
Delay Estimation for Shared Rides From GPS Data

Sepehr Samavati1 and Alexander Nemirovskiy1 and Matteo Rossi2

Abstract— Ride-sharing is one of the most innovative topics
in the new era of intelligent transportation. RIDE2RAIL is a
European initiative that aims to design a system that connects
multiple shared rides to one another or to other modes of
transportation. Accurate time planning and high user satisfac-
tion are key factors for the success of ride sharing schemes,
which entails that accurately estimating the actual duration
and delays of rides is essential. This paper proposes a method
to estimate delays in which shared rides incur during their
execution. The proposed mechanism relies on link-based route
time estimation: It first makes an initial estimation based on a
set of parameters related to the city and the situation (e.g., time
and day of the ride); then, it dynamically adjusts the estimation
based on GPS data that is continuously received during the ride.
The mechanism has been implemented and tested using data
collected from rides taken in the cities of Milan and Tehran.
The results of the evaluation, which has been performed using
several error criteria, showed that the proposed approach has
a good level of accuracy.

I. INTRODUCTION

The advent of widespread geo-location and communica-
tion technologies has fundamentally altered the transporta-
tion environment. Thanks to GPS systems and the internet,
new mobility concepts and enterprises have been created.
One of these services is ride-sharing, which is ”a way for
multiple riders to get to where they’re going by sharing a
single vehicle, like a car or van, that’s going in their direction.
This vehicle makes multiple stops along a route to pick up
and drop off passengers, reducing the need for multiple cars
on the road.”1

RIDE2RAIL2 is a European project that aims to combine
ride-sharing services with other forms of transportation. The
goal of the RIDE2RAIL project is to provide users with a
variety of options for their trips.

Every ride-sharing situation involves a driver and one or
more passengers. Since passengers must typically wait for
the ride to arrive at some point, the service’s timing is
critical. Timing is also crucial to facilitate the integration of
ride sharing into a wider, multi-modal transport ecosystem.
For example, the shared ride could be used to reach a
transportation hub such as a train station or an airport, or
it could be followed by another shared ride. In this scenario,

*Work supported by Shift2Rail and the EU H2020 research and innova-
tion programme under grant agreement No: 881825 (RIDE2RAIL)

1Sepehr Samavati and Alexander Nemirovskiy are with Diparti-
mento of Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Milan, Italy sepehr.samavati@mail.polimi.it,
alexander.nemirovskiy@polimi.it

2Matteo Rossi is with Dipartimento di Meccanica, Politecnico di Milano,
Milan, Italy matteo.rossi@polimi.it

1www.remix.com/blog/ride-hailing-vs-ride-sharing-the-difference-
explained

2ride2rail.eu

planning and monitoring the timeliness of the ride (i.e.,
estimating the delay, if any, affecting the ride) is crucial
since the ride, for all intents and purposes, operates like a
minibus connected to a wider transportation network, hence it
must meet its appointed target times (at the final destination,
but also at intermediate pick-up points). Existing tools (e.g.,
Google Maps®) that allow users to compute the duration of a
trip taking into account traffic conditions could be used also
for delay estimation. However, exploiting such tools would
typically require issuing many requests to—and possibly
overload—online services to keep the duration estimation
updated, especially if drivers change path frequently or make
stops (for example, to pick up new passengers).

This paper introduces a mechanism to detect delays af-
fecting a shared ride using GPS data of the vehicle in
an urban environment. The proposed algorithm relies on
simple computations, which could, in principle, be executed
even locally, on the user’s mobile device. Indeed, delay
information is key to, on one hand, inform passengers of
disruptions impacting their trips and, on the other hand,
trigger the re-planning of the trip if the delay negatively
impacts the ability to make the necessary connections. The
GPS data is retrieved from the driver’s mobile device, which
provides the delay estimator (which could be run locally or
remotely) with the driver’s position information.

