
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 1

Faber: a Hardware/Software Toolchain for
Image Registration

Eleonora D’Arnese, Student Member, IEEE, Davide Conficconi, Member, IEEE,
Emanuele Del Sozzo, Member, IEEE, Luigi Fusco, Donatella Sciuto, Fellow, IEEE,

and Marco D. Santambrogio, Senior Member, IEEE

Abstract—Image registration is a well-defined computation paradigm widely applied to align one or more images to a target image.
This paradigm, which builds upon three main components, is particularly compute-intensive and represents many image processing
pipelines’ bottlenecks. State-of-the-art solutions leverage hardware acceleration to speed up image registration, but they are usually
limited to implementing a single component. We present Faber, an open-source HW/SW CAD toolchain tailored to image registration.
The Faber toolchain comprises HW/SW highly-tunable registration components, supports users with different expertise in building
custom pipelines, and automates the design process. In this direction, Faber provides both default settings for entry-level users and
latency and resource models to guide HW experts in customizing the different components. Finally, Faber achieves from 1.5× to 54×
in speedup and from 2× to 177× in energy efficiency against state-of-the-art tools on a Xeon Gold.

Index Terms—HW/SW Design Automation, Image Registration, FPGAs.

✦

1 INTRODUCTION

In the imaging field, taking multiple images and integrating
their contents to obtain more comprehensive information is
the basic idea behind various image enhancement and data
integration approaches [1], [2], [3]. A representative example
is a surgical navigation system that guides surgeons during
their tasks, thanks to image-based information. Such a case
requires the integration of preoperative images into the ones
acquired during the procedure. However, the subsequent
fusion produces poor or even incorrect results without cor-
rectly aligning these images to the same reference system.
For this reason, multiple approaches employ image registra-
tion (IR), a well-known paradigm that maps one or more
images, taken under different conditions, to a reference [4].
Traditional IR comprises three main components: a geometric
transformation, an optimizer, which searches the best transfor-
mation parameters, and a similarity metric, which explains
the goodness of the transformation [5].

As a fundamental context-specific pre-processing tech-
nique, many proposed IR solutions embody either flexibility
or high performance. On the one hand, pure software (SW)
solutions offer several implementations of the three main
IR components, e.g., mutual information (MI) and cross-
correlation for the similarity metric. For instance, SimpleITK
[6] devises a large corpus of implemented algorithms to

• The authors are with the Department of Electronic, Information
and Bioengineering, Politecnico di Milano, Milano, IT, 20133.
E-mail: eleonora.darnese@polimi.it, davide.conficconi@polimi.it,
emanuele.delsozzo@polimi.it, luigi1.fusco@mail.polimi.it, do-
natella.sciuto@polimi.it, marco.santambrogio@polimi.it

DOI: 10.1109/TPDS.2022.3218898 © 2022 IEEE. Personal use of this ma-
terial is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

give users the freedom to build custom IR pipelines. Nev-
ertheless, it requires programming knowledge and a deep
understanding of the algorithm to tune the hyperparame-
ters. On the other hand, hardware (HW) accelerators are
gaining traction as an alternative for higher performance
and energy efficiency with two main approaches: GPU-
based and FPGA-based [3], [7], [8], [9], [10], [11], [12]. The
former is a valuable solution when images, particularly
volumes, are involved, but it lacks energy efficiency. The
latter provides a good trade-off between performance and
energy efficiency, though it is harder to program. Despite
these benefits, few HW-based methods provide open-source
and easy-to-use HW-accelerated solutions for IR. Moreover,
they usually offer little customization, losing the flexibility
SW libraries offer. Similarly, they often require HW knowl-
edge, limiting their adoption by non-HW scientists. Thus,
the State of the Art currently lacks a comprehensive and
customizable solution that combines the advantages of SW
and HW approaches and supports a wide range of users,
from domain experts to HW specialists.

To overcome the current literature limitations and bridge
the gap between the flexibility of SW libraries and the bene-
fits of accelerated HW approaches, we extend our previous
work focused on a single similarity metric (i.e., MI) [10], and
propose Faber. To the best of the authors’ knowledge, Faber
is the first open-source1 HW/SW toolchain tailored to IR,
offering optimized and highly customizable FPGA-based
accelerators. Faber targets users with different expertise lev-
els and enables them to customize multiple HW/SW aspects
of the target IR pipeline. On the one hand, Faber embeds the
flexibility of selecting and configuring various algorithms
for each of the three main image registration components.
On the other, it eases the HW design by automatically
integrating and configuring the HW accelerators.

1. https://github.com/necst/faber fpga

https://github.com/necst/faber_fpga

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 2

Floating
Image

Reference
Image

Transformation

Similarity
Metric

Evaluation

Convergence?

Parameters
Optimization

Initial
Conditions

NoRegistered
Floating
Image

Yes

Rigid Multi-modal
Image Registration

Fig. 1: A rigid multi-modal image registration workflow: it
registers a floating image to a reference one.

The main contributions of this work are the following:

• The first open-source HW/SW toolchain1 to auto-
matically create custom IR pipelines (Section 4) ex-
ploiting FPGA-based accelerators (Section 4.2).

• Three levels of customization hyperparameters to
support users in building IR pipelines (Section 4.4).

• A design automation methodology for non-FPGA
experts to exploit default HW configurations as off-
the-shelf SW (Section 4.4).

• A latency and resource model to guide HW expert
users during the customization of the HW accelera-
tors (Section 5).

Faber achieves up to 54× in speedup and 177× in energy
efficiency improvements over State of the Art (Section 6).

2 CONTEXT DEFINITION

The goal of IR is to align multiple images to a reference. Dif-
ferent approaches can be clustered based on image modality
(mono or multi), and two classes of geometrical transformation
(rigid or deformable) [5], [13]. Image modality denotes
whether the input images come from the same sensor or not,
while the type of transformation preserves the euclidean
distance between each points pair or not. We focus on rigid
transformation, which is also the basis for deformable regis-
tration. Moreover, we consider multi-modal techniques only,
as they are more interesting than mono-modal ones for their
ability to fuse different information sources into a single
one. Based on the diverse origins of the employed images,
classical solutions exploiting landmarks point or geomet-
ric correspondences are unfeasible, requiring an intensity-
based approach.

As depicted in Figure 1, multi-modal IR is a heuristic that
builds upon three main components: a geometric transfor-
mation, an optimization procedure, and a similarity metric.
This heuristic searches a space to identify the best geometric
transformation parameters to align the images based on
the similarity metric and optimization procedure. Rigid
registration comprises diverse transformations, which, in
order of complexity, range from a pure translation to a
complete affine, which, for 2D images, requires the identifi-
cation of six parameters [13]. In this configuration, the most
employed metrics are cross-correlation, mean square error, and
mutual information [1] or its normalized version with non-
parametric Parzen windows [14]. As for the optimization

TABLE 1: Summary of Literature Work.

Platform Open/Closed
Source

Programming
Knowledge Type

SW
MATLAB [18] Closed Partial Toolchain
SimpleITK [6] Open Full Toolchain
SimpleElastix [17] Open Full Toolchain

HW

GPU [21] Open Full Single Configuration
GPU [22] Open Full Single Configuration
GPU [24] Open Full Single Configuration
GPU [23] Open Full Single Configuration
FPGA [7] Closed Full Single Configuration
FPGA [19] Closed Full Single Configuration
FPGA [27] Closed Full Single Configuration
FPGA [10] Open Full Single Configuration
Faber (this work) Open Partial Toolchain

algorithms, evolutionary strategies [15] and Powell’s method
[16] are among the most used ones [1]. These components
properly combined generate a registration pipeline that can
be tailored to various applications.

3 RELATED WORK

In the IR panorama, there are two main approaches: SW li-
braries and HW-based solutions. The first category includes
SimpleITK [6], SimpleElastix [17], and MATLAB [18]. The
first two are open-source and based on the Insight Toolkit
(ITK), while the last one is closed-source and offers specific
functions for IR. SimpleITK and SimpleElastix provide a
wide range of algorithms and require the user to know one
of the supported programming languages. At the same time,
MATLAB proposes fewer algorithms and allows the user to
register via GUI or via custom scripts.

