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Low-Thrust Collision Avoidance Maneuver Optimization

Andrea De Vittori,∗      Maria Francesca Palermo,† and Pierluigi Di Lizia‡
Polytechnic University of Milan, 20156 Milan, Italy

and

Roberto Armellin§

The University of Auckland, Auckland 1010, New Zealand

This work presents robust and numerically efficient algorithms for designing low-thrust collision avoidance
maneuvers in short-term encounters. The conjunction dynamics are developed in a tridimensional space and then
projected onto the B-plane, centered at the secondary object. Energy- and fuel-optimal maneuvers are computed

by constraining the collision probability or the miss distance. A fully analytical approach is derived for energy-
optimal collision avoidance maneuvers, providing a good guess for the fuel-optimal problem. The proposed
methods are validated in terms of efficiency and robustness in a simulated scenario accounting for environmental

perturbations.

I. Introduction

T HE design of efficient collision avoidance maneuvers (CAMs)
has a twofold objective: to enable autonomous spacecraft oper-

ations and to limit the growth of space debris. Generally in the low-
Earth-orbit regime, hundreds of collisionwarnings areweekly issued.
For the most, the risk drops as time goes on thanks to more refined
orbit data.Whenever the probability of collision (Pc) or miss distance
(d) exceeds a certain threshold at the timeof closest approach (TCA), a
CAM is performed.As the number of in-orbit satellites is growing day
by day, the on-ground procedures presently used for CAMdesign and
execution may suffer bottlenecks in the next future.
To optimize a CAM, a cost function (usually the total ΔV) is

minimized enforcing some boundary constraints, such as the colli-
sion probabilitywith one ormore space objects. The existing state-of-
the-art for continuous-thrust CAM optimization is limited. Research
on this field includes semi-analytical techniques featured by Reiter
and Spencer [1] for rapidCAM,with the assumption of optimal radial
thrust. Although being analytical, the formulation only holds close to
conjunction. Salemme et al. [2] described an indirect energy-optimal
control problem (EOCP) and a fuel-optimal control problem (FOCP)
in Cartesian coordinates with a prescribed Pc. Schiavo [3] continued
in the same vein with semi-analytical and analytical computationally
efficient methods for EOCP by imposing Pc as a boundary condition.
In both [2] and [3] the routine requires an iterative process to satisfy
boundary conditions; thus, it may not be suitable for an onboard im-
plementation. Gonzalo et al. [4] proposed a semi-analytical approach
mainly to maximize the miss distance with averaged equations of
motion and a constant tangential thrust assumption. Recently, Her-
nando-Ayuso and Bombardelli [5] have proposed a solution for opti-
mum low-thrust CAM design in B-plane coordinates for two resident
space objects (RSOs) belonging to circular orbits. Just the thrust
orientation is optimized (with constant magnitude) for a specified time
window. While the B-plane reference frame (r.f.) lowers the resulting

two-point boundary value problem (TPBVP) dimension from six to
only two, the circular assumption and the rigid control structure are the

two main limitations. The paper by Belmonte Hernandez et al. [6]
illustrates twoways to design a low-thrust CAM: the first adopts a fuel-

optimal transformation from the energy-optimal solution, and the latter

addresses CAM with convex optimization. Likewise, Armellin [7] has
devised a multi-impulse convex CAM optimization with both low-

thrust and impulsive propulsion systems. Being a direct formulation,
the chosen control parameterization can affect the solution’s optimality.
This work proposes novel approaches based on indirect trajectory

optimization for low-thrust CAM design, aiming at onboard imple-
mentation. The contribution is twofold. First, by leveraging previous

results that demonstrated CAM dynamics to be almost linear [5,7],
we develop a fully analytical solution for the energy-optimal problem

without any assumptions on the RSO orbits or thrust direction. As a
result, both formulations in Earth-centered inertial (ECI) andB-plane

coordinates for unconstrained or tangential CAMs converge and

achieve excellent computational efficiency. Secondly, these solutions
provide accurate guesses for FOCPs enabling bounded thrust and

reduced propellant consumption.
The paper is structured as follows. Firstly, Sec. II introduces the

main mathematical concepts instrumental to framing the proposed

methods. Next, Sec. III covers the derivation of low-thrust CAMwith
dynamics formulation in both ECI andBP reference frames. To fulfill

constraints on the thrust profile, the EOCP provides the first guess
for a fuel-optimal solution. Purely tangential maneuvers are also

studied. Section IV analyzes the achieved algorithm time perfor-

mance. Finally, conclusions are in Sec. V.

II. Mathematical Models

This section deals with the fundamentals of CAM design. Specifi-
cally, it details the basic principles of conjunction dynamics in the B-

plane r.f., and then it provides a brief introduction to the selected
Pc model.

A. B-Plane Definition

Let us focus on a conjunction event between two objects with
relative closest approach position re. Usually, the maneuverable

object is defined as “primary,” identified by the symbol Op. The

other uncooperative object is instead called “secondary” and labeled
with Os. The related state vectors are xp � �rp; vp� and xs �
�rs; vs�; r and v (with the corresponding subscripts p and s) are the
center-of-mass position and velocity vectors of the two objects,

generally set in an arbitrary r.f. R̂.
The inertial r.f. centered atOs is described by fx; y; zg at TCA,with

axes directions identified by
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ux �
vp
kvpk

; uz �
vp × vs
kvp × vsk

; uy � uz × ux (1)

The encounter duration tc is defined as

tc �
2ση

kvp − vsk
(2)

where ση is the covariance in the η-axis direction specified here-

after in B-plane coordinates, vp and vs are instead the magnitudes

of the velocity of the primary and secondary object, respectively.
Whenever

ϵ � tc
Tp

≪ 1 ≈ 10−3 (3)

the conjunction is called short-term. With Tp being the primary

orbital period in Eq. (3), the involved objects motion approximates
as uniform rectilinear (short-term encounter hypothesis; for further
details, see [8]). The collision avoidance dynamics is pictured in the
B-plane by adopting the formulation of [9]. This framework, depicted
in Fig. 1, refers to the conjunction plane of two colliding space objects.
It is oriented perpendicular to their relative velocity and embeds the
primary and secondary at TCA. A useful coordinate system in this

context is given by the position vector b3D � �ξ; η; ζ�⊤, framed in the
B-plane as

uξ �
vs × vp
kvs × vpk

uη �
vp − vs
kvp − vsk

; uζ � uξ × uη (4)

The corresponding rotation matrix from the inertial r.f. to the B-
plane reads

Rb;3D � �uξ; uη; uζ �⊤ (5)

while the projection on the η axis is

Rb;2D � �uξ; uζ �⊤ (6)

AtTCA,primary orbital elements are stated as a0 semimajor axis, e0
eccentricity, Rc radial orbital distance, and θc true anomaly. To
simplify the notation, the bidimensional B-plane position vector

is written as b � �ξ; ζ�⊤, derived from the first and last components
of b3D.
The upcoming subsections give a quick recap on B-plane dynam-

ics, focusing on the equations of motion for continuous low-
thrust CAM.

