%20CMake%20and%20CTest.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Testing%20With%20CMake%20and%20CTest.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Testing%20With%20CMake%20and%20CTest.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Testing%20With%20CMake%20and%20CTest.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Testing%20With%20CMake%20and%20CTest.html
https://gitlab.com/
https://gitlab.com/
https://gitlab.com/
https://gitlab.com/
https://gitlab.com/
https://gitlab.com/

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

f
a
p
r
M
o
d
t

i

C

C

l

Fig. 2. Overview of main lifex components. The main classes and their interactions are shown, grouped into three categories: abstract numerical helpers (blue),
multiphysics coupling (red), and user interface (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

a number of tutorials, which can be used as prototypes
for building new applications. All tests and tutorials are
used to determine the overall code coverage; that is, a
metric that determines the number of lines of code that
are successfully validated by the testing procedure.

Each lifex executable is typically associated with a set of
common attributes, such as user-specified command line flags,
the name of a parameter file (that is, a file containing all con-
figurations, parameters, and settings used to run the executable,
organized in a tree-like subsection structure), an execution mode
lag that specifies whether to generate a new parameter file or
ctually execute the app, an output directory containing all out-
ut files, MPI rank and size used for parallel computations. Upon
unning, such attributes are shared among instances of all classes.
oreover, all main classes are designed so as to expose their
wn specific parameters, such as geometry, physical parameters,
iscretization schemes, numerical settings, and I/O options, from
he parameter file, each within its own subsection path.

The following three main classes define the minimal kernel
nterface common to all lifex modules and executables:

ore: A class implemented following the singleton design pat-
tern [16] that stores attributes that are global and common
to all other classes, such as those listed directly above.

oreModel: An abstract class that inherits Core and extends
it with pure virtual methods that define the interface ex-
posed by each core model or numerical solver throughout
lifex. Classes in the CoreModel hierarchy expose a set
of parameters that configure their behavior. Such param-
eters are exposed to the user through the parameter file
(see Section 2.2.3). A sample code snippet is provided and
discussed in Section 2.3.

ifex_init: A lifespan handler that takes care of properly ini-
tializing all attributes and dependencies needed by each
run, such as the instance of the singleton Core and MPI;
an instance of this class is typically constructed at the very
beginning of the main() function and destroyed at the
program’s end.

More specific high-level data structures are introduced below.

2.2.1. Abstract numerical helpers
An enormous part of lifex consists of abstract wrappers

and helpers: most of these classes explicitly invoke or refer to
deal.II design and features [9], with the goal of exposing a
higher-level interface to them and facilitating the implementation
of advanced numerical schemes for a given problem. The main
classes are described below.

MeshHandler: A wrapper around deal.II distributed meshes.
The user can select whether to import a mesh with hexa-
hedral or tetrahedral elements; depending on that choice,
this class owns an instance of a distributed or a ful-
lydistributed triangulation from deal.II; the latter
is a recent introduction that adds support to tetrahedral
meshes [3], whose functionalities at the time of writing
are still to be consolidated. The MeshHandler class in-
teracts closely with MeshInfo, which parses information
from the input mesh like volume and surface tags to be
used, for example, to impose different boundary condi-
tions on different parts of the boundary or to differen-
tiate material properties in different sub-regions. Helper
functions implemented in the geometry/mesh_info and
geometry/finders modules allow the computation of
(sub)domain volumes and boundary surfaces or to locate,
for example, the closest degree of freedom (DoF), mesh
vertex, or boundary face to a given input point.

BCHandler: A helper class to impose different types of boundary
conditions. Dirichlet boundary conditions can be either
applied directly to an FE vector or imposed as linear con-
straints to the linear system arising from an FE discretiza-
tion. For vector problems, normal or tangential fluxes can
also be imposed. A helper method to assemble Neumann
and Robin-like contributions to a local system’s right-hand
side is also provided.

LinearSolverHandler: For a sparse, distributed linear system,
this class provides a simple interface that enables the user
to select at run time which linear solver to use and all of its
options (for instance, maximum number of iterations, tol-
erances, stopping criteria, and history log), as parsed from
3

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

P

B

N

2

p
c
a
i

t
d
o
i
c

m
t
b
r

the parameter file. Many common solvers are included,
such as CG, GMRES, BiCGStab, MinRes, FGMRES, but in
principle any solver exposed by deal.II (including those
from PETSc and Trilinos) is supported. Furthermore, the
complete suite of solvers from PETSc remains accessible
via the -options_file command line flag, forwarded
from lifex to PETSc.

reconditionerHandler: Analogously to LinearSolverHan-
dler, this class exposes parameters that are used for
the preconditioning of linear systems. It supports many
preconditioner types, such as algebraic multi-grid (AMG),
block Jacobi, additive Schwarz (SOR, SSOR, block SOR, block
SSOR, ILU, ILUT), and can easily be extended to support
more.

DFHandler: For time-dependent problems, semi-implicit back-
ward difference formula (BDF) time discretization
schemes [17] are implemented in this class, which deals
with storing the information to advance the problem from
one time step to the next. This class stores and exposes
the BDF solution and its extrapolation and can easily be
extended to different time-advancing schemes.

onLinearSolverHandler: For solving non-linear problems, a
family of Newton methods is provided. An abstract imple-
mentation requires the user to specify an assemble function,
which assembles the Jacobian matrix and the residual vec-
tor, and a solve function that assembles the preconditioner
and solves the linear system associated with each non-
linear iteration; the two functions must return the norms
of residual, solution, and Newton increment to be used as
possible stopping criteria. The frozen Jacobian (or Jacobian
lagging) approach [18], which consists of reassembling the
Jacobian only once every n time steps, can be toggled
to increase computational efficiency. Two specializations
for the quasi-Newton method with the Jacobian matrix
approximated via finite differences [19] and for the in-
exact Newton method [20] are also supplied. Moreover,
each non-linear solution scheme can be equipped with
proper acceleration strategies (static relaxation, Aitken ex-
trapolation [21], and Anderson acceleration [22]) to ac-
celerate convergence. In addition to the non-linear solver
handler, the user can benefit from the use of automatic
differentiation (with support for the Sacado and ADOL-C
interfaces exposed by deal.II), demonstrated on Tu-
torial04_AD and Tutorial07_AD, which enables im-
plementing the computation of exact derivatives (up to
machine precision) of complicated functions very easily.

.2.2. Multiphysics coupling
The complexity of multiphysics, multiscale, and multidomain

roblem can be relieved with the help of three hierarchies of
lasses that all serve the purpose of transferring solution fields
nd data either from one core model to another or across internal
nterfaces.

In order to keep the code as general as possible, we assume
hat different core models can be solved using arbitrarily in-
ependent discretization schemes, such as different FE degrees
r mesh resolutions. This improves the capturing of all phys-
cal phenomena involved, even though their dynamics can be
haracterized by vastly different spatial and temporal scales.
We note that problems involving more than one physical

odel (possibly on multiple domains sharing a common in-
erface, such as in the case of fluid–structure interaction) can
e generally solved using either monolithic or partitioned algo-

system involving all unknowns from all problems is assembled
and solved at each time step; in the latter, each sub-problem
is solved independently, and coupling conditions are imposed,
for example by using explicit schemes or sub-iterating with a
fixed-point scheme until a convergence of coupling conditions is
reached. Both choices are possible in lifex and illustrated by a
number of examples and tests.

