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Performance Assessment of Convex Low-Thrust Trajectory
Optimization Methods∗

Christian Hofmann†, Andrea C. Morelli‡ and Francesco Topputo§
Politecnico di Milano, Milan, Italy, 20156

Different discretization and trust-region methods are compared for the low-thrust fuel-

optimal trajectory optimization problem using successive convex programming. In particular,

the differential and integral formulations of the adaptive pseudospectral Legendre–Gauss–

Radau method, an arbitrary-order Legendre–Gauss–Lobatto technique based on Hermite

interpolation, and a first-order-hold discretization are considered. The number of discretization

points and segments is varied. Moreover, two hard trust-region methods and a soft trust-region

strategy are compared. It is briefly discussed whether these methods, if implemented on relevant

hardware, would fulfill the general requirements for onboard guidance. A perturbed cubic

interpolation and the propagation of the nonlinear dynamics are used to generate initial guesses

of varying quality. Interplanetary transfers to a near-Earth asteroid, Venus, and asteroid

Dionysus are chosen to assess the overall performance.

Nomenclature

𝑡 = time

r, v = position and velocity vectors, respectively

𝑚 = mass

T = thrust vector

𝑇max = maximum thrust magnitude

x, u = state and control vectors, respectively

𝝉 = acceleration vector due to thrust

Γ = magnitude of 𝝉

f = dynamics of the problem

¯(·) = reference value of quantity (·)

A, B = Jacobian matrices related to states and controls, respectively
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𝝂, 𝜂 = slack variables

𝑅 = trust-region radius

𝐾 = number of trajectory segments

𝑁𝑘 = number of nodes of trajectory segment 𝑘 in pseudospectral methods

D, I = differentiation and integration matrices in pseudospectral methods, respectively

1 = identity matrix

𝑛𝑥 , 𝑛𝑢 = number of states and controls, respectively

a, au = coefficient vectors for states and controls in Legendre–Gauss–Lobatto method, respectively

𝑛𝑝 , 𝑛𝑐 = number of nodes and collocation points per segment in Legendre–Gauss–Lobatto method, respectively

𝚽 = state transition matrix

𝜌 = ratio of actual and predicted cost decrease

𝛼, 𝛽 = trust-region shrinking and growing rates, respectively

𝛿 = adjustment parameter in hard trust-region methods

𝜆TR = penalty parameter in soft trust-region method

𝑁 = total number of discretization points

Subscripts

0 = initial value

𝑓 = final value

𝑙 = lower bound

𝑢 = upper bound

Acronyms

PDG = powered descent guidance

LTO = low-thrust trajectory optimization

SCP = sequential convex programming

ZOH = zero-order hold

FOH = first-order hold

LGL = Legendre–Gauss–Lobatto

LG = Legendre–Gauss

RPM = Radau pseudospectral method

LGR = Legendre–Gauss–Radau

FRPM = flipped Radau pseudospectral method

2



I. Introduction
The number of new space missions has grown rapidly, and especially interplanetary CubeSats are becoming

increasingly important as the success of NASA’s MarCO mission has shown [1]. Their low development costs make

them an appealing option for many missions. Although the computational capability of onboard computers has increased

continuously in the past years, only minor advances in the guidance and control systems have taken place. It is therefore

not surprising that a paradigm shift is currently happening [2]. Rather than calculating the guidance and control actions

on ground, these tasks shall be performed on board to reduce the operational costs even further [3].

Although feasibility is often sufficient for many applications, fuel consumption is of utmost importance for space

flight. The costs to launch a satellite still amount to several thousand dollars per kilogram, and decreasing the launch

mass can contribute to reducing the overall mission cost [4]. In addition, spacecraft (especially CubeSats) have severe

limitations regarding the propellant mass. Therefore, it is desirable to not only compute feasible, but also (near-)optimal

trajectories. This, however, requires solving a nonlinear optimal control problem. Direct and indirect methods are most

commonly used to find a solution [5]. Given the requirements for onboard applications, such as high reliability and low

computational effort, indirect methods play a rather secondary role, often due to the small convergence domain [6].

On the contrary, the recent developments of convex programming techniques have made direct methods a promising

approach for real-time guidance [7–9]. The successive optimization method allows solving nonconvex optimal control

problems with nonlinear dynamics and constraints, therefore being a viable alternative for many aerospace applications

such as powered descent guidance (PDG) [10] and low-thrust trajectory optimization (LTO) [11, 12]. Solving a series

of simpler, convex subproblems makes this method numerically tractable compared to solving a nonlinear program

directly. Two key characteristics of this so-called sequential convex programming technique (SCP) are the discretization

and trust-region methods; they strongly affect the results, especially the convergence properties. Yet, previous research

activities lack a thorough assessment and comparison of relevant techniques for low-thrust trajectory optimization.

The most popular discretization techniques are collocation and control interpolation methods. The former

parameterize both the states and controls using some basis functions, whereas the latter parameterize only the control

history [5]. Due to its simplicity, the trapezoidal rule is one of the most important collocation methods [13–15]. Yet,

its poor accuracy often prevents the solver to find solutions that satisfy the nonlinear dynamics for long-duration

interplanetary transfers. Higher-order methods such as Hermite–Simpson collocation offer instead a good compromise

between computational effort and accuracy [16]. The arbitrary-order Hermite–Legendre–Gauss–Lobatto discretization is

a generalization of this method and a popular choice in nonlinear optimization as it allows approximating the states with

higher-order Hermite interpolating polynomials [17]. In global pseudospectral methods, in contrast, single Lagrange

interpolating polynomials are used to approximate the states and controls, respectively. As this results in dense matrices,

adaptive methods were developed where piecewise polynomials are used to approximate the trajectories [18]. There

are several categories of pseudospectral methods; the most important ones are based on Legendre–Gauss–Lobatto
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(LGL) [17], Legendre–Gauss (LG) [19], or Legendre–Gauss–Radau (LGR) points [20]. Several works adapted

collocation methods to convex programming and solved powered descent [21, 22] and low-thrust guidance problems

[11, 12, 23]. With regard to control interpolation methods, the control is approximated using a zero-order-hold (ZOH)

or first-order-hold (FOH) discretization. For ZOH, the control history is assumed piecewise constant, whereas for FOH,

it is approximated as a piecewise affine function [24]. Both methods performed well for powered descent guidance

problems [10, 24]. The ZOH discretization was also applied to low-thrust trajectory optimization problems in the

circular restricted three-body problem [25]. However, it is yet to be investigated how FOH performs in LTO.

The work in [26] compares different discretization methods for the PDG problem. However, the results cannot be

extended directly to the low-thrust trajectory optimization problem due to the different dynamics, constraints, and number

of switching times for fuel-optimal problems. One major difference is that the time horizon is considerably shorter in

PDG compared to the long-duration interplanetary transfers in LTO which can last several years. Therefore, many more

nodes are required to capture the state and control profiles accurately, especially if the number of revolutions increases.

Moreover, a global pseudospectral method using only one high-order polynomial as in [26] would result in dense

matrices and a considerable higher solving time (if a solution is found at all). For this reason, the differential and integral

formulations of an adaptive pseudospectral method developed by the authors are considered in this work. Standard

and flipped Legendre–Gauss–Radau points are used because they are a natural choice in an adaptive framework due to

the definition of the collocation points. Finally, the work in [26] only compared control interpolation methods (ZOH,

FOH, and Runge-Kutta) and pseudospectral methods. By considering the Hermite interpolation-based collocation,

pseudospectral methods, and the control interpolation method FOH, we believe that our selection covers the most

important and relevant discretization methods for solving the LTO problem.

The second part of this paper assesses different trust-region methods. Trust regions are imposed to keep the

linearization close to a reference solution. Most of the SCP methods found in literature use some type of trust-region

approach. For powered descent guidance problems, soft trust regions (where the constraint is penalized in the cost

function) are often used [24, 27]. In low-thrust trajectory optimization, simple hard trust regions (where the trust-region

constraint is imposed directly) are more common [11, 13]. The choice of the trust-region approach is often crucial as

this can decide whether a feasible solution is found or not. Furthermore, a poor choice of the parameters can deteriorate

the convergence. Such a behavior is undesirable and unacceptable for onboard applications. Soft trust regions often

work well in powered descent guidance problems, but they have not been used to determine low-thrust trajectories so far.