B. Low-Thrust Collision Avoidance Dynamics

If the primary spacecraft Op features a low-thrust propulsion
system, the CAM design is assumed to optimally orient the thruster
along the maneuver. The corresponding propelled dynamics in the
ECI r.f. are

�
_r � v

_v � − μ
r3
r� ac

ICs∶
�
r�t0� � r0
v�t0� � v0

(7)

where μ is the Earth gravitational parameter, ac is the control accel-
eration, and t0, r0, and v0 are the time and the spacecraft state at the
CAM initial maneuvering point. “ICs” stands for initial conditions.
No orbital perturbations are taken into account in the design phase
(their effect is studied a posteriori on the designedCAMinSec. IV.D),
and the mass flow rate decouples from the dynamics:

_m � −
1

ce
kackm IC∶m�t0� � m0 (8)

where

ce � Ispg0 (9)

In Eq. (9), Isp is the specific impulse andg0 is the standardgravitational
acceleration at ground level. Hernando-Ayuso and Bombardelli [5]
suggest tackling the maneuver by analyzing the variation introduced
on B-plane quantities. The infinitesimal velocity variation induced by
the control acceleration ac acting for an infinitesimal time δt is

δv � acδt (10)

and it yields a B-plane displacement δb � �δξ; δζ�⊤:

δb � RKD�t�acδt � M�t�acδt (11)

Where the matrices R;K, and D are declared in [5] and relate to the
rotation, kinematics, and dynamics from the ECI r.f. to the B-plane.M,
the product of the three matrices, is a function of time, being D
dependent on the initial maneuvering point. With a first-order approxi-
mation and suited initial conditions,Eq. (11) transforms intoa systemof
differential equations:

_b � M�t�ac ICs∶b�t0� � be � �ξe; ζe�⊤ (12)

inwhich the subscript e indicates expected quantities. This formulation
reduces the problem dimension from 6 to 2, which may ease the
solution of OCPs, yet it is valid for circular orbits only. A more refined
conjunction dynamics derivation in B-plane coordinates can be found
in [5].

C. Probability of Collision and Square Mahalanobis Distance

There are different ways to compute a bidimensional collision
probability Pc. A suitable approach for the problem at hand is the
formulation suggested by Chan in [8] truncated atm � 3. Pc derives
by the integration of a scaled isotropic Gaussian distribution function
over an elliptical cross section. If the latter approximates as a circular
cross section of equal area, the collision probability turns into a
Rician integral evaluated with the following convergent series:

Pc�u; v� � e−
v
2

X∞
m�0

vm

2mm!

�
1 − e−

u
2

Xm
k�0

uk

2kk!

�
(13)

where u is the ratio of the impact cross-sectional area to the area of the
1σ covariance ellipse in the B-plane:

u � s2A

σξσζ
���������������
1 − ρ2ξζ

q (14)

and v is the squared Mahalanobis distance d2M :

v � d2M � �rf − rs�⊤R⊤
b;2DC

−1Rb;2D�rf − rs� � b⊤fC
−1bf (15)

C refers to the summed covariance matrix in B-plane axes of the two
bodies, framed in the same orthonormal base (i.e., the two Gaussian

Fig. 1 Encounter frame and B-plane: snapshot of Op − Os encounter
geometry (x–y plane) after CAM.
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quantities are statistically independent) and then projected onto this

reference system with components fξ; ζg:

C �
"

σ2ξ ρξζσξσζ

ρξζσξσζ σ2ζ

#
(16)

The miss distance is just d �
����������������
ξ2e � ζ2e

p
� kbfk �

kRb;2D�rf − rs�k.

III. Low-Thrust Collision Avoidance Maneuver Design

The mathematical derivations of the optimal low-thrust CAMs, in

both ECI and B-plane r.f., are reported hereafter. The optimal control

problems formulate using [10] as a primary reference.

A. Energy-Optimal CAM Design in ECI Coordinates

Let us delve into the controlled motion of the primary object

around the Earth, considering the propelled Keplerian dynamics

introduced in Eq. (7). In the EOCP, the control identifies with an

acceleration vector ac � �ac;x; ac;y; ac;z�⊤. For numerical reasons, it

specifies as ac � amaxϵα, where amax is a scaling parameter corre-

sponding to the current spacecraft mass and maximum thrust, ϵ
modulates amax, and α � ac∕ac is the thrust direction.
In the EOCP the cost function is defined as

J �
Z

tf

t0

1

2
amaxϵ

2 dt (17)

and the terminal condition can be set in terms of squaredMahalanobis

distance d2M [or equivalently as Pc, by way of Eq. (13)] or miss

distance d. These two conditions are treated separately in the follow-
ing subsections.

1. Square Mahalanobis Distance Constraint

In this approach the primary relative position rf � r�tf� at con-
junction is enforced to match a predefined square Mahalanobis

distance �d2M value. The resulting terminal condition is

Ψ�x�tf�; tf� � d2M�rf� − �d2M � 0 (18)

The augmented cost function becomes

J � ν�d2M�rf� − �d2M� �
Z

tf

t0

�
1

2
amaxϵ

2 � λ⊤�t�� _x�t� − f�x;ac��
�
dt

(19)

Here f embeds the problem dynamics, _x � f�x;ac� given in Eq. (7),
and ν is an additional Lagrangian multiplier paired with the terminal

constraint. The resulting Hamiltonian is

H � 1

2
amaxϵ

2 � λ⊤r v� λ⊤v

�
−

μ

r3
r� ϵamaxα

�
(20)

The optimal control law, expressed in terms of optimal �ϵ�;α��,
i.e., the acceleration norm and unit vector, respectively, results from

the Pontryagin’s minimum principle.

α� � −λv∕λv; ϵ� � λv (21)

Hence, the optimal control acceleration a�
c � amaxϵ

�α� � −amaxλv.
The termamax scales the velocity costate to be one inmagnitudewhen

commanding the maximum available acceleration. Then, the Euler–

Lagrange equations read:

8>>>>><
>>>>>:

_r � v

_v � − μ
r3
r − amaxλv

_λr � μ
r3
λv −

3μr⋅λv
r5

r

_λv � −λr;

BC∶

8>>>>>>>>>><
>>>>>>>>>>:

r�t0� � r0

v�t0� � v0

λr�tf� � ν
∂d2M�rf�

∂rf
� 2νR⊤

2DC
−1R2D�rf − rs�

λv�tf� � ν
∂d2�vf�
∂vf

� 0

d2M�rf� − �d2M � 0

(22)

Equation (22) forms a TPBVP, usually solved iteratively with com-

putationally expensive methods; the convergence is highly affected

by the first guess solution. Here the TPBVP is addressed analytically

by linearizing the motion of Eq. (22) about the nominal uncontrolled

dynamics. The aim is to pinpoint the initial costates λr0, λv0 as to

reduce the TPBVP to an initial value problem (IVP) employing the

terminal constraint and the STM determined through the integration

of the following dynamics:

_Φ�t; t0� � A�t�Φ�t; t0�; Φ�t0; t0� � In×n (23)

where A is the Jacobian of the dynamics in Eq. (22) evaluated on a

purely Keplerian motion.

