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Abstract— Structural intervention cardiology (SIC) interven-
tions are crucial procedures for correcting heart valves, walls,
and muscle form defects. However, the possibility of emboliza-
tion or perforation, as well as the lack of transparent vision
and autonomous surgical equipment, make it difficult for the
clinician. This paper proposes a robot-assisted tendon-driven
catheter and machine learning-based path planner to overcome
these challenges. Firstly, an analytical inverse kinematic model
is constructed to convert the tip location in the Cartesian
space to the tendons’ displacement. Then inverse reinforcement
learning algorithm is employed to calculate the optimal path to
avoid possible collisions between the catheter tip and the atrial
wall. Moreover, a closed-loop feedback controller is adopted
to improve positioning accuracy in a direct distal position
measurement manner. Simulation and experiments are designed
and conducted to demonstrate the feasibility and performance
of the proposed system.

I. INTRODUCTION

SIC procedures allow treating intracardiac pathologies
through the transcatheter implantation of repair or replace-
ment devices (Fig. 1). Initially conceived to extend treatment
to patients uneligible for open-chest surgery, SIC procedures
were becoming increasingly popular as first-line treatment
as they are associated with reduced trauma, shorter hos-
pitalization time, and comparable effectiveness vs. open
chest surgery structural heart disease (SHDs) [1]. On the
other hand, SIC procedures are not ergonomic, technically
demanding, as the operator must maneuver the proximal end
of the catheter to define the motion of the distal end in the
unconstrained and dynamic intracardiac environment, and
characterized by a steep learning curve, with the operator
experience associated with the procedural success [2]. As a
result, complex SIC procedures are accessible only at few ex-
cellence clinical centers with highly skilled and experienced
operators [3].

The ARTERY project intends to advance the area of
SIC by introducing a variable shared autonomy robotic
platform for intra-procedural support, which is currently
underdevelopment using the robotization of the commercial
MitraClipT M (MC) system as initial benchmark. The MC
system allows to treat mitral regurgitation by percutaneously
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implanting a clip that grasps the valve leaflets (Fig. 1).
The clip is deployed by a catheter, which is inserted in
the femoral vein, driven to the inferior vena cava, the right
atrium and then into the left atrium, where it is steered to
target the region of the mitral leaflets to be grasped. One
of the project’s key goals is to provide reliable autonomous
navigation in the left atrium, which can be considered an
unconstrained environment due to its shape and size, using
ad hoc control software and artificial intelligence.

Fig. 1. Positioning of the MC on the mitral valve. The side view shows
a four-chamber section of the heart: the catheter arrives from the inferior
vena cava (in blue), enters the right atrium, and reaches the left atrium via
a trans-septal approach. The positioning of the MC is shown in detail in the
atrial view: the clip anchors the free margin of the two mitral leaflets and
keeps them locally in contact.

In this paper, we suggested a robotic-assisted approach
(Fig. 2) to address the challenge in this research. Firstly,
Cosserat rod theory (CRT) was employed for the kine-
matic model of the tendon-driven robotic catheter, which
mapped the tip location in the task space with the tendons’
displacement in the actuation space. Then, comparing the
recent advances in learning based methods in path planning,
we deployed Learning from Demonstration (LfD) algorithm
along with Proximal Policy Optimization (PPO) policy for
training an artificial intelligent agent to plan an optimized
trajectory toward the target position. Furthermore, we de-
signed an autonomous robot-assisted platform based on the
commercially-available MC system developed by Abbott,
which we combined with our algorithm. Finally, to validate
the suggested strategy, extensive experiments were carried
out in a patient-specific physical phantom.
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Fig. 2. Workflow of the robotic-assisted system

II. RELATED WORKS

A. Kinematic Modelling

The coupling between the tendons and the backbone, as
well as the kinematic or static assumptions of the backbone,
were the key topics of discussion while designing a tendon-
driven continuum robot (TDCR). There were two dominant
types of structures of attaching tendons on the backbone,
which were using two spacer disks to partially constrain the
tendon path within each subsegment and using a large inner
lumen to guide the tendons along the backbone. Partially
constrained tendons were modeled as forces and moments
operating on the attached disk. On the other hand, due to the
fully constrained tendon path, the forces could be equivalent
to a distributed load, which is equal and opposite to the
internal force of the backbone[4].