QuadratureEvaluation: This class provides a high-level in-
terface for the evaluation of arbitrary analytic functions
or more complex data structures at a given quadrature
point. User-defined classes deriving from QuadratureE-
valuation can easily be implemented for scalar, vector,
or tensor fields. Furthermore, the QuadratureEvalua-
tionFEM hierarchy of classes is implemented to enable
the coupling of multiple FE models solved in the same do-
main. Different problems can be discretized using different
FE degrees, and the integrals arising from the weak for-
mulation can be approximated using quadrature formulas
of different types and degrees of accuracy. The Quadra-
tureEvaluationFEM classes provide an interface similar
to that of FEValues from deal.II: such objects are con-
structed using the DoFHandler associated with the FE
field to be evaluated and the quadrature rule used for
the target problem. By re-initializing such objects on each
mesh cell, the input field can be evaluated at the cor-
responding quadrature points. lifex provides specializa-
tions to automatically evaluate the FE solutions, gradients,
and divergence of a given solution vector.

ProjectionL2: Instead of the exact numerical evaluation al-
lowed by QuadratureEvaluation classes, a smoothed L2
projection can be considered. Given a function f (x), this
class computes a FE solution fh(x) that satisfies (ε∇fh, ∇ϕi)Ω
+ (fh, ϕi)Ω = (f , ϕi)Ω for each basis function ϕi in the
chosen FE space. The numerical solution to this problem
clearly involves a mass matrix: its lumping can be toggled,
and the regularization parameter ε can be tuned to prevent
numerical oscillations, for example in the case of coarse
meshes [25]. The solution fh obtained can thus easily be
evaluated at the quadrature nodes associated with the
target problem.

InterfaceHandler: Consider two subdomains Ω1 and Ω2
sharing a common interface Σ with conforming discretiza-
tions, and let u1 and u2 be FE functions defined on the two
subdomains, typically representing solutions to differential
problems defined on the two subdomains. Suppose that the
problem defined on Ω1 (Ω2) involves conditions on Σ that
depend on u2 (u1) [23,26]. InterfaceHandler builds the
interface maps; that is, two mappings of DoFs between the
local interface Σ and the global domains Ω1 and Ω2. This
is of critical importance in parallel simulations, where the
parallel partitioning on both domains can be different, as
in the example in Fig. 4. Finally, for each subdomain, this
class manages the extraction of interface data on Σ from
the other subdomain and its application as a boundary con-
dition on Σ . This class deals only with conforming meshes;
extensions to non-conforming discretizations, such as the
INTERNODES technique [27], are still under development.

The last case to be considered is transferring solutions be-
tween multiple core models solved using the same FE discretiza-
tion but with different mesh resolutions. For nested hexahedral
grids, the VectorTools namespace of deal.II already provides
functions that perform precisely the interpolation needed. This
procedure is hardly generalizable as it depends heavily on how
ithms [23], as schematized in Fig. 3. In the former case, a global

4

https://trilinos.github.io/sacado.html
https://trilinos.github.io/sacado.html
https://trilinos.github.io/sacado.html
https://trilinos.github.io/sacado.html
https://trilinos.github.io/sacado.html
https://trilinos.github.io/sacado.html
https://github.com/coin-or/ADOL-C
https://github.com/coin-or/ADOL-C
https://github.com/coin-or/ADOL-C
https://github.com/coin-or/ADOL-C
https://github.com/coin-or/ADOL-C
https://github.com/coin-or/ADOL-C

Pasquale Claudio Africa SoftwareX 20 (2022) 101252
Fig. 3. Possible solution schemes for a geometrically coupled problem: monolithic (left) vs. partitioned (right) solution scheme. Reprinted from [24]. The original
image is licensed under a CC BY 3.0 License.

Fig. 4. Example of handling two domains Ω1 (left) and Ω2 (right) sharing a common interface Σ with conforming mesh discretizations. The InterfaceHandler is
able to deal properly with non-conforming parallel partitioning.

the different meshes have been generated and on the mesh
element type. For instance, transfer operators built on radial
basis function (RBF) interpolators could be used in the case of
non-conforming discretizations [28,29] but have yet to be imple-
mented.

Clearly, the two approaches can be combined to couple dif-
ferent models solved with both different FE approximations and
mesh resolutions.

2.2.3. User interface
CommandLineParser: lifex makes use of the lightweight

parser clipp for parsing command line arguments. All exe-
cutables expose a set of command line options that can be
printed using the -h (or --help) flag:

./executable_name -h

ParamHandler: Each lifex executable defines a set of pa-
rameters that are required in order to be run. They in-
volve problem-specific parameters (such as coefficients,
geometry, time interval, and boundary conditions), numer-
ical parameters (such as types of linear/non-linear solvers,
tolerances, and maximum number of iterations), I/O op-
tions, and so on. In the event an application has sub-
dependencies such as a linear solver, the related parame-
ters are also included, typically in a proper subsection path.
Parameters are organized in a tree-like structure following
the functionalities exposed by the ParameterHandler
class from deal.II. The first step before running any
executable is to generate the default parameter file(s) via
the -g (or --generate-params) flag:

./executable_name -g -f filename.ext

At the user’s option, in order to guarantee a flexible in-
terface with external file processing tools, the parameter
file extension ext can be chosen among three different
interchangeable file formats prm, json or xml, sorted from
the most human-readable to the most machine-readable.
An excerpt of a prm file follows:

subsection Problem
subsection Mesh and space discretization

Parameter description goes here.
set Element type = Hex
...

end
...
subsection Linear solver

set Type = GMRES

subsection GMRES
set Max. number of temporary vectors = 100
...

end
end
...
subsection Preconditioner

set Type = AMG

subsection AMG
set W-cycle = true
...

end
end

Listing 1: Example of parameter file in prm format. The tree-like
subsection structure is emphasized.

A parameter file can easily be set up using any text ed-
itor, without need to recompile the source code. Finally,
5

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://github.com/muellan/clipp
https://github.com/muellan/clipp
https://github.com/muellan/clipp
https://github.com/muellan/clipp
https://github.com/muellan/clipp

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

(

C

T

V

omitting the -g flag in the command above, an existing
parameter file is read and the simulation subsequently run.

The ParamHandler class of lifex extends the deal.II
class by two main functionalities:

verbosity control: By default, only parameters declared to have
a standard verbosity are printed. In order to customize
the user experience, the verbosity of each parameter can
be decreased (minimal) or increased (full) from the source
code. A parameter file containing a minimal (full) set of
parameters can be generated by passing the optional flag
minimal (full) to the -g flag:

./executable_name -g [minimal,full] \
-f filename.ext

If the -g is provided without any further specification, the
intermediate level of verbosity is assumed.

multiple default values: In principle, each application could be
run to simulate different scenarios or simply with different
predefined sets of parameters; lifex offers the possibility
of providing multiple default parameter files out of the box.
The ParamHandler class can read user-provided files in
json format by specifying a list of parameter names and
their (new) default values, which will be appended to the
complete set of parameters and written to a ready-to-use
file (see, for example, the time_interpolation test).

Utilities for parsing lists of values are also provided in
the param_handler_helpers module for convenience of
use.

De-)serialization: lifex includes a checkpointing system that
allows for all aspects of a simulation to be serialized to
file. This allows recovering a simulation state after an un-
expected failure, restarting after maximum computational
wall time has been reached, or simply initializing a sim-
ulation with custom input data. Convenient tools for (de-
)serializing distributed meshes and solution vectors are
provided in the io/serialization module, with an in-
terface to deal.II-compatible binary files, and their use
is demonstrated in the serialization test.