Concerning the HW-based solutions, different efforts
go towards the acceleration of the similarity metric com-
putation and the transformation function, which are the
most compute-intensive parts, being the optimizer mainly
a lightweight control task [7], [19]. Shams et al. present a
GPU-based bitonic sort and count approach for accelerating
MI [20], which is then used by Ikeda at al. to develop
a CUDA-based solution for part of MI computation [21].
Other researchers develop a CUDA-based acceleration of a
novel spatially region-weighted correlation ratio (SRWCR)
to achieve nonrigid image registration [22]. Others present
a GPU-accelerated version [23], [24] integrated in open-
source software frameworks. For instance, Bhosale et al.
propose a stochastic gradient descent-based image registra-
tion tailored to GPU exploiting coalesced memory access to
implement the image warping [23], integrated in SuperE-
lastix [25]. Brunn et al. offer the acceleration of the inter-
polation and metric differentiation for 3D diffeomorphic
registration [24], integrated in CLAIRE [26]. On the FPGA
side, different approaches focus on accelerating similarity
metrics, e.g., correlation [19] and MI [7]. Chakraborty et
al. accelerated the transformation model estimation to per-
form a CORDIC-based rigid registration [27]. While these
solutions proved the effectiveness of HW-based approaches
to offload the most compute-intensive steps, they miss the
flexibility of SW-like approaches. Indeed, they accelerate
a single algorithm, preventing the development of other
registration procedures and user customization. Differently,
we proposed an open-source generator of MI accelerators to
ease the integration in different solutions [10]. However, our
work focused on MI acceleration only.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 3

 FABER

Customization
Hyperparameters

Entry Level

SW Level

HW Level

Rigid Multi-modal Image Registration Pipeline

OutputCPU + FPGA System

Convergence?Parameters
Optimization

Registered
Im

ages

Input Dataset

Fl
oa

tin
g

Im
ag

es
Re

fe
re

nc
e

Im
ag

es

Initial
Conditions

YesNo

Software

Hardware/Software

Transformation Similarity Metric
Evaluation

Fig. 2: Overview of the entire Faber flow, from the user’s input to the final Image Registration pipeline.

Faber builds upon our previous work [10] and widens
the range of solutions to overcome literature limitations and
push toward the flexibility of SW library approaches. Thus,
it provides the users with multiple open-source HW/SW
implementations of the IR components. In particular, Faber
is a complete HW/SW IR toolchain that comprehends dif-
ferent SW optimizers and various HW accelerators for both
the similarity metric and the transformation block. Users
can combine and customize such components at differ-
ent levels according to their expertise. In this way, Faber
supports a broad range of users, from non-FPGA ones to
domain experts, and enables building IR pipelines tailored
to specific requirements. Unlike many literature solutions,
which only provide a single combination of IR components,
we broaden the possible solution spectrum. To the best of
our knowledge, no other hardware-based state-of-the-art
approach offers such a user experience. Table 1 summarizes
how Faber differs from literature solutions.

4 FABER TOOLCHAIN AND SYSTEM DESIGN

This Section presents the components of the proposed
toolchain. We first analyze Faber’s main features (Sec-
tion 4.1). Then, we describe the architecture of Faber HW
accelerators (Section 4.2) and the architectural template we
devised (Section 4.3). Finally, we define the supported cus-
tomization levels (Section 4.4).

Figure 2 displays the entire Faber flow. Faber takes the
user’s customization hyperparameters from the command
line and generates a rigid Image Registration (IR) pipeline
comprising a transformation, similarity metric, and opti-
mizer. Based on their knowledge and expertise, the users
have access to different degrees of customization (i.e., En-
try, SW, and HW), which enable selecting among various
HW/SW implementations and algorithms for the pipeline
components. In particular, the users can customize the entire
pipeline or just part of it, keeping default settings for the
remaining portion. Indeed, Faber also supplies default set-
tings for the customization hyperparameters based on our
latency and resource models, which we will show in Sec-
tion 5. After selecting the hyperparameters, Faber automates
both the pipeline design process and the synthesis of HW
components. Finally, Faber outputs both the FPGA bitstream
file and high-level Python APIs, implementing the whole
procedure to register images and abstracting the accelerator
management on the supported FPGAs.

It is important to note that, according to the literature [7],
[10], [19], the similarity metric is the most time-consuming
computation, followed by the transformation, while the
optimizer is mainly a control task involving parameters
update. Literature profiling of IR algorithms shows that
the combination of transformation and similarity metric
accounts for 99% of the overall time [19]. Our profiling
analysis shows that this combination accounts for 84% to
99% of the IR procedure, highlighting a minimum of 74%
for the similarity metric only, which aligns with literature
results. Thus, we provide only FPGA-based versions of the
supported transformation and similarity metric algorithms.

4.1 Faber Components
Faber offers multiple HW/SW implementations of the three
main components of rigid multi-modal IR, as shown in
Figure 3. Faber combines the user’s customization hyperpa-
rameters to build the target pipeline. This Section describes
the various components available within Faber.

4.1.1 Optimizer Component
Faber provides widely employed optimizers for two main
classes of algorithms: gradient-free methods and evolution-
ary. Based on different criteria, these optimizers iteratively
leverage the transformation and similarity metric compo-
nents to converge to a parameter set that identifies the roto-
translation matrix required to register the floating image to
the reference one.

As gradient-free algorithm, we chose Powell’s method
[28] because is a robust direction-set method [29], which
takes a vector of directions, i.e., the parameters, and itera-
tively optimizes each parameter with a bi-directional search
algorithm (golden section search in Faber) in a given range.

The evolutionary family, starting from a parent vector,
represented by the initial transformation values, generates
children introducing a mutation in the population. We select
the 1+1, which, at each iteration, generates one child, and a
gaussian random generator to rule the mutation [15].

Based on their mathematical formulation, Powell’s is
computationally heavier than 1+1. Indeed, one 1+1 iteration
calls the metric and the transformation once, while a single
Powell iteration computes both more than 200 times based
on the initial degree of misalignment. Even though Powell
converges in fewer iterations, it takes, on average, 2× the
time of 1+1 to terminate fixing the metric and transforma-
tion execution time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 4

Faber Toolchain

Software

Hardware/Software

1 + 1
Evolutionary

Powell’s
Method

Optimizer1 Transformation

Affine

2 Similarity Metric

Mean
Squared Error

Mutual
Information

Cross
Correlation

Normalized
Mutual

Information

3

Customization Parameters

Accelerator
Configuration
& Synthesis

Python
APIs

HW/SW Image Registration Pipeline

Fig. 3: Overview of Faber toolchain showing the various
HW/SW components, the interaction with the user, and the
generation flow of the registration pipeline.

4.1.2 Transformation Component
This component applies a rigid transformation, such as
translation and rotation, to an input image, which means ge-
ometrically transforming the Euclidean image space while
keeping lines parallelism, as dst = M · src, where M is the
3×2 transformation matrix and dst is the src transformed.

4.1.3 Similarity Metric Component
The similarity metric provides a quantitative measure of
how well the optimizer moves in the search space of the
transformation parameters and represents the most inten-
sive component. Since there is no a priori knowledge of
which metric is optimal for a given scenario, Faber provides
multiple metrics in their HW and SW versions, namely
Mean Squared Error, Cross-Correlation, Mutual Information,
and Normalized Mutual Information.

Mean Squared Error (MSE) computes the mean squared
pixel-wise difference of the input images outputting the
final value, as: MSE(X,Y) = 1

N

∑N
i=1(Xi − Yi)

2, where
Xi and Yi are the i-th pixels of the input images, and N is
the number of pixels.

Cross-Correlation (CC) measures the similarity of two
signals. Faber implements a pixel-wise CC, which is then
normalized by the square root of the autocorrelation of the
input images [6], as: CC(X,Y) = −1 ·

∑N
i=1(Xi·Yi)√∑N

i=1 X2
i ·

∑N
i=1 Y 2

i

,

where Xi and Yi are the i-th pixels of the input images, and
N refers to the number of pixels.

Mutual Information (MI) is a similarity metric from
information theory that measures the statistical dependence

of two random variables without a priori knowledge of the
kind of dependence. At first, Faber computes both the single
and joint (bi-dimensional) histograms of the input images.
Then, it extracts the probability density functions from
image histograms and calculates their entropies. Finally, it
computes the MI as: MI(X,Y) = E(X)+E(Y)−E(X,Y),
where E(X) and E(Y) are the single entropies of the input
images, whereas E(X,Y) is the joint one.

Faber also supplies a Normalized Mutual Information
(NMI), which estimates the probability density functions
using the Parzen window method [14]. In particular, NMI
convolves the histograms to extract the probability density
functions with kernel derived from B-spline functions.

