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1 Introduction

The detection of flybys in the numerical propagation
of interplanetary trajectories is a key aspect to en-
able planetary protection analyses. Their much faster
dynamics, compared to the pure heliocentric motion,
hinders the development of advanced orbital integra-
tors: regularisation-based approaches and variation of
parameters implementations are extremely sensitive
on close approach events, and may fail in correctly
predicting their effect on the propagated trajectory.
Switching the integration/regularisation centre to the
flyby body in case of close approaches is an effec-
tive workaround to retain all the benefits of advanced
propagation techniques [I]. Nonetheless, this philos-
ophy requires to properly define and, consequently,
detect possible flyby events.

The commonly used concepts all rely on the defi-
nition of a spherical region that surrounds any solar
system planet. In general, the stronger the gravita-
tional field of the minor body, the larger its associated
sphere. Sphere of influence (SOI) and Hill’s sphere
are the two usually adopted definitions. The former
approximates the distance from the minor body where
either the planet or the Sun can be considered as a
perturbation of the other dynamics. The latter ap-
proximates the distance of the Lagrange points L
and Ly from the planet [3]. Differently from these
definitions, Debatin et al. [2] used the eigenvalues of
the dynamics’ Jacobian to measure the relative mag-
nitudes of the contribution of the different bodies in
an N-body system, and used it as robust step control
mechanism. Similarly, Romano [5] used this criterion
to detect flybys in planetary protection analyses.

This work analyses flybys from a different perspec-
tive. Rather than building on a concept based on equi-
librium distances, the dynamical nature of the close
approach is emphasised. The eigenvalues of the three-
body problem dynamics’ Jacobian leads to an analyti-
cal solution for a spheroidal locus of points that locally
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highlights which body is contributing the most to the
dynamics variation. The results are also compared
against the Circular Restricted Three-Body Problem
(CR3BP) zero-velocity curves concept.

2 Jacobian eigenvalues for flyby detection

The dynamics’ Jacobian is traditionally linked to the
step size control for general numerical simulations.
In particular, the maximum eigenvalue influences the
stability of the numerical scheme [4]. Contrarily to
predictor-corrector integrators (e.g. the Runge-Kutta
family), the knowledge on the dynamics Jacobian is
exploited to minimise the truncation error. In the or-
bital dynamics case, the work of Debatin et al. [2]
used an analytical approximation of the maximum
Jacobian eigenvalue of the N-body dynamics, build-
ing a fast integration algorithm with step size control.
They approximate the square of the maximum Jaco-
bian eigenvalue A2, as the sum of the squares of all

max
the separate two-body Jacobian eigenvalues:
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with the subscript ¢ denoting the i-th body, r the
position and p; the gravitational parameter. This ap-
proximation becomes particularly reliable far from the
boundaries of any sphere of influence/Hill’s sphere,
since in these regions either the Sun or the planet
flown by heavily dominates the dynamics.

The later work of Romano [5] used a similar ap-
proximation approach to implement a flyby detection
criterion. If the ratio between the eigenvalues of a
given planet and the Sun grows above a user-specified
tolerance, then a flyby event is detected. Romano
also showed that this criterion encompasses the usu-
ally defined sphere of influence/Hill’s sphere, in the
case of threshold set equal to 1.

3 Dynamical meaning in the Three-body problem

The barycentric three-body Jacobian J is defined as:
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with 0 and I the 3 x 3 null and identity matrices,
respectively, and G defined as:
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with d; = r — r;. It can be proved that, in the two-
body case, \j5 = A g, with j = 1,2,3, and \? . &
is defined as in Equation [5]. A2 appears only
on the right-hand side because the properties of the
determinant of block-square matrices are introduced
to compute the eigenvalues of J.

Approximating the dynamics as if only the cur-
rently dominant body 1 was present reflects on the
approximated Jacobian as G =~ G;. The matrix Ja-
cobian error becomes equal to Gg. Since any G; is
symmetric (Equation ), its euclidean matrix norm
equals its spectral radius, i.e. |GZ‘|2 = p(Gi) =
Amaz,G;- In other words, the maximum eigenvalue
of G directly measures the error of G ~ Gj.

