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Abstract
In this featured review manuscript, the aim is to present a crit-
ical survey on the processes available for fabricating bioartifi-
cial organs (BAOs). The focus will be on hollow tubular organs
for the transport of anabolites and catabolites, i.e., vessels,
trachea, esophagus, ureter and urethra, and intestine. First,
the anatomic hierarchical structures of tubular organs, as well
as their principal physiological functions, will be presented, as
this constitutes the mandatory requirements for effectively
designing and developing physiologically relevant BAOs.
Second, 3D bioprinting, solution electrospinning, and melt
electrowriting will be introduced, together with their capacity
to match the requirements imposed by designing scaffolds
compatible with the anatomical and physiologically relevant
environment. Finally, the intrinsic correlation between pro-
cesses, materials, and cells will be critically discussed, and di-
rectives defining the strengths, weaknesses, and opportuni-
ties offered by each process will be proposed for assisting bio-
engineers in the selection of the appropriate process for the
target BAO and its specific required functions.

© 2021 S. Karger AG, Basel

Introduction, Approach and Objectives

Bioengineering is a discipline in which engineering
principles are applied to biological systems and biomedi-
cal technologies. One of the main goals of bioengineering
is to reproduce, repair, or recapitulate tissues and organs,
or their functions. In bioengineering, geometries are di-
rectly inspired by anatomy, while properties closely fol-
low physiological functions. From an anatomical point of
view, there are 5 fundamental levels of organization in the
human body, from the simplest one to the most complex:
(i) the cellular level, (ii) the tissue level, (iii) the organ
level, (iv) the organ-system level, and (v) the organism
level [Goraetal., 2016]. Each tissue is a complex structure
composed by multiple cell types immersed in multiple
sets of proteins dispersed in an extracellular matrix
(ECM) [Chen and Liu, 2016]. The cells in a tissue work
together in an orchestrated manner to accomplish spe-
cific functions. An organ is made of various types of tis-
sues, and intrinsically, of several types of cells. Each organ
is characterized by complex structural, mechanical, and
motility patterns responsible for one or more specific
physiological functions [Del Gaudio et al., 2014; Man-
drycky et al., 2015].

Diseases, injuries, and malfunctions of one (or more
than one) of the organs affect and decrease the patient’s
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quality of life, and in the worst case, lead to death [Leb-
erfinger et al., 2019]. The type of clinical treatment de-
pends on the severity of the injury, the type of disease,
and the medical history of the patient. As a first option,
drug therapy and/or other noninvasive therapeutic treat-
ments are privileged. However, when the progression of
the disease advances, surgical intervention, including tis-
sue transplantation or substitution, is unavoidable. Cur-
rent transplantation and substitution techniques are
based on the use of (i) autologous, or (ii) heterologous
tissues, or (iii) synthetic prostheses, but these do not al-
ways represent a viable option [Hodges and Atala, 2013;
Holland et al., 2018]. Substitution or transplantation of
autologous tissues is not possible in case of previous har-
vesting and/or pathological degenerative conditions. As
for heterologous tissues, the main limitation is a shortage
of suitable and available tissues [Atala, 2005; Del Gaudio
etal., 2014; Chen and Liu, 2016; Leberfinger et al., 2019].
In the past decades, synthetic prostheses were developed
in the hope of facing the abovementioned shortcomings.
However, there is an important mismatch between ana-
tomical and mechanical requirements (MRs), and other
issues can be found in the required biological properties
and long-term expected patency [Holland et al., 2018].
Therefore, although organ shortage is already addressed
by reparative [Stock and Vacanti, 2001; Ratner et al,,
2004; Vacanti and Vacanti, 2014] (through implants, ar-
tificial organs and devices) or regenerative [Mozafari et
al., 2019] (cell-containing structures or cell-based thera-
pies) medicine, clinical complications still limit the suc-
cess of the implantation. In an attempt to improve this
success rate and increase the overall clinical performance,
tissue engineering and regenerative medicine (TERM)
aim to restore the functional and structural properties of
diseased or damaged tissue, while maintaining and/or
improving tissue performance [Shafiee and Atala, 2017].
Different approaches have been explored, all relying on
the use of cells, scaffolds, or their combination [Furth
and Atala, 2013; Hodges and Atala, 2013; Del Gaudio et
al., 2014; ]. Through further process engineering, the re-
sulting constructs are expected to mimic the structure
(i.e., the internal architecture) and the complex cellular
microenvironment of native tissues [Chen and Liu, 2016;
Barbosa and Martins, 2018]. In particular, bioartificial
organs (BAOs) constitute the expected outcome of de-
signing and developing functional organs from regen-
erative medicine strategies. In order to be able to mimic
the native organs to the greatest extent possible, research-
ers have to look in detail into the anatomical hierarchy of
tissues [Nerem and Schutte, 2014] and their biological
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and mechanical properties [Nichol and Khademhossei-
ni, 2010; Moffat et al., 2014; Marx, 2015; Chen and Liu,
2016].