The contribution of this paper is threefold: first, none of the existing works has investigated how different trust-region

methods and their parameters affect the performance of the SCP algorithm for complex interplanetary low-thrust

fuel-optimal transfers. Moreover, no conclusion can be drawn on how the choice might affect the real-time capability of

the algorithm. For this reason, we compare the performance of two different hard trust-region methods (standard and

adaptive [11, 12]), and a modified soft trust-region method. Secondly, a convex formulation of the integral form of the
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adaptive Radau pseudospectral method (RPM) is presented for the first time and compared with existing methods such

as FOH, LGL, and the differential form of RPM. Lastly, to the best of the authors’ knowledge, this is the first time that

such an extensive assessment is carried out where the influence of discretization and trust-region methods, different

orders of the interpolating polynomial, number of nodes, and initial guesses on the performance is analyzed at the same

time. Additionally, general requirements for onboard guidance applications are discussed.

The paper is structured as follows. Section II states the optimal control problem and the convexification. Section III

describes the discretization methods, and Section IV presents the trust-region methods. The results are presented and

discussed in Section V. Section VI concludes this paper.

II. Problem Formulation
The motion of a spacecraft around a primary body is governed by the dynamics

¤r(𝑡) = v(𝑡) (1)

¤v(𝑡) = − 𝜇 r(𝑡)
∥r(𝑡)∥3

2
+

T(𝑡)
𝑚(𝑡)

(2)

¤𝑚(𝑡) = − ∥T(𝑡)∥2
𝑔0 𝐼sp

(3)

where r(𝑡) ∈ R3×1, v(𝑡) ∈ R3×1, and 𝑚(𝑡) ∈ R denote the position, velocity, and mass of the spacecraft, respectively. 𝜇 is

the gravitational parameter of the primary body and 𝑔0 denotes the gravitational acceleration at sea level. The control

actions are governed by the thrust components T(𝑡) ∈ R3×1, 𝐼sp ∈ R being the specific impulse.

We seek to minimize fuel usage, which is equivalent to maximizing the mass at the final time 𝑡 𝑓 :

minimize
T(𝑡)

− 𝑚(𝑡 𝑓 ) (4)

In this work, we intend to target a specific point
[
r⊤
𝑓
, v⊤
𝑓

]⊤
in space. Therefore, the boundary conditions at the initial 𝑡0

and final 𝑡 𝑓 times are

r(𝑡0) = r0, v(𝑡0) = v0, 𝑚(𝑡0) = 𝑚0 (5)

r(𝑡 𝑓 ) = r 𝑓 , v(𝑡 𝑓 ) = v 𝑓 (6)

where the value of the final mass is free. As the engine can provide only limited thrust, the following lower and upper

bounds on the thrust magnitude need to be imposed:

0 ≤ 𝑇min ≤ ∥T(𝑡)∥2 ≤ 𝑇max (7)

5



with the minimum 𝑇min and maximum 𝑇max available thrust magnitudes. Note that 𝑇min = 0 is used throughout this

paper.

The nonlinear part T(𝑡)/𝑚(𝑡) in Eq. (2) is eliminated by a change of variables [10]:

Γ(𝑡) ..=
∥T(𝑡)∥2
𝑚(𝑡)

, 𝝉(𝑡) ..=
T(𝑡)
𝑚(𝑡)

, 𝑧(𝑡) ..= ln𝑚(𝑡) (8)

As the thrust constraint in Eq. (7) becomes nonconvex now, it is linearized about the reference 𝑧:

0 ≤ Γ(𝑡) ≤ 𝑇maxe−𝑧̄ (1 − 𝑧(𝑡) + 𝑧(𝑡)) (9)

Moreover, the original nonconvex constraint ∥𝝉(𝑡)∥2 = Γ(𝑡) is relaxed to ∥𝝉(𝑡)∥2 ≤ Γ(𝑡). It can be shown that the

solution of the relaxed problem is also an optimal solution of the original problem [10]. Defining the states and controls

as x = [r⊤, v⊤, 𝑧]⊤ and u = [𝝉⊤, Γ]⊤, respectively, the new dynamics are

¤x(𝑡) = f(x(𝑡), u(𝑡)) =



v(𝑡)

−𝜇 r(𝑡)/∥r(𝑡)∥3
2 + 𝝉(𝑡)

−Γ(𝑡)/(𝑔0 𝐼sp)


(10)

Linearizing Eq. (10) about a reference solution x̄ and adding a trust-region constraint to keep the linearization valid, the

convexified optimization problem is stated as follows:

minimize
u(𝑡)

− 𝑧(𝑡 𝑓 ) + 𝜆 ∥𝝂(𝑡)∥1 + 𝜆 max(0, 𝜂(𝑡)) (11a)

subject to: ¤x(𝑡) = A(x̄(𝑡)) x(𝑡) + Bu(𝑡) + q(x̄(𝑡), ū(𝑡)) + 𝝂(𝑡) (11b)

Γ(𝑡) ≤ 𝑇maxe−𝑧̄(𝑡) (1 − 𝑧(𝑡) + 𝑧(𝑡)) + 𝜂(𝑡) (11c)

∥𝝉(𝑡)∥2 ≤ Γ(𝑡) (11d)

∥x(𝑡) − x̄(𝑡)∥1 ≤ 𝑅 (11e)

r(𝑡0) = r0, v(𝑡0) = v0, 𝑧(𝑡0) = 𝑧0 (11f)

r(𝑡 𝑓 ) = r 𝑓 , v(𝑡 𝑓 ) = v 𝑓 (11g)

x𝑙 ≤ x(𝑡) ≤ x𝑢, u𝑙 ≤ u(𝑡) ≤ u𝑢 (11h)

where

A(x̄(𝑡)) ..=
𝜕f
𝜕x

���
x̄(𝑡)
, B ..=

𝜕f
𝜕u

���
ū(𝑡)
, q(x̄(𝑡), ū(𝑡)) ..= f(x̄(𝑡), ū(𝑡)) − A(x̄(𝑡)) x̄(𝑡) − Bū(𝑡) (12)
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Note that Eqs. (11b) and (11c) are augmented with slack variables 𝝂(𝑡) and 𝜂(𝑡) ≥ 0 to avoid artificial infeasibility. They

are penalized in the cost function in Eq. (11a) with a sufficiently large parameter 𝜆 > 0. The trust-region constraint in

Eq. (11e) with radius 𝑅 is imposed to keep the linearization close to the reference. Equation (11h) represents the upper

and lower bounds on the state and control variables, respectively.

III. Discretization Methods
The following discretization methods are considered in this work [28]:

1) An adaptive Legendre–Gauss–Radau pseudospectral method.

2) An arbitrary-order Legendre–Gauss–Lobatto method based on Hermite interpolation.

3) A first-order-hold discretization.

The RPM has demonstrated to perform well for nonlinear programs and also low-thrust trajectory design within convex

programming [11, 18]. Moreover, as either the initial or final point is not collocated, it is an appropriate choice for an

adaptive framework as there is no redundancy or even lack of nodes between consecutive segments compared to other

pseudospectral methods that are based on Legendre–Gauss or Legendre–Gauss–Lobatto points [29]. We also consider

the arbitrary-order Legendre–Gauss–Lobatto method based on Hermite interpolation as it is a generalization of the

well-known Hermite-Simpson collocation. It therefore covers a wide range of methods that have proven effective to

solve nonlinear programs [30]. FOH is chosen as it belongs to the class of control interpolation techniques. Note that

the zero-order-hold discretization is not considered due to the poor approximation of the thrust profile.

A. Adaptive Legendre–Gauss–Radau Pseudospectral Method

In an adaptive pseudospectral method, the trajectory is divided into 𝐾 segments and the states and controls are

approximated using Lagrange interpolating polynomials of arbitrary degrees. The collocation points are defined as the

roots of the polynomial 𝑃𝑁−1(𝜉) + 𝑃𝑁 (𝜉) where 𝑃𝑁 is the 𝑁th degree Legendre polynomial. These points are defined

in the pseudospectral time domain 𝜉 ∈ [−1, 1]. The transformation between the physical 𝑡 and pseudospectral time is

given by [31]

𝑡
(𝑘)
𝑖

=
𝑡
(𝑘)
𝑁𝑘

− 𝑡(𝑘)
0

2
𝜉

(𝑘)
𝑖

+
𝑡
(𝑘)
𝑁𝑘

+ 𝑡(𝑘)
0

2
𝑖 = 0, 1, ..., 𝑁𝑘 (13)

Throughout this section, the number of collocation points per segment (and hence, the degree of the interpolating

polynomial) is denoted as 𝑁𝑘 , and x(𝑘)
𝑖
, u(𝑘)
𝑖
refer to the 𝑖th point of the 𝑘th segment of states and controls at time 𝑡(𝑘)

𝑖
,

with 𝑖 = 0, 1, ..., 𝑁𝑘 and 𝑘 = 1, ..., 𝐾 . The states and controls are approximated in the interval [−1, 1] as follows:

x(𝑘)(𝜉) =
𝑁𝑘∑︁
𝑖=0

x(𝑘)
𝑖
𝐿

(𝑘)
𝑖

(𝜉), u(𝑘)(𝜉) =
𝑁𝑘∑︁
𝑖=0

u(𝑘)
𝑖
𝐿

(𝑘)
𝑖

(𝜉) (14)
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with

𝐿
(𝑘)
𝑖

(𝜉) =
𝑁𝑘∏
𝑗=0
𝑗 ̸=𝑖

𝜉 − 𝜉 𝑗
𝜉𝑖 − 𝜉 𝑗

(15)

Depending on the chosen method, the initial or final point may or may not be included in the interpolation. The basic

idea of pseudospectral methods is to approximate the differential operator as ¤x(𝑘) ≈ D(𝑘)x(𝑘) where D(𝑘) ∈ R𝑁𝑘×(𝑁𝑘+1) is

a non-square differentiation matrix whose elements are defined as 𝐷𝑖 𝑗 ..= 𝐿 ′
𝑗
(𝜉𝑖) [32].