The most common approach to model the backbone was
the piecewise constant-curvature approximation, in which the
section could be assumed to undergo planar deformation. The
shape of the robot had been simplified as an arc geometry
without the torsion effect [5]. The most accurate model was
the variable curvature approach, which was a finite element
method based on the CRT. The backbone was represented by
a fixed number of points with six degrees of freedom, named
nodes. The configuration of the TDCR could be estimated
by solving the equilibrium equations for all the nodes with
the boundary conditions [6], [7].

B. Path Planning

Intracardiac path planning was not well explored in recent
studies. In one study, a simple algorithm had been proposed
that plans a straight line from the catheter tip to the intracar-
diac target position. However, the system should be improved
by accommodating different curves to avoid anatomical
obstacles [8]. Another recent and novel method exploited
wall-following algorithm [9]. This approach employed thig-
motactic algorithms that achieved autonomous navigation
inside the heart by creating low-force contact with the tissue
and then following tissue walls to reach a goal location.
Its performance on autonomously controlled robotic catheter
outperforms that of an experienced clinician. Learning based
methods had gained massive attention, and they were also
proposed for surgical procedures such as intravascular [10]
or neurosurgical [11] cases. Among the learning algorithms,
different sub-classes could be distinguished, LfD and Deep
Reinforcement Learning (Deep RL) being the two dominant
categories. In the LfD paradigm, human demonstrations were
used to obtain a reference trajectory for the desired task. In
this case, the catheterization demonstrations would be done
by an expert surgeon. Subsequently, a learning algorithm is
exploited to extract the key features of this trajectory. This
enabled the robot to perform the task on its own, even under

different conditions [12]. It has been shown that with this
kind of algorithm improvements over manual catheterization
can be obtained [13].

In autonomous and semi-autonomous intracardiac surg-
eries, Deep RL could be exploited to overcome the un-
predictability of movements and errors introduced by the
operator that could affect the accuracy of the traced path.

C. Motion Control

The closed-loop motion control, using electromagnetic
(EM) sensors, has been proved to be an effective approach
to safely navigate the catheter in minimin invasive surgery.
Loschak et al. [14] designed an automatic ultrasound catheter
with an EM tracker, four brushed DC motors for each degree
of freedom, and a position controller with a 1.6mm position
error in the open 3D space. A probabilistic kinematic model
was studied by Bing Yu et al. [15] to take into account
intrinsic non-linearities and external disturbance. A propor-
tional–integral–derivative (PID) controller was implemented
for closed-loop position control, and the results indicated that
a simulated catheter could follow the centerline of the aorta
with an accuracy of 1.2±1.067mm. Moreover, Di wu et al.
proposed a Deep-Learning-Based compliant controller using
EM tracker to accurately position the catheter and avoid
excessive interaction forces. [16].

III. METHODOLOGY

A. Kinematic model of the catheter

Fig. 3. Sketches of the catheter: (A) Kinematics of the CRT maps the
distal position pd and tendon displacement ∆di; (B) Free-body diagram
of the catheter subjected to external distributed forces f (s) and moments
l(s); internal forces n(s) and moment m(s) over the backbone length s are
represented.

Kinematics based on CRT is implemented, in which the
robotic catheter was assumed to be functioning in a quasi-
static process to relate the distal end position (pd) and
tendon displacement (∆di). The tendons are assumed to
follow a continuous curve parallel to the backbone, implying
that tendon pathways are totally constrained. A number of
nodes positioned along the backbone represent the catheter’s
configuration, and the deformation of the backbone can be
computed using the CRT. The reference frames composed
by a rotation matrix (R) and a pose vector (p) are attached
to the nodes (Fig. 3 A), and their evolution along the body
length (s) was described by means of a system of differential
equations:

Ṙ(s) = Ṙ(s)û(s)
ṗ(s) = R(s)v(s)

(1)



Fig. 4. Complete robotic-assisted surgical system: (A) catheter actuation plant; (B) electrical devices and power source; (C) details of the motorized
stabilizer for the bending in the medio-lateral plane; (D) details of the motorized stabilizer for the bending in the antero-posterior plane and the linear
actuator; (E) patient-specific physical phantom; (F) EM tracking system and the EM sensor; (G) computers used for running the ROS environment on
Ubuntu 20.04 and the Unity simulation on Windows 10.