The paper is structured as follows. Section II briefly
describes related works and highlights the differences of
our work with respect to them. Section III introduces some
necessary knowledge and background. Section IV presents
the delay estimation method and workflow. Section V de-
scribes the data set used to evaluate the proposed method
and Section VI discusses the results of the evaluation. Finally,
Section VII concludes.

II. RELATED WORKS

In many situations time management is a challenging
task, and even more so in urban transportation, where many
variables affect the timing of trips (the type of vehicle, the
driver abilities, the congestion of the roads, etc.). In the
literature, many techniques have been proposed to estimate
the trip time/delay. They can be separated in two categories:
link-based and path-based [1]. Link-based methods divide
the path into segments and calculate the result based on the
estimation computed for each segment. Path-based methods,
instead, consider the whole path and do not divide it into
segments. The majority of available methods statistically
estimate route travel time from huge amounts of vehicle
data. [2] and [3], for example, use different observations

https://www.remix.com/blog/ride-hailing-vs-ride-sharing-the-difference-explained
https://www.remix.com/blog/ride-hailing-vs-ride-sharing-the-difference-explained
https://ride2rail.eu


to estimate route travel time. They are also based on low-
frequency Floating Car Data (FCD), and try to guess the
travel time for the whole path, not for every link in the path.
Similarly to [3], [4] (which focuses on short time estimation)
and [5] also use statistical data-driven methods to find the
travel time for the whole network. However, unlike [2] and
[3], they use link-based methods, rather than path-based ones.
In addition, [5] establishes a relation between travel durations
in neighboring areas, a result that we exploit in our work. [1]
proposed a method to estimate travel time using a large data
set of taxi drivers’ GPS data; in this case, the data set is large
enough that it can be used to build a reference model, instead
of relying on a specific statistical model. [6] focuses on bus
planning and delay estimation; in particular it estimates the
bus’s delay from its location using a basic algorithm and
a mobile application and then uses the result to create bus
schedules.

The work presented in this paper takes a unique approach
to estimate trip time and delay. It is not based on detailed
statistical data collected from rides throughout the city.
Instead, it distills that information into a set of parameters to
first establish a general guess on travel time, then it adjusts
the guess dynamically during the ride. It also assumes that
GPS data is available with higher frequency than what is
assumed by other works, and proposes a link-based approach.

III. PRELIMINARIES

This section provides a brief overview of the concepts and
technologies on which the present work is based. First, it
defines the addressed problem and some related terminology.
Then, it describes the principles underlying this work, such
as map services and map matching. Finally, it introduces
various error criteria that will be used in the final evaluation.

A. Problem Definition

The goal of this work is to develop a mechanism to
estimate the delay that a ride-sharing driver will accumulate
at their destination, using the following inputs:

• Geographical coordinates of the origin and destination
of the ride.

• Intermediate way points, which we assume to be avail-
able through some direction API; in the rest of this
paper, we call this route the direction of the ride.

• Expected ride duration, as returned by the direction API,
which is called TD; the expected duration may or may
not take into account traffic data.

• GPS samples retrieved during the ride; we
assume that each GPS sample has the format
⟨latitude, longitude, speed, timestamp⟩.

The delay is defined as Delay = TR − TD, where TR

denotes the actual ride duration. We call TE the output of
the delay estimation procedure. We aim to make TE a good
estimation of TR according to the criteria discussed in III-D.

B. Map Services and Open Street Map

A map service is a way to digitally represent a region
or city map. It features several real-world models, such as

a graph that shows roads and their crossings. Map services
also offer users a variety of tools, such as area information
(places, distances, traffic, and so on) and practical tools (best
route direction, travel time, etc.). These services frequently
include an API made available to developers. Many firms,
such as Apple®, Google®, and Microsoft®, offer map ser-
vices, each with its own set of tools and features. There are
also many open-source projects, such as Leaflet3, Modest
Maps4, and Polymaps5, that have developed map services.