SV readers and writers: The simplicity of use of comma-
separated value (CSV) files makes it a widely chosen option
to process data organized into fields. Many utility functions
and classes are present in lifex to read and write CSV files
by converting number and text values into STL containers
or deal.II data structures (vectors, matrices, and so on).
This enables easily post-processing simulation results, for
example by exporting point-wise variables at each time
step.

imeInterpolation: Many applications require resampling
discrete sets of data at arbitrary points, such as time-
dependent variables that need to be interpolated in cor-
respondence with the time steps performed by the nu-
merical simulation. The TimeInterpolation class pro-
vides methods based on linear interpolation, cubic splines,
smoothing cubic splines, trigonometric interpolation (dis-
crete Fourier transform), and linear and spline interpola-
tion of the derivative of the input data.

TKFunction and VTKPreprocess: Many physical problems
are characterized by coefficients derived from experimen-
tal data or imaging techniques, such as segmented geome-
tries of organs from magnetic resonance imaging (MRI) or

computer tomography (CT) scans [30,31], or from post-
processing of other numerical simulation steps [32]. The
VTK toolkit defines some of the most common data formats
to deal with data defined over volumes
(vtkUnstructuredGrids) or surfaces (vtkPolyData).
Moreover, it is also used in sophisticated pipelines for sur-
face processing and mesh generation [33]. lifex provides
a class named VTKFunction, inherited from
dealii::Function, that imports a VTK file containing
a cell or point data field and evaluates it at an arbi-
trary point, possibly associated with a computational mesh.
Three possible evaluation methods are available: closest
point, linear projection, and signed distance. Finally, the
VTKPreprocess class exploits VTKFunction to interpo-
late input VTK data onto FE vectors, which are serialized to
file for later importing and reuse in numerical simulations.

2.3. Sample code snippet

The following code illustrates a sample code snippet with
comments, containing the minimal interface exposed by the
vast majority of all lifex classes; that is, those inherited from
CoreModel. In particular, the declare_parameters and
parse_parameters methods are pure virtual and must be over-
ridden, whereas the run method is virtual and has an empty
definition by default. An example of how to locally adjust the
verbosity of some parameters is also shown. Finally, this sample
class makes use of a LinearSolverHandler, for which we also
declare and parse related parameters.

namespace lifex
{

class Problem : public CoreModel
{
public:

// Specify the subsection path where to
// declare current parameters.
Problem(const std::string &subsection_path)
: CoreModel(subsection_path)

// Specify a " relative " subsection.
// Subpaths are separated by a "/ ".
, linear_solver(

prm_subsection_path + " / Linear solver " ,
/* ... */)

{}

virtual void
declare_parameters(ParamHandler ¶ms) const
override
{

// Navigate subsections and declare parameters.
params.enter_subsection_path(prm_subsection_path

);
{

// Problem-dependent parameters.
// ...

params.set_verbosity(VerbosityParam::Full);
{

// If -g full is *not* specified ,
// the parameters declared here will
// be hidden from the parameter file.
// ...

}
params.reset_verbosity();

}
params.leave_subsection_path();

linear_solver.declare_parameters(params);
}

virtual void
parse_parameters(ParamHandler ¶ms) override
6

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://vtk.org/
https://vtk.org/
https://vtk.org/

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

T
o

T

T

T

{
// Actually parse parameter file.
params.parse();

// Analogously to declare_parameters ,
// navigate subsections , read parameters ,
// and possibly store them into class members.
// ...

linear_solver.parse_parameters(params);
}

virtual void
run() override
{

// Create mesh.
// Setup system.
// Assemble system.
// Solve system.
// Output solution.

}

private:
LinearSolverHandler linear_solver;
// ...

};
}

3. Illustrative examples

lifex is capable of solving complex multiphysics problems.
he functionalities described in the previous section are pointed
ut in a series of tutorials that are found in the source code

as tests. The tutorials are sorted by increasing complexity and
involve different kinds of scalar or vector equations and coupled
problems, solved either monolithically or partitioned. Here, we
provide a summary of the tutorials available and the correspond-
ing PDEs solved.

Tutorial01: Linear elliptic equation:

−∆u = f , in (−1, 1)3.

utorial02: Linear parabolic equation:

∂u
∂t

− ∆u + u = f , in (−1, 1)3 × (0, T].

utorial03: Non-linear elliptic equation:

−∆u + u2
= f , in (−1, 1)3.

utorial04: Non-linear parabolic equation:

∂u
∂t

− ∆u + u2
= f , in (−1, 1)3 × (0, T].

Tutorial04_AD: The same as Tutorial04, with the Jacobian
matrix assembled via automatic differentiation.

Tutorial05 Parabolic system of equations, solved monolithi-
cally:⎧⎪⎨⎪⎩

∂u
∂t

− ∆u + u2
= f , in (−1, 1)3 × (0, T],

∂v

∂t
− ∆v + uv = g, in (−1, 1)3 × (0, T].

Tutorial06: The same as Tutorial05, solved using an explicit
partitioned scheme and exploiting the
QuadratureEvaluationFEM capabilities.

Tutorial07: Cahn-Hilliard equation:⎧⎪⎨⎪⎩
∂c
∂t

− ∆µ = 0, in (0, 1)3 × (0, T],

µ −
df
dc

(c) + λ∆c = 0, in (0, 1)3 × (0, T].

For further details about the mathematical and numerical
formulations of all these problems, such as boundary and initial
conditions, please refer to the lifex documentation.

We present below three examples that showcase the main
features of lifex. All the results shown are new, original contri-
butions. First, we prove that the abstract helpers for the advanced
numerical schemes described in Section 2 do not affect parallel
performance, as the speedup is almost approximately linear up
to thousands of cores; then, we present a multidomain problem
where two Stokes problems are solved on two cubes sharing
a common face with proper interface conditions, proving that
monolithic and partitioned schemes for domain decomposition
problems can easily be implemented with a negligible compu-
tational overhead due to the parallel transfer of solutions across
the interface; finally, an advanced, fully implicit numerical solver
for the Cahn–Hilliard equation demonstrates the ease of imple-
mentation and the enormous flexibility available to users when
dealing with complex multiphysics problems.

3.1. Scalability study

We perform a strong scaling test on Tutorial06, where the
following equations are solved:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− ∆u + u2
= f , in Ω × (0, T] = (−1, 1)3 × (0, T],

∂v

∂t
− ∆v + uv = g, in Ω × (0, T],

u = uex, on ∂Ω × (0, T],

v = vex, on ∂Ω × (0, T],

u = u0, in Ω × {0},

v = v0, in Ω × {0},

where f , g, u0, and v0 are chosen such that the exact solution is{
uex(x, t) = t cos(πx0) cos(πx1) cos(πx2),

vex(x, t) = et∥x∥2.

The two equations are discretized in time using the
BDFHandler of order 1 for u and 3 for v, decoupled using an ex-
plicit partitioned scheme, and linearized using the NonLinear-
SolverHandler class. Finally, the FE space discretization con-
sists of linear (quadratic) elements for u (v). The solution u
appearing in the second equation is evaluated using the capabil-
ities of QuadratureEvaluationFEM. The mesh size consists of
2,097,152 cells (average cell diameter: h ≈ 0.027) and 19,121,282
DoFs (2,146,689 for u, 16,974,593 for v), the time step chosen is
equal to ∆t = 0.1, and the simulation is run until T = 1.