We solve the equilibrium equations between internal forces
and moments, n(s) and m(s), and external forces and mo-
ments, f (s) and l(s) to obtain u(s) and v(s), which are the
values of angular and linear rate of change of each node.

ṅ(s)+ f(s) = 0 (2)
ṁ(s)+ ṗ(s)×n(s)+ l(s) = 0

At last, the internal force and moment are related with u(s)
and v(s), exploiting constitutive material laws:

n(s) = R(s)Kse(s)(v(s)−v∗(s))
m(s) = R(s)Kbt(s)(u(s)−u∗(s))

(3)

where
Kse(s) = diag(GA(s),GA(s),EA(s))

Kbt(s) = diag(EIxx(s),EIyy(s),GJ)
(4)

Kse(s), Kbt(s) ∈ R3×3 matrices are stiffness matrices,
which are determined by the mechanical properties and the
geometry of the catheter. A(s) is the cross sectional area; I(s)
and J are the corresponding second moment of area and the
polar moment of inertia, respectively. G and E represent the
shear modulus and the Young modulus of the material.

Under the assumption of a fully constrained tendon path,
these tendons are considered as equivalent distributed force
and moment along the entire length of the backbone and
integrated as a part of internal force n(s) and moment m(s)
of the backbone. Moreover, the gravity force is treated as a
combination of distributed external forces f (s) and moments
l(s) (Fig. 3 B).

Combining equations (1), (2), (3), we obtain the complete
set of CRT differential equations, which are numerically

solved via Shooting method [17]: the solution is searched
for iteratively until boundary conditions are satisfied.

B. Design of the path planner

Path planning is a mathematical problem to find the
optimum sequence of valid configurations to move from one
point (source) to another point (destination). Path planning
algorithms generate a geometric path from the source to the
destination, possibly passing through predefined via-points
while considering blocked areas [18]. The configuration
space is found as a subset of free space. The main challenges
of our project in robotic path planning are as follows:

• Convergence, ensuring at least one valid solution by
reaching the destination defined as target configuration
(qt ).

• Optimality, considering the timing (time) and the mini-
mum (minDist) and the average (avgDist) distance.

• Geometric and movement restrictions of the catheter,
evaluating the curvature (curv) and the length (len).

• Geometric and movement restrictions associated with
the intracardiac environment and with obstacles to be
avoided (obst)

The 3D geometry of the anatomical structures of inter-
est (i.e., right and left atria and ventricles, inferior and
superior vena cava, femoral veins, pulmonary artery) was
reconstructed from a Computed Tomography (CT) scan (di-
mension 512×512×347) provided by IRCCS Ospedale San
Raffaele, yielding the simulation environment to train a Gen-
erative Adversarial Imitation Learning (GAIL) model in pre-
operative path planning. Using 3D Slicer software [19], CT
images were manually segmented, and 3D reconstructions



were subsequently smoothed and filtered with a Gaussian
filter. The resulting discretized solid geometries were hol-
lowed in MeshMixer software [20] to obtain the final meshes
to create the simulated scene. The anatomical environment
in which the agent (i.e., the catheter) moves was finally
reconstructed in the Unity 3D game engine [21] .

We used a combination of Behavioral Cloning (BC) [22]
and GAIL [23] reward signal to find the optimized pre-
operative path from the entry to the target poses. The
former method lets the agent reproduce a close copy of
the demonstration, whereas the latter deploys an adversarial
approach using a discriminative next to a generative network.

The path planner takes in input the starting configuration
(qs) of the agent, consisting in its pose (3 positions and 3
rotations in the 3 axes expressed in Euler angles) and the
target configuration (qt ). The output of the path planning
algorithm is a pre-operative path (P), i.e., an admissible
sequence of agent configurations (qagentt

) from the starting
one qagent0

== qs to the target one qagentn−1
== qt , where n

is the number of configurations that generate the path P and
is equal to #P. Hence, P can be expressed as:

P = {qagent0 , qagent1 , ..., qagentn−1} (5)

Our catheter represents the agent, that is the learner and
the decision maker. It is placed in the environment and it
can take actions (at), moving towards the target (at) with
a combination of the translation along its X-direction and
the rotation about its Z-direction and Y-direction. With these
actions the environment can give positive or negative rewards
(rt ), which are usually scalars to the agent.