This work presents two formulations of the adaptive Radau pseudospectral method:

1) A Radau pseudospectral method using the standard Legendre–Gauss–Radau points.

2) A flipped Radau pseudospectral method (FRPM) using the flipped LGR points.

We dedicate individual sections to each method as they differ in several aspects. The differential and integral formulations

of each method are considered. RPM and the integral form of FRPM are presented for the first time.

1. Adaptive Radau Pseudospectral Method

The dynamics are approximated at the LGR points defined on [−1, 1). Therefore, the last node of each segment is

not a collocation point, but it is used to approximate the state. Note, however, that the final control u(𝐾)
𝑁𝐾
is not obtained

in the solution process and must therefore be determined by extrapolation. Using the differentiation matrix D(𝑘), the

dynamics can be written in differential form as follows [33]:

𝑁𝑘∑︁
𝑗=0

𝐷
(𝑘)
𝑖 𝑗

x(𝑘)
𝑗

=
𝑡
(𝑘)
𝑁𝑘

− 𝑡(𝑘)
0

2
f(x(𝑘)

𝑖
, u(𝑘)
𝑖

)

=
𝑡
(𝑘)
𝑁𝑘

− 𝑡(𝑘)
0

2

[
A(x̄(k)

i )x(𝑘)
𝑖

+ Bu(𝑘)
𝑖

+ q(x̄(𝑘)
𝑖

) + 𝝂(𝑘)
𝑖

]
, 𝑖 = 0, 1, ..., 𝑁𝑘 − 1

(16)

The factor Δ ..=
𝑡

(𝑘)
𝑁𝑘

−𝑡 (𝑘)
0

2 is needed due to the time transformation from the physical time to [−1, 1]. As the final point of

each segment is not collocated, the linking condition x(𝑘)
𝑁𝑘

= x(𝑘+1)
0 must hold for segments 𝑘 < 𝐾. The dynamics can

then be written in standard form as a linear equality constraint:



Â(1)

0
B̂(1)

0
1(1)

0

0

. . .
0

. . .
0

. . .

Â(𝐾) B̂(𝐾) 1(𝐾)


·



X

U

𝝂


=



q̂(1)

...

q̂(𝐾)


(17)

where the matrices Â(𝑘) and B̂(𝑘) are calculated using D(𝑘) and the Jacobian matrices defined in Eq. (12). 1(𝑘) are

identity matrices and q̂(𝑘) are comprised of the constant parts of the linearization. X, U, and 𝝂 denote the concatenated
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states, controls, and virtual controls, respectively. The Â(𝑘) take the following form

Â(𝑘) =



𝐷00 1 − ΔA0 𝐷01 1 . . . 𝐷0,𝑁𝑘−1 1 𝐷0,𝑁𝑘 1

𝐷10 1 𝐷11 1 − ΔA1 . . . 𝐷1,𝑁𝑘−1 1 𝐷1,𝑁𝑘 1
...

...
. . .

...
...

𝐷𝑁𝑘−1,0 1 . . . 𝐷𝑁𝑘−1,𝑁𝑘−1 1 − ΔA𝑁𝑘−1 𝐷𝑁𝑘−1,𝑁𝑘 1


(18)

where we omitted (·)(𝑘) for the sake of conciseness. B̂(𝑘) are diagonal matrices with entries −ΔB𝑖 , and q̂(𝑘) is a

concatenated vector where the elements take the form Δq𝑖 .

It was observed that an equivalent integral formulation of Eq. (16) may yield more consistent results for solving

nonlinear programs [34]. We extend this approach to our convex optimization framework: defining an integration

matrix I ∈ R𝑁𝑘×𝑁𝑘 as I ..= D−1
1:𝑁𝑘 where D1:𝑁𝑘 is obtained by removing the first column of D, the dynamics are

x(𝑘)
𝑖+1 = x(𝑘)

0 +
𝑡
(𝑘)
𝑁𝑘

− 𝑡(𝑘)
0

2

𝑁𝑘−1∑︁
𝑗=0

𝐼
(𝑘)
𝑖 𝑗

f(x(𝑘)
𝑗
, u(𝑘)
𝑗

)

= x(𝑘)
0 +

𝑡
(𝑘)
𝑁𝑘

− 𝑡(𝑘)
0

2

𝑁𝑘−1∑︁
𝑗=0

𝐼
(𝑘)
𝑖 𝑗

[
A(x̄(𝑘)

𝑗
)x(𝑘)
𝑗

+ Bu(𝑘)
𝑗

+ q(x̄(𝑘)
𝑗

) + 𝝂(𝑘)
𝑗

]
𝑖 = 0, ..., 𝑁𝑘 − 1

(19)

The Â(𝑘)
int are now given as

Â(𝑘)
int =



−1 − Δ 𝐼00A0 1 − Δ 𝐼01A1 −Δ 𝐼02A2 . . . −Δ 𝐼0,𝑁𝑘−1A𝑁𝑘−1 0

−1 − Δ 𝐼10A0 −Δ 𝐼11A1 −1 − Δ 𝐼12A2 . . . −Δ 𝐼1,𝑁𝑘−1A𝑁𝑘−1 0
...

...
...

. . .
...

...

−1 − Δ 𝐼𝑁𝑘−2,0A0 −Δ 𝐼𝑁𝑘−2,1A1 −Δ 𝐼𝑁𝑘−2,2A2 . . . −1 − Δ 𝐼𝑁𝑘−2,𝑁𝑘−1A𝑁𝑘−1 0

−1 − Δ 𝐼𝑁𝑘−1,0A0 −Δ 𝐼𝑁𝑘−1,1A1 −Δ 𝐼𝑁𝑘−1,2A2 . . . −Δ 𝐼𝑁𝑘−1,𝑁𝑘−1A𝑁𝑘−1 1



(20)

B̂(𝑘)
int and q̂(𝑘)

int can be calculated in a similar way using Eq. (19).

As the initial x(1)
0 and final x

(𝐾)
𝑁𝐾
states are included in the optimization, initial and final boundary conditions can be

imposed as simple equality constraints.
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2. Adaptive Flipped Radau Pseudospectral Method

In the FRPM, the collocation points are defined on the interval (−1, 1], i.e. the initial node of each segment is not

collocated. Given the standard LGR points 𝜃 ∈ [−1, 1), the flipped values 𝜃 ∈ (−1, 1] can be computed using

𝜃 = sort(−𝜃) (21)

where 𝑠𝑜𝑟𝑡 sorts the values in ascending order. Consequently, the initial control is not part of the optimization process.

In contrast to RPM, we do not include the initial node in the state approximation this time. Rather, we make use of the

fact that x(1)
0 is equal to the initial boundary condition x0. The dynamics in differential form then read [11]

𝐷
(𝑘)
𝑖0 x(𝑘)

0 +
𝑁𝑘∑︁
𝑗=1

𝐷
(𝑘)
𝑖 𝑗

x(𝑘)
𝑗

=
𝑡
(𝑘)
𝑁𝑘

− 𝑡(𝑘)
0

2

[
A(x̄(k)

i )x(𝑘)
𝑖

+ B(x̄(k)
i )u(𝑘)

𝑖
+ q(x̄(𝑘)

𝑖
) + 𝝂(𝑘)

𝑖

]
𝑖 = 1, ..., 𝑁𝑘 (22)

where x(𝑘)
0 is the initial state of each segment, and x(1)

0 = x0. The integral form is

x(𝑘)
𝑖

= x(𝑘)
0 +

𝑡
(𝑘)
𝑁𝑘

− 𝑡(𝑘)
0

2

𝑁𝑘∑︁
𝑗=1

𝐼
(𝑘)
𝑖 𝑗

[
A(x̄(𝑘)

𝑗
)x(𝑘)
𝑗

+ Bu(𝑘)
𝑗

+ q(x̄(𝑘)
𝑗

) + 𝝂(𝑘)
𝑗

]
𝑖 = 1, ..., 𝑁𝑘 (23)

The dynamics can again be formulated as a single constraint. The interested reader is referred to [11] for details on the

differential form. We present only the integral formulation as it has not been reported in the literature:

Â(𝑘)
int,FRPM =



1 − Δ 𝐼11A1 −Δ 𝐼12A1 . . . −Δ 𝐼1,𝑁𝑘A𝑁𝑘

−Δ 𝐼21A1 1 − Δ 𝐼22A2 . . . −Δ 𝐼2,𝑁𝑘A𝑁𝑘

...
...