Open Street Map6 (OSM) is one of the most important
open-source map services. It has a thriving developer com-
munity, and many additional libraries based on OSM are
available, in a variety of programming languages. This work
uses OSM, and in particular the OSMNX7 Python package,
to obtain the graph of the region map through which the user
is driving.

C. Map Matching

Using GPS data is usually challenging due to the consider-
able imprecision of these data. GPS data must be projected
on the map graph to be used, and this operation is called
map matching. A variety of techniques have been devised in
the literature to solve the map matching problem [7]. In this
work we use the Fast Map Matching (FMM) method, and in
particular the open-source Python FMM library [7].8

D. Error Criteria

To evaluate the performance of the delay detection mecha-
nism presented in this work, we consider different notions of
error, which are described in the following. Figure 1 shows
a visual representation of these criteria.

• Root Mean Square Percentage Error (RMSPE): as
defined in [8], the RMSPE is given by Equation (1).
It captures the average of the relative error through all
estimations TEi for each sample.

RMSPE =

√√√√ 1

n
·

n∑
i=1

(TR − TEi

TR

)2 · 100 (1)

• Error Margin: this is defined as the maximum ac-
ceptable value of the estimation error. For example,
in Figure 1 the error margin is depicted by the green
horizontal lines, which highlight the maximum desired
difference of the estimation with respect to the actual
trip duration TR. A good estimator should keep TE in
the vicinity (percentage-wise) of TR.

• Confidence Time Percentage: The confidence time
(TConf ) is defined as the elapsed time from the start
of the trip after which the estimation gets within the
specified error margin (see Figure 1 for a graphical
depiction: the confidence time is the point where the

3https://leafletjs.com
4http://modestmaps.com
5http://polymaps.org
6https://www.openstreetmap.org
7https://github.com/gboeing/osmnx
8https://fmm-wiki.github.io/



Fig. 1: Error criteria.

estimation enters the region between the green horizon-
tal lines). The confidence time percentage is the ratio
of the confidence time to the trip duration computed by
the direction API (i.e., TD).

IV. DELAY DETECTION

The delay detection procedure proposed in this paper
has two parts: delay estimation and deviation recognition.
The rest of this section describes the main structure of the
procedure and its parts, which are depicted in Figure 2.

At startup, the system takes as input a set of coordinates
corresponding to the “direction” of the ride (as returned
by the direction API), calculates the map boundaries sur-
rounding these points, and uses a map service to retrieve
the graph of the requested region. Then, the map-matcher
module projects the direction points onto the map graph and
obtains the path of the direction.

After the initial step, the system continuously receives
GPS samples throughout the user’s ride. It concatenates
each new sample with a predetermined number of previous
positions and sends the result to the data filtering and
refinement block. The latter corrects—if necessary—the new
sample, and discards it if it is determined to be faulty
data. The modified sample is stored for the subsequent
iterations. The map-matcher module then projects the new
point on the map, along with previously cached points, to
establish the actual path of the driver. The deviation detection
block receives the direction path, the path inferred from the
latest samples, and the new sample data, and determines
if the user deviated from the intended direction. In the
latter case, the deviation detection module notifies a suitable
component, which recalculates the direction and adjusts the
delay accordingly.

In the next step, the delay estimator block computes the
travel time/delay based on the inputs listed above. First,
it makes an initial guess on the trip time based on the
received inputs and on prior knowledge. Second, it adjusts
the estimate by applying a suitable factor (called λ) and by

detecting and discounting stops made by the driver along
the path, until it outputs a final estimate for the delay. The
parameters of the delay estimator block are determined from
prior information, and are updated as new data points arrive.

The rest of this section provides some details concerning
the delay estimation and deviation recognition blocks.

