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Abstract

The space sector is nowadays experiencing an increase in the demand for missions involving proximity operations.
This trend can be partially attributed to the raised awareness of the space debris problem, as an increasingly higher
number of Active Debris Removal (ADR) and on-orbit servicing missions are being planned. Consequently, the need
for an accurate onboard relative navigation system has become growingly relevant in the industry. This work proposes
a software pipeline for spacecraft relative navigation, which leverages deep learning techniques to obtain the relative
pose measurements and uses Kalman filtering to reconstruct the relative dynamics and to improve the robustness of
the pipeline. Furthermore, a testing procedure involving a Blender-based spaceborne image generator has been devised
and applied to validate the results in the case of a realistic image sequence of a rendezvous scenario.
The image processing pipeline is based on a Convolutional Neural Network architecture that scored excellent results in a
pose estimation challenge organized by ESA. This architecture has demonstrated centimeter-level position accuracy and
degree-level attitude accuracy, along with considerable robustness to changes in background and lighting conditions.
In order to reconstruct the relative state, a set of Kalman filters has been developed to tackle the attitude and position
problems separately. For the relative distance, an Extended Kalman Filter has been implemented, as the underlying
relative dynamics can be described by a linearized model. Instead, for the more complex attitude problem, the choice
fell on an Unscented Kalman Filter due to its superior robustness to high non-linearities.
In addition, proving the robustness of the filtering algorithms was taken as a priority, with thousands of tests aimed at
identifying and counteracting the most common failure modes. Moreover, some techniques were also developed for the
detection and rejection of measurement outliers.
The whole navigation pipeline was then tested on a set of synthetic image sequences of the TANGO spacecraft in free
tumbling conditions. The frames were obtained from a Blender-based spaceborne image generation platform, exploiting
a 3D model of the target and relying on an accurate propagation of the relative dynamics.
The proposed filtering pipeline proved to substantially improve the accuracy of the raw deep learning-based measure-
ments by leveraging sequential information, while also increasing the overall robustness.
Keywords: relative navigation, Kalman filter, pose estimation, deep learning, optical simulator, space debris

1. Introduction

The number of resident space objects orbiting Earth,
and in particular the portion represented by space debris,
have been subject to a steady growth since the beginning
of the space age. The increasingly higher awareness and
the concerns associated with this problem have recently
led to a number of planned Active Debris Removal (ADR)
and on-orbit servicing missions.
Since the approached bodies may be represented by unco-
operative tumbling objects with potentially high angular
velocities, the availability of a robust and accurate relative
navigation system represents a key enabling technology in
the aforementioned scenarios.
To this aim, two main paths may in principle be pursued:

• ground-based observations, for which one may resort

to the use of radars, passive optical tracking or laser
ranging

• on-orbit observations, by means of a sensor suite
available onboard the chaser spacecraft, which can
be used to determine the relative dynamics of the
target body.

The former approach is unfortunately unsuitable for
close proximity operations, because of the excessive
uncertainty in the state of the uncooperative target.
To accurately estimate the relative pose of a target
body, a visual approach has to be pursued. Thus,
either Light Detection and Ranging (LiDAR) sensors or
stereo/monocular cameras would be required.
LiDARs and stereo cameras are generally bulky and
expensive solutions, while the use of monocular cameras
represents a low Size, Weight and Power (SWAP) cost
effective solution. They offer a great alternative, although
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they require complex and computationally demanding
image processing algorithms to properly work.
It is also important to highlight that the above mentioned
procedure needs to be robust and accurate in order to deal
with long approach sequences, in a wide range of lighting
and background conditions.

The main goal of this work is to build and validate
a robust filtering pipeline that leverages monocular pose
measurements obtained using the deep learning-based ap-
proach presented in [1].
The resulting pose estimation software is then validated
by means of a purposely developed Blender-based1 ren-
dezvous simulator, that is capable of rendering realis-
tic image sequences of the TANGO target spacecraft as
viewed from a chaser satellite.

In the remainder of this paper we will first of all in-
troduce in Section 2. all the building blocks of our deep
learning-based image processing software, as well as de-
tailing the mathematical aspects of our EKF/UKF estima-
tion framework and the associated dynamical models. In
Section 3. the outline of our overall relative pose esti-
mation pipeline is presented, including a description of
the optical/orbital rendezvous simulator. This will be fol-
lowed by a performance analysis of the pose estimation
pipeline in Section 4. and we will eventually draw some
conclusions in Section 5.