A �

2
6666664

03×3 I3×3 03×3 03×3

−A34 03×3 03×3 −amaxI3×3

03×3 03×3 03×3 A34

03×3 03×3 −I3×3 03×3

3
7777775;

with A34 �
μ

r3
I3×3 − 3

μ

r5

�
rxr ryr rzr

�z												}|												{3×3matrix

(24)

where rx, ry, and rz refer to the position vector components. InA34, r
is a columnvector horizontally stacked to form 3 by 3matrices. Next,

the STM maps initial state variations into the corresponding final

ones:

2
666664

δrf

δvf

δλrf

δλvf

3
777775 �

2
666664
Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44

3
777775

2
666664

δr0

δv0

δλr0

δλv0

3
777775 (25)

Provided an initial fixed state, δr0 � 0 and δv0 � 0. Moreover,

the costates are set to zero on the nominal trajectory, i.e., δλr0 �
λr0; δλv0 � λv0; δλrf � λrf; δλvf � λvf. The state variations at TCA
are δrf � rf − rp; δvf � vf − vp. Equation (25) can be manipu-

lated to find the initial costates λr0; λv0 as functions of the position
rf at conjunction. Considering that the final velocity is uncon-

strained, the corresponding costate is null: δλvf � λvf � 0. There-
fore, from the fourth row of Eq. (25) and the third row of Eq. (25), the

following can be derived:

λv0 � −Φ−1
44Φ43δλr0; λr0 � B−1δλrf;

with B � Φ33 −Φ34Φ−1
44Φ43 (26)

From the first row of Eq. (25),
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δrf � DB−1δλrf ;with D � Φ13 −Φ14Φ−1
44Φ43 (27)

Since δλrf � λrf, Eq. (27) reads

δrf �DB−1λrf �DB−1ν
∂d2M�rf�
∂rf

� 2νDB−1R⊤
2DC

−1R2D�rf − rs�

(28)

Overall, Eq. (28) and the last boundary condition on the SMD of

Eq. (22) form a nonlinear system in rf and ν. The first row is

multiplied to the left by R2D, and the second equation is reframed

using the final position bf in the B-plane:8<
:
rf − rp � 2νDB−1R⊤

2DC
−1R2D�rf − rs�

�rf − rs�⊤R⊤
2DC

−1R2D�rf − rs� � �d2M:

⇒

(
R2D�rf − rp� � 2νR2DDB−1R⊤

2DC
−1R2D�rf − rs�

b⊤fC
−1bf � �d2M

(29)

Focusing on the first equation of Eq. (29), since a generic posi-

tion b in the B-plane r.f. can be expressed as b � R2D�r − rs�, we
have

R2D�rf − rs − rp � rs� � 2νR2DDB−1R⊤
2DC

−1R2D�rf − rs� ⇒ bf

− bp � 2νR2DDB−1R⊤
2DC

−1bf (30)

By defining the matrixE � 2R2DDB−1R⊤
2DC

−1, Eq. (30) becomes

bf � �I2×2 − νE�−1bp (31)

Replacing Eq. (31) in the second equation of Eq. (29), the latter

leads to a scalar equation with unknown variable ν. More specifi-
cally,

��I2×2 − νE�−1bp�⊤C−1�I2×2 − νE�−1bp � �d2M (32)

Since

�I − νE�−1 � 1

det�I − νE� �I − ν detE ⋅ �E�−1� (33)

By setting ~E � detE ⋅E−1 to streamline the notation, Eq. (32) can
be manipulated and solved in closed-form for ν:

ν2� ~Ebp�⊤C−1� ~Ebp� − ν�b⊤pC−1 ~Ebp � � ~Ebp�⊤C−1bp� � �d2Mdet
2�I

− νE� − b⊤pC
−1bp (34)

Equation (34) has four solutions because the term with the quad-

ratic determinant contains ν at the fourth degree. Depending on the
polynomial coefficients, if all roots are real the solutions will be

two local minima and two local maxima of the cost function J (as
shown in the results section by Fig. 7). Through the already

computed state transition matrix (STM), the linearized costates
are easily retrieved, plugged into the acceleration definition and

integrated over time to assess the Δv. The minimum across all
solutions is selected, and the linked initial costates serve for the

nonlinear controlled dynamics propagation.
The associated final position rf reached after CAM execution can

be found by inserting ν into the first equation of Eq. (29). Once rf and
ν are known, recalling that δrf � rf − rp, the initial costates λr0 and
λv0 are finally computed from Eqs. (26) and (27):

λr0�2νB−1R⊤
2DC

−1R2D�−�I−2νDB−1R⊤
2DC

−1R2D�−1�rp−rs�−rs�
(35)

λv0 � −2νΦ−1
44Φ43B

−1R⊤
2DC

−1R2D�−�I − 2νDB−1R⊤
2DC

−1R2D�−1
�rp − rs� − rs� (36)

Thanks to the costates at t0, the solution of the optimal control

problem reduces to an IVP; i.e., the control laws of the optimal

CAM are computed by integrating the nonlinear dynamics of

Eq. (22). These are provided in Eqs. (35) and (36) through the

motion linearization supplied by the STM. The whole method

presented so far is summarized in Algorithm 1 for a set of arbitrary

starting maneuvering points.

2. Miss Distance Constraint

The EOCP maneuver can be reformulated to set a constraint

on the miss distance d. The miss distance d can be written as

d �
����������������
ξ2e � ζ2e

p
� kbfk � kR2D�rf − rs�k. The nonlinear system in

Eq. (29) becomes

Algorithm 1: EOCP-ECI

1: Input: CDM, d2MorPc; d;Δθrange
2: Output: rf , d

2
M and Pc or d, ac, Δv, Δm

3: Algorithm:

4: if Pc then

5: d2M � Pc 2 squared mahalanobis distance�Pc�
6: end if
7: Select a Δθ
8: Start up true anomaly for maneuvering:
9: θm � θTCA − Δθ

10: T interval of time corresponding to Δθ
11: span_backward = [T 0]
12: tspan_forward = [0 T]
13: Backward propagation:
14: Propagate the dynamics backward from θTCA to θm with a pure ballistic

motion.

15: �r0; v0� � keplerian propagation��rTCA; vTCA�, tspan_backward, μ)
16: Compute STM:
17: Starting from �r0; v0�, propagate the dynamics with keplerian propagation

alongside the STM for tspan_forward

18: Solve the nonlinear system:
19: if d2M then

20: Solve [Eq. (34)] for ν and compute λr0; λv0 in [Eqs. (35) and (36)]

21: Else

22: Solve [Eq. (40)] for ν and compute λr0; λv0 in [Eqs. (41) and (42)]

23: end if
24: Controlled forward propagation:
25: �R;V;Λr;Λv;m� � control propagation��r0; v0; λr0; λv0; m0�,

tspan_forward, amax, μ) using the dynamics of Eq. (22) or in Eq. (63)
for the tangential case.

26: R;V;Λr;Λv are, respectively, n by 3 state and costate matrices;m is the
mass array of dimension n; n represents the number of integration
steps.

27: Output computation:

28: rf � R�end; ∶�
29: mf � m�end� final mass

30: Acceleration profile ac retrieved by plugging �R;V;Λr;Λv� in Eq. (22)
or in Eq. (63) for the tangential case.

31: Δv is calculated with the integration of jacj in time.