The scalability test was run on the GALILEO100 supercomputer
available at CINECA (Intel CascadeLake 8260, 2.40 GHz). We
recorded the total simulation time and partial times spent in the
assembly and linear-solving phases; the speedup for the three
quantities shown in Fig. 5 confirms that on such a benchmark
problem, the main lifex data structures scale approximately
linearly up to 4096 cores. The linear solver performances slowly
degrades beginning at about 512 cores, which is likely due to the
limited problem size. Table 1 reports the summary of the com-
putational costs for the different phases of a run of Tutorial06
on 1024 cores.
7

https://lifex.gitlab.io/lifex/
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

w
(
s
t
d
l

t
c
w
(
a
t
c
a
f
L
p
p
s
c
n
b
d
t

Table 1
Summary of computational costs of a run of Tutorial06 on 1024 cores.

Section No. calls Wall time % of total

Solver for u: solve time step 11 31.515 s 3.05%
Solver for u: non-linear solver 11 29.460 s 2.85%
Solver for u: preconditioner assembly + linear solver 33 25.907 s 2.51%
Solver for u: system assembly 44 3.365 s 0.33%
Solver for u: linear solver 33 1.799 s 0.17%

Solver for v: solve time step 11 988.561 s 95.79%
Solver for v: system assembly 11 956.339 s 92.67%
Solver for v: QuadratureEvaluationFEM initialization 11 0.000 s 0.000%
Solver for v: QuadratureEvaluationFEM re-initialization 22,528 0.020 s 0.000%
Solver for v: QuadratureEvaluationFEM evaluation 443,418,624 278.760 s 27.32%
Solver for v: preconditioner assembly + linear solver 11 23.601 s 2.29%
Solver for v: linear solver 11 13.897 s 1.35%

Total wallclock time 1031.991 s 100%

Fig. 5. Parallel speedup of lifex , demonstrated on Tutorial06. The speedup
as computed on total time (red), time spent in assembling the linear system
including the evaluation of the QuadratureEvaluationFEM field) at each time
tep (green), and time spent in solving the linear system at each time step
hrough the LinearSolverHandler, together with the PreconditionerHan-
ler wrappers (blue). (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Some interesting conclusion can be drawn. First, the evalua-
ion of u at quadrature nodes of the FE space used for the dis-
retization of the equation for v is invoked ≈ 443 million times,
hich makes a substantial contribution to the assembly phase
about 27% of the total time): nevertheless, as Fig. 5 shows, the
ssembly phase still scales almost perfectly linearly, which proves
hat the implementation of the QuadratureEvaluation hierar-
hy of classes introduces a computational overhead that scales
lmost ideally in parallel. Moreover, the additional overhead
rom applying the BDFHandler, NonLinearSolverHandler,
inearSolverHandler, and PreconditionerHandler wrap-
ers is negligible and does not affect the solver’s overall parallel
erformance. This shows that lifex can reach an ideal parallel
peedup while the abstract numerical helpers and multiphysics
oupling interface enable a significant reduction in the total
umber of lines of code compared to a naive implementation
ased only on deal.II, thus letting the user focus on the plain
iscrete formulation of the problems of interest rather than on
echnical numerics and implementation details.

3.2. Multidomain problems

The multidomain_stokes example was run to demonstrate
the parallel performance of the multidomain capabilities of lifex,
with particular reference to the InterfaceHandler class.

The problem being solved is the Stokes model:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−µ∆u + ∇p = 0, in Ω,

∇ · u = 0, in Ω,

u = [1, 0, 0]T , on Γin,

u = [0, 0, 0]T , on Γsides,

µ∇u · ν − pn = 0, on Γout,

where
Ω = (−0.5, 1.5) × (−0.5, 0.5) × (−0.5, 0.5),

Γin = {x = −0.5} ,

Γout = {x = 1.5} ,

Γsides = (∂Ω\(Γin ∪ Γout))o,

and ν denotes the outward unit normal. Ω is split into the two
subdomains Ω0 and Ω1 across the interface Σ , which is defined
as
Ω0 = (−0.5, 0.5) × (−0.5, 0.5) × (−0.5, 0.5),
Ω1 = (0.5, 1.5) × (−0.5, 0.5) × (−0.5, 0.5),
Σ = {x = 0.5} .

Denoting the solution on the subdomain Ωi by ui, pi for i =

0, 1, the multidomain formulation of the problem is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−µ∆ui + ∇pi = 0, in Ωi,

∇ · ui = 0, in Ωi,

u0 = [1, 0, 0]T , on Γin,

ui = [0, 0, 0]T , on Γsides ∩ ∂Ωi,

∇µu1ν − pν = 0, on Γout,

u0 = u1, on Σ,

−µ∇u0ν0 − p0ν0, = µ∇u1ν1 + p1ν1 on Σ,

where the two conditions on Σ denote the continuity of velocity
and stresses across the interface.

This problem can be solved by using either a fixed-point or
a monolithic scheme. The goal of this section is to demonstrate
the performance of the InterfaceHandler class. We thus ran
a simulation using 6,714,692 DoFs on each subdomain Ωi for
i = 0, 1 (6,440,067 for the velocity and 274,625 for the pressure
block), resulting in a total number of DoFs at the interface Σ

equal to 49,923. The simulation requires 40 fixed-point iterations
to meet the prescribed tolerance of 10−6 on the increment norm
of the interface data u | .
1 Σ

8

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

t
a
s
s
t
p
T
a
i
s
w
c

s
o

w
c

s
L
m
a
p
c

p
i
s

Table 2
Summary of computational costs of a run of the example multidomain_stokes on 1024 cores.

Section No. calls Wall time % of total

InterfaceHandler: build interface maps 1 24.1 s 0.17%
InterfaceHandler: extract interface values 80 2.38 s 0%
InterfaceHandler: apply Dirichlet interface conditions 80 0.875 s 0%

Problem in Ω0: preconditioner assembly + linear solver 40 6.73e+03 s 48%
Problem in Ω0: system assembly 40 42.2 s 0.3%

Problem in Ω1: preconditioner assembly + linear solver 40 7.05e+03 s 51%
Problem in Ω1: system assembly 40 41.2 s 0.3%

Total wallclock time 1.39e+04 s 100%

Table 2 reports the summary of the computational costs for
he different phases of a run of the multidomain_stokes ex-
mple on 1024 cores. As the number of interface DoFs is much
maller than the total number of volume DoFs, the time spent in
etting up interface maps and transferring the solutions between
he two subdomains Ω0 and Ω1 is negligible with respect to the
hases of assembling and solving the associated linear systems.
his demonstrates that the overall computational cost associ-
ted with a multidomain simulation, such as in a fluid–structure
nteraction (FSI) framework, is largely dominated by the time
pent in assembling and solving the associated linear system(s),
hereas the overhead introduced by the InterfaceHandler
lass is negligible.
As a consequence, the speedup results shown in Section 3.1

till hold for multidomain problem, solved either monolithically
r partitioned, as long as the parallel partitioning of Ω0 and Ω1

is fairly load-balanced.

3.3. User interface flexibility

Finally, to demonstrate the ease of implementing new solvers
for complex multiphysics problems exploiting the capabilities of
lifex, we present the development of a spinodal decomposi-
tion model of a binary fluid undergoing shear flow using the
advective Cahn–Hilliard equation, a stiff, non-linear, parabolic
equation characterized by the presence of fourth-order spatial
derivatives [34]. Spinodal decomposition consists of the separa-
tion of a mixture of two or more components to the bulk regions
of both, which occurs, for example, when a high-temperature
mixture of two or more alloys is rapidly cooled.