To better understand the rich complexity (issued by
millions of years of biological evolution), that can be
found in various tissues and organs, Atala et al. [2012]
have proposed 4 levels of classification according to a de-
fined scale of increasing complexity: (i) flat tissue struc-
tures, (ii) tubular structures, (iii) hollow, non-tubular,
viscous structures, and (iv) complex solid organs. De-
spite the available knowledge (both on the engineering
and the biology side) and the accessible technologies
(both the standard and the more advanced ones), there
are still plenty of challenges in designing and developing
more complex structures. Therefore, this review will
point out the current situation considering these chal-
lenges, and can hopefully open up a new path for future
studies. More precisely, this review will focus on the sec-
ond group, namely the tubular structures. The human
body is composed of several organ systems, including the
respiratory, digestive, urinary, and circulatory system,
each one containing tubular organs [Géra et al., 2016;
Holland et al., 2018]. Their main function is to transport
fluids, metabolites, and gases from, to, and through or-
gans [Atala et al., 2012; Del Gaudio et al., 2014]. In order
to engineer these tubular systems, biomaterials are pro-
cessed into a tubular structure that is used as such or
combined with cells and allowed to mature in vitro, be-
fore implantation. Various processing techniques to fab-
ricate tubular constructs have already been proposed
[Holland et al., 2018]. Such processing techniques can be
grouped into (i) conventional and (ii) advanced tech-
niques. Some examples of conventional laboratory tech-
niques are gas foaming, molding, solvent casting, dip
coating, and a few others. More advanced techniques, for
reproducible results and adapted to clinical transfer, in-
clude three-dimensional bioprinting (3DBP), solution
electrospinning (sES), and melt electrowriting (MEW)
[Mandrycky et al., 2015; Dutta et al., 2017; Pedde et al,,
2017; Holland et al., 2018]. Each of them has its own pros
and cons - they will be discussed here below — which will
influence the resulting properties of the fabricated tubu-
lar construct. Likewise, the choice of the processing tech-
nique depends on the specific requirements for which
each BAO has been designed for. These biological re-
quirements (BRs) and MRs depend, in their turn, on the
anatomical hierarchical structure of the different tissues
and on the physiological functions related to the anato-
my of a specific organ. Consequently, there is an under-
lying correlation between (i) the requirements to match
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Fig. 1. Flow chart. Part 1: Requirements dictated by anatomical and physiological concerns. Part 2: Strategies for
the fabrication of tubular constructs for the regeneration of tubular organs. Part 3: Relationship between the pro-
cess, cells, mechanical and biological performance.

in order to restore the physiological functions, (ii) the
various processing techniques to fabricate a tubular con-
struct, and (iii) the obtained properties of the fabricated
construct.