A. Delay Estimation

The delay estimation process is made of several steps,
which are outlined in the following.

a) Initialization: In the first phase, the algorithm re-
quires some information about the direction edges from the
map service. More precisely, these data indicate the amount
of time it takes to travel through each edge on the path.
The map service determines this value, which we call the
edge’s time contribution, by dividing the length of the edge
by the average speed of vehicles on that map segment.
The total duration of the ride is given by the sum of the
time contributions of all direction edges, as defined by the
following formula:

TTotalMap
=

∑
e∈ED

TCe (2)

where TCe is the time contribution of edge e and ED is
the ordered set of direction edges. However, TTotalMap

is
usually different from TD (i.e., the total time returned by
the direction API, as explained in Section III-A) because the
direction API may take into account various factors (e.g.,
the traffic along the route) of which the map service is not
aware. To match TD (which does not consider the time it
takes to go through the single links) and TTotalMap

, the
algorithm multiplies each edge’s time contribution by a ratio,
as captured by Equation (3).

∀e ∈ ED : TCenew
= TCe ·

TD

TTotalMap

(3)

b) Hour/Day Ratio: Based on the information com-
puted above, the algorithm then makes an initial guess for
the actual time of arrival TR. The ride time, as is well
known, varies depending on the day of the week and the
hour of the day, and different cities typically display traffic
patterns. The goal of this stage is to create an initial guess
based on information regarding these variations. We do so
by retrieving, through Google Direction9, the expected travel
time for a predefined set of “test” paths and considering
different starting times and days of the week; a set of “test”
paths must be defined for each city in which we want to
deploy the system, since different cities have different traffic
patterns during the week. Essentially, we assume that the
Google Direction API, in its estimations, considers many
factors (e.g., traffic conditions) based on a very large set of
real data; hence, we use it to determine certain necessary
parameters without having to execute actual experiments
ourselves. Figure 3 shows the outcome of this experiment for
what concerns the city of Milan. The travel time computed

9https://developers.google.com/maps/documentation/directions



Fig. 2: System main structure.

Fig. 3: Hour/Day ratio curve relative to the city of Milan.

considering as starting time Sunday at midnight is used
as reference, and the other times are shown as a ratio
with respect to it. Next, the algorithm uses least square
regression to fit the curve in Figure 3 to training data-sets
(see Section V). Finally, it updates the time contribution of
each edge using Equation (4).

∀e ∈ ED, TCenew = TCe ·Ratio(Day,Hour) (4)

The sum of these time contributions results in the initial
guess for the whole ride duration.

c) Map Matching: Following the initial phase, which
produces the initial estimate of the travel time, the algorithm
goes through a series of steps for each GPS sample it
receives. It uses the map-matcher module (which employs
the FMM method, as mentioned in Section III-C) to find the
location of the new sample on the map as the first step. It
then determines the edge of the map graph on which the
vehicle is, and the distance already covered on that edge.
If this edge belongs to the direction being followed, the λ
factor (explained later) is applied. Otherwise, the samples
are filtered and refined, es described in the following.

d) Filtering and Refinement: Due to measuring noises
and inaccuracies, GPS samples can have offsets, which can
cause the map-matcher module to place them on the wrong
edge. In this scenario, the algorithm locates the direction’s
point that is closest to the sample coordinate. All geometric
elements of roads, such as turns, are considered in this
step. If the distance between the point and the direction
is smaller than a predefined threshold (which varies per
city), the algorithm replaces the sample’s coordinates with
the nearest direction point. This causes the samples to be
attracted by the direction. Points that do not exist or that are
over the threshold are not considered when the λ factor is
applied. If, later, the deviation recognition block determines
that these points are not indicative of a deviation being taken
by the vehicle, the algorithm will discard them.

e) Stop Recognition: Next, the algorithm examines the
input sample for the presence of a halt in the ride. This step
is necessary because several steps in the delay estimation
process consider the traffic flow, and a car stop that is
unrelated to traffic adds an offset value to the total duration
of the ride that should be discounted when projecting the
final delay (while still being counted in the total duration of
the trip). A stop in this context refers to a situation where the
car halts for reasons unrelated to driving rules. For example,
short traffic stops and red lights are not considered “stops”,
and they should be considered in the initial guess. On the
other hand, this feature covers situations in which traffic
accidents occur: this step will recognize the unusual stop
and add the stop duration to the final value.