. . .
...

−Δ 𝐼𝑁𝑘 ,1A1 −Δ 𝐼𝑁𝑘 ,2A2 . . . 1 − Δ 𝐼𝑁𝑘 ,𝑁𝑘A𝑁𝑘

0 0 . . . −1̃



, q̂(𝑘)
int,FRPM =



Δ
∑𝑁𝑘
𝑗=1 𝐼1 𝑗q(x̄ 𝑗 )
...

Δ
∑𝑁𝑘
𝑗=1 𝐼𝑁𝑘 , 𝑗q(x̄ 𝑗 )


(24)

where (·)(𝑘) was again omitted. 1̃ ∈ R𝑁𝑘𝑛𝑥×𝑛𝑥 consists of vertically concatenated identity matrices, 𝑛𝑥 = 7 being the

number of states. For 𝑘 = 1, a concatenated vector of the initial states, i.e. [x⊤0 , x
⊤
0 , . . . ]

⊤, is to be added to q̂(𝑘)
int,FRPM in

Eq. (24) to account for the non-collocated initial node. The structure of B̂(𝑘)
int,FRPM is similar to Â(𝑘)

int,FRPM.

B. Arbitrary-Order Legendre–Gauss–Lobatto Method

The arbitrary-order Legendre–Gauss–Lobatto discretization method relies on Hermite interpolation [35]. The idea

is to use the information of the states and the dynamics at the nodal points and express the constraints at the collocation

points by approximating the state variables with arbitrary-order polynomials in each segment [35, 36]. The total time of
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flight is divided into 𝐾 segments. Each segment [𝑡𝑘 , 𝑡𝑘+1] is mapped into the interval [−1, 1] through the transformation

𝑡 → ℎ

2
𝜉 +

𝑡𝑘+1 + 𝑡𝑘
2

, 𝑘 = 1, . . . , 𝐾 − 1 (25)

where 𝜉 ∈ [−1, 1] and ℎ = 𝑡𝑘+1 − 𝑡𝑘 is the time step. In this work, nodes and collocation points are defined inside the

interval [−1, 1] as the roots of the derivative of the (𝑛 − 1)th order Legendre polynomial [36], where 𝑛 is the order of the

method. Given 𝑛, the state x(𝑘)(𝜉) ∈ R𝑛𝑥×1 (𝑛𝑥 = 7) is approximated inside the 𝑘th segment as

x(𝑘)(𝜉) ≈ a(𝑘)
0 + a(𝑘)

1 𝜉 + · · · + a(𝑘)
𝑛 𝜉

𝑛, 𝑘 = 1, . . . , 𝐾 (26)

where the column vectors of coefficients a(𝑘)
𝑚 ∈ R𝑛𝑥×1, 𝑚 = 0, . . . , 𝑛 are unknowns that are found by solving the

following linear system:



1𝑛𝑥 𝜃11𝑛𝑥 𝜃2
11𝑛𝑥 . . . 𝜃𝑛1 1𝑛𝑥

...
...

...
...

...

1𝑛𝑥 𝜃𝑛𝑝1𝑛𝑥 𝜃2
𝑛𝑝

1𝑛𝑥 . . . 𝜃𝑛𝑛𝑝1𝑛𝑥

0𝑛𝑥 1𝑛𝑥 2𝜃11𝑛𝑥 . . . 𝑛𝜃𝑛−1
1 1𝑛𝑥

...
...

...
...

...

0𝑛𝑥 1𝑛𝑥 2𝜃𝑛𝑝1𝑛𝑥 . . . 𝑛𝜃𝑛−1
𝑛𝑝

1𝑛𝑥

︸                                                    ︷︷                                                    ︸
𝜽



a(𝑘)
0

...

a(𝑘)
𝑛𝑝

...

a(𝑘)
𝑛−1

a(𝑘)
𝑛

︸ ︷︷ ︸
a(𝑘)

=



x(𝑘)(𝜃1)
...

x(𝑘)(𝜃𝑛𝑝 )

ℎ
2 f(𝑘)
𝑙

(𝜃1)
...

ℎ
2 f(𝑘)
𝑙

(𝜃𝑛𝑝 )

︸         ︷︷         ︸
b(𝑘)

(27)

In Eq. (27), 𝜃 𝑗 are the positions of the nodal points, 𝑛𝑝 = (𝑛 + 1)/2 is the number of nodes in each segment, 1𝑛𝑥 is

the 𝑛𝑥 × 𝑛𝑥 identity matrix, 0𝑛𝑥 the 𝑛𝑥 × 𝑛𝑥 null matrix, and f𝑙(𝜃 𝑗 ) the linearized dynamics as in Eq (11b). Once the

coefficients a(𝑘)
𝑚 have been determined as a(𝑘) = 𝜽−1b(𝑘), Eq. (26) can be used to define the state at the collocation points:

x(𝑘)(𝜁) =



1𝑛𝑥 𝜁11𝑛𝑥 . . . 𝜁𝑛1 1𝑛𝑥

1𝑛𝑥 𝜁21𝑛𝑥 . . . 𝜁𝑛2 1𝑛𝑥
...

...
...

...

1𝑛𝑥 𝜁𝑛𝑐1𝑛𝑥 . . . 𝜁𝑛𝑛𝑐1𝑛𝑥

︸                                  ︷︷                                  ︸
𝜻



a(𝑘)
0

a(𝑘)
1

...

a(𝑘)
𝑛

︸︷︷︸
a(𝑘)

= 𝜻𝜽−1b(𝑘) = 𝝓b(𝑘)

(28)

where 𝜁 𝑗 are the positions of the collocation points, and 𝑛𝑐 = (𝑛 − 1)/2 is the number of collocation points within each

segment. The derivative of the state at the collocation points can be found in a similar fashion by deriving the matrix 𝜻 .
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Similarly, the control u(𝑘)(𝜉) ∈ R𝑛𝑢×1 (𝑛𝑢 = 4) is approximated in each segment as

u(𝑘)(𝜉) ≈ a(𝑘)
𝑢,0 + a(𝑘)

𝑢,1𝜉 + · · · + a(𝑘)
𝑢,𝑛𝜉

𝑛𝑝−1, 𝑘 = 1, . . . , 𝐾 (29)

where the column vectors of coefficients a(𝑘)
𝑢,𝑚 ∈ R𝑛𝑢×1, 𝑚 = 0, . . . , 𝑛 are unknowns, obtained in a similar fashion as for

the coefficients a(𝑘)
𝑚 inside Eq. (27). Note, however, that for the control no information about its dynamics is available

and thus only the first 𝑛𝑝 rows of the system can be considered. For this reason, the control is approximated by means of

a polynomial of order 𝑛𝑝 − 1. The quantities 𝝓𝑢 and b(𝑘)
𝑢 are defined accordingly. Once the matrices and vectors of all

trajectory segments are computed, the dynamical constraints can be written as

𝚫 = 𝚽′b̂ − ℎ

2
[f̂ 𝑓 + Â(𝚽b̂ −𝚽b̂∗) + B̂𝚽𝑢b̂𝑢] = 0 (30)

where the capital letters and ˆ(·) indicate the concatenated quantities, and f̂ 𝑓 denotes the assembled free dynamics of the

spacecraft. For a detailed explanation of the method, the interested reader is referred to [12].