The equation was discretized by using FEs in mixed form, thus
splitting it into a system of two parabolic–elliptic equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c
∂t

− ∆µ = 0, in Ω × (0, T] = (0, 1)3 × (0, T],

µ −
df
dc

(c) + λ∆c = 0, in Ω × (0, T],

∇c · ν = 0, on ∂Ω × (0, T],

∇µ · ν = 0, on ∂Ω × (0, T],

c = c0(x), in Ω × {0},

here f (c) = 100c2(1 − c)2 and the initial condition is given by
0(x) = 0.63 + +0.01 sin (2000πx1x2x3).
The problem is discretized in time using a fully implicit

cheme through the BDFHandler and linearized using the Non-
inearSolverHandler class; at each time step, the Jacobian
atrix is computed exploiting automatic differentiation and the
ssociated linear system is solved using GMRES with an AMG
reconditioner. Fig. 6 shows the steady state solution over the
omputational domain.
Despite the complexity of the FE formulation of the above

roblem and the sophisticated numerical schemes adopted for
ts discretization, the effort involved in implementing such a new
olver from scratch in lifex requires writing approximately 350

Fig. 6. Solution of the Cahn–Hilliard equation implemented in Tutorial07.
Isosurfaces corresponding to values of the solution c equal to 0.35 (red), 0.5
(green), and 0.65 (blue) are shown. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

lines of C++ code (excluding comments and blank lines). This
is a strikingly small number, especially given the vast flexibility
the user has in selecting many modeling and numerical features,
such as choosing the FE degree, setting up the computational
domain and physical parameters, changing the time discretization
parameters (including the BDF order), selecting the type of linear
solver and preconditioner and related parameters, and so on.

4. Impact

The impact and wide applicability of lifex are demonstrated
by the high number of journal articles, preprints, conference ab-
stracts, and PhD theses that have already cited it. Computational
studies carried out with lifex have appeared in a variety of
fields, mostly originating from but not limited to cardiovascular
modeling: cardiac electrophysiology [35–38], cardiac mechan-
ics, electromechanics, and blood circulation [32,39–43], fluid dy-
namics [31,44–46], FSI [23], poromechanics coupled with blood
perfusion [47,48], and hemodynamics in patients affected by
COVID-19 [49].

Other notable computational models relying on lifex involve
a comprehensive and biophysically detailed electromechanics of
the entire human heart [50] (see Fig. 7) and an integrated de-
scription of electrophysiology, mechanics, and fluid dynamics
in the human left heart [51,52]. Other studies oriented toward
9

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

t
t
e
m
p

5

m
F
s
f
a
c
p
l

s
b
c
i
t
p

Fig. 7. Snapshot of a cardiac electromechanics simulation on a whole-heart geometry during ventricular systole. The color map shows the intracellular concentration
of calcium ions in the myocardium. The computational mesh was generated from the Zygote Solid 3D Heart Model [57].

numerical methods have addressed the development of a high-
order, matrix-free solver for cardiac electrophysiology [53] and
reduced order methods for real-time simulations [54–56].

lifex provides a fast and stable environment with a gen-
le learning curve and enables obtaining unmatched results in
erms of model reliability, numerical accuracy, and computational
fficiency. A comprehensive and up-to-date list of publications
aking use of lifex can be found at https://lifex.gitlab.io/lifex/
ublications.html.

. Conclusions

lifex is a parallel C++ library for simulations of multiphysics,
ultiscale, and multidomain problems based on the deal.II
E core. lifex offers several distinctive features, such as ab-
tract helpers for advanced numerical schemes, a convenient
ramework to deal with several kinds of coupled problems, and
friendly interface that allows for the implementation of new
omplex FE solvers or sophisticated numerical schemes with all
arameters selectable at run time with an economical number of
ines of code.

The abstraction layer and the software functionalities pre-
ented in Section 2 show either high parallel speedup or negligi-
le computational overheads. Overall, lifex shows a very high
omputational efficiency and seamless parallel performance; it
s thus an invaluable tool that can be run on diverse architec-
ures, ranging from laptop computers to HPC facilities and cloud
latforms.
On the one hand, lifex provides a robust and friendly in-

terface enabling easily accessible and reproducible in silico ex-
periments, without any compromise in terms of computational
efficiency and numerical accuracy. On the other, because it is
conceived as a research library, lifex can be exploited by scien-
tific computing experts to address new modeling and numerical
challenges in an easily approachable development framework.

Future directions for lifex will include expanding its devel-
oper and user bases, maintaining an active and friendly commu-
nity that welcomes new contributions, and making new advanced
features openly available to the wider public (see, for exam-
ple, [58,59]). In support of these goals, there are a number of
technical areas that will open the way to many upcoming de-
velopments. First, when moving towards larger numbers of cores
or DoFs, new bottlenecks are typically encountered, which will
be addressed by carefully profiling all parts of the code base

and exploiting more efficient algorithms, such as those based on
matrix-free methods [53]. Similarly, large computer clusters will
likely benefit from GPUs and similar devices in the near future, so
targeting new architectures and porting algorithms to different
programming models will be of utmost importance [9]. Other
possible areas of improvement will target new advanced numer-
ical techniques, such as higher-order or adaptive time advancing
schemes, support of multidomain problems discretized over non-
conforming meshes (exploiting, for instance, the INTERNODES
technique or RBF interpolators [27–29]), and hp-adaptive dis-
cretizations to further increase numerical accuracy with a lower
computational footprint [9].

We expect lifex to attract a sizable community of users and
developers. Any contribution is highly appreciated, from code
commits to bug reports and suggestions for improvement.

As we approach the exascale era that will be dominated by
high-end supercomputers, numerical simulations are expected
to be one of the main computational workloads [60]; against
this background, lifex offers transparency, accessibility, repro-
ducibility, and reusability of in silico experiments, within a flexi-
ble, high performance software tool.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 740132, iHEART
- An Integrated Heart Model for the simulation of the cardiac
function; P.I. Prof. A. Quarteroni). We acknowledge the CINECA
award MathBeat under the ISCRA initiative, for the availabil-
ity of high performance computing resources and support. The
lifex logo was designed by S. Pozzi. lifex would not have been
possible without a large and loyal team working on software
development and review, contributing code and fixes or reporting
10

https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/
https://iheart.polimi.it/

Pasquale Claudio Africa SoftwareX 20 (2022) 101252

b
S
R
m

P
s
p

ugs and suggestions: N. Barnafi, L. Bennati, M. Bucelli, L. Cicci,
. Di Gregorio, M. Fedele, I. Fumagalli, S. Pagani, R. Piersanti, F.
egazzoni, M. Salvador, S. Stella, E. Zappon, and A. Zingaro, among
any others.
Special thanks go to Profs. A. Quarteroni, L. Dede’, L. Formaggia,

. Gervasio, A. Manzoni, C. Vergara, and P. Zunino for many
timulating and inspiring discussions and to L. Paglieri for endless
atience and support.
lifex shares the enthusiasm, passion, experience, and dedica-

tion to scientific computing brought by several people who con-
tributed to the LifeV library [61]. The name itself was inspired
by LiFE (Library of Finite Elements), conceived by Prof. Fausto
Saleri.

References

[1] Groen D, Zasada SJ, Coveney PV. Survey of Multiscale and Multiphysics
Applications and Communities. Comput Sci Eng 2014;16(2):34–43. http:
//dx.doi.org/10.1109/MCSE.2013.47.

[2] Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M,
et al. Multiphysics simulations: Challenges and opportunities. The Int J
High Perform Comput Appl 2013;27(1):4–83. http://dx.doi.org/10.1177/
1094342012468181.