For stop recognition, the algorithm uses the speed values
in GPS samples. These values first go through a low-pass
filter whose definition is shown in Equation (5).

VF = 0.7 · V [n] + 0.2 · VF [n− 1] + 0.1 · VF [n− 2] (5)

where VF is the filtered speed and V is the raw speed. The
time constant of this filter is 15 seconds, so after about 15



Fig. 4: Speed filtering for deviation recognition.

seconds of having zero raw speed, VF will be almost zero.
The filter helps ignore instant zero speeds or short traffic
pauses. Figure 4 shows the raw and filtered speed of a sample
ride. After filtering, the algorithm sums the duration of stop
intervals. This sum is called TStop. A stop interval is defined
as the range between the point whose filtered speed is less
than a predefined threshold VStop_Threshold and the next point.

f) Lambda Factor: The algorithm starts with a guess
for TR, but each ride’s condition differs from the others. As
a result, it should have an adaptive component that corrects
the estimation during the ride.

The work presented in [5] showed that there is a correla-
tion between the trip times of neighbouring sections. We use
this result in our work, and we assume the traffic flows of
edges that are connected on the map graph to be correlated.
As a result, at any point during the ride, the algorithm
will use the most recent observation to update the estimated
remaining time of the ride.

More precisely, the algorithm uses a factor, called λ, to
regulate the impact of the current observation on future steps.
Because the correlation between traffic flows decreases for
links that are further away from the current one, this effect
should be reduced along the path. The ratio RU that is used
to update the time contribution of each edge e from the
current one until the end of the ride is defined, as shown in
Equation (6), as the ratio between the actual time spent up
to the current point, minus the stops, and the estimated time
spent up to this point. All values involved in the definition of
RU are considered in a limited recent window of time, which
is defined by the number w of recent points that contribute
to the computation.

RU =
Real Time Passedw − Tstop

Estimated Time for Passed Edgesw
(6)

The new estimate of the time contribution of each relevant
edge e (where an edge is relevant if it is in the recent window
w, or if it follows the current one) is computed according
to Equation (7), where ec is the current edge, ew is the first

edge which is inside the defined recent window of size w,
and d is the number of edges between ec and e.

∀e ∈ ED such that e > ew,

TCenew =

{
TCe ·RU , e ≤ec

TCe ·
(
(RU − 1) · λd + 1

)
, e >ec

(7)

After updating the time contributions TCe, the algorithm
computes a new estimation for TE using Equation (8).

TE = Real Time Passed +
∑

e∈ED,
e>current edge

TCe (8)

The value of parameter λ is suitably chosen, based on
previous data collected in the city of interest, to minimize
the estimation error (as discussed also in Section VI).

B. Deviation Recognition

There is a possibility in every ride that the driver deviates
from the planned route. This divergence could be slight or
significant. A slight diversion occurs when the driver returns
to the main path after a short amount of time or distance. A
significant deviation is one that is not slight and requires a
direction recalculation.

As explained in Section IV-A, the deviation recognition
block examines the samples that could not be refined. If
four consecutive samples cannot be refined, the algorithm
recognizes a deviation. Then, this block uses Dijkstra’s
algorithm to compute the shortest path to each remaining
node of the direction. The algorithm determines the shortest
path back to the main direction after considering all feasible
routes. The prior adjustment ratios up to this point are then
applied to the new route edges. Finally, TE is re-computed
using Equation (9), where ED′ is the set of edges which form
the detour and er is the first edge where the driver returns
to the main path.