C. First-Order-Hold Method

Given 𝑁 nodes, the time horizon is divided into 𝑁 − 1 equidistant segments with

𝑡0 = 𝑡1 < 𝑡2 < · · · < 𝑡𝑁 = 𝑡 𝑓 (31)

The control history u(𝑡) is approximated as a piecewise affine function using

u(𝑡) =
𝑡𝑖+1 − 𝑡
𝑡𝑖+1 − 𝑡𝑖︸   ︷︷   ︸

=..𝜆−(𝑡)

u𝑖 +
𝑡 − 𝑡𝑖
𝑡𝑖+1 − 𝑡𝑖︸   ︷︷   ︸

=..𝜆+(𝑡)

u𝑖+1 = 𝜆−(𝑡) u𝑖 + 𝜆+(𝑡) u𝑖+1, 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] (32)

where u𝑖 denotes the discretized control at node 𝑖, 𝑖 = 1, . . . , 𝑁 − 1. The linearized dynamics are then

¤x(𝑡) = A(𝑡) x(𝑡) + B𝜆−(𝑡) u𝑖 + B𝜆+(𝑡) u𝑖+1 + q(𝑡) (33)

Given the state transition matrix 𝚽 that satisfies

d
d𝑡
𝚽(𝑡, 𝑡0) = A(𝑡)𝚽(𝑡, 𝑡0), 𝚽(𝑡0, 𝑡0) = 1 (34)
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Eq. (33) can be rewritten in discretized form to obtain [37]

x𝑖+1 = A𝑖 x𝑖 + B−
𝑖 u𝑖 + B+

𝑖 u𝑖+1 + q𝑖 + 𝝂𝑖 (35)

with

A𝑖 = 𝚽(𝑡𝑖+1, 𝑡𝑖) (36a)

B−
𝑖 = A𝑖

∫ 𝑡𝑖+1

𝑡𝑖

𝚽−1(𝑡, 𝑡𝑖) B(𝑡)𝜆−(𝑡) d𝑡 (36b)

B+
𝑖 = A𝑖

∫ 𝑡𝑖+1

𝑡𝑖

𝚽−1(𝑡, 𝑡𝑖) B(𝑡)𝜆+(𝑡) d𝑡 (36c)

q𝑖 = A𝑖
∫ 𝑡𝑖+1

𝑡𝑖

𝚽−1(𝑡, 𝑡𝑖) q(𝑡) d𝑡 (36d)

The state transition matrix in Eq. (34), the nonlinear dynamics in Eq. (10), and the integrands of Eqs. (36b)–(36d) are

integrated simultaneously to compute A𝑖 ,B−
𝑖
,B+
𝑖
, and q𝑖 at each node. These matrices are then used to create a single

equality constraint for the discretized dynamics.

Remark: The nonlinear dynamics are integrated using

x̄(𝑡) = x̄𝑖 +
∫ 𝑡
𝑡𝑖

f(x(𝜉), u(𝜉)) d𝜉 (37)

to obtain the reference state at 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1]. In this work, an explicit fixed-step 8th-order Runge-Kutta method is used

for numerically integrating Eq. (37).

IV. Trust-Region Methods
Trust-region methods use some kind of merit function to measure the progress in each SCP iteration 𝑘 . We define

𝜌(𝑘) as the ratio

𝜌(𝑘) =
actual cost decrease
predicted cost decrease

(38)

where the actual cost decrease is calculated using the nonlinear constraints, and the predicted cost decrease is based on

the linear constraint violations [27]. Depending on the value of 𝜌(𝑘), the solution is accepted or rejected. In this work,

three trust-region methods are considered:

1) Hard trust region with constant trust-region shrinking and growing rates.

2) Hard trust region with varying trust-region shrinking and growing rates.

3) Soft trust region with constant shrinking and growing rates.

The constraint in Eq. (11e) is imposed explicitly in hard trust-region methods, whereas in soft trust-region methods it is

13



penalized in the objective function.

A. Hard Trust Region With Constant Rates

Hard trust regions with constant parameters are most often used in space trajectory optimization problems due

to their simplicity [11, 13, 14]. Defining three parameters 0 < 𝜌0 < 𝜌1 < 𝜌2 < 1, a step at iteration 𝑘 is rejected

if 𝜌(𝑘) < 𝜌0 because this indicates that there is no (sufficiently large) progress. When a solution is accepted, the

trust-region radius 𝑅 is updated as follows:

𝑅(𝑘+1) =



𝑅(𝑘)/𝛼 if 𝜌0 ≤ 𝜌(𝑘) < 𝜌1

𝑅(𝑘) if 𝜌1 ≤ 𝜌(𝑘) < 𝜌2

𝛽 𝑅(𝑘) if 𝜌(𝑘) ≥ 𝜌2

(39)

where the trust-region shrinking rate 𝛼 > 1 and growing rate 𝛽 > 1 are two constants.

B. Hard Trust Region With Varying Rates

We allow 𝛼 and 𝛽 to vary based on the values of 𝜌 in the current 𝑘 and previous iteration 𝑘 − 1. Defining the

constant parameter 𝛿 > 1, 𝛼 and 𝛽 are updated as follows [12]:

1) If 𝜌(𝑘) ≥ 𝜌0 and 𝜌(𝑘−1) ≥ 𝜌0, then 𝛽(𝑘) = 𝛿𝛽(𝑘−1) and 𝛼(𝑘) = 𝛼(𝑘−1)/𝛿. The growing rate is increased and the

shrinking rate decreased if the previous and current iterations are accepted.

2) If 𝜌(𝑘) ≥ 𝜌0 and 𝜌(𝑘−1) < 𝜌0, then 𝛽(𝑘) = 𝛽(𝑘−1)/𝛿 and 𝛼(𝑘) = 𝛿𝛼(𝑘−1). The growing rate is decreased and the

shrinking rate increased if only the current step is accepted.

3) If 𝜌(𝑘) < 𝜌0 and 𝜌(𝑘−1) ≥ 𝜌0, then 𝛼(𝑘) = 𝛼(𝑘−1) and 𝛽(𝑘) = 𝛽(𝑘−1). The rates remain constant if the previous step

was accepted and the current one is rejected.

4) If 𝜌(𝑘) < 𝜌0 and 𝜌(𝑘−1) < 𝜌0, then 𝛼(𝑘) = 𝛿𝛼(𝑘−1). The shrinking rate is increased if both steps are rejected.

In addition, bounds are imposed on 𝛼 and 𝛽 such that 𝛼min ≤ 𝛼 ≤ 𝛼max and 𝛽min ≤ 𝛽 ≤ 𝛽max.

C. Soft Trust Region

Instead of imposing the trust-region constraint in Eq. (11e) directly, the performance index in Eq. (11a) is augmented

with a penalty function 𝑝(x):

minimize
u(𝑡)

− 𝑧(𝑡 𝑓 ) + 𝜆 ∥𝝂(𝑡)∥1 + 𝜆 max(0, 𝜂(𝑡)) + 𝑝(x) (40)

14



where 𝑝(x) penalizes any violation of the trust-region constraint 𝑔TR ..= ∥x(𝑡) − x̄(𝑡)∥1 − 𝑅 ≤ 0. In particular, we choose

the differentiable and nondecreasing function

𝑝(x) = 𝜆TR [max (0, ∥x(𝑡) − x̄(𝑡)∥1 − 𝑅)]2 (41)

with the penalty parameter 𝜆TR > 0. The update mechanism is as follows [38]:

Case 1: 𝑔TR > 0: reject step and set 𝜆(𝑘+1)
TR = 𝜁 𝜆(𝑘)

TR for 𝜁 > 0.

Case 2: 𝑔TR ≤ 0 and 𝜌(𝑘) < 𝜌0: reject the step and set 𝑅(𝑘+1) = 𝑅(𝑘)/𝛼.

Case 3: 𝑔TR ≤ 0 and 𝜌1 ≤ 𝜌(𝑘) < 𝜌2: accept the step and set 𝑅(𝑘+1) = 𝑅(𝑘)/𝛼 and 𝜆(𝑘+1)
TR = 𝜆TR,0.

Case 4: 𝑔TR ≤ 0 and 𝜌(𝑘) > 𝜌2: accept the step and set 𝑅(𝑘+1) = 𝛽 𝑅(𝑘) and 𝜆(𝑘+1)
TR = 𝜆TR,0.

with some parameter 𝜆TR,0 > 0.

V. Numerical Simulations
The performance of the discretization and trust-region methods is assessed in several thousand simulations. The

number of converged simulations, iterations, final mass, computational time, propagation error, and the sparsity of the

matrices of the discretized problem are compared. All simulations are carried out in MATLAB. The computational

times are measured on an Intel Core i5-6300 2.30 GHz Laptop with four cores and 8 GB of RAM. The Embedded Conic

Solver (ECOS) is used to solve the second-order cone program in Eqs. (11) [39]. Details about the trust-region-based

SCP algorithm can be found in [40, 41]. The algorithm converges if the maximum constraint violation and the relative

change of the modified final mass 𝑧(𝑡 𝑓 ) are lower than thresholds 𝜀𝑐 and 𝜀𝜙 , respectively. The algorithm also terminates

without successful convergence to an optimal solution if there is no sufficient progress, that is, if the relative difference

of the solution vector in two consecutive iterations 𝑖 and 𝑖 + 1 is smaller than 𝜀𝑥 :

∥x𝑖 − x𝑖+1∥
∥x𝑖 ∥

< 𝜀𝑥 (42)

Relevant SCP parameters are given in Table 1. Different combinations of 𝜌𝑖 (𝑖 = 0, 1, 2), 𝛼, 𝛽, and 𝛿 for the hard, and

𝜆TR, 𝜆TR,0, and 𝜁 for the soft trust-region method were assessed in preliminary simulations. We found that the values in

Table 1 perform well and are often a good compromise in terms of convergence, optimality, and number of iterations.