The reward function, R(τ) = rt , associated with each time
step, t, is shaped in order to make the agent learn to optimize
the path, according to three main requirements:

• agent steps number (t) minimization
• obstacle avoidance with qagent /∈ obst
• target position error (t pe) minimization, where t pe is the

Euclidean distance between the needle’s final position
(p(qagent) and the target position (p(qt)),

The reward (rt ) is defined as:

rt =


rstepmax if t ≥ tmax
robst + rstep if qagentt ∈ obst
rtarget + rT PE + rstep if qagentt == qt
rstep otherwise

(6)

• A negative reward, rstepmax , is given if the cumulative
number of steps (t) exceeds the predefined maximum
number of steps allowed for (tmax).

• A negative reward, rstep = − 1
tmax

, is given at each step
t of the agent in order to obtain a reduction in the
computational time.

• A negative reward, robst , is given if a collision is
detected between the agent (qagentt ) and the obstacles
(obst).

• A positive reward, rtarget , is given upon reaching the
target (qtargett ).

• A negative reward is given, rT PE =
−
∥∥p(qt)−p(qagent)

∥∥, upon reaching the target in
order to minimize the difference between the target
(p(qt)) and the agent final position (p(qagent)).

The optimal parameters of the R(τ) = rt , obtained with an
empirical method, are reported in Table I.

TABLE I
REWARD FUNCTION PARAMETERS VALUES

rstepmax robst rtarget tmax
-1 -1 +3 5000

In the training process, the agent learns to maximize its
cumulative reward based on a PPO, taking into account the
environment state. During the training phase the BC, which
corresponds to the intrinsic reward, is active for all the steps
(t). Values associated to the training parameters can be found
in Table II

TABLE II
DEPLOYED LEARNING CONFIGURATION.

Parameter strength gamma
BC 0.5
extrinsic 1.0 0.99
intrinsic 0.02 0.99
GAIL 1.0 0.99

C. Actuation plant and control

A sheath and a delivery catheter are included in the MC
system. During the operation, the delivery catheter is inserted
into the sheath catheter and deploys the clip to the desired
position above the mitral valve. The delivery catheter is a
16 Fr (5.28 mm diameter) 109.5 cm long catheter with three
pull wires spaced 90◦ apart in cross-section.

In this paper, we propose a catheter actuation plant ((Fig.4
A) with three degrees of freedom: medio-lateral bending in
the coronal plane, anterior-posterior bending in the sagittal
plane, and translational insertion inside the sheath catheter.
As a result, we designed a motorized stabilizer, which is
composed of three primary mechanical and electrical ele-
ments:

We designed the entire system in Solidworks (Dassault
systems) and 3D printed all of the structural components of
the motorized stabilizer (Ultimaker 3S, Ultimaker B.V.) using
PLA materials (Fig. 4 C, D). Then, we assembled the catheter
actuation plant and inserted it inside the sheath catheter,
which was placed on a phantom (Fig. 4 E). In addition,
we tracked the position of the sheath with the Aurora
EM tracking system (NDI, Inc.). The Aurora generator was
placed aside the tip of the catheter to generate the magnetic
field. The EM sensor was attached to measure the real pose
of the tip of the catheter with respect to its base, i.e., the
insertion point in the septum (Fig.4 F). All the algorithms
were run on a PC running Ubuntu 20.04 (PC1), except
for the path planner, which runs in Unity on a different
PC (PC2) equipped with a Windows 10 operating system.



Those two computers were connected by an Ethernet cable
and exchanged data by ROSbridge based on the Web-Socket
communication protocol (Fig.4 G).

Furthermore, a PID controller was employed to calculate
the mismatch between the desired position (pd) and the
measured position (pm) and to apply a correction to increase
the control precision. We used the Ziegler–Nichols method
to tune the parameters of the PID controller.

Finally, the control scheme was integrated with the inverse
kinematic model and the actuation leds, which was accom-
plished using the ROS (Robot Operating System) middleware
framework represented in Fig. 5. Starting from the desired
pose (pd), the inverse kinematic model computes the ten-
dons’ displacement (∆di) that is provided to the plant. When
the actuation is complete, the ROS topic ”Finish actuation”
is activated, and the PID controller starts to compare the
desired pose (pd) to the measured one (pm), generating a new
position (pr) that is conveyed to the inverse kinematic model,
allowing the adjustment of the position. When the error of
the clip pose is within the threshold, the ”conclusion” ROS
topic confirms the end of the robotic procedure.