TE = RealT imePassed+
∑

e∈ED′
TCe +

e>er∑
e∈ED

TCe (9)

V. DATA SET FOR EVALUATION

To evaluate the accuracy of the delay estimation mech-
anism according to the criteria defined in Section III-D, a
suitable set of real-world data is needed. In the rest of this
section we discuss how such data set was created.

a) Data Collection Application: An application for
Android-based mobile devices has been created to collect
the assessment data set. The application uses Google Maps
as a map service, and the Google Direction API as direction
API. Application users declare a start point and a destination,
and in turn receive a direction to follow during the ride. After
completing the ride, the user should submit the data collected
by the application during the ride and indicate whether or
not they followed the given directions. The data is then sent
to an online cloud server, where it is stored. The collected
information covers all ride details, as well as the algorithm



Fig. 5: Ride submission example.

inputs specified in Section III-A. It also contains the actual
duration of the ride, which will be considered as the value
of TR.

b) Experiment and Data Cleansing: Evaluation data
was collected in two cities, Milan and Tehran. A number
of volunteers installed the app on their phones and made
submissions during their daily commutes. They made a total
of 92 submissions over the course of three months.

A data cleansing phase is essential since there are always
some flaws and inaccuracies in data submissions. The data
cleaner first double-checks the beginning and end of the
rides. The ride starts when the car starts moving and it comes
to an end when the car reaches a certain distance from the
destination. Second, all data have been manually checked
and tagged. Figure 5 shows an example of submitted path.

Not all collected rides are suited for our purposes, and
some had to be discarded, for example because they were
not completed. Table I summarizes the data collected for the
evaluation of the delay estimation mechanism.

Milan Tehran
Participants 2 7

Total Submissions 29 63
Followed Direction 12 30

Minor Deviation 4 3
Major Deviation 8 16

Discarded 5 14

TABLE I: Summary of evaluation data.

VI. RESULT AND EVALUATION

The delay estimation mechanism was implemented using
the Python 3.7 programming language and it was evaluated
according to the criteria mentioned in Section III-D. In the
rest of this Section we briefly describe the results of the
evaluation according to the different error criteria. Notice
that the average execution time for each GPS sample is
about 0.05 ∼ 0.1 seconds in normal situations and about
0.2 ∼ 0.5 seconds when there is a deviation. This shows
that the mechanism is well-suited to be run locally, even on
mobile devices. Given its lightweight nature, the algorithm
can be implemented and deployed on a high scale (e.g., on
smartphones), thus distributing the computational load across
many devices.

a) RMSPE: The result of RMSPE for each city is
reported in Table II. Two groups of entries were considered
to perform the evaluation using this criterion: rides that
followed the directions exactly and those that had minor
deviations from the planned path.

Milan Tehran
Followed Direction 13.01 % 16.21 %

Minor Deviation 12.47 % 23.9 %

TABLE II: RMSPE Report.

As expected, Milan has considerably lower error since
Tehran is much more crowded and has a more chaotic traffic
flow. Also, time estimations for paths that show a minor
deviation are usually less accurate, since the behavior of the
driver is less predictable after a deviation—though indeed
this was not the case in our data set for the rides collected
in Milan.

Figure 6 shows the distribution of RMSPE for the two
considered cities. More precisely, about 80% of the errors
are in the 5%-20% range for Tehran and in the 5%-15%
range for Milan. This shows that the results have reasonable
variance, in addition to a good error average.

b) Error Margin: Figure 7 shows an example of error
margin plot for a ride in Tehran. Most of the entries show
characteristics similar to the plot of Figure 7. The algorithm
produces estimations only some minutes after the start of the
ride, so initially the curve is flat. The initial guess, which is
shown as a jump in the plot, is usually already fairly close
to the actual duration of the ride. The plot then shows the
variation of the estimation. As the plot demonstrates, the
estimation usually stays in the specified error margin after
some specific time. However it is possible that in some areas
the estimation exceeds the error margin due to harsh changes
in the traffic flow.

c) Confidence Time: Figure 8 shows how the confi-
dence time changes with the value of the error margin, for
both cities. By definition of confidence time (see Section III-
D), after TConf the estimation stays in the specified error
margin relative to the actual value. For example, the purple
dashed lines in Figure 8 show that we stay within a 12%
error margin in Milan, and 22% error margin in Tehran



Fig. 6: RMSPE Distribution.