The physical constants and scaling parameters are given in Table 2. Throughout this section, we refer to (F)RPM-D

and (F)RPM-I for the differential and integral formulations of the (flipped) Radau pseudospectral method, LGL for the

Legendre–Gauss–Lobatto method based on Hermite interpolation, and FOH for the first-order-hold method.

15



Table 1 Parameters of the SCP algorithms.

Parameter Value

Penalty weight 𝜆 10.0
Initial trust region 𝑅0 100.0
𝜌0, 𝜌1, 𝜌2 0.01, 0.2, 0.85
𝛼, 𝛽 1.5, 1.5
𝛼min, 𝛽min 1.01, 1.01
𝛼max, 𝛽max 4.0, 4.0
𝛿 1.0, 1.2
𝜆TR, 𝜆TR,0, 𝜁 1010, 107, 5.0
𝜀𝑐, 𝜀𝜙 , 𝜀𝑥 10−6, 10−4, 10−7

Max. iterations 250

Table 2 Physical constants in all simulations.

Parameter Value

Gravitational constant 𝜇 1.3271244 × 1011 km3/s2

Gravitational acceleration 𝑔0 9.80665 × 10−3 km/s2

Length unit LU = AU 1.495978707 × 108 km
Velocity unit VU

√︁
𝜇/LU

Time unit TU LU/VU
Acceleration unit ACU VU/TU
Mass unit MU 𝑚0

A. Overview of Simulations

Three different targets (near-Earth asteroid 2000 SG344, Venus, and asteroid Dionysus) where the complexity of the

transfers increases, and two methods to generate (infeasible) initial guesses of different quality (perturbed shape-based

cubic interpolation approach and propagation of dynamics) are taken into account. The simulation values of each target

are given in Table 3, and Table 4 summarizes the number of initial guesses. The comparison of an optimal trajectory and

the ones generated with cubic interpolation and propagation are illustrated in Fig. 1. Clearly, the optimal one deviates

significantly, and the final positions of the initial guesses are far from the target position. Note that the initial controls

are set to zero in all simulations. Figures 3, 4, and 5 show typical optimized trajectories and the corresponding thrust

profiles (linearly interpolated between the nodes) for the SEL2-2000 SG344, Earth-Venus, and Earth-Dionysus transfers,

respectively.

Moreover, trust-region and discretization methods as per Sections III and IV, different numbers of discretization

points (ranging from 100 to 300) and orders of the interpolating polynomial (ranging from 3 to 23) are compared (see

also Table 5). For each target, all combinations of different initial guesses, numbers of nodes, degrees of the interpolating

polynomials, and trust-region methods are considered. An overview of the performed simulations is shown in Fig. 2.

The total number of simulations 𝑛sim for each discretization method is given in Table 6. It is determined using

𝑛sim = 𝑛guess · 𝑛nodes · 𝑛TR · 𝑛orders (43)

where 𝑛guess is the total number of initial guesses obtained with the cubic-based and the propagation approaches,

𝑛nodes = 3 the number of different nominal nodes, 𝑛TR = 3 the number of trust-region methods, and 𝑛orders = 6 the

number of polynomial orders. Note that this term is only considered for LGL and RPM/FRPM.
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Table 3 Simulation values for SEL2 to 2000 SG344, Earth-Venus and Earth-Dionysus transfers [42–44].

Parameter SEL2 - 2000 SG344 Earth - Venus Earth - Dionysus

r0, LU
[−0.70186065, 0.70623244,

−3.51115 × 10−5]⊤
[0.97083220, 0.23758440,

−1.67106 × 10−6]⊤
[−0.02431767, 0.98330142,

−1.51168 × 10−5]⊤

v0, VU
[−0.73296949,−0.71590485,

4.40245 × 10−5]⊤
[−0.25453902, 0.96865497,

1.50402 × 10−5]⊤
[−1.01612926,−0.02849401,

1.69550 × 10−6]⊤

𝑚0, kg 22.6 1500 4000

r 𝑓 , LU
[0.41806795, 0.82897114,

−0.00143382]⊤
[−0.32771780, 0.63891720,

0.02765929]⊤
[−2.04061782, 2.05179130,

0.55428895]⊤

v 𝑓 , VU
[−0.96990332, 0.43630220,

−0.00123381]⊤
[−1.05087702,−0.54356747,

0.05320953]⊤
[−0.14231932,−0.45108800,

0.01894690]⊤

𝑚 𝑓 , kg free free free
𝑇max, N 2.2519 × 10−3 0.33 0.32
𝐼sp, s 3067 3800 3000
𝑡 𝑓 , days 700 1000 3534

Table 4 Types of initial guesses and their number for each transfer.

Parameter SEL2 - 2000 SG344 Earth - Venus Earth - Dionysus

Cubic Interpolation 101 251 301
Propagation 101 101 101

Total 202 352 402

B. Results

The performance of the algorithms is assessed by means of four comparisons for each of the transfers. For each

of the aforementioned parameters (discretization and trust-region method, polynomial order, and number of nodes),

we take the median of the obtained results by varying all the other parameters. For example, the comparison of the

discretization methods is performed by taking the median of all results obtained with a given method for all polynomial

orders, all considered nodes, and all trust-region strategies. Throughout our analysis, we comment on three key aspects:

general performance (i.e. convergence, iterations, and final spacecraft mass), accuracy, and computational time and

memory required by the discretization and trust-region methods. We also compare our results with the ones for the PDG

problem in [26]. Finally, we assess the performance of our algorithms when compared with the state-of-the-art optimal

control software GPOPS-II [45] in combination with the Sparse Nonlinear Optimizer (SNOPT) [46].

Table 5 Number of nodes and orders of the interpolating polynomials for each transfer.

Parameter SEL2 - 2000 SG344 Earth - Venus Earth - Dionysus

Nominal nodes 100, 150, 200 150, 200, 250 200, 250, 300
Polynomial orders 3, 7, 11, 15, 19, 23
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Fig. 1 Optimal trajectory and initial guesses generated using cubic interpolation with 5.4 revolutions and
propagation with 𝑻 = 0.5𝑻max for a Dionysus transfer (𝑵 = 250).

Table 6 Total number of simulations for each target and each discretization method.

Target FOH LGL, RPM-I, RPM-D, FRPM-I, FRPM-D

2000 SG344 1818 10908
Venus 3168 19008
Dionysus 3618 21708

1. Convergence, Iterations, and Final Mass

One key objective is to understand the influence of the discretization method, the order of the interpolating

polynomial, the number of nodes, and the trust-region method on the success rate, the iterations required to reach

convergence, and the optimality of the solutions. The outcome of the analyses is reported in Figs. 6 - 8, where the results

related to asteroid 2000 SG344, Venus, and asteroid Dionysus are presented, respectively. The error bars represent the

70th percentile of the considered quantity.

With regard to asteroid 2000 SG344, the largest number of converged cases is obtained with FOH (success rate of

approximately 80 %); LGL yields only slightly fewer, and pseudospectral methods approximately 10 % fewer converged

cases. The number of iterations is similar, even though FOH requires the fewest. The obtained final masses are almost

the same for all methods. This is in accordance with the results of the PDG problem [26] where all methods achieve a

similar fuel consumption. Notably, lower polynomial orders require fewer iterations than higher orders. The convergence

increases for higher polynomial degrees up to 15, and then remains almost constant. The convergence is slightly higher

when 𝑁 is increased, whereas iterations decrease for larger number of nodes. Similar findings are reported in the PDG

study. The hard trust-region with 𝛿 = 1.0 and the soft trust-region method yield equivalent results. Remarkably, the hard

trust-region approach with 𝛿 = 1.2 requires only half as many iterations as with 𝛿 = 1.0, at the cost of fewer converged

simulations.
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Select Target

Select Perturbed
Initial Guess

Select Discretization
Method

FOH?

Select Trust-Region
Method


Select Polynomial
Order

Solve Problem

Loop 1

Loop 2

Loop 4

Loop 5

Yes

No

Select Number of
Nodes

Loop 3

Loop 6

1. Simple: Sun-Earth Lagrange point L  (SEL ) to near-Earth asteroid 2000 SG344.
Relevant values in Table 3. 

2. Medium: Earth to Venus. Relevant values in Table 3. 
3. Complex: Earth to asteroid Dionysus. Relevant values in Table 3. 