32: Δr � rf − rs
33: if d2M then

34: d2M � squared mahalanobis distance�Δr;CDM�
35: Pc � Pc chan�Δr;CDM�
36: else

37: d � miss distance�Δr;CDM�
38: end if
39: Δm � mf −m0

40: Δr B-plane projection

4



(
δrf � 2νDB−1R⊤

2DR2D�rf − rs�
d�rf� � d;

⇒

(
R2D�rf − rp� � 2νR2DDB−1R⊤

2DR2D�rf − rs�
kR2D�rf − rs�k � d

(37)

By applying a procedure similar to the one presented above [Eqs. (30)
and (31)], the first equation of Eq. (37) reads

bf � �I2×2 − νE�−1bp; with E � 2R2DDB−1R⊤
2D (38)

whereas the second equation of Eq. (37) becomes



 1

det�I − νE� �I − ν ~E�bp




 � d (39)

and the final fourth order polynomial in ν transforms into

ν2� ~Ebp�⊤� ~Ebp�− νb⊤p ~Ebp − ν� ~Ebp�⊤bp � det �I− νE�2d2 − b⊤pbp

(40)

Similarly to the d2M, Eq. (40) is algebraically manipulated and ana-
lytically solved for ν to retrieve the initial costates λr0 and λv0:

λr0 � 2νB−1R⊤
2DR2D�−�I − 2νDB−1R⊤

2DR2D�−1�rp − rs� − rs�
(41)

λv0 � −2νΦ−1
44Φ43B

−1R⊤
2DR2D�−�I − 2νDB−1R⊤

2DR2D�−1
�rp − rs� − rs� (42)

The solution of the optimal control problem turns into an IVP. The
control laws of the optimal CAM are found by integrating the dynam-
ics Eq. (22) starting from the nominal initial state and the costates
given in Eqs. (41) and (42). As in the square Mahalanobis distance
case, Algorithm 1 provides a quick recap on themiss distance problem
implementation.

B. Energy-Optimal CAM Design in B-Plane Coordinates

The EOCP can be transposed in the B-plane to lower the system
dimension. The state vector in the B-plane r.f. is b � �bξ; bζ �⊤. The
controlled dynamics is(

_b � amaxϵM�t�α
b�t0� � b0

; with M�t� � RKD�t� (43)

The performance index is still expressed as in Eq. (17). Similarly to
the Cartesian r.f., the terminal function can set a constraint on either

d2M (covering the case of a fixed Pc as well) or d.

1. Squared Mahalanobis Distance Constraint

The problem is here formulated to force the final d2M to equal a

fixed value �d2M. Hence, the Hamiltonian system of the EOCP is

(
_b� −amaxM�t�M�t�⊤λ
_λ� 0:

BC∶

8>>>>><
>>>>>:

b�t0� � b0

λ�tf� �
∂d2M�bf�
∂bf

� 2νC−1b�tf�

bT�tf�C−1b�tf�− �d2M � 0

(44)

Since the problem does not explicitly depend on b, λ is constant
over time:

λ�t0� � λ�t� � ν2C−1b�tf�; ∀ t ∈ �t0; tf� (45)

Equation (44) are linear. Thus, the exact solution of the aboveTPBVP
can be obtained using the STM attained through the following
dynamics:

_Φ�t; t0� � A�t�Φ�t; t0�; Φ�t0; t0� � I4×4 (46)

where A�t� for this specific case reads

A �
"
02×2 −amaxM�t�M�t�⊤
02×2 02×2

#
; such that∶

"
_b

_λ

#
� A

"
b

λ

#

(47)

where M�t� corresponds to the uncontrolled motion.
The resulting STM links the initial state and costate to their final

values as "
δbf

δλf

#
�

"
Φ11 Φ12

Φ21 Φ22

#"
δb0

δλ0

#
(48)

Since the initial state is fixed, δb0 � 0. Moreover, the costate is null
on the uncontrolled trajectory, i.e., δλ0 � λ0. Consequently, the state
and costate variations at TCA after CAM execution are

δbf � bf − be; δλf � λf (49)

Equation (48) can then link the initial costate λ0 to the final position
bf. From the first row of Eq. (48),

δbf � Φ12δλ0 � Φ12λ0 (50)

and from Eq. (45),

λ0 � ν2C−1bf (51)

Hence Eq. (50) is rewritten as

δbf � 2νΦ12C
−1bf (52)

The nonlinear system in ν and rf results in(
δbf � 2νΦ12C

−1bf

d2M�bf� � �d2M
⇒

(
bf − bp � 2νΦ12C

−1bf

b⊤fC
−1bf � �d2M

(53)

By rearranging the first equation of Eq. (53),

bf�I2×2 − 2νΦ12C
−1� � bp (54)

and inserting bf in the second equation yields(
bf � �I − 2νΦ12C

−1�−1bp
��I − 2νΦ12C

−1�−1bp�⊤C−1�I − 2νΦ12C
−1�−1bp � �d2M

(55)

Recalling that F � 2Φ12C
−1 and defining ~F � detF ⋅ F−1, the

second equation of Eq. (55) morphs into a scalar one to be solved
for ν:

ν2� ~Fbp�⊤C−1� ~Fbp� − ν�b⊤pC−1 ~Fbp � � ~Fbp�⊤C−1bp�
� �d2M det2�I − νF� − b⊤pC

−1bp (56)

As for Cartesian case, Eq. (56) has four roots (if all real) corre-
sponding to two local minima and two local maxima of the cost
function J. The final B-plane position bf after CAM execution

recovers by evaluating the first equation of Eq. (55) once ν is
available. After bf has been computed, λ0 comes directly from

Eq. (51):
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λ0 � ν2C−1�I − 2νΦ12C
−1�−1bp (57)

Then, the controlled dynamics in Eq. (44) is forwardly integrated to

obtain the optimal control profiles.

2. Miss Distance Constraint

The EOCP in B-plane r.f. is here revisited to accommodate a

constrained final miss distance. By recalling that the final miss

distance in B-plane coordinates is d �
����������������
ξ2e � ζ2e

p
� kbfk, the non-

linear system in Eq. (53) turns into

(
δbf � 2νΦ12bf

d�bf� � d
⇒

(
bf − bp � 2νΦ12bf

kbfk � d
(58)

Manipulating the first equation of Eq. (58) to obtain bf and inserting
it into the second equation it yields

(
bf � �I2×2 − 2νΦ12�−1bp
k�I2×2 − 2νΦ12�−1bpk � d

(59)

reminding that





 1

det�I − νF� �I − ν ~F�bp




 � d; with F � 2Φ12 (60)

As for the squaredMahalanobis distance case, Eq. (60) is analytically

solved for ν and applied to retrieve λ0:

λ0 � 2ν�I2×2 − 2νΦ12�−1bp (61)

C. Energy-Optimal CAM Design with Tangential Thrust

In some operational scenarios, the thrust may be required tangen-

tial to the trajectory, in other words, parallel to the instantaneous

velocity. Consequently, the control acceleration is expressed as a

fraction ε of amax, with constrained direction:

ac � amaxϵt; where t � v

v
(62)

The performance index is still termed as Eq. (17). The following two

sections address the resulting EOCP in ECI and B-plane r.f.