Fig. 7: Error margin plot.

after about 20% of time TD has passed. The error margins
decrease to 8% for Milan and 14% in Tehran after 40% of
TD has passed (green dashed lines of Figure 8).

d) Parameter Evaluation: The presented algorithm re-
lies on several parameters, and in particular on the λ value.
Figure 9 shows how the average and standard deviation of the
RMSPE change as the the value of λ changes. The plots show
that the average error remains almost constant as the value
of lambda increases, while the standard deviation decreases.
The λ factor is designed to correct inaccurate estimations or
to act in unpredictable situations. The collected data show
that increasing the value of λ decreases the error of the
samples that are most inaccurate and increases the error of
those that are less inaccurate. That is, tuning the value of λ
can provide more robust results with almost the same error.
As depicted in Figure 10, we can identify a suitable criterion
to choose the appropriate value of λ if we separate the
samples that are negatively affected by an increase in λ from
those which are instead positively affected. Indeed, Figure 10
shows that, for samples on which λ has a positive effect

Fig. 8: Confidence time for Milan and Tehran.

Fig. 9: λ analysis.

(i.e., for which the RMSPE decreases as λ increases), the
minimum estimation error is reached for around λ = 0.95,
which is also the value for which the standard deviation
is lowest. Also, at that value, the increase in the RMSPE
for samples that are negatively affected by λ is still rather
small (the error is still below 15%). Our experience shows
that this minimum point always exist. If the delay estimation
mechanism is newly set up in a city and there is no previous
data on which this analysis can be performed, the initial value
of λ can be chosen based on its value for similar cities (in
which the system is already running, hence the parameters
have already been tuned). Then, the value of the parameter
can be tuned after a initial batch of rides is performed. Notice
also that the samples that are positively affected by higher
values of λ are those with higher RMSPE (for example, in
Teheran they have twice the RMSPE with respect to those
that are negatively affected), which highlights how tuning the
λ parameter helps make the estimations more uniform while
maintaining a good overall precision.

Another parameter used in the delay estimation procedure
is w, which indicates the size of the window of recent sam-



Fig. 10: λ analysis with data segmentation.

ples on which λ acts. The optimum value of this parameter
is highly dependent on factors such as the length of the trip
and the structure of the city roads. In our experiments we
set the value of w to 120 (i.e., the last 10 minutes).

e) Discussion: As the results of the evaluation show,
the proposed delay estimation mechanism reaches its desired
goals. For example, for a 30 minutes ride, the average error
would be about 4 minutes in Milan and 4.5 minutes in
Tehran. The error can be further reduced if the predictions
are produced after an initial delay, rather that right from the
start of the ride, since it is at the beginning of the ride that
the predictions are less reliable. In general, we deem the
performance of the proposed delay estimation mechanism
very promising in the context of urban ride sharing.

It must be noted, however, that the evaluation, although
promising, has been carried out on a limited number of
sample rides, and in two cities. We plan to further evaluate
the proposed mechanisms on a larger data set in the future,
to increase our confidence in its effectiveness.

As mentioned above, the computation of each new du-
ration estimate takes only fractions of a second. Indeed, to
keep the computation time low, our system avoids making
repeated calls—which can be costly—to services providing
estimates of the trip duration that possibly take into account
traffic conditions. Instead, the direction API (for example,
Google Maps®) is invoked only once, at the beginning of the
trip, to gather an initial estimate (TD) of the trip duration.
If this initial estimate is accurate (i.e., TD is very close to
TR), for example because it includes precise information
about the traffic situation, the successive adjusted duration
estimates will stay very close to the initial value. If, instead,
it is considerably off-target (e.g., because the driver has an
uncommon driving style, much faster or slower than the
average, or because traffic conditions suddenly change), then
the computed delay estimates will deviate significantly from
it. In both cases the mechanism presented in this paper
provides valuable information regarding the actual execution
of the trip.