In this work, the development of functional tubular
constructs from biomaterials and/or cells was reviewed
(as depicted in the flow chart, Fig. 1). More specifically,
the hierarchical anatomical structure of the 4 hollow tu-
bular organs will be described (Part 1), together with the
complex physiological functions and the MRs and BRs of
each one. The state-of-the-art (SOTA) of processing
techniques to develop tubular constructs (Part 2) will be
reviewed as well. In the final part, the effect of processing
techniques on the mechanical and biological aspects
(Part 3), and thus the existing correlation between pro-
cess, mechanical and biological pertinence will be dis-
cussed.
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From Organs to Hierarchical Structure of Hollow
Tubular Organs: Design Requirements Dictated by
Anatomical Structure and Physiological Functions

Asintroduced above, requirements for TERM applica-
tions are defined considering the organ anatomy and
physiology. The wall of all tubular organs is composed of
different layers. In general, 4 layers can be distinguished
including (i) mucosa, (ii) submucosa, (iii) muscularis ex-
terna, and (iv) adventitia and/or serosa layer (Fig. 2, left)
[Goraetal, 2016]. A comparison between the 4 basic lay-
ers of each tubular system (i.e., trachea, esophagus, intes-
tines, urethra and ureter, and blood vessels) is shown in
Figure 2. These 4 layers consist of various cell types and
ECM, which are organ specific. Each kind of cell and
ECM component has a specific role to perform individu-
ally, but also as a multilayered structure in its whole, in
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Fig. 2. Anatomical structure of tubular organs. Left: General structure of tubular organs (Image adapted from
UNIFAL-MG, Histologia interatva; https://www.unifal-mg.edu.br).Right: comparison of the wall structure of the
trachea, esophagus, intestines, urethra, ureter, and blood vessels.

such a way that they enable the physiological functions of
the tubular organ.

Depending on the physiological functions that each
tubular organ has to fulfil, each layer of the tubular wall
will have its own biological and mechanical properties,
resulting in great differences in the hierarchical structure
of the different tissues. Thus, it is important to look in
detail into the different layers of the tubular wall and into
their physiological functions, taken individually and as a
whole (i.e., 4-layered wall structure). Moreover, it is im-
portant to investigate the correlations existing between
the anatomy (hierarchical structure), the physiological
function, and the mechanical and biological properties of
a specific tubular organ. The main challenge when engi-
neering a BAO with specific physiological functions is to
meet the MRs and BRs. Table 1 gives an overview on (i)
anatomical hierarchical structure, (ii) physiological func-
tions, and (iii) MRs and BRs for each of the previously
mentioned tubular organs.

Strategies for Processing Constructs for the
Regeneration of Tubular Organs

In this section, 3 processing techniques (i.e., 3DBP,
sES, and MEW) that enable the development of hollow
tubular constructs will be introduced. An overview of the
SOTA of each processing technique used for engineering
one of the 4 tubular organs discussed above will be given.

Tubular Bioartificial Organs

In particular, the correlations between processing, me-
chanical and biological performances will be discussed.
Then, the potential of clinical translation of these tubular
constructs will be evaluated.

Processing Techniques for the Development of Tubular
Constructs to Regenerate Hollow Tubular Organs
Three-Dimensional Bioprinting

3DBP is a fabrication method that, starting from a
computer-aided design model, creates a 3D construct in
a layer-by-layer manner [Murphy and Atala, 2014]. As
the “bio” term suggests, it involves biologically derived
materials and/or cells [Moroni et al., 2018]. This tech-
nique allows the creation of constructs made of multiple
materials and cell types in the same process, following a
design-specific distribution. 3DBP techniques are usually
classified into 3 categories, depending on the working
principle of the layer-by-layer deposition process. They
can be distinguished in (i) microextrusion-based, (ii) ink-
jet-based, and (iii) laser-assisted bioprinting (Fig. 3). For
detailed information on the working principles of each
bioprinter type, the authors suggest the reviews of Mur-
phy and Atala, [2014], Holland et al. [2018], Van Hoorick
etal. [2019], and Jeong et al. [2020].

Many advantages have been reported in literature on
the 3DBP technique. One of them is the precise control at
the micrometric scale of the biomaterial deposition. This
allows to obtain a controlled porosity, in terms of both
geometry and size, and to accurately mimic the physio-
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//,

Microextrusion bioprinter
a Pneumatic-, piston- or screw-based

£ AN AN

! Laser pulse

Inkjet bioprinter Laser-assisted bioprinter

Thermal or piezoelectric c

Fig. 3. 3DBP process: bioprinters classification based on the working principle. a Microextrusion bioprinter,
b Inkjet bioprinter, ¢ Laser-assisted bioprinter. Image adapted from Murphy and Atala [2014].