Fig. 5. ROS network scheme

IV. EXPERIMENTAL SETUP AND PROTOCOL

A. Experimental Setup

To evaluate the robotic-assisted surgical system, an experi-
mental platform including a silicon anatomical phantom was
developed (Fig.4 E). The platform consisted of a deformable
model of femoral vena cava and inferior vena cava and in
rigid replicas of the fossa, i.e., the portion of the interatrial
septum that is punctured by the catheter in the real procedure,
and of the mitral valve. Three holes were present in the fossa
replica, as if the latter was already punctured. The geometry
of the vessel and the mutual position of vessels, fossa and
mitral valve was defined based on CT images to replicate
this key feature of the real intracardiac structure.

Moreover, a calibration procedure was executed to com-
pute the registration matrix that aligns the position of the
EM sensor navigating in the physical phantom with respect
to the Unity scene in which both a virtual sensor and
phantom are represented. The transformed position from the
EM sensor was then continuously received at each frame

Fig. 6. Complete phantom (A) and corresponding virtual model (B).
To couple the position of the four pillars in the {U} coordinate system
with the position of the sensor in the {EM} coordinate system, the probe
sensor was positioned in the cavities on the tip of the pillars according to a
predetermined sequence, so that the respective positions could be related to
those in the virtual model with an ad hoc user interface in the unity scene.

in the Unity scene. Every virtual object rendered in the
Unity scene was positioned with respect to a global left-
hand coordinate system {U} . The 5-DoF sensor position,
on the other hand, was represented with respect to Aurora
right-hand global coordinate system {EM}, based on the
characterized measurement volume of the field generator.
To register these two spacesthe heart base in the physical
phantom was equipped with four pillars known position and
height and a conical cavity at the top (Fig. 6 A). The conical
cavity was intended to accommodate the tip of the EM sensor
probe with which the calibration procedure was executed,
stabilizing its position while handled by the user. The digital
model of the base (Fig. 6 B) containing the four rods was
included in the unity scene so as to have a unique association
between the position of the physical rods touched by the EM
sensor and the same represented in the virtual scene.

The probe was then moved in all the rods to have four
completely different coordinates in the space from the sensor
pi(i = 1, . . .4), and from the unity scene qi(i = 1, . . .4). Ten
sensor positions were read for each rod and averaged to
cancel out possible noise from the sensor. Upon acquiring
the four different positions, the two sets of corresponding
3D points were processed to find the optimal rotation (R)
and translation (T) matrix that aligned the positions received
from the sensor in the {EM} space to the {U} space. An
algorithm to find the least-squares solution of R and T, which
is based on the singular value decomposition (SVD), was
applied to compute the registration matrix U TEM .

qi =
U TEM •pi (7)

Once the calibration procedure is completed, a virtual
Game Object in the Unity scene dynamically matches its
moving physical counterpart (the sensor’s tip). Then the
experiment can be carried out under the constrain of the
sheath catheter inside the phantom. In the Unity environment,
a target position is set for the artificial intelligent agent to
create an optimized path, which is a series of desired position
(pdi ) for the actuation plant. Moreover, a 5-DOF EM sensor
with the accuracy of 0.7±1.4 mm, is mounted to the tip of
the delivery catheter to measure the position in real-time and
feedback to the controller (Fig. 7). Finally, the tip positions



Fig. 7. Validation experiment: given a target on the mitral valve, the
path planner can generate an optimized path in the Unity environment and
forward the data to the actuation plant, which drives the delivery catheter
to autonomously deposit the clip in the target position.

of the catheter are recorded by a 6-DOF EM probe, which
has a higher position accuracy of 0.48±0.88 mm.

B. Performance Metrics

1) Path Planner Performance Metrics: For the pre-
operative Path Planner validation two different settings were
compared for the path search:

• Method 1: Manual (state of the art for the surgery).
• Method 2: BC + GAIL

Those two settings were tested m times (with 1 ≤ m ≤ 10)
in the intracardiac phase starting from a initial configuration
(qs) (placed on the septum) to a target (qs) (place on the
mitral valve). Obtaining in output m pre-operative manual
path (Pmanual

m ) applying the first manual method and m pre-
operative automatic path (PBC+GAIL

m ) applying the second
automatic method.