2. Theoretical background

2.1 Deep learning-based pose estimation
The state-of-the-art techniques used for estimating the

pose of a spacecraft from a monocular image typically
make use of an image-processing subsystem that identi-
fies the position in the image frame of certain semantic
features of the target spacecraft. This is followed by a pose
solver consisting in a geometric optimization subsystem,
that fits a known 3D model of the satellite to the features
matched in the image.
Depending on the approach adopted for image processing,
two main classes of monocular pose estimation methods
may be identified: feature-based and deep learning-based
pose estimation.
Feature-based methods [2, 3, 4] seek for correspondences
between patterns of edges detected in the image and line
segments of the known wireframe model of the space-
craft. The approach adopted in this work, leverages
deep learning-based methods instead. The latter class
of methods makes use of a Convolutional Neural Network
(CNN) pipeline whose role may either consist in regress-
ing the position in the image frame of predefined keypoints
[1, 5, 6] that later become the input of a pose solver, or
in a direct end-to-end estimation of the spacecraft pose

1https://www.blender.org (accessed on August 29th 2022)

[7, 8, 9, 10].
We will now briefly describe in Sections 2.1.1

and 2.1.2 the architecture of the two CNNs that are part
of our image processing software used for measuring the
pose of an uncooperative spacecraft.

2.1.1 Object detection via YOLOv5
The YOLO CNN architecture [11] is a state-of-the-

art one-stage method for object detection. In particular,
one of the most recent iterations of this model, named
YOLOv5,2 will be exploited in this work and it has been
trained to detect the TANGO satellite in a 416×416 pixels
image. The neural network is specifically trained to output
the bounding box coordinates associated with the portion
of the image containing the spacecraft. Based on this,
further processing of the image will exclusively focus on
the identified Region of Interest (RoI).

2.1.2 Landmark regression via HRNet
The unprecedented accuracy demonstrated by the

High-Resolution Network (HRNet) architecture [12] in
the field of human pose estimation led to the decision
of implementing this model in our pipeline. This CNN
processes the previously identified RoI and it has been
trained to regress 11 heatmaps with a size of 416× 416,
corresponding to the 11 semantic keypoints chosen for the
TANGO satellite. The final predicted landmark locations
are then obtained as the individual peaks in each heatmap,
which will appear as very sharp 2D pseudo-Gaussians.

channel
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block

strided
conv.

upsample

2x

4x
8x
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Fig. 1: Main body of the HRNet architecture

As can be seen from Figure 1, a peculiar aspect of HR-
Net is that, in contrast to conventional CNNs, it connects
high-to-low resolution subnetworks in parallel rather than
in series, thus retaining the highest-resolution representa-
tion throughout the whole inference process. This yields
extremely high accuracy of the regressed landmark loca-
tions.

2.2 PnP problem
The Perspective-n-Point (PnP) problem consists in es-

timating the pose of an object, given a set of 𝑛 points
of the object itself with known (or estimated) 3D model
coordinates, and given the corresponding 2D projections
detected in the image, that are in our case the keypoint
locations regressed by HRNet.
Pose estimation methods also leverage the knowledge of

2https://github.com/ultralytics/yolov5 (accessed on August 20th
2022)
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the camera intrinsics, so as to seek for the pose that yields
the best fit between the resulting projection of the object’s
points and the corresponding detected keypoints in the
image frame.
State-of-the-art PnP solvers are basically divided into two
categories. Iterative solvers minimize a measure of the fit
error between the projected model points and the image
points. Multi-stage analytical approaches, such as the Ef-
ficient PnP (EPnP) method [13], will instead leverage a
linearized form of the projection equations.
In this work, both the EPnP method and an iterative solver
based on the Levenberg-Marquardt Method (LMM) are
used in the pose solver that fits the measured pose to the
set of detected landmarks in the RoI.

2.3 Relative translational dynamics
The relative distance problem consists in describing

how the separation between two spacecrafts orbiting a
main body evolves over time in the Local Vertical Local
Horizontal (LVLH) reference frame.
In this frame, the relative distance r𝑟 and the relative
velocity v𝑟 are defined as

r𝑟 = 𝑥r̂+ 𝑦𝛉̂ + 𝑧ĥ (1)

v𝑟 = ¤𝑥r̂+ ¤𝑦𝛉̂ + ¤𝑧ĥ (2)

where [r̂, 𝜽̂ , ĥ] are the unit vectors associated with the
LVLH frame.
The evolution of the relative distance between two space-
crafts may then be expressed using the following set of
differential equations [14]:

¥𝑥 = 2 ¤𝜈 ¤𝑦 + ¥𝜈𝑦 + ¤𝜈2𝑥 + 𝜇

𝑟2 − 𝜇(𝑟 + 𝑥)
[(𝑟 + 𝑥)2 + 𝑦2 + 𝑧2]3/2

¥𝑦 = −2 ¤𝜈 ¤𝑥− ¥𝜈𝑥 + ¤𝜈2𝑦− 𝜇𝑦

[(𝑟 + 𝑥)2 + 𝑦2 + 𝑧2]3/2

¥𝑧 = − 𝜇𝑧

[(𝑟 + 𝑥)2 + 𝑦2 + 𝑧2]3/2

(3)

where 𝜇 indicates the standard gravitational parameter of
the main attractor, 𝜈 is the true anomaly and 𝑟 represents
the distance between the centers of gravity of the main
attractor and the chaser.
The complete formulation of the problem also requires to
describe the orbital dynamics of the chaser in terms of
true anomaly 𝜈 and position 𝑟 as:

¥̄𝑟 = 𝑟 ¤𝜈2 − 𝜇

𝑟2 (4)

¥𝜈 = −2 ¤̄𝑟 ¤𝜈
𝑟

(5)

2.4 Relative attitude dynamics
The general equations governing the attitude motion

of a rigid body are known as the Euler equations [15],
whose form is:

J ¤𝛚 +𝛚×J𝛚 = M (6)
J represents the inertia matrix of the object, while 𝛚 is

its angular velocity and M indicates the sum of the applied
torques.

For the aim of this dissertation, torque-free dynamics
will be assumed by setting M = 0, thus neglecting the
effect of disturbance torques, whose integral effect would
be quite low over the typical time scales of a rendezvous
sequence.
The angular velocity notation proposed in [16] will be
used in the remainder of this section, which is defined in
Equations (7) to (9).

𝛚𝑟 = 𝛚𝑡 −𝚪𝛚𝑐 (7)
¤𝛚𝑟 = ¤𝛚𝑡 −𝚪 ¤𝛚𝑐 + ¤𝛚app (8)

¤𝛚app = 𝛚𝑟 ×𝚪𝛚𝑐 (9)

where 𝛚𝑡 and 𝛚𝑐 are respectively the target and chaser
angular velocities expressed in their body-fixed reference
frames, which are linked by a rotation matrix 𝚪. 𝛚𝑟 rep-
resents the relative angular velocity expressed in the target
body frame and ¤𝛚app is the apparent angular acceleration.
Furthermore, the attitude parametrization that has been
selected for this work is based on Modified Rodrigues
Parameters (MRPs) 𝛇 and their shadow-set counterpart
𝛇𝑆 [17], which are respectively defined in Equations (10)
and (11) in terms of the vector part of the attitude quater-
nion q̃ and the quaternion’s scalar component 𝑞0.

𝛇 =
q̃

1+ 𝑞0
if ∥𝛇∥ < 1 (10)

𝛇𝑆 =
−q̃

1− 𝑞0
if ∥𝛇∥ > 1 (11)

A relation connecting the MRPs with the aforemen-
tioned attitude matrix 𝚪 is attained as

𝚪(𝛇) = I3 −𝛼A
1 [𝛇×] +𝛼

A
2 [𝛇×]

2 (12)
where I3 is the identity matrix and the the following

notation is used:



𝛼A
1 := 4

1− 𝛇T𝛇

(1+ 𝛇T𝛇)2

𝛼A
2 := 8

1
(1+ 𝛇T𝛇)2

[𝛇×] :=


0 −𝜁3 𝜁2

𝜁3 0 −𝜁1

−𝜁2 𝜁1 0



(13)

IAC-22.C1.IPB.38.x70501 Page 3 of 11



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by the authors. Published by the IAF, with permission and released to the IAF to publish in all forms.

The evolution of the relative attitude can be eventually
described in terms of MRPs and relative angular velocity
as 

¤𝛇𝑟 =
1
4
𝚺(𝛇𝑟 )𝛚𝑟

J𝑡 ¤𝛚𝑟 +𝛚𝑟 ×J𝑡 ¤𝛚𝑟 = Mapp −M𝑔 −M𝑐𝑖

(14)

where 𝚺(𝛇) := (1− 𝛇T𝛇)I3 + 2𝛇𝛇T + 2[𝛇×], while J𝑡
is the inertia matrix of the target, 𝛇𝑟 is the MRP describ-
ing the relative attitude and the torque contributions are
defined in Equations (15) to (17).