4.1.4 Software Implementation
The SW versions of each component are implemented
in Python. In particular, the transformation relies on the
warpAffine function from the OpenCV library, while the
similarity metrics on Numpy.

4.2 Faber Hardware Accelerators
Faber offers HW implementations of the transformation and
similarity metric components. We chose them due to their
computational intensity. The accelerators are customizable
in multiple ways according to the hyperparameters selected
by the user (Section 4.4). Generally, each HW accelerator
works in a pipelined dataflow fashion, and the pipeline
stages communicate via FIFOs.

4.2.1 Transformation Accelerator
The HW transformation component is based on a modified
set of FPGA-based kernels coming from the Xilinx Vitis
Vision Library [30], which we adapted to enable seamless
integration with the HW similarity metrics. The accelerator
implements a generic component for affine transformations,
thus fully covering the rigid registration scenario. It operates
in a streaming fashion and reads the input floating image
and the transformation matrix from the off-chip memory,
processing one pixel per clock cycle. To apply the affine
transformation and compute one output row of the trans-
formed image, the accelerator has to access many different
rows of input data. For this reason, the accelerator starts
the computation after storing some input image rows in
BRAMs in advance. In our case, we chose to store 100
rows, which is also the default value proposed by Xilinx,
as it proved to be a valid trade-off between result accuracy
and BRAM usage. In addition, the accelerator supports two
different user-configurable interpolation methods, namely
bi-linear and nearest-neighbor. Finally, the accelerator can
either write the output image back to the off-chip memory
or stream it to the similarity metric accelerator.

4.2.2 Similarity Metric Accelerators
Faber supplies a HW implementation for all the supported
similarity metrics. Each accelerator exploits the map-reduce
computational pattern, which remarkably boosts the per-
formance at the cost of resource usage. In particular, every
HW metric may contain a tunable number of multi-stage
Processing Elements (PEs) that independently work on an
input data portion. The PE number influences the internal

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 5

Map Reduce

Multi-stage PE

Multi-stage PE

Similarity Metric Computation

Map Reduce

Multi-stage PE

Multi-stage PE

Similarity Metric Computation
Reference Image

Cache

Floating Image
Transformation

Reference Image
Cache

Floating Image
Transformation

O
ff-

C
hi

p
M

em
or

y
Ba

nk
s

Fig. 4: An example of the Faber architectural template wrap-
ping two HW pipelines employing transformation (yellow
box) and similarity metric (light blue box) accelerators.

parallelism degree. It depends on the number of pixels
coalesced in a packet read from the off-chip memory (or the
transformation accelerator) per clock cycle. The accelerator
unpacks the pixels within the input packet, maps them to
different PEs, and then reduces the PE outputs.

The MSE accelerator leverages the map-reduce pattern
to parallelize the computation, mapping pairs of pixels from
the reference and floating images to the available PEs, which
perform the squares of differences. The accelerator then
reduces the PE outputs and calculates the MSE.

The CC accelerator operates similarly. Indeed, each PE
receives a pair of pixels and computes a partial contribution
to the final pixel-wise CC and the input image autocor-
relations. The reduce step collects such contributions and
calculates the CC value.

Concerning MI, we rely on our state-of-the-art open-
source accelerator, which already offers various customiza-
tion parameters [10]. Such an accelerator exploits the map-
reduce pattern twice to calculate the MI. First, given the
input images, the accelerator unpacks the coalesced pixels
and maps them onto different PEs, which compute a partial
joint histogram. Then, after reducing the joint histogram
and extracting the single histograms, the accelerator also
parallelizes the entropy computations and reduces their
partial values to obtain the final MI. While the map-reduce
pattern is applicable to the two accelerator macro stages, in
this work, we focus mainly on the joint histogram paral-
lelization, as our previous work demonstrated as the most
performance-impacting parameter [10].

Starting from this MI structure, we implemented the ac-
celerator for the NMI. In particular, after the joint histogram
reduction, this component applies a K × K convolution
kernel to extract the probability density function. This step
reads and stores the first K − 1 rows of the joint histogram
within a line buffer and then starts convolving the input.
The following steps extract the single histograms, compute
the entropies, and, eventually, the NMI.

We parametrized the described HW components to auto-
mate the customization process. Such automation involves
instantiating the PEs, connecting the output of the HW
transformation block to the HW similarity metric, and so
on. In this way, as the accelerator implementation depends
on the user’s requirements, Faber can efficiently adapt the

Entry
Level

SW
Level

HW
Level

Platform

Image Dimension

Image Datatype

Core Number Caching (URAM)PE Number

Interpolation TypeFixed/Float Precision

Expertise Level

HW/SW Choice Optimizer
Hyperparameters

Optimizer
Component

Metric
Component

Transformation
Component

Fig. 5: The three levels of customization hyperparameters
available within Faber to match user needs and expertise.

initial parametrized design and its internals accordingly. For
instance, given the input data type, Faber automatically
tunes the various internal bitwidths to prevent overflow
and reduce resource usage. Section 4.4 describes the HW
customization hyperparameters available within Faber.

4.3 Architectural Template
We devised an architectural template that wraps the de-
scribed accelerators. This template implements standard in-
terfaces that facilitate the design automation process and the
interaction with the software APIs in charge of managing
the FPGA. Indeed, the architectural template standardizes
the HW/SW interfaces with an AXI-lite for control and
AXI-masters to read the images (one if using caching, two
otherwise) and write the similarity metric. Besides, such in-
terfaces permit the seamless connection of both the transfor-
mation and similarity metric if the user selects to have both
in HW. Finally, since the reference image is an immutable
object when two images are registered (Figure 1), we de-
signed an optional cache within the template to prefetch the
reference image and thus increase data locality, avoiding en-
ergy wasting in off-chip memory access. Given the proposed
architectural template, the user can choose to replicate Faber
accelerator building a multi-core architecture. Each core has
its physical or logical link (depending on the number of
available physical ports) to the off-chip memory to retrieve
the input. Figure 4 shows an example of the template.

4.4 Customization Hyperparameters
Figure 5 illustrates Faber’s customization hyperparameters
ordered by users’ expertise level, from novice (top) to HW
experts (bottom). This feature is crucial for enabling the
generation of customized HW-based IR procedures. Indeed,
given the customization hyperparameters, Faber co-designs
a pipeline that seamlessly integrates HW and SW compo-
nents. The outcome is an IR flow in Python that exploits
HW acceleration abstracting all the management aspects.

The broad number of hyperparameters prevents an ex-
haustive design space exploration in a reasonable time,
given that an HW synthesis may require several hours. For
this reason, to speed up this process and support differ-
ent kinds of users, Faber offers three levels of customiza-
tion hyperparameters, each one expanding the available

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 6

features of the output image processing pipeline. In this
way, Faber targets users interested in using an out-of-the-
box IR algorithm, users with a basic understanding of the
problem, and experienced users who want to customize
the HW accelerator details. Faber employs the remaining
default hyperparameters based on the selected features and
automatizes the target system generation.

The entry customization level requires the user to specify
mandatory details of the IR algorithm, namely the input
image dimension, data type, and the target platform. If the
user selects a non-FPGA-based platform, the output pipeline
is a pure SW one. Otherwise, Faber produces a predefined
HW/SW pipeline for the target FPGA.

The SW customization level, which is entirely optional,
goes into the details of the target registration pipeline.
The user can specify each component implementation and
choose among HW or SW versions when available. More-
over, the user can define the optimizer hyperparameters,
such as maximum iterations and the ending condition with
an optimization threshold. If the user chooses to offload
the metric/transformation to the FPGA, Faber takes care of
configuring and generating the HW accelerator(s).

The HW customization level allows customization of dif-
ferent HW hyperparameters. First of all, the user can select
the number of accelerators to instantiate on the FPGA. Given
N independent cores, Faber will produce SW APIs that
can register N parallel pairs of images in a multi-threaded
fashion. If available, the user may then choose to enable
the accelerator cache, allocated in the FPGA URAMs, or
BRAMs. Another customization hyperparameter is the PE
number, which affects the accelerator parallelism and is
directly proportional to the size of the packet read from
the off-chip memory. Finally, in specific metrics (e.g., MI),
the user can specify whether to use floating- or fixed-
point computations, while the transformation accelerator is
tunable in the interpolation type.

Faber HW customizations are orthogonal and transpar-
ent to the SW-level ones. The only exceptions are the image
dimensions and the pixel’s datatype, since the final SW
application and the HW accelerator(s) are both tailored for
those parameters.