logical structure of the native organs [Li et al., 2016].
Moreover, the possibility to combine multiple materials
and cell types in the same process, with specific arrange-
ments, allows to overcome the limitations of convention-
al fabrication techniques and it brings TERM closer to the
complexity of native tissues. Finally, despite not yet used
in clinical practice, in a future perspective, 3DBP will al-
low the fabrication of patient-specific BAOs, starting
from the patient’s medical images (e.g., magnetic reso-
nance imaging) [Sahai and Gogoi, 2020]. This customiza-
tion would improve the SOTA of regenerative medicine.
However, the formulation of biomaterials and cell
components responding to the bioprinting requirements
is the main challenge of this technique, and the final con-
struct accuracy strongly depends on it [Panwar and Tan,
2016]. Additional drawbacks are (i) the possible cellular
damage due to the stress applied during the process, and
(ii) the use in some cases of temperatures or light wave-
lengths incompatible with cell survival. Table 2 shows an
overview of the SOTA on 3DBP of tubular organs.

Solution Electrospinning

sES is a versatile processing technique that relies on the
application of a high voltage electrical force to enable the
production of micro- and nano-scale fibers from a poly-
mer solution and deposit these fibers on a suitable collec-
tor. The high voltage (within a range of several kV, typi-
cally between 5 and 20 kV) generates electric charges on
the polymer solution. These electric charges accumulate

426 Cells Tissues Organs 2022;211:420-446
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on the polymer surface until they eventually overcome
the surface tension and form a Taylor cone. This results
in an electrically charged polymer jet that is drawn from
the tip of the Taylor cone and stretches in the electric field
towards the oppositely charged collector such as a plate,
a rotating mandrel, etc. As the polymer moves towards
the collector, the solvent evaporates, and the jet solidifies,
forming solid micro- and nano-scaled fibers. A schemat-
ic representation of the sES process and the different ele-
ments constituting the sES set-up are illustrated in Figure
4. A detailed description of the fundamentals of sES can
be found in the book of Bosworth and Downes [2011].

Various factors influence the sES process, including
solution parameters (i.e., polymer concentration and mo-
lecular weight, solution viscosity and conductivity, sur-
face tension, solvents), process parameters (i.e., applied
voltage, flow rate, collecting electrode, needle tip-to-col-
lector distance, diameter of the needle tip), and environ-
mental parameters (i.e., temperature, humidity). All these
factors have been described in detail by Ibrahim and
Klingner [2020] in a review on electrospun polymeric
nanofibers and will not be discussed further in this re-
view.

The main advantage of using sES as a processing tech-
nique for TERM is the production of fibrous networks
that resemble those of the natural ECM in terms of hier-
archical organization and properties. Other advantages
include the high surface-to-volume ratio of the fibers,
high aspect ratio, tunable porosity, flexibility to tailor sur-

Pien/Palladino/Copes/Candiani/Dubruel/
Van Vlierberghe/Mantovani
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Fig. 4. sES process: different elements required and overall sche-
matic.

face properties, and the possibility to produce fibers from
a large variety of materials. Electrospun scaffolds are
known to provide a good microenvironment for cell ad-
hesion, proliferation, and differentiation [Mo et al., 2019;
Oprea et al., 2019].

Even though the sES process has been known since the
1930s, it gained renewed interest in the last decades due
to the inception of advanced electrospinning set-ups (e.g.,
side-by-side ES and coaxial ES). These advanced set-ups
have the ability to produce scaffolds with multiple layers,
made of multiple materials, with gradients, with fiber
alignment, with multiphasic fibers, with core-shell fibers,
with drug-loaded fibers, etc [Subbiah et al., 2005; Moghe
and Gupta, 2008; Sill and von Recum, 2008; Bhardwaj and
Kundu, 2010]. Therefore, it has been extensively used in
the research focusing on the development of scaffolds for
various TERM applications [Lelkens et al., 2008; Sell et al.,
2010; Jin et al., 2012; Jiang et al., 2014; Erdem et al., 2016;
Kennedy et al., 2016; Pien et al., 2021]. In Table 3, a sum-
mary of recent research studies using sES for the fabrica-
tion of tubular scaffolds for the regeneration of the 4 tu-
bular organs described in Part 1 is given.