Mapp = J𝑡 ¤𝛚𝑟 ×𝚪𝛚𝑐 (15)
M𝑔 = 𝚪𝛚𝑐 ×J𝑡𝚪𝛚𝑐 + ... (16)

+ (𝛚𝑟 ×J𝑡𝚪𝛚𝑐 +𝚪𝛚𝑐 ×J𝑡𝛚𝑟 )
M𝑐𝑖 = J𝑡𝚪 ¤𝛚𝑐 (17)

Mapp represents the apparent torque, M𝑔 is the gyro-
scopic torque and M𝑐𝑖 indicates the chaser-inertial torque.

2.5 Kalman filtering
The Kalman filter (KF) and its variants are among

the most efficient and common recursive estimation tech-
niques used in the aerospace field. In its basic form, the
KF is defined as a predictor-corrector algorithm [18], as it
is composed of both a prediction and a correction phase.
Let us consider a linear discrete-time system in the form{

x𝑘+1 = Fx𝑘 +Gu𝑘 +w(𝑘 )
y𝑘 = Hx𝑘 +v𝑘

(18)

where x𝑘 and u𝑘 respectively represent the state and
the input at time step 𝑘 , w𝑘 and v𝑘 are used to identify the
process and measurement noise, whereas y𝑘 indicates the
measurement output at time step 𝑘 .
Let F, G and H denote the state transition, input transition
and observation matrices, respectively.

The aforementioned prediction phase consists in prop-
agating both the state and the related covariance x̂+𝑘 , P+

𝑘
,

based on their values at the previous time step as follows:

x̂−
𝑘+1 = Fx̂+𝑘 +Gu𝑘 (19)

P−
𝑘+1 = FP+

𝑘FT +Q𝑘 (20)

This yields the expected mean value of the state x̂−
𝑘+1

and the covariance matrix P−
𝑘+1 for the current time step.

Note that Q𝑘 represents the covariance matrix associated
with process noise, while R𝑘 is associated with measure-
ment noise.
The following step, which corresponds to Equations (21)
to (23), is called a correction step, as it corrects the pre-
dicted state and the covariance matrix. It does so by

exploiting the incoming measurements and an optimal
weighting factor called the Kalman gain K𝑘+1, whose ex-
pression can be derived using a minimum-variance ap-
proach.

K𝑘+1 := P−
𝑘+1HT (HP−

𝑘+1HT +R𝑘+1)−1 (21)
x̂+𝑘+1 = x̂−

𝑘+1 +K𝑘+1 (y𝑘+1 −Hx̂−
𝑘+1) (22)

P+
𝑘+1 = (I−K𝑘+1H)P−

𝑘+1 (23)

Note that the output of the correction step becomes
the input of the successive filter iteration, as the filter uses
recursive information to improve its guesses.

Let us now introduce in Sections 2.5.1 and 2.5.2 the
variants of the Kalman filter that are used in the estimation
framework developed in this work.

2.5.1 Extended Kalman Filter
As the linear KF cannot deal with non-linear problems,

some alternative architectures had to be devised.
A common solution to this issue is the Extended Kalman
Filter (EKF) [19], which exploits a linearization of the
problem to get around the present non-linearities.
Given the generic non-linear model in Equation (24){

x𝑘+1 = 𝑓 (x𝑘 ,u𝑘 ,w𝑘)
y𝑘 = ℎ(x𝑘 ,v𝑘)

(24)

the Jacobian matrices of the state transition function
𝑓 (·) and the measurement function ℎ(·) can be computed
as:

F =
𝜕 𝑓

𝜕x

����
x̂+
𝑘

H =
𝜕ℎ

𝜕x

����
x̂−
𝑘

(25)

Once the Jacobians are available, the process becomes
analogous to the linear KF. The resulting prediction-
correction steps are reported in Equations (26) to (30).

x̂−
𝑘+1 = 𝑓 (x̂+𝑘 ,u𝑘 ,0) (26)

P−
𝑘+1 = FP+

𝑘FT +Q𝑘 (27)

K𝑘+1 := P−
𝑘+1HT (HP−

𝑘+1HT +R𝑘+1)−1 (28)
x̂+𝑘+1 = x̂−

𝑘+1 +K𝑘+1 (y𝑘+1 − ℎ(x̂−
𝑘+1,0)) (29)

P+
𝑘+1 = (I−K𝑘+1H)P−

𝑘+1 (30)

2.5.2 Unscented Kalman Filter
In the event of highly non-linear systems the EKF may

fall short, thus requiring a different filtering architecture.
By leveraging the so called unscented transform for
the propagation of state and covariance, the Unscented
Kalman Filter (UKF) [20] can be defined.
Considering the generic nonlinear system in Equa-
tion (24), a set of sigma points can be sampled from a
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normally distributed state. A typical algorithm for the
sampling of sigma points x̂(i)