[3] Arndt D, Bangerth W, Blais B, Fehling M, Gassmöller. R, Heister. T, et al.
The deal.II Library, Version 9.3. J Numer Math 2021;29(3):171–86.
http://dx.doi.org/10.1515/jnma-2021-0081, URL https://www.dealii.org/.

[4] Alnaes MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, et al. The
FEniCS Project Version 1.5. Arch Numer Softw 2015;3. http://dx.doi.org/
10.11588/ans.2015.100.20553.

[5] Scroggs MW, Baratta IA, Richardson CN, Wells GN. Basix: a runtime finite
element basis evaluation library. J Open Source Softw 2022;7(73):3982.
http://dx.doi.org/10.21105/joss.03982.

[6] Anderson R, Andrej J, Barker A, Bramwell J, Camier J-S, Cerveny J, et
al. MFEM: A modular finite element methods library. Comput Math
Appl 2021;81:42–74. http://dx.doi.org/10.1016/j.camwa.2020.06.009, De-
velopment and Application of Open-source Software for Problems with
Numerical PDEs.

[7] Permann CJ, Gaston DR, Andrš D, Carlsen RW, Kong F, Lindsay AD, et al.
MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX
2020;11:100430. http://dx.doi.org/10.1016/j.softx.2020.100430.

[8] Bungartz H-J, Lindner F, Gatzhammer B, Mehl M, Scheufele K, Shukaev A,
et al. preCICE – A fully parallel library for multi-physics surface coupling.
Comput & Fluids 2016;141:250–8. http://dx.doi.org/10.1016/j.compfluid.
2016.04.003, Advances in Fluid-Structure Interaction.

[9] Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M,
et al. The deal.II finite element library: Design, features, and insights.
Comput Math Appl 2021;81:407–22. http://dx.doi.org/10.1016/j.camwa.
2020.02.022, Development and Application of Open-source Software for
Problems with Numerical PDEs.

[10] Quarteroni A, Valli A. Numerical approximation of partial differential
equations. vol. 23, Springer Science & Business Media; 2008, http://dx.doi.
org/10.1007/978-3-540-85268-1.

[11] Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al.
Best Practices for Scientific Computing. PLOS Biol 2014;12(1):1–7. http:
//dx.doi.org/10.1371/journal.pbio.1001745.

[12] Balay S, Abhyankar S, Adams MF, Benson S, Brown J, Brune P, et al. PETSc
Web page. 2022, URL https://petsc.org/.

[13] Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, et
al. An Overview of the Trilinos Project. ACM Trans Math Software
2005;31(3):397–423. http://dx.doi.org/10.1145/1089014.1089021.

[14] Africa PC. mk: environment modules for scientific computing software.
2022, http://dx.doi.org/10.5281/zenodo.6947700, Zenodo.

[15] Africa PC. lifex-env. 2022, http://dx.doi.org/10.5281/zenodo.6947962.
[16] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: Elements

of reusable object-oriented software. USA: Addison-Wesley Longman
Publishing Co., Inc.; 1995.

[17] Forti D, Dedè L. Semi-implicit BDF time discretization of the Navier–Stokes
equations with VMS-LES modeling in a high performance computing
framework. Comput & Fluids 2015;117:168–82. http://dx.doi.org/10.1016/
j.compfluid.2015.05.011.

[18] Brown J, Brune P. Low-rank quasi-Newton updates for robust Jacobian
lagging in Newton methods. In: Proceedings of the 2013 international
conference on mathematics and computational methods applied to nuclear
science and engineering. 2013, p. 2554–65, URL https://jedbrown.org/files/
BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf.

[19] Gill PE, Murray W. Quasi-Newton methods for unconstrained optimization.
IMA J Appl Math 1972;9(1):91–108. http://dx.doi.org/10.1007/BF01585529.

[20] Eisenstat SC, Walker HF. Choosing the forcing terms in an inexact Newton
method. SIAM J Sci Comput 1996;17(1):16–32. http://dx.doi.org/10.1137/
0917003.

[21] Küttler U, Wall WA. Fixed-point fluid–structure interaction solvers with
dynamic relaxation. Comput Mech 2008;43(1):61–72. http://dx.doi.org/10.
1007/s00466-008-0255-5.

[22] Walker HF, Ni P. Anderson Acceleration for Fixed-Point Iterations. SIAM J
Numer Anal 2011;49(4):1715–35. http://dx.doi.org/10.1137/10078356X.

[23] Bucelli M, Dede’ L, Quarteroni A, Vergara C. Partitioned and monolithic
algorithms for the numerical solution of cardiac fluid-structure interaction.
2021, URL https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf.

[24] Borgdorff J, Mamonski M, Bosak B, Kurowski K, Belgacem MB, Chopard B,
et al. Distributed multiscale computing with MUSCLE 2, the Multiscale
Coupling Library and Environment. J Comput Sci 2014;5(5):719–31. http:
//dx.doi.org/10.1016/j.jocs.2014.04.004.

[25] Quarteroni A, Sacco R, Saleri F. Numerical mathematics. vol. 37, Springer
Science & Business Media; 2010, http://dx.doi.org/10.1007/b98885.

[26] Quarteroni A, Valli A. Domain decomposition methods for partial differen-
tial equations. Oxford University Press; 1999, URL http://infoscience.epfl.
ch/record/140704.

[27] Deparis S, Forti D, Gervasio P, Quarteroni A. INTERNODES: an accu-
rate interpolation-based method for coupling the Galerkin solutions of
PDEs on subdomains featuring non-conforming interfaces. Comput &
Fluids 2016;141:22–41. http://dx.doi.org/10.1016/j.compfluid.2016.03.033,
Advances in Fluid-Structure Interaction.

[28] Deparis S, Forti D, Quarteroni A. A Rescaled Localized Radial Basis Function
Interpolation on Non-Cartesian and Nonconforming Grids. SIAM J Sci
Comput 2014;36(6):A2745–62. http://dx.doi.org/10.1137/130947179.

[29] Salvador M, Dede’ L, Quarteroni A. An intergrid transfer operator using
radial basis functions with application to cardiac electromechanics. Comput
Mech 2020;66(2):491–511. http://dx.doi.org/10.1007/s00466-020-01861-
x.

[30] Paliwal N, Ali RL, Salvador M, O’Hara R, Yu R, Daimee UA, et al. Presence
of Left Atrial Fibrosis May Contribute to Aberrant Hemodynamics and
Increased Risk of Stroke in Atrial Fibrillation Patients. Front Physiol
2021;12. http://dx.doi.org/10.3389/fphys.2021.657452.

[31] Fumagalli I, Fedele M, Vergara C, Dede’ L, Ippolito S, Nicolò F, et al. An
image-based computational hemodynamics study of the Systolic Anterior
Motion of the mitral valve. Comput Biol Med 2020;123:103922. http:
//dx.doi.org/10.1016/j.compbiomed.2020.103922.

[32] Regazzoni F, Salvador M, Africa P, Fedele M, Dede’ L, Quarteroni A. A
cardiac electromechanical model coupled with a lumped-parameter model
for closed-loop blood circulation. J Comput Phys 2022;457:111083. http:
//dx.doi.org/10.1016/j.jcp.2022.111083.

[33] Fedele M, Quarteroni A. Polygonal surface processing and mesh gener-
ation tools for the numerical simulation of the cardiac function. Int J
Numer Methods Biomed Eng 2021;37(4):e3435. http://dx.doi.org/10.1002/
cnm.3435.

[34] Liu J, Dede’ L, Evans JA, Borden MJ, Hughes TJ. Isogeometric analysis of
the advective Cahn–Hilliard equation: Spinodal decomposition under shear
flow. J Comput Phys 2013;242:321–50. http://dx.doi.org/10.1016/j.jcp.2013.
02.008.