1. Shape-based approach: Cubic interpolation where the number of revolutions is varied
between 1.6 and 2.6 (2000 SG344), 2.0 and 4.5 (Venus), and 3.0 and 6.0 (Dionysus).

2. Propagation: The nonlinear dynamics are propagated for  with tangential thrust and
different thrust magnitudes ranging from 0 to .  

Table 4 summarizes the number of perturbed initial guesses. 
Fig. 1 compares an optimal trajectory and two initial guesses.

As the times of flight and number of revolutions vary considerably, we choose three different
nominal discretization points  for each transfer (see Table 5). 


Due to the different nature of the discretization methods, the segments are chosen such that the
actual number of nodes is closest to the nominal one.

Two hard trust regions with  and , respectively, and a soft trust region with 
 are compared.

The FOH, LGL, and four versions of the RPM discretization methods described in Section III
are compared.

For RPM, FRPM, and LGL, different orders of the interpolating polynomials for the state and
control trajectories are considered, ranging from 3 to 23 (see Table 5). Higher orders are not

suitable for onboard implementation due to the high computational effort.

Fig. 2 Overview of performed simulations.

Regarding Venus, the tendency of the methods is opposite: the pseudospectral methods are able to find solutions

in almost 60 % of the cases, therefore having a 10 % higher success rate compared to FOH and LGL (see Fig. 7).
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Fig. 3 Typical SEL2 to 2000 SG344 transfer trajectory and corresponding linearly interpolated thrust profile.
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Fig. 4 Typical Earth-Venus transfer trajectory and corresponding linearly interpolated thrust profile.
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Fig. 5 Typical Earth-Dionysus transfer trajectory and corresponding linearly interpolated thrust profile.

20



Furthermore, the overall convergence is worse compared to 2000 SG344. The number of iterations and final masses are

similar. Even though the convergence also improves for higher orders, the difference is less significant. The number of

nodes and the trust-region method seem to have a small impact on the results (except for the fewer number of iterations

when choosing 𝛿 = 1.2).

In the Dionysus case, FOH and LGL yield 15 % more converged simulations than the pseudospectral methods (see

Fig. 8). Remarkably, the behavior of the polynomial orders is opposite in this case: apart from the third order that yields

the lowest success rate, the convergence is best for the 7th order and decreases as the order increases. The success rate

slightly changes again depending on the number of nodes, whereas iterations and final mass are not particularly affected

by 𝑁 . The trust-region methods show the same behavior for the iterations and final mass as in the previous cases. Note,

however, that the hard trust region with 𝛿 = 1.2 achieves slightly higher success rates than the other methods in this

example.

As the previous plots considered all orders, Fig. 9 shows the convergence for all targets for the most relevant

polynomial degrees 7 and 11. This way the potentially poor performance of the third order does not bias the results.

Apparently, the bars follow the same trend: FOH and LGL seem to outperform the pseudospectral methods for the

transfers to the asteroids 2000 SG344 and Dionysus. With regard to Venus, in contrast, RPM and FRPM achieve higher

success rates.

Figure 10 shows the convergence for the cubic interpolation and propagation guesses. Due to the similarity of the initial

and final orbits, the success rate of approximately 70 % for the transfer to asteroid 2000 SG344 is high regardless of how

the initial guess is generated. With regard to Venus and Dionysus, however, propagating with tangential thrust results

in poor guesses that deviate considerably from the optimal trajectories. A success rate of almost 50 % is therefore

remarkable. Still, using a cubic interpolation guess yields in general a larger number of converged cases.

2. Accuracy

It is also crucial that a discretization method is able to achieve a certain accuracy. We define the propagation error

for the position as


r(𝑡 𝑓 )prop − r(𝑡 𝑓 )




2 where r(𝑡 𝑓 )prop is the final position that is obtained by integrating the dynamics

with the optimized controls (the error for the velocity is defined accordingly). As the thrust profile is only known

at the discretization points, the controls need to be interpolated for the integration using Eqs. (14), (29), and (32),

respectively. Figure 11 shows the orders of magnitude of the propagation error for a Dionysus transfer. It is evident that

all methods and polynomial orders achieved the desired accuracy of 10−6 LU except for the third order. More precisely,

almost all methods found solutions with a median error of 10−7 LU or less; only some LGL orders failed to do so

in a few cases. The propagation error for the velocity shows a similar tendency, often being one order of magnitude

smaller than the position error. The same statements are true for the other targets. Even though the time horizon is

significantly smaller for the PDG problem, the errors on the final boundary conditions are very similar to our results
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(b) Comparison of the orders of the interpolating polynomial.

(c) Comparison of the number of nodes. (d) Comparison of trust-region methods.

Fig. 6 Influence of the discretization method, the order of the interpolating polynomial, the number of nodes,
and the trust-region method on convergence, iterations, and final mass for the transfer to asteroid 2000 SG344.

(a) Comparison of discretization methods. (b) Comparison of the orders of the interpolating polynomial.

(c) Comparison of the number of nodes. (d) Comparison of trust-region methods.

Fig. 7 Influence of the discretization method, the order of the interpolating polynomial, the number of nodes,
and the trust-region method on convergence, iterations, and final mass for the transfer to Venus.
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(a) Comparison of discretization methods. (b) Comparison of the orders of the interpolating polynomial.

(c) Comparison of number of nodes. (d) Comparison of trust-region methods.

Fig. 8 Influence of the discretization method, the order of the interpolating polynomial, the number of nodes,
and the trust-region method on convergence, iterations, and final mass for the transfer to Dionysus.

Fig. 9 Comparison of convergence for polynomial
orders 7 and 11 for all targets.

Fig. 10 Comparison of convergence for different initial
guesses for all targets.
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Fig. 11 Comparison of the order of magnitude of the
propagation error (position) for a Dionysus transfer
(𝑵 = 250). Median with minimum and maximum
values is shown.

Fig. 12 Interpolated control profiles obtained with
FOH and 11th order polynomials (LGL/RPM) for a
Dionysus transfer (𝑵 = 250). The black dash-dotted
lines represent the lower and upper bounds.

(provided that a higher-order polynomial is used) [26]. This confirms the high accuracy of the proposed discretization

methods. Although the propagation error is small for all methods, the interpolated controls violate the constraints on the

thrust magnitude for LGL and RPM/FRPM as shown in Fig. 12. The reason is that polynomial interpolation results in

oscillations close to the edges of the segments for higher polynomial orders (Runge phenomenon). Only FOH is able to

generate a bang-bang control profile that does not violate the bounds due to the linear interpolation. As expected, the

same is true for the control profiles obtained when solving the PDG problem [26].

3. Computational Time and Memory

Computational time and memory are two other important aspects to consider. As we are dealing with a large

amount of optimization parameters, sparse linear algebra becomes crucial. Dense matrix operations would not only

take longer to compute, but might also result in memory problems for large-scale optimization problems. The typical

percentage of the nonzero elements in the linear equality constraints matrix is given in Fig. 13. Even though more

than 99% of the elements are zero for all methods, the integral formulations of RPM/FRPM and LGL are several times

denser than (F)RPM-D and FOH. This increases the time required to solve the second-order cone program (SOCP),

therefore resulting in a higher total CPU time when the number of iterations does not change. Figure 14a shows the

computational times per SCP iteration for a typical Dionysus transfer. As expected, the computational effort increases

for higher orders as the matrices become denser. Remarkably, for the four pseudospectral methods the solver time

accounts for the largest portion of the total time, whereas for FOH and LGL the time outside the solver is larger. This

is because of the integration (FOH) and the transformations due to the definition of the nodes and collocation points

(LGL). Moreover, LGL requires the greatest computational effort among all methods regardless of the transfer (see Fig.

14b where the most relevant orders 7 and 11 are shown). The difference becomes more significant when the number of

nodes is increased. In general, pseudospectral methods with orders 7 and 11 seem to be the fastest, directly followed by
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FOH which eventually outperforms all other methods when higher orders are considered. Given the typical number of

iterations of 40, the maximum total CPU time is approximately 24 seconds for FOH and (F)RPM, and 52 seconds for

LGL. Although the integral formulations of (F)RPM are denser, their CPU times are sometimes lower than the ones

obtained with (F)RPM-D due to the smaller number of solver iterations. Considering Figs. 6a, 7a, 8a, and 14b, it is

interesting to note that the results regarding CPU time are partially in accordance with the findings for the PDG problem

[26]: even though the overall CPU time is not affected by the choice of either of the two methods, F(RPM) shows a

higher sensitivity to the number of discretization points than FOH. Finally, albeit this work only considers fixed final

boundary conditions, it was shown that the computational effort required by the SCP algorithm does not significantly

increase when a moving target is considered [47].

Fig. 13 Comparison of the number of nonzero elements of the linear equality constraints matrix for a Dionysus
transfer (𝑵 = 250).