𝑘
consists in selecting them as

follows:

x̂(i)
𝑘
= x̂+𝑘 + x̃(i) , 𝑖 = 1, . . . ,2𝑛 (31)

x̃(i) =

(√︃
𝑐P+

𝑘

)T

𝑖

, 𝑖 = 1, . . . , 𝑛 (32)

x̃(n+i) = −
(√︃

𝑐P+
𝑘

)T

𝑖

, 𝑖 = 1, . . . , 𝑛 (33)

where 𝑐 is a tuning parameter used to define the spread
and weight of the sigma points.
The latter are then propagated and a weighted average
is computed to define the predicted state and covariance
using Equations (34) to (36).

x̂(i)
(𝑘+1) = 𝑓 (x̂(i)

𝑘
,u𝑘+1) (34)

x̂−
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊
(i)
𝑀

x̂(i)
𝑘+1 (35)

P−
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊 (i)
𝑐 (x̂(i)

𝑘+1 − x̂−
𝑘+1) (x̂

(i)
𝑘+1 − x̂−

𝑘+1)
T +Q𝑘 (36)

where 𝑊 (i)
𝑀

and 𝑊
(i)
𝑐 are weighting parameters.

The obtained predicted state and covariance are then used
to correct the sigma points as:

x̂(i)
𝑘+1 = x̂−

𝑘+1 + x̃(i) , 𝑖 = 1, . . . ,2𝑛 (37)

x̃(i) =

(√︃
𝑐P−

𝑘+1

)T

𝑖

, 𝑖 = 1, . . . , 𝑛 (38)

x̃(n+i) = −
(√︃

𝑐P−
𝑘+1

)T

𝑖

, 𝑖 = 1, . . . , 𝑛 (39)

The new set of sigma points is then used in the cor-
rection step to define: the expected measurement ŷ−

(𝑘+1) ,
the measurement covariance P𝑦 and the cross covariance
P𝑥𝑦 .
This is done as follows:

ŷ(i)
𝑘+1 = ℎ(x̂(i)

𝑘+1) (40)

ŷ−
(𝑘+1) =

2𝑛∑︁
𝑖=1

𝑊
(i)
𝑀

ŷ(i)
𝑘+1 (41)

P𝑦 =

2𝑛∑︁
𝑖=1

𝑊 (i)
𝑐 (ŷ(i)

𝑘+1 − ŷ−
𝑘+1) (ŷ

(i)
𝑘+1 − ŷ−

𝑘+1)
T +R𝑘 (42)

P𝑥𝑦 =

2𝑛∑︁
𝑖=1

𝑊 (i)
𝑐 (x̂(i)

𝑘+1 − x̂−
𝑘+1) (ŷ

(i)
𝑘+1 − ŷ−

𝑘+1)
T (43)

The obtained quantities are then used to define a
Kalman gain and correct the state and covariance as:

K𝑘+1 = P𝑥𝑦P−1
𝑦 (44)

x̂+𝑘+1 = x̂−
𝑘+1 +K𝑘+1 (y𝑘+1 − ŷ−

𝑘+1) (45)
P+
𝑘+1 = P−

𝑘+1 −K𝑘+1P𝑦KT
𝑘+1 (46)

3. Relative pose estimation pipeline

3.1 Synthetic image generation
A Blender-based architecture has been proposed for

rendering realistic images of the TANGO spacecraft,
whose 3D model was kindly provided by OHB Sweden.

Fig. 2: Example of a generated frame

Fig. 3: Architecture of the image generation software

The pipeline, shown in Figure 3, starts by determining
the relative position of the camera with respect to the
target body frame. It then generates a virtual camera in
the scene and orients it based on the provided attitude
matrix. Afterwards, depending on the orbital position
of the chaser and the considered season, a set of custom
lights is placed in the scene to mimic realistic lighting
conditions.
Once all components are put in place, a frame is rendered
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using the EEVEE engine. A Gaussian noise filter is then
applied and the image can eventually be saved in grayscale
format.
The pose labels can either be provided for a static dataset
of random poses or for a coherent sequence. This is
implemented as two different rendering modes, which are
both needed for testing and validation purposes.

• Static dataset: the relative attitude and position data
is provided in a pre-generated .json file and the
pipeline treats each frame individually.

• Image sequence: the initial relative pose, angular
velocity and orbit are provided along with a sequence
length and the related number of frames per second
(FPS). The sequence is then propagated in time using
Equations (3) and (14).