[35] Vergara C, Stella S, Maines M, Africa PC, Catanzariti D, Demattè C, et
al. Computational electrophysiology of the coronary sinus branches based
on electro-anatomical mapping for the prediction of the latest activated
region. Med Biol Eng Comput 2022. http://dx.doi.org/10.1007/s11517-022-
02610-3.

[36] Piersanti R, Africa PC, Fedele M, Vergara C, Dede’ L, Corno AF, et al.
Modeling Cardiac Muscle Fibers in Ventricular and Atrial Electrophysiology
Simulations. Comput Methods Appl Mech Engrg 2021;373:113468. http:
//dx.doi.org/10.1016/j.cma.2020.113468.

[37] Pagani S, Dede’ L, Frontera A, Salvador M, Limite LR, Manzoni A, et al.
A Computational Study of the Electrophysiological Substrate in Patients
Suffering From Atrial Fibrillation. Front Physiol 2021;12. http://dx.doi.org/
10.3389/fphys.2021.673612.

[38] Stella S, Vergara C, Maines M, Catanzariti D, Africa PC, Dematté C, et al.
Integration of Activation Maps of Epicardial Veins in Computational Cardiac
Electrophysiology. Comput Biol Med 2020;127:104047. http://dx.doi.org/
10.1016/j.compbiomed.2020.104047.

[39] Piersanti R, Regazzoni F, Salvador M, Corno A, Vergara C, Quarteroni A,
et al. 3D–0D closed-loop model for the simulation of cardiac biventricular
electromechanics. Comput Methods Appl Mech Engrg 2022;391:114607.
http://dx.doi.org/10.1016/j.cma.2022.114607.

[40] Salvador M, Regazzoni F, Pagani S, Dede L, Trayanova N, Quarteroni A.
The role of mechano-electric feedbacks and hemodynamic coupling in
scar-related ventricular tachycardia. Comput Biol Med 2022;142:105203.
http://dx.doi.org/10.1016/j.compbiomed.2021.105203.

[41] Salvador M, Fedele M, Africa PC, Sung E, Dede’ L, Prakosa A, et al. Elec-
tromechanical modeling of human ventricles with ischemic cardiomyopa-
thy: numerical simulations in sinus rhythm and under arrhythmia. Comput
Biol Med 2021;136:104674. http://dx.doi.org/10.1016/j.compbiomed.2021.
104674.
11

http://dx.doi.org/10.1109/MCSE.2013.47
http://dx.doi.org/10.1109/MCSE.2013.47
http://dx.doi.org/10.1109/MCSE.2013.47
http://dx.doi.org/10.1177/1094342012468181
http://dx.doi.org/10.1177/1094342012468181
http://dx.doi.org/10.1177/1094342012468181
http://dx.doi.org/10.1515/jnma-2021-0081
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
https://www.dealii.org/
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.21105/joss.03982
http://dx.doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.1016/j.softx.2020.100430
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1007/978-3-540-85268-1
http://dx.doi.org/10.1007/978-3-540-85268-1
http://dx.doi.org/10.1007/978-3-540-85268-1
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
https://petsc.org/
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.5281/zenodo.6947700
http://dx.doi.org/10.5281/zenodo.6947962
http://refhub.elsevier.com/S2352-7110(22)00170-4/sb16
http://refhub.elsevier.com/S2352-7110(22)00170-4/sb16
http://refhub.elsevier.com/S2352-7110(22)00170-4/sb16
http://refhub.elsevier.com/S2352-7110(22)00170-4/sb16
http://refhub.elsevier.com/S2352-7110(22)00170-4/sb16
http://dx.doi.org/10.1016/j.compfluid.2015.05.011
http://dx.doi.org/10.1016/j.compfluid.2015.05.011
http://dx.doi.org/10.1016/j.compfluid.2015.05.011
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
http://dx.doi.org/10.1007/BF01585529
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.1007/s00466-008-0255-5
http://dx.doi.org/10.1007/s00466-008-0255-5
http://dx.doi.org/10.1007/s00466-008-0255-5
http://dx.doi.org/10.1137/10078356X
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
http://dx.doi.org/10.1016/j.jocs.2014.04.004
http://dx.doi.org/10.1016/j.jocs.2014.04.004
http://dx.doi.org/10.1016/j.jocs.2014.04.004
http://dx.doi.org/10.1007/b98885
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
http://dx.doi.org/10.1016/j.compfluid.2016.03.033
http://dx.doi.org/10.1137/130947179
http://dx.doi.org/10.1007/s00466-020-01861-x
http://dx.doi.org/10.1007/s00466-020-01861-x
http://dx.doi.org/10.1007/s00466-020-01861-x
http://dx.doi.org/10.3389/fphys.2021.657452
http://dx.doi.org/10.1016/j.compbiomed.2020.103922
http://dx.doi.org/10.1016/j.compbiomed.2020.103922
http://dx.doi.org/10.1016/j.compbiomed.2020.103922
http://dx.doi.org/10.1016/j.jcp.2022.111083
http://dx.doi.org/10.1016/j.jcp.2022.111083
http://dx.doi.org/10.1016/j.jcp.2022.111083
http://dx.doi.org/10.1002/cnm.3435
http://dx.doi.org/10.1002/cnm.3435
http://dx.doi.org/10.1002/cnm.3435
http://dx.doi.org/10.1016/j.jcp.2013.02.008
http://dx.doi.org/10.1016/j.jcp.2013.02.008
http://dx.doi.org/10.1016/j.jcp.2013.02.008
http://dx.doi.org/10.1007/s11517-022-02610-3
http://dx.doi.org/10.1007/s11517-022-02610-3
http://dx.doi.org/10.1007/s11517-022-02610-3
http://dx.doi.org/10.1016/j.cma.2020.113468
http://dx.doi.org/10.1016/j.cma.2020.113468
http://dx.doi.org/10.1016/j.cma.2020.113468
http://dx.doi.org/10.3389/fphys.2021.673612
http://dx.doi.org/10.3389/fphys.2021.673612
http://dx.doi.org/10.3389/fphys.2021.673612
http://dx.doi.org/10.1016/j.compbiomed.2020.104047
http://dx.doi.org/10.1016/j.compbiomed.2020.104047
http://dx.doi.org/10.1016/j.compbiomed.2020.104047
http://dx.doi.org/10.1016/j.cma.2022.114607
http://dx.doi.org/10.1016/j.compbiomed.2021.105203
http://dx.doi.org/10.1016/j.compbiomed.2021.104674
http://dx.doi.org/10.1016/j.compbiomed.2021.104674
http://dx.doi.org/10.1016/j.compbiomed.2021.104674

Pasquale Claudio Africa SoftwareX 20 (2022) 101252
[42] Dedè L, Quarteroni A, Regazzoni F. Mathematical and numerical models for
the cardiac electromechanical function. Atti Accad Naz Lincei Cl Sci Fis Mat
Natur Rend Lincei 2021;32(2):233–72. http://dx.doi.org/10.4171/rlm/935.

[43] Quarteroni A, Dedè L, Regazzoni F. Modeling the cardiac electrome-
chanical function: A mathematical journey. Bull Amer Math Soc
2022;59(3):371–403. http://dx.doi.org/10.1090/bull/1738.

[44] Zingaro A, Bucelli M, Fumagalli I, Dede’ L, Quarteroni A. Modeling
isovolumetric phases in cardiac flows by an Augmented Resistive Im-
mersed Implicit Surface Method. 2022, http://dx.doi.org/10.48550/ARXIV.
2208.09435.