VII. CONCLUSIONS

This paper presented a new trip time/delay estimation
mechanism that can be used to detect if a disruption impacts
a shared ride and prevents it from being on time. The
procedure produces an initial estimate of the trip time, which
is then adjusted as the trip proceeds, based on GPS data
samples collected during the ride. The mechanism relies on
several parameters, which are fine-tuned depending on the
monitored context (e.g., the city in which the rides occur).
The approach has been evaluated on real-world experimental
data, with promising results.

The approach can be improved in several ways. As dis-
cussed in Section VI, the values of the parameters on which
the delay estimation mechanism relies (e.g., λ and w) depend
on the monitored context. In the future, we plan to define
a procedure to automatically adjust and tune the values
of the parameters based on a training data set. We also
plan to improve the accuracy of the estimation procedure,
for example by considering different day/hour ratios for
different areas of cities (e.g., city center, peripheral areas).
Finally, the mechanisms presented in this paper will be
integrated into the RIDE2RAIL ecosystem [9] to live-track
the progress of vehicles during the execution of shared rides.
The deployment architecture of the trip-tracking subsystem is
structured on a set of independent modules, which perfectly
fits the stateless nature of the components described in this
paper; this allows the system to scale even in presence of
heavy loads, depending on the number of final users.

REFERENCES

[1] K. Lee, A. Prokhorchuk, J. Dauwels, and P. Jaillet, “Estimation of
travel time from taxi gps data,” in 2017 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2017, pp. 1–6.

[2] M. Rahmani, E. Jenelius, and H. N. Koutsopoulos, “Route travel time
estimation using low-frequency floating car data,” in 16th international
ieee conference on intelligent transportation systems (itsc 2013). IEEE,
2013, pp. 2292–2297.

[3] ——, “Non-parametric estimation of route travel time distributions
from low-frequency floating car data,” Transportation Research Part
C: Emerging Technologies, vol. 58, pp. 343–362, 2015.

[4] E. Jenelius and H. N. Koutsopoulos, “Urban network travel time pre-
diction based on a probabilistic principal component analysis model of
probe data,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 2, pp. 436–445, 2017.

[5] M. Xu, K. Guo, J. Fang, and Z. Chen, “Utilizing artificial neural net-
work in gps-equipped probe vehicles data-based travel time estimation,”
IEEE Access, vol. 7, pp. 89 412–89 426, 2019.

[6] Y. Ishizaki, T. Sasama, T. Kawamura, and K. Sugahara, “Determining
location of bus and path planning considering bus delay,” in Proceedings
of SICE Annual Conference 2010. IEEE, 2010, pp. 2436–2437.

[7] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating
hidden markov model with precomputation,” International Journal of
Geographical Information Science, vol. 32, no. 3, pp. 547–570, 2018.
[Online]. Available: https://doi.org/10.1080/13658816.2017.1400548

[8] T. Fomby, “Scoring measures for prediction problems,” Department of
Economics, Southern Methodist University, Dallas, TX, 2008.

[9] RIDE2RAIL Consortium, “D3.3 – crowd-based travel expert ser-
vice,” available from https://ride2rail.eu/wp-content/uploads/2022/07/
RIDE2RAIL-D3.3-Crowd-based-Travel-Expert-Service.pdf, 2022, ac-
cessed: 14/07/2022.

https://doi.org/10.1080/13658816.2017.1400548
 https://ride2rail.eu/wp-content/uploads/2022/07/RIDE2RAIL-D3.3-Crowd-based-Travel-Expert-Service.pdf
 https://ride2rail.eu/wp-content/uploads/2022/07/RIDE2RAIL-D3.3-Crowd-based-Travel-Expert-Service.pdf

	Introduction
	Related Works
	Preliminaries
	Problem Definition
	Map Services and Open Street Map
	Map Matching
	Error Criteria

	Delay Detection
	Delay Estimation
	Deviation Recognition

	Data Set for Evaluation
	Result and Evaluation
	Conclusions
	References