This entire process is fully automated and scripted via
Python bindings of the Blender API.

3.2 Image processing

Input image

Keypoints
Heatmaps

resize to
416 x 416

outlier
detection

reject
low-confidence

 keypoints
RoI-based

correction of
transl. vector

resize to
416 x 416

SLN
(YOLOv5)

LRN
(HRNet32)

Pose refinement
(LMM)

EPnP Pose

RoI

Wireframe
model

if pose outlier

if consistent
pose

Fig. 4: Architecture of the image processing pipeline at
inference time

The outline of the architecture of the image processing
pipeline is represented in Figure 4 and it consists of three
main subsystems.
The first subsystem, called the Spacecraft Localization
Network (SLN) and described in Section 2.1.1, is respon-
sible for identifying the RoI in the image. It is followed in
the pipeline by the Landmark Regression Network (LRN),
that is detailed in Section 2.1.2, whose role is to detect
semantic keypoints of the target spacecraft inside the RoI.
The third and last subsystem is the pose solver, which uses
the techniques introduced in section 2.2 and, given the
landmarks identified by LRN, seeks for the correspond-
ing best pose fit based on the known wireframe model of
the target. More specifically, it first runs the EPnP algo-
rithm to obtain an initial estimate of the pose and, in a

nominal situation (i.e. if no pose outlier is detected), it
successively refines the initial solution using the LMM.

3.3 Pose filtering
The filtering pipeline, consists in a KF-based architec-

ture whose aim is to improve the raw pose output obtained
from the CNN-based image processing pipeline.

Fig. 5: Architecture of the pose filtering pipeline

As can be seen from Figure 5, it was chosen to sepa-
rate and apply different filtering techniques to the relative
distance and the relative attitude problem. This is also
based on the assumption that the attitude of the chaser is
perfectly known and available.
This approach was pursued as the relative attitude is char-
acterized by a strongly non-linear behavior, as compared
to the simpler relative distance problem. In particular, the
EKF was applied to the simpler and more linear relative
separation problem, whereas the UKF was identified as
the most suitable option to tackle the more complex rela-
tive attitude problem.
For both the EKF and the UKF, the process covariance Q
has been assumed null, while the measurement covariance
R has been carefully tuned, based on the error statistics
obtained on SPEED by the image processing pipeline.
The EKF uses a different translation measurement covari-
ance depending on the relative distance, because of the
strong correlation. In particular three main sections have
been defined (0 to 15, 15 to 25 and > 25 meters), each
having a different R value.
For what concerns the UKF attitude measurement covari-
ance, a weak correlation between the error and the MRP
norm has been detected, which led to conservatively adopt
a single covariance computed only over measurements that
resulted into ∥𝛇∥ > 0.4.

In addition, the UKF also incorporates an outlier
rejection algorithm, based on the evaluation of the
Mahalanobis distance between expected and actual
measurements obtained from the image processing
pipeline. If such a distance exceeds the 2𝜎 threshold of
the corresponding fitted inverse 𝜒2 distribution, then the
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update step of the UKF will be temporarily disabled.

3.3.1 EKF specifics

The Jacobians defined in Equation (25) can be ana-
lytically derived for the relative separation problem intro-
duced in Section 2.3. The resulting expressions are given
in Equations (47) and (48)

F =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝜕 ¥𝑥
𝜕𝑥

𝜕 ¥𝑥
𝜕𝑦

𝜕 ¥𝑥
𝜕𝑧

0
𝜕 ¥𝑥
𝜕 ¤𝑦 0

𝜕 ¥𝑦
𝜕𝑥

𝜕 ¥𝑦
𝜕𝑦

𝜕 ¥𝑦
𝜕𝑧

𝜕 ¥𝑦
𝜕 ¤𝑥 0 0

𝜕 ¥𝑧
𝜕𝑥

𝜕 ¥𝑧
𝜕𝑦

𝜕 ¥𝑧
𝜕𝑧

0 0 0


(47)

H =


0 0 0

A𝐶/𝐿 0 0 0
0 0 0

 (48)

where the direction cosine matrix A𝐶/𝐿 represents the
camera to LVLH frame rotation, while the partial deriva-
tive terms in Equation (47) can be explicitly written as
follows.