5 LATENCY AND RESOURCE MODELS

As previously mentioned, the HW customization level en-
ables users, usually FPGA experts, to tune all the possible
hyperparameters available within Faber, from SW to HW
ones. In this way, users may decide to configure the HW
accelerators instead of relying on the default ones. However,
given the vast range of combinations, manual design space
exploration is prohibitive, mainly due to the long synthesis
time. For this reason, Faber provides latency and resource
models tailored to our target domain. The main goal of such
models is to assist HW-level users in rapidly evaluating a
given HW accelerator for IR. Hence, the models take into
account solely the hyperparameters that affect the accelera-
tor latency and resources. In particular, the models consider
all the hyperparameters in Figure 5 but the ones related to
the optimizer; indeed, since the optimizer always runs on
the host side, it does not alter the HW performance.

5.1 Latency Model
Faber offers a simple yet effective model for latency es-
timation. Even though such a model does not consider
aspects impacting the final latency (e.g., off-chip memory
bandwidth, pipeline warm-up), its purpose is to supply
a coarse-grain measure of the number of clock cycles the
HW accelerator takes to produce the output. According
to the chosen metric, the presence of the transformation
in HW, and the hyperparameters, the final latency may
significantly vary. The circuit clock cycles mainly depend
on the input image dimension, the number of PEs, and
the input data type, especially for MI and NMI. Given the
pipelined dataflow nature of the accelerators, we can model
their latency in clock cycles as follows:

CClatency = D2/PE

MSElatency = D2/PE

MIlatency = D2/PE + (2B)2

NMIlatency = D2/PE + (2B +K − 1)2

(1)

where D is the input image dimension, PE the number of
PEs, B the input data bitwidth, and K the convolution ker-
nel size. The latency decreases as the number of PEs (i.e., the
parallelism level) increases. Besides, MI and NMI latencies
depend on both joint histogram and entropy calculations, as
they cannot overlap for data dependencies. Finally, please
note that B also affects the number of instantiable PEs.
Indeed, given the off-chip memory port bitwidth MBW
(e.g., 512 bits), we can use, at most, MBW/B PEs before
oversaturating the bandwidth. However, the more PEs, the
more employed FPGA resources.

Including the transformation within the accelerator has
peculiar effects on the latency. As mentioned in Section 4.2,
unlike the similarity metric components, the transformation
component processes a single pixel per clock cycle. Thus,
this design choice implies that coalescing the input pixels
does not reduce the clock cycles, causing the higher latency
of the transformation to hide the part of the similarity metric
latency that depends on D since these two computations
overlap. The only exceptions are MI and NMI due to the
previously mentioned data dependency. For these reasons,
we model the composite accelerator latency as:

WCClatency = (D +R) ·D
WMSElatency = (D +R) ·D

WMIlatency = (D +R) ·D + (2B)2

WNMIlatency = (D +R) ·D + (2B +K − 1)2

(2)

where D is the input image size, R the input image rows
the HW transformation needs before starting computing, B
the input data bitwidth, and K the convolution kernel size.
Equation (2) is independent of PE, implying that increasing
the number of PEs in the similarity metric and coalescing
input data do not benefit the overall latency, as previously
mentioned. However, moving most of the computation to
HW permits reducing the IR execution time (Section 6).

5.2 Resource Model
Faber also implements a resource usage model, whose goal
is to provide hints about the feasibility of the HW acceler-
ator. Given a specific configuration, the model reports the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 7

Algorithm 1 Count BRAM18k Blocks

Input: Arraysize, Bitwidth
Output: BRAMBlocks

BRAMconfs=[(18, 1024), (9, 2048), (4, 4096), (2, 8192), (1, 16384)]

1: curr = Bitwidth
2: BRAMBlocks = 0
3: for b, s in BRAMconfs do
4: q = curr // b
5: curr = curr % b
6: BRAMb = ⌈q ·Arraysize/s⌉
7: BRAMb += BRAMb % 2
8: BRAMBlocks += BRAMb

9: end for

resources estimated usage, indicating whether they exceed
the available budget. To this end, we analyzed the usage
behavior of FPGA resources and derived a model to describe
their scaling according to the selected hyperparameters. For
DSPs and logic resources (FFs and LUTs), we chose a linear
regression model to characterize them separately as follows:

Resource = α · x+ β (3)

where x is the number of PEs, α the slope, and β the
intercept. The model linearly depends on the number of PEs,
which is the main hyperparameter affecting resource usage.
Then, we selected multiple slopes and intercepts covering
the other hyperparameters. In particular, for each resource,
we identified a slope for each accelerator composition, while
intercept values reflect the remaining hyperparameters (e.g.,
interpolation, data precision).

Considering on-chip memory resources (BRAMs and
URAMs), we measured their usage based on the number of
arrays within the accelerator and their bitwidth. In this way,
we can examine various scenarios (e.g., caching enabled)
adopting the same approach. A Xilinx’s BRAM usually
accommodates up to 36Kb and works as two independent
18Kb RAMs or a single 36Kb RAM. A BRAM supports
different port width configurations (e.g., 1K × 36, 2K ×
18, 4K × 8), some of which reduce the BRAM capacity.
For these reasons, we implemented Algorithm 1 to measure
the BRAM usage, which maps the input array to the on-
chip memory employing the available configurations. This
algorithm estimates BRAM usage well when dealing with
large arrays (e.g., joint histogram, local cache). Conversely,
we approximate the BRAM usage of small arrays (i.e., less
than 1024 elements) based on empirical measurements, as
we observed that Xilinx tools tend to aggregate data within
a few BRAMs in such a case. On the other hand, a URAM is
larger than a BRAM (it contains up to 288Kb) but supports a
single 4k × 72 configuration. The following formula defines
how we measure URAM usage:

URAMs =
N∑
i=0

Si · ⌈72 · ⌈Bi/72⌉/C⌉ (4)

where N is the number of arrays, Si their size, Bi their
bitwidth, and C URAM capacity. Both Algorithm 1 and
Equation (4) do not directly consider techniques like par-
titioning or reshaping. Nonetheless, the model is aware of

how each accelerator allocates its arrays; thus, it automati-
cally manages such scenarios.

6 EXPERIMENTAL SETUP AND RESULTS

This Section presents the experimental setup for evaluating
Faber, an analysis regarding the benefits of the transforma-
tion on FPGA, followed by the scalability analysis of the de-
fault configurations. Then, we provide a wider comparison
of deployable accelerators in terms of execution time and
accuracy against MATLAB and SimpleITK. We also validate
the proposed models for latency and resource usage. Finally,
we compare Faber with the literature.

Faber automatically generates C++ accelerators for
High-Level Synthesis toolchains, namely Xilinx Vitis and
Vivado HLx 2019.2. Currently, Faber targets three boards
(two Zynq-based platforms, namely Ultra96v2 and ZCU104,
and an Alveo u200 accelerator card), even though it can
seamlessly support other Xilinx-based platforms with minor
additions. SW applications are multi-threaded Python code
communicating with the HW through custom APIs on top
of the Pynq 2.5 framework. The code runs on Zynq ARM
CPUs, which share the DDR with the reconfigurable fabric,
and an Intel i7-4770 linked via PCIe to the Alveo.

Throughout the discussion, we present results on two
representative classes: the Ultra96, an embedded board
powered by a Zynq Ultrascale+ ZUEG3 (with the ZCU104 to
compare against [10]), and the Alveo, a high-end accelerator
card, with an Ultrascale+ XCU200. Moreover, we reduce the
design searching space to the following hyperparameters:
32-bit floating-point for the MI and NMI accelerators, near-
est neighbor as Interpolation Type, and no caching.

Our experimental evaluation targets the medical field
since it would highly benefit from an IR acceleration with
the simplicity of a SW application. As a testing dataset, we
used a medical one [31], [32]2, composed of 512×512×247
Computed Tomography images and a corresponding num-
ber of Positron Emission Tomography ones, up-scaled from
the original 128×128 to 512×512 pixels. Since most SW so-
lutions suggest not exceeding 256 levels for the histograms
in the MI computation, we down-scaled the images to 8-
bit. Hence, we tailor Faber for this scenario fixing these
hyperparameters as well. The images contain misalignments
due to acquisition protocols and patients’ movements.