4. Comparison With GPOPS-II

The comparison of GPOPS-II and SCP for the transfers to 2000 SG344, Venus, and Dionysus is given in Figs. 15,

16, and 17, respectively. In the bar charts, SCP refers to the median of the results obtained with the SCP algorithm when

all methods, orders, trust-region parameters and methods, and nodes are considered. Best SCP refers instead to the

results when the best combination of all parameters (discretization and trust-region methods and polynomial order) is

selected for each target. With regard to the 2000 SG344 transfer, the success rate of GPOPS-II is on average higher

(approximately +20 %) compared to SCP. This discrepancy, however, reduces to only 5 % if the best SCP method (LGL

or FOH) is considered. Yet, GPOPS-II often takes twice as long as SCP to find a solution. For this simple transfer, the

final masses are nearly the same. The trend is similar with respect to the Venus transfer, albeit the success rate of SCP

improves only slightly when choosing the best method (FRPM or RPM). In addition, the difference in the final mass

becomes more evident now. Even though the success rate of GPOPS-II is slightly higher for the Dionysus transfer when

considering the averaged SCP, Best SCP (11th order LGL) outperforms GPOPS-II in terms of convergence, CPU time,

25



(a) CPU times for different polynomial orders for a Dionysus
transfer (𝑵 = 250).

(b) Mean CPU times for polynomial orders 7 and 11 for all
targets.

Fig. 14 Comparison of CPU times per SCP iteration obtained with the hard trust-region method and 𝜹 = 1.0.
Median with minimum and maximum values is shown. The heights of the bars show the total CPU times, the
horizontal lines within each bar indicate the times required to solve one SOCP.

and final mass. Especially the difference in computational effort is remarkable because even the slowest SCP method

is several times faster than GPOPS-II. Furthermore, the final masses obtained with SCP are considerably larger. The

propagation error is similar for all methods. In general, GPOPS-II may on average have slightly higher success rates for

the considered simulations. However, this is only true for extremely poor initial guesses where the initial constraint

violations are large. In that case, SCP is often not able to find feasible solutions due to the linearized dynamics. If a

more decent initial guess is provided, the difference becomes negligible. Even though modern nonlinear programming

solvers like SNOPT can exploit sparsity, our simulations show that the required computational effort (and thus, CPU

time) is still considerably higher compared to SCP. Note that if an upper bound on the CPU time is imposed, SCP

would actually outperform GPOPS-II in terms of convergence in many cases, and this might be critical for real-time

applications on hardware with limited resources.

Typical thrust magnitude profiles are illustrated in Figs. 15b, 16b, and 17b. Note the jittery behavior of the control

profiles obtained with GPOPS-II. Apparently, it has difficulties to find decent bang-bang trajectories if the controls are

discontinuous [23, 48, 49]. Significant additional refinement would therefore be required to use such profiles on board.

In contrast, SCP yields the desired bang-bang structure.

C. Overall Performance Assessment

After the extensive explanation of the results in Section V, the performance of the methods is assessed from a

general perspective and with respect to their use for onboard guidance applications.

1. General Performance Assessment

We summarize the general performance of the trust-region and discretization methods in Tables 7 and 8. The

comparison criteria are: convergence (how often the method converges), optimality (performance index of the solution),
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Fig. 15 Comparison of GPOPS-II and SCP for the SEL2 to 2000 SG344 transfer.
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Fig. 16 Comparison of GPOPS-II and SCP for the Earth-Venus transfer.
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Fig. 17 Comparison of GPOPS-II and SCP for the Earth-Dionysus transfer.
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iterations and CPU time to reach convergence, and thrust regularity, i.e. to what extent a method is capable of accurately

capturing the bang-off-bang structure of the optimal thrust profile. In addition, the discretization methods are also

compared in terms of sparsity of their equality constraints matrices, and accuracy, i.e. the error on the final boundary

conditions when propagating the dynamics with the obtained controls.

In general, hard trust-region methods seem to be preferable due to the lower computational effort as no additional

second-order cone constraints are needed when a quadratic (and hence differentiable) penalty function is used. Selecting

𝛿 > 1 is often beneficial, and the value can be adjusted depending on the requirements on convergence and speed of the

algorithm. Lower values tend to have higher success rates, whereas larger values result in fewer iterations, but also often

less accurate control histories. Even though the results indicate that the performance of a discretization method can

depend on the transfer, FOH seems to yield the best overall performance given the criteria in Table 8.

Table 7 Assessment of trust-region methods.

Criterion Hard TR, 𝛿 = 1.0 Hard TR, 𝛿 = 1.2 Soft TR Comments

Convergence Good Acceptable Good -
Optimality Good Good Good No influence of the trust region method
Iterations Acceptable Good Acceptable -
CPU time Acceptable Good Bad -

Thrust regularity Good Acceptable Good -

Table 8 Assessment of discretization methods.

Criterion FOH LGL RPM/FRPM Comments

Convergence Good Good Acceptable Worst performance for third-order polynomials
Optimality Good Good Good No influence of the discretization method
Iterations Good Acceptable Acceptable -
CPU time Good Bad Acceptable CPU time increases with the order of the polynomial

Thrust regularity Good Acceptable Acceptable Worst performance for high-order polynomials
Sparsity Good Acceptable Acceptable Few hundreds of kilobyte of memory required
Accuracy Good Good Good Worst performance for third-order polynomials

2. Assessment of Onboard Guidance Requirements

There are several requirements for onboard guidance methods. We briefly comment on the results in terms of the

onboard guidance requirements reliability and robustness, onboard capability, accuracy, and optimality in Table 9.

All of the fundamental requirements seem to be satisfied by almost all methods. With regard to the collocation methods,

polynomial orders between 7 and 11 are preferable due to the acceptable computational effort and high convergence

rates. As the repeatedly recomputed optimal trajectories in an onboard guidance scenario will not differ considerably,
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the previous solution can serve as a good initial guess for the next optimization. Therefore, the convergence is expected

to increase and computational effort to decrease significantly. Using a compiled language like C or C++ will also

decrease the computational time. In addition, the flexibility and also reliability of the algorithm can be increased by

incorporating planetary ephemeris for dynamic endpoint targets [47]. Yet, it is still to be investigated under what

conditions convergence can be guaranteed, and how the methods perform on a real spacecraft onboard computer in a

real mission scenario.

Table 9 Assessment of the methods in terms of high-level onboard guidance requirements.

ID Requirement Comments

1
Reliability and robustness:

The algorithm shall have a high success rate
regardless of the quality of the initial guess

All discretization and trust-region methods
achieve a high success rate.

Previous optimal trajectories can be reused
in an autonomous guidance scenario,

so the convergence is expected to be close to 100 %.

2

Optimality:
The algorithm shall minimize the
fuel consumption while respecting

the other mission objectives/constraints

All discretization and trust-region methods
fulfil this requirement as they yield similar final masses
that are close to the optimal ones found in literature.

3
Onboard capability:

The algorithm shall be compatible
with the limited hardware onboard

The obtained CPU times would result in a total
computational time of few minutes for typical

space-flight processors such as
the LEON family (see e.g. [41] and [50]),

therefore being acceptable for deep-space cruise.
High sparsity: only few hundreds of kilobytes

of memory are required.

4

Accuracy:
The propagation error shall be small;
the optimized thrust profile shall
have as few oscillations as possible

All methods achieve a high accuracy.
Interpolating the controls results in oscillations

for LGL and RPM/FRPM.
The linear control interpolation in FOH
seems therefore more suitable.

VI. Conclusion
This paper assesses the discretization methods first-order hold, an arbitrary-order Legendre–Gauss–Lobatto method

with Hermite interpolation, and different formulations of the Radau pseudospectral method for the low-thrust trajectory

optimization problem. The influence of the discretization method, order of the interpolating polynomial, number of

nodes, and trust-region strategy are investigated.

The results show that FOH and a hard trust-region strategy with 𝛿 > 1.0 yield the best compromise in terms of

convergence, onboard capability, accuracy, and optimality for the considered class of problems. Even though this work

29



does not present a convergence proof, the high percentage of converged cases has shown that SCP is very reliable despite

the poor initial guesses. This is crucial for real-time guidance as a solution must be obtained at any time. Our results

show that a convex programming approach seems to be a viable method to compute low-thrust trajectories onboard. In

fact, all of the fundamental requirements seem to be satisfied by almost all methods. One of the open challenges is

related to the actual use of the optimized thrust profile when fed to the onboard processor: SCP, as all direct optimization

methods, only provides a solution at specific discretization points. Therefore, interpolating the controls is necessary to

obtain a control trajectory for the whole time domain. Even though a linear interpolation may yield acceptable results,

this must be treated carefully to avoid introducing additional errors.
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