1. ECI Dynamics

The Euler–Lagrange equations are8>>>>>>>>>><
>>>>>>>>>>:

_r � v

_v � −
μ

r3
r − amax

�
λv ⋅

v

v

�
v

v

_λr �
μ

r3
λv −

3μr ⋅ λv
r5

r

_λv � −λr � 2amax

�
−
�
λv ⋅ v
v2

�
2

v� λv ⋅ v
v2

λv

�

BC∶

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

r�t0� � r0

v�t0� � v0

λr�tf� � ν
∂d2M�rf�
∂rf

� 2νR⊤
2DC

−1R2D�rf − rs�

λv�tf� � ν
∂d2�vf�
∂vf

� 0

d2M�rf� − �d2M � 0

(63)

The STM is determined from the state matrix A:

A �

2
666664
03×3 I3×3 03×3 03×3

03×3 03×3 03×3 A24

03×3 03×3 03×3 03×3

03×3 03×3 −I3×3 03×3

3
777775;

with A24 � −amax

�
v

v

�
v

v

�⊤�
(64)

From this point on, the method is the same as in Sec. III.A.

2. B-Plane Dynamics

The Euler–Lagrange equations in the LVLH frame are

8><
>:

_b�−amax

�
λ ⋅M

v

v

�
M

v

v

_λ� 0:

BC∶

8>>>><
>>>>:

b�t0� � b0

λ�tf� �
∂d2M�bf�
∂bf

� 2νC−1b�tf�

b⊤�tf�C−1b�tf�− �d2M � 0

(65)

The STM is computed using the matrix A:

A �
"
02×2 A12

02×2 02×2

#
; with A12 � −amax

�
M

v

v

�
M

v

v

�⊤�
(66)

The subsequent derivations are identical to the one reported in

Sec. III.B.

D. Fuel-Optimal CAM Design

Despite being analytical, the solution of the EOCP proposed in the

previous sections provides a continuous control acceleration profile

that can be complex to implement and, because unbounded, may

exceed the thrusters’ capabilities. In addition, the EOCP does not

provide the solution with minimum propellant consumption. All

limitations are overcome by solving the fuel-optimal control problem

with bounds on the thrust magnitude. The resulting bang-bang con-

trol profile is simpler to implement in an operative scenario limiting

the propellant consumption. Consequently, this section introduces a

numerical procedure to establish a fuel-optimal solution from an

energy-optimal one. Effects like the Earth shadowing on power

availability and thrusters startup times are left for future investi-

gations.

1. Fuel-Optimal CAM Design in ECI Coordinates

In the FOCP, the cost function is

J � λv;th

Z
tf

t0

amaxϵ dt (67)

where λv;th is a positive scaling factor whose purposewill be clarified
afterwards. Thanks to Pontryagin’s minimum principle, the optimal

control law �ϵ�;α��, providing ac � amaxϵ
�α�, is

8>>>><
>>>>:
α� � −

λv
λv

ϵ� � 1 if λv > λv;th

ϵ� � 0 if λv < λv;th

⇒ ϵ � 1

2

�
1 − tanh

�
λv;th − λv

ρ

��
(68)

This formulation captures the discontinuous bang-bang profile

with a hyperbolic tangent function. In Eq. (68), ρ is a scaling

parameter that mimics a step function [11,12]. The process equa-

tions grow into
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8>>>>>>>>>>><
>>>>>>>>>>>:

_r � v

_v � −
μ

r3
r −

1

2
amax

�
1 − tanh

�
λv;th − λv

ρ

��
λv
λv

_λr �
μ

r3
λv −

3μr ⋅ λv
r5

r

_λv � −λr
_ν � 0;

BC∶

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

r�t0� � r0

v�t0� � v0

λr�tf� � ν
∂d2M�rf�
∂rf

� 2νR⊤
2DC

−1R2D�rf − rs�

λv�tf� � ν
∂d2�vf�
∂vf

� 0

d2M�rf� − �d2M � 0

(69)

The control acceleration term is, undoubtedly, an approximationof a
bang-bang policy. However, this continuous formulation gives com-
parable results with respect to the optimal bang-bang onewhen ρ takes
sufficiently small values. There is no closed-form solution for this
BVP. Yet, the EOCP solution is a suited first guess, and a threshold

value for λv;th is crucial to start the procedure. To this aim, the Δv �
∫ tf
t0amaxλv dt of the energy-optimal solution is computed, aswell as the

equivalent burning time tb, i.e., the time needed to obtain the sameΔv
by thrusting with the maximum affordable acceleration:

tb � Δv
amax

�
Z

tf

t0

λv dt (70)

Themain idea is to define λv;th so that the thruster fires up for λv ≥ λv;th
(λv still belonging to the EOCP) and switched off otherwise. The
equivalent bang-bang burning time should be equal to tb. The pro-
cedure to get λv;th is based on the bisection method:

1) Set two initial boundary values for λv;th for the first bisection
iteration, namely, λv;th1 � max�λv� and λv;th2 � min�λv�.
2) Evaluate the burning time tcb for λv > λv;th1 and for λv > λv;th2.
3) Iteratively update λv;th1 or λv;th2 with the bisectionmethod taking

as cost function J � tcb − tb.
4) Do step 3 until jtcb − tbj ≤ Δt with Δt a prescribed tolerance.
Using the resulting λv;th, and the EOCP states and costates profiles

from t0 to tf, the TPBVP is solved numerically with the four-stage

Lobatto IIIa formula embedded in the bvp5cMATLAB function with
dynamics of Eq. (69). For the proposed study case (see in Sec. IV.C

for more insights), ρ ≃ 8 ⋅ 10−6 seems a middle ground between the
bvp5c convergence and the discontinuous profile approximation.
Smaller ρ can be achieved by successively solving bvp5c using as
first guess solution the one obtained for larger ρ. Algorithm 2 sum-
marizes the required steps for CAM design.

2. Fuel-Optimal CAM Design in B-Plane Coordinates

Similarly to the ECI case, the discontinuous optimal control laws is
substituted by a hyperbolic tangent function and plugged into the
dynamics:8>>>><

>>>>:
_b � −

1

2
amax

�
1 − tanh

�
λth − kM⊤λk

ρ

��
MM⊤ λ

λ

_λ � 0

_ν � 0

BC∶

8>>>><
>>>>:
b�t0� � b0;

λ�tf� � 2νC−1b�tf�
b⊤�tf�C−1b�tf� − �d2M � 0

(71)

The reasoning behind this alternative formulation for λv;th estimation
and TPBVP solution mirrors the ECI procedure.

IV. Results

All the presented techniques are proven on a test case extracted
from a large ESA Collision Avoidance Challenge conjunction data-
base [13] (in LEO regime), and made publicly available in [14]. For
this contest, ESA has produced 162,634 real CDMs for the compet-
ing teams, including 13,154 unique events. These data have been
pruned by taking into account conjunctions with d ≤ 2 km and

Pc > 10−6, resulting in 2170 conjunctions.
Only one of them is used as test bench in the following sections

(see Tables 1 and 2, reporting the state in ECI r.f. and other key

Algorithm 2: FOCP-ECI

1: Input: CDM, d2M or Pc Δθrange
2: Output: rf; d

2
M; Pc;ac;Δv;Δm

3: Algorithm:

4: if Pc then

5: d2M � Pc 2 squared mahalanobis distance�Pc�
6: end if

7: Select a Δθ
8: Start up true anomaly for maneuvering:
9: θm � θTCA − Δθ

10: T interval of time corresponding to Δθ
11: tspan_backward = [T 0]
12: tspan_forward =[0 T]
13: Backward propagation:
14: Propagate the dynamics backward from θTCA to θm with a pure ballistic

motion.