Let 𝑟𝑐 := [(𝑟 + 𝑥)2 + 𝑦2 + 𝑧2]3/2, then:

𝜕 ¥𝑥
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[
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3.3.2 UKF specifics
The weighting parameters introduced in Equa-

tions (35) and (36), can be written in terms of three tuning
parameters (𝛼, 𝛽, 𝜅) as follows:

𝑊
(0)
𝑀

= 1− 𝑛

𝑐
𝑊

(𝑖)
𝑀

=
1
2𝑐

(60)

𝑊
(0)
𝑐 = (2−𝛼2 + 𝛽) − 𝑛

𝑐
𝑊

(𝑖)
𝑐 =

1
2𝑐

(61)

where 𝑐 = 𝛼2 (𝑛+ 𝜅). The values were eventually tuned
as 𝛼 = 10−3, 𝛽 = 0, 𝜅 = 2.

An important consequence associated with the use
both standard MRPs and their shadow-set counterpart is
the need to accordingly transform covariances. In partic-
ular the shadow-set covariance can be retrieved as

PS
𝑘 = 𝚲P𝑘𝚲

T where 𝚲 := 2𝛇−4 (𝛇𝛇T) − 𝛇−2I (62)

4. Results

4.1 Image generation & processing
A first very relevant step, that is preliminary to the

testing campaign of our full pipeline, consists in the val-
idation of the image generation procedure. To this aim,
a replica of the SPEED dataset [21] has been created in
order to compare the CNN inference results obtained on
the original dataset and its replica. Only the training set
portion can actually be exploited for comparison, given
that test labels are not available to the public. As a conse-
quence the original training set has been re-partitioned in
order to train CNNs only on a subset, so that the remaining
labels are available for testing purposes.
Minor a-priori biases were inevitable, due to slight differ-
ences in the 3D model of TANGO and because of the un-
availability of lighting information in the original dataset.
Nonetheless, the comparison resulted into a very close
match in terms of pose estimation performance attained
by the image processing pipeline, thus validating our ap-
proach. The corresponding results are reported in Table 1,
where E𝑡 is the translation error, 𝐸𝑞 is the quaternion er-
ror, while E𝜃 indicates the Euler angle error.
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Table 1: CNN-based pose estimation performance obtained on
SPEED and our replica

SPEED (original) SPEED replica

Mean pose estimation error

𝐸𝑡 10.36 cm 10.10 cm
E𝑡 [0.52 0.56 10.25] cm [0.58 0.65 9.96] cm
𝐸𝑞 2.24◦ 2.32◦
E𝜃 [1.57◦ 0.84◦ 1.72◦] [1.65◦ 0.83◦ 1.65◦]

Standard deviation of the error

𝜎E𝑡
[1.62 1.71 30.44] cm [1.79 2.45 39.82] cm

𝜎E𝜃
[8.92◦ 5.11◦ 10.82◦] [9.41◦ 4.72◦ 9.91◦]

A few prediction visualization examples of the pose
estimation results obtained by our CNN-based image pro-
cessing pipeline are reported in Figure 6. These re-
sults have been obtained on test images from the SPEED
dataset.

x

y

z

B1

B2

S1

S2

S3

S4

A3

Distance [m]
        x = -0.02
        y = 0.10
        z = 3.01

Error [cm]:
        Ex = 0.1
        Ey = 0.5
        Ez = 0.1

Attitude
        x = 146.1
        y = 29.7
        z = 168.4

Error: 
        E x = 0.60
        E y = 0.72
        E z = 0.17

0.0

0.2

0.4

0.6

0.8

1.0
Keypoint 

 confidence

x
y

z

B1

B2 B3
S1

S2

A1

A2

Distance [m]
        x = -0.01
        y = -0.02
        z = 6.34

Error [cm]:
        Ex = 0.2
        Ey = 0.5
        Ez = 0.1

Attitude
        x = 74.7
        y = 8.5
        z = 33.7

Error: 
        E x = 0.62
        E y = 0.23
        E z = 0.15

x
y

z

B1 B2

B3
B4S1

S3
S4

A1

A2

A3

Distance [m]
        x = 0.09
        y = 0.02
        z = 10.08

Error [cm]:
        Ex = 0.0
        Ey = 0.2
        Ez = 6.6

Attitude
        x = 64.4
        y = 15.4
        z = 44.7

Error: 
        E x = 0.67
        E y = 0.01
        E z = 0.20

x

yz
B1

B3B4

S1
S4

A1

A3

Distance [m]
        x = -0.37
        y = -2.60
        z = 30.91

Error [cm]:
        Ex = 1.1
        Ey = 1.7
        Ez = 41.5

Attitude
        x = 64.8
        y = 62.8
        z = 163.3

Error: 
        E x = 9.77
        E y = 1.05
        E z = 2.48

Fig. 6: CNN-based prediction visualization examples of
SPEED test images

4.2 Pose filtering
Following this, a set of dynamic sequences were gen-

erated and evaluated by the CNN pipeline. This process
was performed in order to provide further validation, and
to produce a set of real input baselines to test the filters.
The obtained results are reported in Table 2.
Table 2: CNN-based pose estimation performance on rendered

rendezvous image sequence

Mean pose estimation error

𝐸𝑡 8.36 cm
E𝑡 [0.50 0.48 8.26] cm
𝐸𝑞 2.74◦
E𝜃 [1.47◦ 0.69◦ 2.47◦]