Melt Electrowriting

MEW process is similar to sES, except that in MEW a
polymer melt is used instead of a polymer solution [Wil-
lerth, 2017; Yang et al., 2018]. Therefore, an extra heating
system to heat up the polymer is needed in the MEW set-

Tubular Bioartificial Organs

Fig.5. MEW process: different elements required and overall sche-
matic.

up (Fig. 5). As in sES, an electrostatically ejected jet is
drawn as a polymer jet which then cools down and so-
lidifies either in air or on the collector. A low variation in
fiber diameter can be obtained due to the high viscosity
and low charge of these polymer melts. In combination
with a moving collector, the MEW process enables (i) to
directly write a 3D scaffold, and (ii) the rational design of
scaffolds with control over pore size and pore intercon-
nectivity [Jin et al., 2020]. More specifically, MEW allows
to fabricate scaffolds with high reproducibility using a
computer-controlled layer-by-layer approach (similar to
fused deposition modelling technologies including
3DBP). In other words, MEW fibers can be precisely de-
posited to generate constructs with predefined architec-
tures [Hochleitner et al., 2015]. Another advantage of
MEW compared to sES is that it has no solvent evapora-
tion, and thus, toxicity issues associated with solvents can
be avoided [Dalton et al., 2015; Muerza-Cascante et al.,
2015; Brown et al., 2016].

The MEW technique and its use in TERM applications
have already been extensively reviewed by Dalton et al.
[2013], Muerza-Cascante et al. [2015], and Afghah et al.
[2019]. The most recent literature has been summarized
last year by Robinson et al. [2019] and will therefore not
be described in detail in this review. In addition to the
optimization of general processing parameters, research
has also focused on the optimization of the MEW process
with the aim to fabricate hollow tubular constructs (and

Cells Tissues Organs 2022;211:420-446
DOI: 10.1159/000519207

429



ymolb
aNssi} Jo uoizowold pue uolIeIUl |[9 19113 10}
Buruuidsoydald pauialied Ag saueiquuiawl snoady

A A N N N S S N  [en0nis(jeusidegiue) pajaas|inw jo ubissq 6267 3se[qoIq1d (v1d) apnoeiflod  [610¢ “|e 12 Buey]
$1ONJISU0d
Jejngny undsoi3d9]d Ausolod ybiy snsian Aysosod
Jewou uo A>uaid1yd bulpaas ay3 pue ‘uolrew.oy S||92 Jespdnuouow
A u N 3 S N N N 9NSS1309U UO BUIPaas []92 JO 199449 Y3 Jo Apnis PaALISP-MOLIBW duog Nd pue 134 [910T “|e 32 4€]D]
Sp|oyeds
undsoJ329|2 buisn uoliessusbal eaydely Ul
9suodsal sunwiwi A1ojewwejul Jo 9|04 Y3 pue (SONW-NE)
uonelsyijoid pue uonezijelayyds Aiojesdsai jo S[|92 Jespnuouow [ozoz “1e
K A N N A N N N wslueyddw ayy ‘buipaas |23 jo 3jos ayy buluyaq PaALISP -Mo.lew suog Nd pue 13d 19 UeyjIypewleyd]
llem [elyduoiq S|I93 WSY
Kemiie 3y} JO SJUDSWUOIIAUD-OIDIW Ulew 931y} pue s1se|qoiqi SOYW (13d)

91 BupjdIwIW [9pow painyjnd-od e jo ubisaq

s|193 |e1RYuda €NTVD

a1ejeyiydasnl auajlyiaklod  [S10Z “|e 32 9bpug]

yimoub(-ur)