We compare our solutions against both literature work
and optimized state-of-the-art tools, namely MATLAB 2019b
[18], and SimpleITK [6], which exploit as many cores as are
available in the CPU. We run the tests on a 40-core Intel Xeon
Gold 6148 CPU and compare it with Faber HW-accelerated
versions. For a fair comparison, both SimpleITK and Faber
implementations share the optimizer, transformation, simi-
larity metric, and hyperparameters, while MATLAB uses 1+1
and NMI. Additionally, we measured power consumption
with a Voltcraft 4000 energy logger for Ultra96 and ZCU104
and with onboard sensors for Alveo.

We define an accelerator configuration as the concatena-
tion of the following free hyperparameters: core number (if
missing, we assume 1), transformation component (W) (if miss-
ing, SW transformation), metric component (MSE, CC, MI,

2. Patient: C3N-00704, Study: Dec 10, 2000 NM PET 18 FDG SKULL
T, CT: WB STND, PET: WB 3D AC)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 8

TABLE 2: Performance analysis of the MI similarity metric
with and without the HW transformation at 200MHz. Per-
formance in [ms

MV oxels·iters] (the lower the better), energy
efficiency in [iters·MV oxels

kW ·ms] (the higher the better).

Board Config

Powell’s 1+1

Perf. Energy Eff. Perf. Energy Eff.

Ultra 2MI2 4.1158 33.75 0.0484 2888.73
2WMI1 2.4295 55.62 0.0296 4667.56

ZCU104 2MI2 3.8770 20.31 0.0462 1717.28
2WMI1 2.2694 34.70 0.0290 2750.49

Alveo

MI1 3.1664 10.67 0.0378 892.22
WMI1 3.5928 9.44 0.0402 844.33

MI2 2.2498 14.96 0.0275 1225.71
WMI2 3.5761 9.53 0.0403 829.90

MI4 1.8083 18.43 0.0225 1474.35
WMI4 3.5916 9.47 0.0404 828.01

MI8 1.5778 20.95 0.0198 1672.26
WMI8 3.5862 9.45 0.0402 827.37

MI16† 1.4639 22.56 0.0183 1792.97
WMI16 3.5803 9.43 0.0404 820.12

MI32 1.3918 23.14 0.0177 1830.78
WMI32 3.5842 9.26 0.04008 813.39
†Achieves higher frequency than MI32

and NMI), and PE number. For instance, 2WMI1 describes
a design with two cores, both transformation and similarity
metric (MI) in HW, and one PE.

6.1 Benefits Analysis of the HW Transformation
To analyze the benefit of accelerating the transforma-
tion, we use the metric proposed by Shams et al. [33]
(ms/MV oxels/iters, the lower, the better), enriched by
the energy efficiency ((MV oxels · iters)/(ms · kWatt), the
higher, the better) as we previously proposed [10]. For this
analysis, we concentrate on a single similarity metric (i.e.,
MI) for space reasons. Besides, we chose MI because the
HW transform does not entirely hide its latency (along
with NMI, as reported in Equation (2)). Indeed, MI has two
non-overlapping macro computational stages whose overall
latency surpasses the transform one. Nonetheless, we argue
that we would observe a similar trend with any metric.
Finally, we determined experimentally on our setup that
a PYNQ-based host can take advantage of a multi-core on
Zynq while the PCIe locks time-multiplexing on the Alveo.

Table 2 shows the results of our analysis. When consid-
ering Zynq-based solutions, combining the transformation
with the metric accelerator improves both performance and
energy efficiency. Conversely, scaling to a different processor
and FPGA class shows a different situation. The processor
scaling delivers remarkable improvements on the software
transformation component, while the transformation accel-
erator does not provide gains, even when the number of
PEs increases. Indeed, as indicated in Section 4.2.1 and Sec-
tion 5.1 and Equation (2), the HW transform does not ben-
efit from input data coalescing since it processes only one
pixel at a time. Thus, MI-based configurations outperform
WMI-based ones with both Powell’s and 1+1 optimizers,
especially when the PE number grows, following the per-
formance trend described in Equation (1). For these reasons,
we consider the W+MI combination as the best option (or, in

Alveo
Ultra96

LUT
FF

BRAM
DSP

FPS Alveo
FPS Ultra96

U
sa

ge
 P

er
ce

nt
ag

e
(lo

g
sc

al
e)

 [%
]

1

10

100

Fram
e Per Second (FPS)

0

200

400

600

800

Input Image Size
512 × 512 1024 × 1024 2048 × 2048

Fig. 6: Resource and FPS scaling for Faber default configura-
tions (Powell’s - MI16 for Alveo, 1+1 - 2WCC1 for Ultra96)
on different image dimensions.

Alveo CC32 (300MHz)
Ultra96 2WMI1 (200MHz)
Alveo NMI16 (187.9MHz)

Ultra96 2WCC1 (200MHz)
Alveo MSE32 (300MHz)
Ultra96 2WNMI1 (200MHz)

Alveo MI16 (262.8MHz)
Ultra96 2WMSE1 (200MHz)

8.1x
3.8x

54.9x

33.6x

6.1x
3.3x

13.0x
8.7x 8.2x

3.8x

45.4x

25.4x

4.9x
2.2x

13.7x

8.4x

Sp
ee

du
p

w
rt

Si
m

pl
eI

TK

0

10

20

30

40

50

60

Powell - CC
Powell - MI

Powell - MSE
Powell - NMI

1+1 - CC
1+1 - MI

1+1 - MSE
1+1 - NMI

Fig. 7: Speedup comparison with SW state-of-the-art tools
normalized to the respective SimpleITK registration time.

general, the combined accelerator) for Zynq-based devices.
At the same time, the single metric accelerator with scaled
PEs is the best way whenever moving to the Alveo device,
as suggested by our previous work [10].

6.2 Default Configurations Discussion
Based on the previous considerations and the proposed
latency and resource models, which we validated in Sec-
tion 6.5, Faber provides default configurations for entry-
level users, namely Powell’s with MI16 for the Alveo and
1+1 with 2WCC1 for the Ultra96, which represent the best
trade-offs of resources, accuracy, and execution times per
platform. Figure 6 reports the resource usage and the Frame
Per Second (FPS) rate of the default accelerators. Figure 6
shows how these quantities scale with increasing image
dimensions, from 512×512 to 2048×2048. Resources remain
primarily constant while the FPS rate decreases by around
three times with a quadratic increment of the number of
pixels processed since the data transfer is the bottleneck.

6.3 Performance Evaluation
Moving to the evaluation of Faber in terms of execution
time, we compare our best-performing combinations of CC,
MSE, MI, and NMI accelerators against SimpleITK and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 9

0 200 400

0

100

200

300

400

500

Gold

0 200 400

0

100

200

300

400

500

Matlab

0 200 400

0

100

200

300

400

500

Faber

0 200 400

0

100

200

300

400

500

SimpleITK

Fig. 8: A visual example of image registration results. From left to right, the gold standard, the overlap between gold
standard (represented in green) and the registered image with Faber, MATLAB, and SimpleITK (all in yellow).

TABLE 3: Intersection over Union comparison between
Faber and state-of-the-art SW tools for registration.

Opt. - Metric Faber SW Faber HW Simple ITK MATLAB

1+1 - CC 0.94 ± 0.07 0.94 ± 0.07 0.93± 0.10 -
1+1 - MI 0.97 ± 0.03 0.97 ± 0.04 0.76± 0.20 -
1+1 - NMI 0.96 ± 0.04 0.96 ± 0.04 0.88± 0.20 0.89± 0.08
1+1 - MSE 0.92 ± 0.18 0.92 ± 0.17 0.67± 0.09 -
Powell’s - CC 0.93± 0.07 0.93± 0.07 0.96 ± 0.05 -
Powell’s - MI 0.98 ± 0.06 0.95 ± 0.09 0.75± 0.20 -
Powell’s - NMI 0.95 ± 0.08 0.95 ± 0.08 0.92± 0.16 -
Powell’s - MSE 0.93 ± 0.07 0.93 ± 0.07 0.65± 0.07 -

MATLAB. In particular, since MATLAB implements a regis-
tration process based on 1+1 and NMI, our comparison with
it considers that configuration only. We extend the subset
presented in the previous Section, showing a superset of
possible configurations. Figure 7 reports the speedup results
normalized to SimpleITK registration times obtained with
the Alveo and the Ultra96. The reported results account
for the overall execution times; hence, we include in our
results also all the data movement necessary for the IR com-
putation. Indeed, the image pair is initially located in the
host memory. Then, the application allocates buffers to the
accelerator DDR memory (which may be the same physical
bank with different address spaces in Zynq devices), fills
them, and runs the accelerator.