The color scale in Figure [I] shows the maximum
Jacobian error values in the space near Jupiter, i.e.
max [)‘mam,Sun/Amaza )\maz,Jup/Amaz] , On the plane
containing Jupiter’s orbit about the Sun. Rather than
crossing a fixed-shape spheroid, the proposed visuali-
sation highlights the smooth transition nature of fly-
bys. Even if fast, the whole continuous domain is
crossed, starting from the interplanetary space, pass-
ing through a region where none of the two bodies
dominates the gravitational acceleration change, and
finally reaching a far greater planetary effect at low al-
titudes. Two higher error regions, called ” Thickened
regions” in Figure |1} appear nearly perpendicularly
to the Sun-Jupiter direction. The possible reason of
their appearence is explored in Section
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Figure 1: Jupiter’s Jacobian percent error (color
scale), compared against Hill’s surfaces (dotted) and
SOI (dashed).

Equivalently, this criterion highlights the highest

curvature regions of the three-body gravitational po-
tential V = —Ml/‘d1 ‘ —,u2/|d2|, since it can be proved
that G = Hessian(V). In other words, the space re-
gions determining a flyby may be identified by the
local curvature of the gravitational potential.

4 Analytical loci of points

Replacing the G, J subscript notation with the body
names, a direct comparison can be made with the
parametrisation Apmaz, Jup/Amaz,sun = 7. As done
in Figure [1] centering the reference frame on Jupiter
leads to an analytical expression for the spheroidal
loci with common ~, whose radius 7 is:

—acos 4 y/a(l — asin®6) (4)
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with 6 the angle between the direction of 7 and the
direction identified by the line connecting the Sun and
Jupiter, and o = (vujup/ugun)2/3. The 2/3 exponent
arises because of the third power of the eigenvalue
expression (Equation ), and a squaring taken to
remove the square root of the vector norm operator.

Figure[2]extends Figure[I] comparing the analytical
loci of points obtained with Equation @) against the
computed values of the Jacobian error (on the color
scale), for v equal to 0.1, 1, and 10. The cases v =
0.1,10 (dashed red lines) well bound the regions where
the Jacobian approximation error is higher than 10%.
Thickened regions aside, the case v = 1 (solid red
line) perfectly predicts the ”critical” distances where
the error is maximised.
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Figure 2: Jupiter’s Jacobian percent error (color
scale), compared against Hill’s surfaces (dotted), SOI
(dashed), and analytical loci of points (red).

The "critical” spheroid (parametrised by v = 1)
can be used as robust flyby detection criterion, assess-
ing if and when a propagation crosses that boundary,
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aiming to the minimisation of the truncation error in-
troduced by the interrupted integration. In fact, for
the Sun-Earth case this distance falls within the min-
imum error range identified by Amato et al. [1].

5 Visualisation in the CR3BP

The CR3BP provides further insight on the nature
of the thickened regions observed in Figures [I] and
Figure [3] shows the perfect alignment of the
zero-velocity surfaces, plotted as grey/shadowed ar-
eas, with the Jacobian error, on the plane containing
Jupiter’s orbit about the Sun. The red lines repre-
sent different values of «, equal to 1 (solid), 0.1 or
10 (dotted) and 0.01 (dashed). The selected Jacobi
constant to plot the zero-velocity surfaces was only
chosen to highlight their alignment with the thick-
ened regions, without particular meaning. On the
zero-velocity curves the kinetic energy content of the
test particle, the centrifugal reaction due to the non-
inertial rotating frame, and the gravitational attrac-
tion of both bodies all balance out. Simplifying the
dynamical model along this curves may become inac-
curate, particularly if close to the Hill sphere bound-
aries, as highlighted by the thickened error regions.
In other words, the mutual effect of the two bodies on
how the dynamics changes is more prominent along
the zero-velocity surface direction, on a wider region
than the sole ”critical spheroid”.
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Figure 3: Jupiter’s Jacobian percent error (color
scale), compared against Hill’s surfaces (dotted), SOI
(dashed), analytical loci of points (red), and zero-
velocity surfaces (grey/shadowed).

6 Conclusion

This work proposes a flyby characterisation approach
that accounts for the dynamical nature of the en-
counter, focussing on the changes on the dynamics

caused by the body flown by. The actual smooth
transition of the motion from interplanetary to plan-
etary is also modelled, highlighting regions of space
where none of the two body is clearly dominating, and
approximating the dominance that each body has in
each point of the planet neighbourhood.

Apart from the regions nearby the critical distance
and along the zero-velocity curves, the proposed para-
metric analytical model accurately predicts the loci of
points of common Jacobian error. Setting the param-
eter equal to 1 allows the use of the ”critical” spheroid
as robust flyby detection criterion. Additionally, fu-
ture works will analyse whether this criterion is also a
suitable approach to improve the characterisation of
shallow encounters.

Deeper details on the model will be given in the
oral presentation, as well as further insight on the
comparison with the CR3BP regime and the relation
with zero-acceleration saddle points.
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