15: �r0; v0� � keplerian propagation��rTCA; vTCA�, tspan_backward, μ)
16: Compute STM:
17: Starting from x0, propagate the dynamics with keplerian propagation

alongside the STM for tspan_forward

18: Solve the nonlinear system:

19: Solve [Eq. (34)] for ν and compute λr0; λv0 in [Eqs. (35) and (36)]
20: Controlled forward propagation for the energy-optimal solution:
21: �R;V;Λr;Λv��controlpropagation��r0;v0;λr0;λv0�, tspan_forward,

amax, μ) using Eq. (22) as dynamic model

22: R;V;Λr;Λv are, respectively, n by 3 state and costate matrices; n
represents the number of integration steps.

23: Compute the burning time tb with Eq. (70) for the energy-optimal case.

24: Find λv;th with the bisection method such that the fuel-optimal burning
time equates tb.

25: Controlled forward propagation for the fuel-optimal maneuver:
26: The energy-optimal solution is given as a guess to the bvp5c solver in

MATLAB in terms of state and costate evolution from θm to θTCA.

27: �Rb;Vb;Λrb;Λvb;m; v� � bvp5c��R;V;Λr;Λv; m0; v�
tspan_forward,amax,μ, λv;th) adopting the dynamics reported in Eq. (69)

28: Output computation:
29: rf � Rb�end; ∶�
30: mf � m�end� final mass

31: accelerationprofileac retrievedbyplugging �Rb;Vb;Λrb;Λvb� inEq. (69)
32: Δv is calculated with the integration of jacj in time.

33: Δr � rf − rs

34: d2M � squared mahalanobis distance�Δr;CDM�
35: Pc � Pc chan�Δr;CDM�
36: Δm � mf −m0

37: Δr B-plane projection

Table 1 Primary and secondary states

State Value

xp, km �2.3305;−1103.7; 7105.9�⊤
xs, km �2.3335;−1103.7; 7105.9�⊤
vp, km/s �−7.4429;−6.1373e−04; 3.9514e−03�⊤
vs, km/s �7.3537;−1.1428;−0.19825�⊤
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information of both primary and secondary at CA). Nevertheless, the

method has been demonstrated to work with all conjunctions in

the set. The objects combined cross-sectional radius sA � 29.7 m,

and the primary is assumed to have initial mass m0 � 500 kg, and
it features a Hall thruster engine named PPS-1350 G from Safran

with an Isp � 1660, a nominal thrust T � 90 mN, and a power

consumption P � 1500 W. For full details, check [15], where it

reports a catalog of low-thrust engines for small-size satellites.

The combined B-plane covariance matrix is

C �
"
7.21756 −0.7580

−0.7580 51.9201

#
⋅ 10−4 km2 (72)

The forthcoming subsections validate the CAM design with a
purely Keplerian motion. Although computed with a linearization
procedure, all the presented solutions are obtained by propagating the

maneuvered trajectories in the nonlinear dynamics starting from the
state and costate at t0. The accuracy is thus quantified by comparing

the actual value of PC against the prescribed one or, equivalently, by
showing how well the primary lands on the isoprobability ellipse for

different initial maneuvering points.

A. Analytical Solutions

1. Energy-Optimal Solutions in ECI Coordinates

For accuracy and robustness assessment of the proposed CAM
design problem, 100 equally spaced values of initial maneuvering

true anomalies are sampled from two orbits before the TCA till
conjunction. The prescribed squared Mahalanobis distance is d2M �
25 and the associated collision probability is Pc � 2.4036 ⋅ 10−6.
The method introduced in Sec. III.A applies at each maneuvering
point, and the resulting B-plane final positions after CAM execution

are plotted in Fig. 2.
The final collision probabilities after CAM execution, i.e., evalu-

ated with rf from Eq. (29) after the forward propagation of the
controlled dynamics, are close to the enforced value (see Fig. 3).

The maximum error due to the linearizations is 1.1729 ⋅ 10−8 (two

orders of magnitude lower than the imposed Pc), and it decreases
when close to conjunction. The final Pc never exceeds the threshold.
The plot in Fig. 4 reports the maximum acceleration commanded

during maneuver execution, computed componentwise in the LVLH

r.f.. The transverse component prevails for the furthest points from
TCA, as already confirmed byHernando-Ayuso and Bombardelli [5]

and Armellin [7], whereas the radial component becomes predomi-
nant close to TCA. Each starting maneuvering point features a differ-

ent time profile of the commanded control acceleration. An example
of the resulting control profile is reported in Fig. 5 for a maneuver

starting two orbits before TCA.
Finally, Fig. 6a and 6b depict the required maximum thrust and the

Δv for every initial firing time. As expected, these two figures of
merit dramatically increase for maneuvers starting close to conjunc-

tion, eventually making them unfeasible for a low-thrust propulsion
system.
As mentioned earlier, Eq. (34) has potentially four solutions,

namely, two local maxima and two local minima for the cost function
J. These are indicatedwith stars in Fig. 7 on the ellipse corresponding
to the target Pc. Specifically, 300 points are sampled on the ellipse,
and the EOCP is solved to reach them at the final time by starting
CAM two orbits before TCA. The resulting Δv is computed and

plotted in the same figure. As can be seen, the solutions obtainedwith
the proposed analytical CAM design method correspond to the sta-

tionary points.Moreover, the twominima are in opposite locations on
the ellipse. The corresponding thrust is predominantly tangential or

antitangential.

Table 2 Conjunction
parameters

Parameter Value

Pc 1.3604e−01

d2M 0.87166

d, km 0.0432
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Fig. 2 Final positions in B-plane r.f. after CAM execution obtained
for 100 initial maneuvering points from two orbits before TCA to
TCA: EOCPwith ECI dynamics and constrained squaredMahalanobis
distance.
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Fig. 3 Final collision probabilities after CAM execution. EOCP with
ECI dynamics and constrained squared Mahalanobis distance.
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Fig. 4 Equivalent maximum control acceleration ac for each initial maneuvering point: EOCP with ECI dynamics and constrained squared
Mahalanobis distance.
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2. Miss Distance Constraint

By adopting the proposed analytical CAM design with the miss
distance condition d � 0.3 km, the final B-plane positions after
maneuver execution are reported in Fig. 8. Similarly to the above

analysis, 100 equally spaced values of initial maneuvering points
have been selected. The error due to linearizations is confined;

indeed, the maximum is just 1.1687 ⋅ 10−4 km, three orders of mag-
nitude lower than the enforced miss distance.
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Fig. 5 Control acceleration profile for a maneuver starting two orbits before TCA: EOCP with ECI dynamics and constrained squared Mahalanobis

distance.
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Fig. 6 Maximum thrust (a) and Δv (b) for each initial maneuvering point: EOCP with ECI dynamics and constrained squared Mahalanobis distance.
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Fig. 7 Equivalent Δv’s corresponding to the solutions of the EOCP
starting two orbits before TCA reaching 300 points on the target prob-
ability ellipse.
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Fig. 8 Final positions in B-plane r.f. after CAM execution, obtained for
100 initial maneuvering points from two orbits before TCA to TCA:
EOCP with ECI dynamics and constrained miss distance.