[45] Zingaro A, Fumagalli I, Fedele M, Africa PC, Dede’ L, Quarteroni A, Corno AF.
A geometric multiscale model for the numerical simulation of blood flow
in the human left heart. Discrete Contin Dyn Syst - S 2022;15(8):2391–427.
http://dx.doi.org/10.3934/dcdss.2022052.

[46] Fumagalli I, Vitullo P, Vergara C, Fedele M, Corno A, Ippolito S, et al.
Image-based computational hemodynamics analysis of systolic obstruction
in hypertrophic cardiomyopathy. Front Physiol 2022;2437. http://dx.doi.
org/10.3389/fphys.2021.787082.

[47] Barnafi Wittwer NA, Gregorio SD, Dede’ L, Zunino P, Vergara C,
Quarteroni A. A Multiscale Poromechanics Model Integrating Myocar-
dial Perfusion and the Epicardial Coronary Vessels. SIAM J Appl Math
2022;82(4):1167–93. http://dx.doi.org/10.1137/21M1424482.

[48] Gregorio SD, Fedele M, Pontone G, Corno AF, Zunino P, Vergara C,
et al. A computational model applied to myocardial perfusion in the
human heart: From large coronaries to microvasculature. J Comput Phys
2021;424:109836. http://dx.doi.org/10.1016/j.jcp.2020.109836.

[49] Dedè L, Regazzoni F, Vergara C, Zunino P, Guglielmo M, Scrofani R, et al.
Modeling the cardiac response to hemodynamic changes associated with
COVID-19: a computational study. Math Biosci Eng 2021;18(4):3364–83.
http://dx.doi.org/10.3934/mbe.2021168.

[50] Fedele M, Piersanti R, Regazzoni F, Salvador M, Africa PC, Bucelli M, et al.
A comprehensive and biophysically detailed computational model of the
whole human heart electromechanics. 2022, http://dx.doi.org/10.48550/
ARXIV.2207.12460.

[51] Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede’ L, Quarteroni A. A
mathematical model that integrates cardiac electrophysiology, mechanics
and fluid dynamics: application to the human left heart. 2022, http:
//dx.doi.org/10.48550/ARXIV.2208.05551.

[52] Bucelli M, Gabriel MG, Gigante G, Quarteroni A, Vergara C. A stable loosely-
coupled scheme for cardiac electro-fluid-structure interaction. 2022, http:
//dx.doi.org/10.48550/ARXIV.2210.00917.

[53] Africa PC, Salvador M, Gervasio P, Dede’ L, Quarteroni A. A matrix-free
high-order solver for the numerical solution of cardiac electrophysiology.
2022, http://dx.doi.org/10.48550/ARXIV.2205.05136.

[54] Cicci L, Fresca S, Pagani S, Manzoni A, Quarteroni A. Projection-based re-
duced order models for parameterized nonlinear time-dependent problems
arising in cardiac mechanics. Math Eng 2023;5(2):1–38. http://dx.doi.org/
10.3934/mine.2023026.

[55] Regazzoni F, Salvador M, Dedè L, Quarteroni A. A machine learning method
for real-time numerical simulations of cardiac electromechanics. Comput
Methods Appl Mech Engrg 2022;393:114825. http://dx.doi.org/10.1016/j.
cma.2022.114825.

[56] Regazzoni F, Quarteroni A. Accelerating the convergence to a limit cycle
in 3D cardiac electromechanical simulations through a data-driven 0D
emulator. Comput Biol Med 2021;135:104641. http://dx.doi.org/10.1016/
j.compbiomed.2021.104641.

[57] Inc. ZMG. Zygote solid 3D heart generation II. 2014, Development Report.
[58] Africa PC, Piersanti R, Fedele M, Dede’ L, Quarteroni A. An open tool

based on lifex for myofibers generation in cardiac computational models
(Software). 2022, http://dx.doi.org/10.5281/zenodo.5810268, Zenodo.

[59] Africa PC, Piersanti R, Fedele M, Dede’ L, Quarteroni A. An open tool based
on lifex for myofibers generation in cardiac computational models. 2022,
http://dx.doi.org/10.48550/ARXIV.2201.03303.

[60] Alowayyed S, Groen D, Coveney PV, Hoekstra AG. Multiscale computing in
the exascale era. J Comput Sci 2017;22:15–25. http://dx.doi.org/10.1016/j.
jocs.2017.07.004.

[61] Bertagna L, Deparis S, Formaggia L, Forti D, Veneziani A. The LifeV library:
engineering mathematics beyond the proof of concept. 2017, http://dx.doi.
org/10.48550/ARXIV.1710.06596.
12

http://dx.doi.org/10.4171/rlm/935
http://dx.doi.org/10.1090/bull/1738
http://dx.doi.org/10.48550/ARXIV.2208.09435
http://dx.doi.org/10.48550/ARXIV.2208.09435
http://dx.doi.org/10.48550/ARXIV.2208.09435
http://dx.doi.org/10.3934/dcdss.2022052
http://dx.doi.org/10.3389/fphys.2021.787082
http://dx.doi.org/10.3389/fphys.2021.787082
http://dx.doi.org/10.3389/fphys.2021.787082
http://dx.doi.org/10.1137/21M1424482
http://dx.doi.org/10.1016/j.jcp.2020.109836
http://dx.doi.org/10.3934/mbe.2021168
http://dx.doi.org/10.48550/ARXIV.2207.12460
http://dx.doi.org/10.48550/ARXIV.2207.12460
http://dx.doi.org/10.48550/ARXIV.2207.12460
http://dx.doi.org/10.48550/ARXIV.2208.05551
http://dx.doi.org/10.48550/ARXIV.2208.05551
http://dx.doi.org/10.48550/ARXIV.2208.05551
http://dx.doi.org/10.48550/ARXIV.2210.00917
http://dx.doi.org/10.48550/ARXIV.2210.00917
http://dx.doi.org/10.48550/ARXIV.2210.00917
http://dx.doi.org/10.48550/ARXIV.2205.05136
http://dx.doi.org/10.3934/mine.2023026
http://dx.doi.org/10.3934/mine.2023026
http://dx.doi.org/10.3934/mine.2023026
http://dx.doi.org/10.1016/j.cma.2022.114825
http://dx.doi.org/10.1016/j.cma.2022.114825
http://dx.doi.org/10.1016/j.cma.2022.114825
http://dx.doi.org/10.1016/j.compbiomed.2021.104641
http://dx.doi.org/10.1016/j.compbiomed.2021.104641
http://dx.doi.org/10.1016/j.compbiomed.2021.104641
http://refhub.elsevier.com/S2352-7110(22)00170-4/sb57
http://dx.doi.org/10.5281/zenodo.5810268
http://dx.doi.org/10.48550/ARXIV.2201.03303
http://dx.doi.org/10.1016/j.jocs.2017.07.004
http://dx.doi.org/10.1016/j.jocs.2017.07.004
http://dx.doi.org/10.1016/j.jocs.2017.07.004
http://dx.doi.org/10.48550/ARXIV.1710.06596
http://dx.doi.org/10.48550/ARXIV.1710.06596
http://dx.doi.org/10.48550/ARXIV.1710.06596

	: A flexible, high performance library for the numerical solution of complex finite element problems
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Abstract numerical helpers
	Multiphysics coupling
	User interface

	Sample code snippet

	Illustrative examples
	Scalability study
	Multidomain problems
	User interface flexibility

	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