Clearly, the accelerators dramatically impact registra-
tion times. As mentioned in Section 4.1, the 1+1 optimizer
is more straightforward than Powell’s method and less
computationally intensive; thus, 1+1 is generally faster in
both HW and SW versions. Faber’s approach shows higher
performance than state-of-the-art SW tools. Precisely, when
compared to SimpleITK, Faber delivers speedups that range
from ∼4.9× to ∼54.9× on Alveo and from ∼2.2× to ∼33.6×
on Ultra96. Similarly, Faber reaches a 2.39× (Alveo) and
1.47× (Ultra96) speedup over MATLAB on the Xeon Gold.

6.4 Accuracy Evaluation
To validate the Faber toolchain accuracy, we compare the
obtained registered images against a gold standard, ex-
tracted by a semi-automatic registration, and MATLAB and
SimpleITK implementations. Figure 8 shows a first visual
evaluation, where we reported the gold standard and a com-
parison between the binarized gold standard (in green) and

Alveo CC32
Alveo MSE32

Alveo MI16
Alveo NMI16

Ultra96 2WCC1
Ultra96 2WMSE1

Ultra96 2WMI1
Ultra96 2WNMI1

U
sa

ge
 P

er
ce

nt
ag

e
(lo

g
sc

al
e)

 [%
]

0.1

1

10

U
sage Percentage (log scale) [%

]

1

10

100

BRAM DSP FF LUT BRAM DSP FF LUT

Fig. 9: Accelerator resource usage in logarithmic scale (the
dot indicates the model prediction).

the output obtained with Faber, SimpleITK, and MATLAB
(in yellow), while the background is in purple. We select for
the visual inspection the configuration exploiting NMI and
(1+1) since it is the one available in all the considered tools.

The quantitative validation is based on the calculation of
the Intersection over Union (IoU) metric computed pairwise
between the gold standard stack and the registered ones
obtained by Faber, MATLAB, and SimpleITK. This metric
choice over the standard definition of accuracy derives from
the necessity to evaluate the overlap of the registered images
on the gold standard instead of identifying identical pixel
values between the two stacks. To compute IoU, we set all
the content that differs from the background, which has a
zero value, to one. In this way, an IoU of one indicates a
perfect overlap, while zero value means no overlap and a
failed registration.

As shown in Table 3, Faber, exploiting the sole metric
accelerators, reaches better IoU results compared to MAT-
LAB and SimpleITK. Moreover, our accelerators maintain
the accuracy reached by their SW counterparts, providing
a faster yet more accurate alternative. The inclusion of the
HW-based version of the transformation impacts the metric
accelerator’s IoU value, introducing a mean reduction in
accuracy of around 0.026. These results further support the
adoption of HW accelerated toolchain in the IR field.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 10

TABLE 4: Comparison with Related Work with Performance (Perf.) measured as proposed by Shams et al. [33] (the lower
the better), and Energy Efficiency (Energy Eff.) as we proposed in our previous work [10] (the higher the better).

Arch. Work Transform Metric Optimizer Hardware Perf. Energy Eff.
[ms
MV oxels·iters] [iters·MV oxels

kW ·ms
]

FPGA

Faber 2WMI1 Rigid† MI† Powell Ultra96 (16nm) 2.4295⊛ 55.62
Faber 2WCC1 Rigid† CC† 1+1 Ultra96 (16nm) 0.0283⊗ 5156.87

Faber 2WNMI1 Rigid† NMI† Powell Ultra96 (16nm) 2.5255⊛ 54.24
Faber 2WNMI1 Rigid† NMI † 1+1 Ultra96 (16nm) 0.0311⊗ 4492.02

Faber MI16 Rigid† MI† Powell Alveo u200 (16nm) 1.5502⊛ 21.47
Faber CC32 Rigid† CC † 1+1 Alveo u200 (16nm) 0.0130⊗ 2632.91

Faber NMI16 Rigid† NMI† Powell Alveo u200 (16nm) 1.6876⊛ 19.81
Faber NMI16 Rigid† NMI † 1+1 Alveo u200 (16nm) 0.01921⊗ 1756.58

Faber 3WMSE1 Rigid† MSE† Powell ZCU104 (16nm) 0.7430⊛ 104.33
Faber 3WMSE1 Rigid† MSE† 1+1 ZCU104 (16nm) 0.0184⊗ 4224.14

[7] MultiRigid MI† Simplex Altera EP2S180 (90nm) 13.4⋆ N/A
[19] Affine† Corr.† Simplex Zybo (28nm) 9.15⊙ 45.54≀

[27] Rigid† RMSE† - ZCU104 (16nm) 0.1895♡ 467.86♣

GPU

[20] Rigid MI† Powell GTX 280 (65nm) 4.06⋆ 1.04‡

[21] Nonrigid NMI† Grad. Desc.† GTX 580 (40nm) 0.1378▽⋄ 31.52‡

[23] Nonrigid† NMI† Stoch. Grad. Desc.† Tesla K40c (28nm) 2.5750♠ 1.58
[22] Nonrigid SRWCR†¶ LBFGS GTX 1060 (16nm) 309.7996∧ 0.03
[24] Diffeomorphic℧ L2 Norm†¶ Gauss-Newton-Krylov Tesla V100 (12nm) 25.5372 0.13

CPU

MATLAB PAR. TOOL Affine NMI 1+1 Intel Xeon Gold 6148 (14nm) 0.0457⊗ 145.93‡

Simple ITK Rigid NMI Powell Intel Xeon Gold 6148 (14nm) 0.6621⊗• 10.07‡

Simple ITK Rigid NMI 1+1 Intel Xeon Gold 6148 (14nm) 0.2641⊗• 25.24‡

Simple ITK Rigid MI Powell Intel Xeon Gold 6148 (14nm) 2.5636⊗• 2.60‡

Simple ITK Rigid MI 1+1 Intel Xeon Gold 6148 (14nm) 0.7806⊗• 8.54‡

Simple ITK Rigid MSE Powell Intel Xeon Gold 6148 (14nm) 0.1214⊗• 54.89‡

Simple ITK Rigid MSE 1+1 Intel Xeon Gold 6148 (14nm) 0.0638⊗• 104.52‡

Simple ITK Rigid CC Powell Intel Xeon Gold 6148 (14nm) 0.2297⊗• 29.03‡

Simple ITK Rigid CC 1+1 Intel Xeon Gold 6148 (14nm) 0.1071⊗• 62.22‡

†Implemented in hardware ⋆Computed from [33] ⊙ Assuming maximum iteration of 500 ‡Computed with Thermal Design Power (TDP)
as power ▽ Exploits the binning to reduce joint histogram sizes ⊗ With maximum 100 iterations •Metadata-based preprocessing applied
⊛ 3 iterations avg. ⋄ This value is the result of several dataset-specific approximations and preprocessing that reduce the computation to 1/6
and lead to misregistrations [21] ≀Power is 2.1W (Zybo baseline) plus 0.3mW ∧Based on 200 iteration ¶Metric derivatives acceleration

℧Interpolator in hardware ♣Power is 11.25W (ZCU104 baseline) plus 23.59mW ♠Working on 15% of image pixels ♡On 512×512 images
and applying feature matching only

6.5 Model Validation

We validated our latency and resource models on the pre-
viously introduced design space. As stated in Section 5,
the latency model provides a coarse-grain measure of the
accelerator clock cycles, ignoring external aspects like the
off-chip memory bandwidth. Thus, a direct comparison
with the execution times on FPGA would be unfair. Instead,
we chose the RTL simulation results as our baseline. We
extracted such values from Vivado HLS, which performs
a cycle-accurate simulation of the target accelerator only.
We measured the model error as the absolute difference
between the predicted latency and the simulated one, nor-
malized to the latter. On average, the error introduced by
our model is 0.939%, and it mainly derives from the pipeline
warm-up clock cycles, which our model does not examine.