9



3. Energy-Optimal Solutions in B-Plane Coordinates

This section outlines the results of the analyticalCAMdesignmethod
in B-plane dynamics detailed in Sec. III.B. The test case and constraints
are the same as Sec. IV.A.1. The commanded CAM yields final posi-
tions on the B-plane tight to the isoprobability curve as in Fig. 2.
Valuable insights can be achieved by comparing the trends of the

final collision probability after CAM execution. Figure 9 reports a
comparison between the final collision probabilities obtained in ECI
and B-plane coordinates for each initial maneuvering point. The

analytical CAM designed in ECI adheres better to the enforced Pc

by never exceeding the corresponding value. Yet, the B-plane for-

mulation provides a maximum error of 5.6354 ⋅ 10−8, featuring the
same order of magnitude as the maximum error of the ECI case. The
slightly higher approximation error has to do with the circular orbit
strong assumption, making the solution less accurate when planning
CAMs in highly elliptical orbits as shown in Sec. IV.E.

4. Miss Distance Constraint

The case of constrained final miss distance in B-plane dynamics

is addressed hereafter. As noted above, the final positions on the
B-plane after maneuver execution are close to those in Fig. 8. Con-
sequently, the corresponding plot is omitted here. The maximum
error in ECI dynamics is 1.1687 ⋅ 10−4 km, whereas the B-plane one

is 3.3818 ⋅ 10−4 km, roughly three orders of magnitude lower than
the applied miss distance value.

B. Energy-Optimal Solutions with Tangential Maneuver

This section delves into the tangential control acceleration case in
ECI dynamics with constrained squared Mahalanobis distance. The
results of the B-plane formulation and the miss distance terminal

condition are unaccounted for because they do not introduce addi-
tional insights. For each initial maneuvering point, Fig. 10 represents
the final position reached on the B-plane after CAM deployment in
the nonlinear dynamics.
The maximum acceleration components commanded for each

initial maneuvering point are in the LVLH r.f. The radial component
is several orders of magnitude smaller than the transversal one owing
to a quasi-primary circular orbit, as seen in Fig. 11.
Figure 12 displays a sample control acceleration over time initiated

two orbits before TCA. The profile is in terms of acceleration
magnitude (top) and acceleration components in the LVLH r.f.
(bottom). The commanded acceleration is close to transversal,

expected for a tangential maneuver initiated well in advance. For
each initial point, Fig. 13b if compared to Fig. 6a exhibits a higherΔv
and a maximum thrust level (see Fig. 13a) near conjunction by virtue
of a fixed firing direction.
Figure 14 compares the actual Pc obtained by the tangential

maneuver formulated in ECIwith its prescribed value. Themaximum

error is 4.9582 ⋅ 10−8, two orders ofmagnitude less than the targetPc.

C. Fuel-Optimal Solutions

The transformation to a fuel-optimal solution is validated in this
section by testing the algorithm on 15 equally spaced initial maneu-
vering points from 0.7 to 2 orbits before TCA. Results may signifi-
cantly vary with higher or lower values of maximum allowable thrust

acceleration amax and tuning parameter ρ. For the case at hand, ρ �
8 ⋅ 10−6 and amax � 1.8 ⋅ 10−4 m∕s2 is found from

Fig. 9 Final collision probabilities after CAM execution: comparison
between the results obtained with the ECI and B-plane formulations.
EOCP with constrained squared Mahalanobis distance.
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Fig. 10 Final positions in B-plane r.f. after CAMexecution obtained for
100 initial maneuvering points from two orbits before TCA to TCA.
Tangential EOCP with ECI dynamics and constrained squared Maha-
lanobis distance.
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Fig. 11 Maximum control acceleration ac for each initial maneuvering point: tangential EOCP with ECI dynamics and constrained squared
Mahalanobis distance.
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amax �
T

m0

(73)

wherem0 is the initial mass, and T is the nominal thrust level. For the

chosen parameters, 0.7 orbits before the conjunction is the lower

bound in terms of initial maneuvering point for the algorithm’s

convergence. A higher ρ may negatively affect the target collision

probability when plugging the obtained costates into a discontinuous

control profile. Figure 15 accounts for the final positions reached on

the B-planewith a fuel-optimal thrusting profile obtained through the

bvp5c solver. To help the solver convergence, the jacobians for both

dynamics and boundary conditions are provided. Further information

is available at [16].
Figure 16 displays the collision probability evolution for different

initial maneuvering points. Three cases are analyzed:
1) FOCP-SFD (smooth finite difference) in green is the collision

probability yielded by a smoothing approach, described in Eq. (69).
2) FOCP-DFD (discontinuous finite difference) in yellow stands

for the collision probability computed with the FOCP-SFD initial
costates and inputted in a discontinuous thrust profile:

ac � −
1

2
�λv >� λth�amaxvλv (74)

3) Finally, FOCP-DSS (discontinuous simple shooting) in red
refines the initial conditions of FOCP-SFD with a discontinuous
thrust profile [see Eq. (74)], i.e., by a simple shooting approach).
FOCP-SFD and FOCP-DSS meet the constraint on Pc at a pre-

cision dictated by the solver convergence tolerance. FOCP-DFD

instead slightly deviates from the reference Pc as the control profile

used for the validation (discontinuous) is different from the one used
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10-4
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100

102

Fig. 12 Control acceleration profile for a maneuver starting two orbits
before TCA. Tangential EOCP with ECI dynamics and constrained

SMD.
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Fig. 13 Maximum thrust (a) andΔv (b) for each initial maneuvering point: tangential EOCPwith ECI dynamics and constrained squaredMahalanobis
distance.
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Fig. 14 Collision probability profile after the dynamics propagation: tangential EOCP in ECI coordinates and constrained squared Mahalanobis
distance.
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to compute the initial costates (continuous). Nevertheless, the over-
all error is still acceptable because Pc is associated with a position
error of decimeters in B-plane coordinates. As expected, the offset
increases with early maneuver planning. Actually, the overall firing
time of FOCP-SFD shrinks, causing a higher relative Δv error for
discontinuous profiles. Note that in all the cases the linearization
errors are absent as the problem is solved directly in the nonlinear
dynamics.
Pertaining to fuel consumption, Fig. 17 follows the same nomen-

clature of Fig. 16. The EOCP solution always requires a higher
propellant mass when compared to FOCP-SFD, FOCP-DFD, and
FOCP-DSS. Notably, the three different fuel-optimal formulations

do not differ at all. On average, a fuel-optimal solution allows

between 2.1 ⋅ 10−4 and 3.6 ⋅ 10−4 kg of propellant mass savings for

the proposed CAM scenario. Figures 16 and 17 finally prove that if ρ
is small enough, FOCP-DFD is a viable solution for a discontinuous

thrust while fulfilling all boundary constraints.
Moving on to the costate time evolution, Fig. 18, the EOCP

profile seems to almost overlap the FOCP-SFD one, demonstrating

that the energy-optimal solution is a fair initial guess. Figures 18–20

show the acceleration profiles for the FOCP-SFD and FOCP-SFD

cases, respectively. It is clear that, with a sufficiently low ρ, the
former tends to mimic the discontinuous behavior of the control

profile. As for the analytic solution, the transverse component

of the acceleration vector prevails for CAMs initiated far from

conjunction.