The results obtained from each manual (Pmanual
m ) or au-

tomatic (PBC+GAIL
m ) experiment were analysed according to

the following metrics:
1) The minimum distance, (dmin), and average distance

(davg), from obstacles (obst), in [mm]
2) The maximum curvature, (curv) in [mm−1] they should

be smaller than the catheter’s maximum curvature,
which is to 0.02618 mm−1.

3) The total length, (length), of the path, in [mm]: it
shouldn’t exceed the actual length of the catheter,
which is 70 mm.

4) The success rate, (SR): to ensure that the method is
reliable the success rate must be as high as possible.

5) The target positioning error, (t pe), in [mm], i.e., the
accuracy of the catheter’s final position with respect to
the target’s position.

6) The target orientation error, (toe), in [mm], i.e., the
difference between the orientation of the target and the
orientation of the catheter pointing at the target in its
final pose. These last two values should be the smallest
possible.

2) Position Performance Matrix: To evaluate the fidelity
and the performance of the system, we fed the actuation
plant with a set of the desired position (pdi ) on the trajectory
obtained from the path planner. The position accuracy in
all directions was quantified by the position mismatch (ei)
between the tip position measured in the Cartesian space

(pmi ) and the desired one (pdi ). We also studied the im-
provement of the controller on the positioning by comparing
the outcomes of the open-loop and PID feedback control
algorithms.

V. RESULTS

Fig. 8. Manual and Path Planning results comparison in terms of minimum
distance (dmin), average distance (avgDist), curvature (curv), length (length),
target position error (t pe) and target orientation error (toe).

Fig. 8 shows the comparison between the Manual and
the BC+GAIL Path Planner. The Manual approach shows
higher values in terms of dmin, curv, length and toe. A
significant difference in dmin is found, where the Man-
ual approach showed a mean value of 1.82±0.63 mm
with respect to 1.18±0.01 mm for the BC+GAIL ap-
proach. Regarding the davg of the Manual approach has a
mean value of 4.25±0.05 mm and 4.41±0.04 mm for the
BC+GAIL one. The BC+GAIL approach also shows lower
values in terms of curv, where the maximum curvature
is 0.0016±7.17e-05 mm−1 while the Manual one gives
a value of 0.0018±3.19e-04 mm−1. BC+GAIL approach
leads to shorter path lengths (length=60.63±0.96 mm) as
compared to the manual approach (length=64.99±6.11 mm).
The Manual t pe is 0.32±0.14 mm, which is lower than
the result obtained by the BC+GAIL the path planner of
1.79±0.35 mm. However, the toe shows very similar values,
in which the manual approach reaches the target with an
angle error of −5.17±7.74◦, and the BC+GAIL one presents
an error of −5.99±3.10◦. We also analyzed the time required
to compute the path, from the starting configuration (qs) to
the target one (qt), and we got 8.9080±0.2258 s for the
manual approach, and almost the same for the BC+GAIL
one, resulting in 8.9140±0.0786 s with the speed set equal
to 10 mm/s.

The results in Fig 9 indicate that the proposed approach is
able to position the tip of the catheter within an acceptable



Fig. 9. Comparison of position error between the open-loop control and the feedback control algorithm: (A) shows the position error in the X-direction;
(B) shows the position error in the Y-direction; (C) shows the position error in Z-direction.

range. The average position error with the feedback con-
troller in X, Y, Z directions are 1.12±0.75 mm, 1.09±0.68
mm, 1.66±0.62 mm respectively. The maximum position er-
ror happens in the Z direction, which is 2.64 mm. Compared
to the results of the open-loop control, the PID controller can
reduce the average position error of 32.68% in all directions.

VI. CONCLUSION AND DISCUSSION

This paper presents the preliminary validation results of a
robotic-assisted system comprised of an analytical inverse
kinematic model based on the CRT; a pre-operative path
planner based on inverse reinforcement learning, and a
catheter actuation plant with a PID feedback controller. Ex-
perimental results suggested the feasibility and effectiveness
of the implemented system for SIC treatment.

Further work will focus on improving the system structure
and assembly procedures to increase the accuracy of the
delivery system. Additionally, hysteresis effect could be
considered inside the kinematic model to deal with non-
linearity. Moreover, the measured position could be fed to
the path-planner to update the optimized path in real-time.
Furthermore, augmented reality devices will be employed
to provide a more intuitive navigation experience for the
operator.
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