We employed the utilization values reported by Vivado
after the RTL synthesis of various accelerators to build the
resource model and validated it on the post place & route
results of the previously introduced ones. We computed
the model error as before, comparing the predicted and
actual resource usage and normalizing them to the available
resource budget. We first derived the model for Ultra96
and then ported it on Alveo u200. The Ultra96 model fits
the resource usage well, and the average error is, at most,
2.56% (LUTs). Porting the model to Alveo is quite straight-
forward, thanks to the FPGA technology they share, namely
Ultrascale+. Indeed, the model achieves accurate estimates
of the resources even when keeping the Ultra96 model

parameters. In this case, the average error on Alveo u200
ranges from 0.007% (DSPs) to 3.570% (BRAMs). The higher
BRAM error derives from a larger usage than predicted
on the NMI16 configuration, which does not occur on the
Ultra96. A possible reason is the multi-die structure of Alveo
cards. Indeed, Vitis may decide to spread the design among
the dies to avoid congestion, adding extra logic. Figure 9
shows the accelerator resource usage and model predictions.

Finally, we investigated possible corner cases within the
resource model. We noticed that the error increases for some
resources when we consider unfeasible HW designs. The
main reason is that Vivado tries to optimize such designs
further if they exceed the resource budget. For instance,
being BRAMs the critical resource for MI and NMI, Vivado
shares their usage among different submodules of the ac-
celerator. This behavior is hardly predictable as it heavily
depends on the internal closed-source synthesis algorithms
of Vivado. Thus, the model does not consider such optimiza-
tions, conservatively predicting that the design is unfeasible.

6.6 Comparison with related work

To compare Faber to other solutions in the literature, we
have selected a subset of metric combinations per board
exploiting Powell’s and 1+1 optimizers to facilitate a com-
prehensive discussion. Fairly comparing IR methodologies
is extremely difficult considering all the variable parameters
that impact the results, like different platforms, transfor-
mations, optimizers, metrics, and datasets. For this reason,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 11

we use the metric described in Section 6.1, as it tries to
normalize the differences among approaches (e.g., IR com-
ponents, dataset size, execution time). However, this metric
does not consider initial dataset misalignments, the different
difficulties in aligning anatomic parts, and the hyperparam-
eters (e.g., convergence threshold). We also know that a fair
architectural comparison is difficult; hence, we reported the
technology nodes. Still, many factors limit the fairness of the
comparison. For instance, open-source solutions are limited,
and when available, they are either tailored to a specific
dataset (not provided) or employ deprecated features. Con-
sequently, these aspects limit reproducibility and portability
to newer platforms.

Table 4 shows the comparison with literature work on
both FPGA and GPU, while, for the CPU, we report two
examples that exploit MATLAB (with the Parallel Tool-
box) and SimpleITK. Considering FPGA-based work, Faber
shows better performance, also providing SW-like flexibility.
In addition, if we focus on the work proposed by [27] and
compare it to Faber on the same board, namely ZCU104, we
can see how the 1+1 implementation provides better results.
Moreover, while [27] exploits a feature-based approach for
mono-modal IR, we propose a heuristic-based multi-modal
IR that implies more computations to reach the final results.

Considering GPU-based solutions, Faber’s best con-
figurations employing the same similarity metric (Ul-
tra96 1+1-WNMI1 and Alveo 1+1-WNMI1) achieve better
performance than the top-GPU one, even without pre-
computations, from 2.33× to 4.37×. Focusing on work em-
ploying newer GPUs, they also present different transfor-
mations compared to Faber, which automatically implies
that the comparison is hindered fairly. We can highlight that
such studies [22], [23], [24], even though they require more
computations, achieve lower results of performance and
energy efficiency. Indeed, the benefits of GPU acceleration
are attractive only when all the available computational
resources are employed, justifying the power consumption.
Unfortunately, this is not the IR case, considering the limited
number of images constituting medical volumes.

Finally, Faber achieves generally better performance
than its CPU-based counterparts. However, considering
Powell’s optimizer, the reader can notice how the perfor-
mance of SimpleITK seems slightly better than Faber, even
though Figure 7 shows a significant speedup of Faber. This
performance difference depends on the large impact of the
optimizers’ iterations and internals searching procedures.
Nevertheless, Faber outperforms CPU counterparts in en-
ergy efficiency (reaching up to 30.78× and 177.97× against
MATLAB and SimpleITK, respectively) and accuracy.

7 CONCLUSION

We presented Faber, an open-source HW/SW toolchain for
IR that offers optimized FPGA-based accelerators. Faber
is devised to flexibly combine the three main image reg-
istration components and customize them. Moreover, it
offers various levels of customization based on the user’s
expertise, also providing HW experts with latency and
resource models guiding the customization of the different
hyperparameters. We evaluate Faber against SW library-
like approaches achieving from 1.5× to 54× and from 2×

to 177× in speedup and energy efficiency. Faber showcases
a noticeable registration accuracy compared to state-of-the-
art solutions with a top of 0.97 of IoU while delivering im-
proved execution times and energy efficiencies. Faber paves
the way for seamless integration of FPGAs within standard
and custom IR pipelines and makes them accessible to a
wider audience.

ACKNOWLEDGMENTS

Data used in this publication were generated by the Na-
tional Cancer Institute Clinical Proteomic Tumor Analysis
Consortium (CPTAC). The Authors would like to thank the
Xilinx University Program for the hardware donations.

REFERENCES

[1] F. P. Oliveira and J. M. R. Tavares, “Medical image registration: a
review,” Computer methods in biomechanics and biomedical engineer-
ing, vol. 17, no. 2, pp. 73–93, 2014.

[2] E. D’Arnese, G. Di Donato, E. Del Sozzo, and M. D. Santambrogio,
“Towards an automatic imaging biopsy of non-small cell lung
cancer,” in 2019 IEEE EMBS International Conference on Biomedical
& Health Informatics (BHI). IEEE, 2019, pp. 1–4.

[3] K. C. Alpay, K. B. Aydemir, and A. Temizel, “Accelerating trans-
lational image registration for hdr images on gpu,” arXiv preprint
arXiv:2007.06483, 2020.

[4] M. V. Wyawahare, P. M. Patil, H. K. Abhyankar et al., “Image
registration techniques: an overview,” International Journal of Signal
Processing, Image Processing and Pattern Recognition, vol. 2, no. 3, pp.
11–28, 2009.

[5] L. G. Brown, “A survey of image registration techniques,” ACM
computing surveys (CSUR), vol. 24, no. 4, pp. 325–376, 1992.

[6] B. C. Lowekamp, D. T. Chen, L. Ibáñez, and D. Blezek, “The design
of simpleitk,” Frontiers in neuroinformatics, vol. 7, p. 45, 2013.

[7] O. Dandekar and R. Shekhar, “Fpga-accelerated deformable image
registration for improved target-delineation during ct-guided in-
terventions,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 1, no. 2, pp. 116–127, 2007.

[8] O. Fluck, C. Vetter, W. Wein, A. Kamen, B. Preim, and R. West-
ermann, “A survey of medical image registration on graphics
hardware,” Computer methods and programs in biomedicine, vol. 104,
no. 3, pp. e45–e57, 2011.

[9] M. Barrow, S. M. Burns, and R. Kastner, “A fpga accelerator for
real-time 3d non-rigid registration using tree reweighted message
passing and dynamic markov random field generation,” in 2018
28th International Conference on Field Programmable Logic and Appli-
cations (FPL). IEEE, 2018, pp. 335–3357.

[10] D. Conficconi, E. D’Arnese, E. Del Sozzo, D. Sciuto, and M. D.
Santambrogio, “A framework for customizable fpga-based image
registration accelerators,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2021, pp. 251–261.

[11] E. Del Sozzo, D. Conficconi, A. Zeni, M. Salaris, D. Sciuto, and
M. D. Santambrogio, “Pushing the level of abstraction of digital
system design: a survey on how to program fpgas,” ACM Comput-
ing Surveys (CSUR).

[12] E. D’Arnese, E. Del Sozzo, D. Conficconi, and M. D. Santambrogio,
“Exploiting heterogeneous architectures for rigid image regis-
tration,” in 2021 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 2021, pp. 1–5.

[13] B. Zitova and J. Flusser, “Image registration methods: a survey,”
Image and vision computing, vol. 21, no. 11, pp. 977–1000, 2003.

[14] E. Parzen, “On estimation of a probability density function and
mode,” The annals of mathematical statistics, vol. 33, no. 3, pp. 1065–
1076, 1962.

[15] M. Styner, C. Brechbuhler, G. Szckely, and G. Gerig, “Parametric
estimate of intensity inhomogeneities applied to mri,” IEEE trans-
actions on medical imaging, vol. 19, no. 3, pp. 153–165, 2000.