D. Perturbations Effect

The performance of the proposed analytical energy-optimal sol-

ution is now tested in more refined orbital dynamics, including the

effects of the first 10 Earth’s gravitational harmonics and drag (with

coefficient cD � 2.2 and area-to-mass ratio equal to 0.3), which are

predominant in the LEO regime. More specifically, the analytical

solution of Sec. III.A provides the control acceleration profiles then

comprised in the perturbed dynamics.
The final positions reached on the B-plane after CAMexecution in

the perturbed nonlinear dynamics are plotted in Fig. 21.
The collision probability after CAM execution is investigated in

Fig. 22 for the perturbed and the unperturbed dynamics. As intended,

the former differs more from the established Pc (with a maximum

deviation of 1.0531 ⋅ 10−7 compared to 1.1729 ⋅ 10−8 of the Kepler-
ian case). Yet, the designed CAM can be considered to be effective

and safe. Similar considerations hold for the fuel-optimal case, shown

in Fig. 23.

E. Highly Elliptical Orbits

In this section, differently from [5], we show the applicability of

our methods to eccentric primary and secondary orbits. Their orbital

data are in Table 3 at the conjunction (artificially generated). The

primary trajectory has an eccentricity ep � 0.1235 and the secondary

has es � 7.0298 ⋅ 10−2; the conjunction data are given in Table 4.

The EOCP is planned for both ECI and B-plane coordinates as

shown in Figs. 24a and 24b. The first formulation is not affected

by the eccentricity; indeed, all terminal points accurately land on

the isoprobability curve. For the B-plane dynamics, the dots dis-

played in Fig. 24b slightly divert from the imposed collision

probability curve. As asserted by [5], the main assumption of the

B-plane formulation is circular orbit motion.
The combined B-plane covariance matrix is

C �
"
20.7503 −9.2100

−11.21 464.7503

#
⋅ 10−3 km2 (75)
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Fig. 15 Final position in B-plane r.f. reached after the fuel-optimal
maneuver performed from 0.7 to 2 orbits before TCA.
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Fig. 16 Collision probability profile after the dynamics propagation:
FOCP in ECI coordinates and constrained squared Mahalanobis dis-
tance for 15 initial maneuvering points.
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Fig. 17 Comparison between the fuel mass consumption of the EOCP
and FOCP obtained for 15 initial maneuvering points from 0.7 to 2 orbits
before TCA.
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Fig. 18 Velocity costate (λv) profile for the energy-optimal CAM
(dashed lines) and the fuel-optimal control (solid lines) initiated twoorbits
before TCA for the FOCP-SFD case.
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F. Computational Time

In this section, we assess the EOCP and FOCP algorithms’ per-
formance in terms of computational time. The algorithms have been
developed with the Rosetta emulated MATLAB® 2020a version and
executed on an Apple M1 Chip with an 8-Core CPU and 16 Gb of
RAM. Since the processing time is fractions of a second, a statistical

analysis simulates 100 unique events selected from theESACollision
avoidance database and averaging the resulting computational times.
Notably, Fig. 25 reports the average computational times obtained

from two up to eight orbits before TCA. These, in turn, are split into
several contributions: the STM integration (in green), the analytical
derivation of the initial costate (in red), and the forward propagation
to retrieve the control acceleration to be commanded (in yellow). As
expected, the STM and the forward propagation times decrease close
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Fig. 19 Control acceleration time profile for the EOCP CAM (dashed lines) and for FOCP-SFD (solid lines) initiated two orbits before the TCA,

ρ � 8 ⋅ 10−6.
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Fig. 20 Control acceleration time profile for the energy-optimal CAM (dashed lines) and the fuel-optimal control (solid lines) in case of a maneuver
initiated two orbits before conjunction: FOCP-DFD case.
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Fig. 21 Final positions in B-plane r.f. after EOCP CAM execution in
perturbed dynamics.
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Fig. 22 Collision probability profile after dynamics propagation: com-
parison between unperturbed and perturbed dynamics. EOCP in ECI

coordinates with constrained SMD.
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to TCA. Yet, the overall computational time is always of the order of

10−1 s in the current MATLAB implementation, and it looks prom-
ising for a prospective on-board implementation. Turning on to the
FOCP, in Fig. 26 the simulation spans only from 0.7 to 2 orbits to
ensure the algorithm convergence when setting a fixed amax for all
iterations. Due to the additional bvp5c numerical solver overhead
(in green), a CAM design takes from 10 to 20 times more than the
corresponding EOCP one; nevertheless, it is relatively fast, being the
overall CPU run time always less than 4 s.

V. Conclusions

We have derived purely analytic formulations for energy-optimal
low-thrust CAMs for short-term encounters with constant and uncor-
related covariances and spherical object approximation in ECI and

B-plane reference frames. Starting from different initial maneuvering

points, the algorithm enforces final conditions in terms of collision

probability, squared Mahalanobis distance, and miss distance. On

average, the energy-optimal control problem (EOCP) in the B-plane

coordinates turns out to be less accurate than the ECI one due to its

first-order dynamics approximation. In addition, optimal CAMs,

following other similar works on the same topic, tend to be close to

tangential if planned in advance. In some operational scenarios, it can

be preferable to command a merely tangential thrust sacrificing only

a little in optimality. Lastly, a method leveraging the EOCP solution

solves the FOCP with bounds on the control acceleration for propel-

lant mass savings.
The algorithms were tested on realistic short-term encounters in

low Earth orbit. We have shown that the employed linearizations

have little effect on the constraints violations and that Keplerian

dynamics are appropriate for maneuver planning, even for highly

elliptical orbits. The limited computational time and the robustness

of the algorithms make them a promising approach for onboard

CAM design.

Table 4 Primary and secondary
states

State Value

xp, km �8500;−100; 200�⊤
xs, km �8500.01; 99.995; 199.97�⊤
vp, km/s �0.1; 7.2479; 0�⊤
vs, km/s �−0.1; 7.0479; 0.7�⊤

Table 3 Conjunction
parameters

Parameter Value

Pc 2.7023e−03

d2M 2.0574e−05

d, km 1.08231e−02
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Fig. 23 Collision probability profile after dynamics propagation: com-
parison among FOCP-SFD, FOCP-DFD, and FOCP-DSS.
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Fig. 24 Final spacecraft position with a CAMplanned in ECI coordinates (a) and in B-plane ones (b) for highly elliptical primary and secondary orbits.
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Fig. 25 AverageEOCPcomputational times forup to eight orbits before
TCA, divided in the their main contributions.
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Fig. 26 Average FOCP-SFD computational times obtained up to two
orbits before TCA, divided in the their main contributions.
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