Figures 7 and 8 report the results obtained by our
pose estimation pipeline on a 200 second long rendezvous

image sequence, in correspondence of a tumbling rate of
36 deg/s and an acquisition rate of 2 FPS.

1.0

0.5

0.0

0.5

1.0

1.5

z 
er

ro
r 

[m
]

T

(a) Translation error (boresight component)

T

(b) Rotation error (𝜁1 component)
Fig. 7: Measurement errors of the CNN pipeline before

filtering (rendezvous sequence)

T

|Filter error|
|Measurement error|

σ covariance

z 
er

ro
r [

m
]

(a) EKF performance (boresight component)

T

|Filter error|
|Measurement error|

σ covariance

(b) UKF performance (𝜁1 component)
Fig. 8: Filtering performance and comparison with

measurement error (rendezvous sequence)

IAC-22.C1.IPB.38.x70501 Page 8 of 11



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by the authors. Published by the IAF, with permission and released to the IAF to publish in all forms.

As highlighted in Figure 7, some of the raw pose mea-
surements resulted into outliers, which are all successfully
filtered out as can be clearly seen from Figure 8. Besides
rejecting and correcting outliers, our EKF/UKF approach
also shows to steadily improve estimation accuracy by as
much as one order of magnitude, upon reaching conver-
gence.

Despite the promising results, it was chosen to fur-
ther evaluate the robustness and reliability of the filtering
pipeline.
This was accomplished by performing thousands of runs
on pseudo-measurements, whose error statistics is based
on the covariance analysis described in Section 3.3.

The EKF proved to be extremely reliable and robust,
with zero failures across thousands of tests. The UKF was
tested over a certain range of tumbling rates of the target
spacecraft and it has demonstrated excellent performance
in a wide range of scenarios, even though a number of fail-
ures were detected. As expected, for a given fixed number
of FPS = 2, the failure rate becomes increasingly higher
as the tumbling rate increases, as reported in Table 3.

Table 3: Results of UKF stress testing campaign

Tumbling rate FPS No. tests No. UKF failures

24 deg/s 2 1000 24
36 deg/s 2 1000 39
72 deg/s 2 1000 83

4.3 UKF failure analysis
To better understand the underlying mechanisms trig-

gering the observed failures of the UKF, a dedicated anal-
ysis was carried out, which led to the identification of four
main failure modes that have been carefully studied:

• localized spike (≈ 65% of the failures), consists in an
isolated sudden increase of the error followed by its
instantaneous falloff (see Figure 9a)

• extended failure (≈ 30% of the failures), consists in a
prolonged failure caused by a sequence of successive
outliers (see Figure 9b)

• initial failure, a subset of the extended failure sce-
nario, occurring in correspondence of the very first
UKF iterations (see Figure 9c)

• total failure (≈ 5% of the failures), consists in the
complete divergence of the filter. It is generally
caused by an extended sequence of outliers or a very
bad initial guess (see Figure 9d).

(a) Localized spike

(b) Extended failure

(c) Initial failure

(d) Total failure
Fig. 9: Examples of UKF failure scenarios
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5. Conclusions

In this paper, a robust and accurate spacecraft relative
pose estimation pipeline has been presented and validated
in a rendezvous scenario. The proposed architecture lever-
ages static pose measurements obtained via CNN-based
image processing of monocular grayscale images. The
CNN processing is integrated with an EKF/UKF filtering
pipeline that exploits sequential information to improve
the robustness and to accurately reconstruct the relative
dynamics.
To this aim, a Blender-based optical simulator has been
developed, which enables generating both still frame
datasets and coherent rendezvous sequences.
A stress testing campaign that leverages pseudo-pose-
measurements has been carried out, which revealed a mi-
nor number of occurrences during which the UKF may
fail at converging, mostly in correspondence of extremely
high tumbling rates. On the contrary, the EKF performed
flawlessly through the entire range of tested relative angu-
lar velocities and zero failure scenarios were identified.
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