[16] M. J. Powell, “A fast algorithm for nonlinearly constrained opti-
mization calculations,” in Numerical analysis. Springer, 1978, pp.
144–157.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 12

[17] K. Marstal, F. Berendsen, M. Staring, and S. Klein, “Simpleelastix:
A user-friendly, multi-lingual library for medical image registra-
tion,” in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, 2016, pp. 134–142.

[18] I. MathWorks, “Image processing toolbox,” 1994-2020. [Online].
Available: https://mathworks.com/products/image.html

[19] I. Stratakos, D. Gourounas, V. Tsoutsouras, T. Economopoulos,
G. Matsopoulos, and D. Soudris, “Hardware acceleration of image
registration algorithm on fpga-based systems on chip,” in Proceed-
ings of the International Conference on Omni-Layer Intelligent Systems,
2019, pp. 92–97.

[20] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “Parallel com-
putation of mutual information on the gpu with application to
real-time registration of 3d medical images,” Computer methods and
programs in biomedicine, vol. 99, no. 2, pp. 133–146, 2010.

[21] K. Ikeda, F. Ino, and K. Hagihara, “Efficient acceleration of mutual
information computation for nonrigid registration using cuda,”
IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 3, pp.
956–968, 2014.

[22] L. Gong, C. Zhang, L. Duan, X. Du, H. Liu, X. Chen, and J. Zheng,
“Nonrigid image registration using spatially region-weighted cor-
relation ratio and gpu-acceleration,” IEEE journal of biomedical and
health informatics, vol. 23, no. 2, pp. 766–778, 2018.

[23] P. Bhosale, M. Staring, Z. Al-Ars, and F. F. Berendsen, “Gpu-based
stochastic-gradient optimization for non-rigid medical image reg-
istration in time-critical applications,” in Medical Imaging 2018:
Image Processing, vol. 10574. International Society for Optics and
Photonics, 2018, p. 105740R.

[24] M. Brunn, N. Himthani, G. Biros, M. Mehl, and A. Mang, “Fast
gpu 3d diffeomorphic image registration,” Journal of Parallel and
Distributed Computing, vol. 149, pp. 149–162, 2021.

[25] F. F. Berendsen, K. Marstal, S. Klein, and M. Staring, “The design
of superelastix–a unifying framework for a wide range of image
registration methodologies,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2016, pp. 58–
66.

[26] A. Mang, A. Gholami, C. Davatzikos, and G. Biros, “CLAIRE:
A distributed-memory solver for constrained large deformation
diffeomorphic image registration,” SIAM Journal on Scientific Com-
puting, vol. 41, no. 5, pp. C548–C584, 2019.

[27] A. Chakraborty and A. Banerjee, “A novel vlsi architecture of
cordic based image registration,” in 2020 Sixth International Con-
ference on Bio Signals, Images, and Instrumentation (ICBSII). IEEE,
2020, pp. 1–6.

[28] M. J. Powell, “An efficient method for finding the minimum of a
function of several variables without calculating derivatives,” The
computer journal, vol. 7, no. 2, pp. 155–162, 1964.

[29] J. Bernon, V. Boudousq, J. Rohmer, M. Fourcade, M. Zanca,
M. Rossi, and D. Mariano-Goulart, “A comparative study of
powell’s and downhill simplex algorithms for a fast multimodal
surface matching in brain imaging,” Computerized medical imaging
and graphics, vol. 25, no. 4, pp. 287–297, 2001.

[30] Xilinx Inc., “Vitis Vision Library,” 2019. [Online]. Available:
https://github.com/Xilinx/Vitis Libraries/tree/master/vision

[31] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel,
S. Moore, S. Phillips, D. Maffitt, M. Pringle et al., “The cancer imag-
ing archive (tcia): maintaining and operating a public information
repository,” Journal of digital imaging, vol. 26, no. 6, pp. 1045–1057,
2013.

[32] National Cancer Institute Clinical Proteomic Tumor Analysis
Consortium (CPTAC), “Radiology data from the clinical proteomic
tumor analysis consortium lung adenocarcinoma [cptac-luad]
collection [data set],” The Cancer Imaging Archive, 2018. [Online].
Available: https://doi.org/10.7937/k9/tcia.2018.pat12tbs

[33] R. Shams, P. Sadeghi, R. A. Kennedy, and R. I. Hartley, “A survey
of medical image registration on multicore and the GPU,” IEEE
Signal Processing Magazine, vol. 27, no. 2, pp. 50–60, 2010.

Eleonora D’Arnese received her B.Sc. and
M.Sc. in Biomedical Engineering from Politec-
nico di Milano in 2016 and 2018 respectively.
She also received in 2018 M.Sc. degree in
Bioengineering from the University of Illinois at
Chicago, Chicago, IL, USA. She is currently
a Ph.D. Student in Information Technology at
Politecnico di Milano. Her research focuses on
pipeline generation for medical image process-
ing and machine learning.

Davide Conficconi got his Ph.D. in Information
Technology at Politecnico di Milano in 2022. He
received his B.Sc. and M.Sc. in Computer Engi-
neering from Politecnico di Milano in 2015 and
2018 respectively. His research interesets re-
volves around reconfigurable architectures, es-
pecially FPGAs, design methodologies, com-
puter architectures, and design automation tech-
niques.

Emanuele Del Sozzo got his Ph.D. in Informa-
tion Technology from Politecnico di Milano in
2019. He received his B.Sc. and M.Sc. in Com-
puter Engineering from Politecnico di Milano in
2012 and 2015 respectively. He also receives in
2015 M.Sc. degree in Computer Science from
the University of Illinois at Chicago (UIC), and
Alta Scuola Politecnica Diploma. His research
focuses on reconfigurable architectures, code
generation and optimization. He is currently a
PostDoc at Politecnico di Milano.

Luigi Fusco is a M.Sc. student in Computer
Engineering at Politecnico di Milano and in the
Alta Scuola Politecnica program. He received his
B.Sc. in Computer engineering from Politecnico
di Milano in 2020. His interests include mathe-
matics and high performance computing.

Donatella Sciuto received her Laurea in Elec-
tronic Engineering from Politecnico di Milano
and her PhD in Electrical and Computer Engi-
neering from the University of Colorado, Boulder,
and an MBA from Bocconi University. She is cur-
rently the Executive Vice Rector of the Politec-
nico di Milano and Full Professor in Computer
Science and Engineering. Her main research
interests cover the methodologies for the design
of embedded systems and multicore systems.
She has published over 300 scientific papers.

She is a Fellow of IEEE and has served as President of the IEEE Council
of Electronic Design Automation from 2011 to 2013 and in different
capacities in IEEE Committees and conferences.

https://mathworks.com/products/image.html
https://github.com/Xilinx/Vitis_Libraries/tree/master/vision
https://doi.org/10.7937/k9/tcia.2018.pat12tbs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XX 13

Marco Domenico Santambrogio (SM’05) re-
ceived the Laurea (M.Sc. equivalent) degree in
computer engineering from the Politecnico di Mi-
lano, Milan, Italy, in 2004, the M.Sc. degree in
computer science from The University of Illinois
at Chicago, Chicago, IL, USA, in 2005, and the
Ph.D. degree in computer engineering from the
Politecnico di Milano, in 2008. He was a Post-
Doctoral Fellow with the Computer Science and
Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, USA.

He has been with the NECST Laboratory, Politecnico di Milano, where
he founded the Dynamic Reconfigurability in Embedded System Design
project in 2004 and the CHANGE (self-adaptive computing system)
project in 2010. He is an Associate Professor with the Politecnico di
Milano. His current research interests include reconfigurable computing,
self-aware and autonomic systems, hardware/software co-design, em-
bedded systems, and high-performance processors and systems.

	Introduction
	Context Definition
	Related Work
	Faber Toolchain and System Design
	Faber Components
	Optimizer Component
	Transformation Component
	Similarity Metric Component
	Software Implementation

	Faber Hardware Accelerators
	Transformation Accelerator
	Similarity Metric Accelerators

	Architectural Template
	Customization Hyperparameters

	Latency and Resource Models
	Latency Model
	Resource Model

	Experimental Setup and Results
	Benefits Analysis of the HW Transformation
	Default Configurations Discussion
	Performance Evaluation
	Accuracy Evaluation
	Model Validation
	Comparison with related work

	Conclusion
	References
	Biographies
	Eleonora D'Arnese
	Davide Conficconi
	Emanuele Del Sozzo
	Luigi Fusco
	Donatella Sciuto
	Marco Domenico Santambrogio