SNSSI} PUB SWN|OA USWN| ‘uonlezijelayuda-ai1 uo
10943 SH pue A|9A1dadsal ‘AA1De [eIqoIdIWIIUR
pue uolisaype ||93 padueyus Joj punodwod
Jeiqoudiwnue ue Jo apndad uoisaype |30 e

punodwod
Jeiqo.diwiue Jo apndad
uolsaype [132 ‘pud|q

(1DV1d) (uoyejoided [ozoz

A £ S N S 3 N I sopnpulleyl1dnisuod undsoslds|s ue jo ubisaq lendy  -03-apnoej-1)Ajod pue 1Od “|e 19 pusasumo]]
uolssaldxa auab Aserjpodnw
9sealdul 0} (YYie) ajndsjow buljeubis e yum aull  (YYie) pIde dlounal supij-|je

papeo| pjoj4eds snoiqiyouru e Jo JuawdojaAdg

D3 [elysuoiq eNTVO

pue ‘uesonyd pue 10d - [0Z0T “[e 19 A1ea,0]

suedA|boajold apn|pui 03 A)|Iqisesy
91 pue ‘uoisuedxa $H3JydYy 104 Aydiusbounwwi
MO]| YIIM SP|0Jeds (€ [eUO[IdUNY JO UOIIRISUDD

(sD3vdu)
s|192 [elpyuda
Kemure Arewnd uewny

(ueaA|b0a304d JRUOIDUNY
pue [BINIDNIIS) ULI0IIP
yum ‘uire|db pue 1od

[zl0T
“|e 13 J2I9pUIH]

Aemure

jualed e Hujurejuiew uo (spoddns bull [eanonis
pajuud gg o/m 10 yum pue ‘siakejiq ‘quaipeld
‘Spua|q ‘siakejouow Ul paziuebio) pjojeds

(vD1d) p1oe 21j034|6

u u N N N S S N >uawAjod ‘snouqy e jo ubisap ay3 Jo 199443 JejnjjPdy -02-2130e|-Ajod pue 1od [910Z “|2 32 1O]
yibuaiis [eusaixa apinoid pue uado Aemire
9y1 pjoy 03 sbull pajund Qg pue 19m usaym
1ybn-iie bulurewsals ajiym ‘uolyeibalul anssiy [8L0Z wasAs
A u § N S 3 N 3 90woidolsiaqyundsosdsf buluiquod ubisag Je|n| 2oy 1d “|e 19 puasumo]] Kiojelidsay
AA LA €49 ZHg LHEE YT YN L YW $0
Apnis ayy ui suonduny [edibojoisAyd uonesausbal
2cuauiad [edibojoig pue [edtueydsly  /siulod £y [ediwoleue uo sndoj pue eapl ubisag |opow [es16ojoig 22104 [elRlR Apnis/saduaiasey 10§53

anbiuyda) uonesugey e se buiuuidsolds|s uonn|os € a|qeL

Pien/Palladino/Copes/Candiani/Dubruel/

Van Vlierberghe/Mantovani

Cells Tissues Organs 2022;211:420-446

DOI: 10.1159/000519207

430



1jelb undsoad9)e

papaas e Buisn UOIILZIIRINDSEA YUM SIaKe| a|psnw
|e19]9s pue [esodnwigns ‘[eljayidas Buipnpul
‘anssiy |9 Jo uolesauabal sy Jo uonebisaaul

$||92 |eSOdNW PIALIIP
-|eabeydosao bid

(op1102A|6
-02-apnoe|-Ta)fjod
‘(sad) auouexolpAjod
‘Nd 'v91d “10d

[810T “|e 13 UOLIeg]

sansuaeIeyd

|eDIUBYIW pUB UOIIRI}|IUl SNSSI} :DUIISDIUI

2y bulRaUIBUS aNss3 10j 3sn [elaudlod J1dY) pue
$3ONJISUOD Jejngn3 undsoi}dd[d snoleA uo Apnis

Jejnjjdy

(v9d) (p1oe d1j024|6)Ajod
‘(v91ad) (p1oe 21j034|6-0>
-pioe dnoel-a)Ajod ‘(v11d)

(p1oe d1de-T)Aj0d ‘Nd “10d

Loz
“|e 12 Jlowoog]

J9Ae| [esoonwi

9y a1esausbal 01 [ennusiod 1Y) pue s1oNIISUod
Jeingni snouqy paubije pue wopues duswAjod
Buisn uonoeISUI XLIBW-|[9 3Y) U0 APNIS

EBE|
snowenbs ‘paiyienys
‘paziuneIdy-uoN

uneRb

(NGHd) (93e19eALx0lpAYy
-g-023-91e4A1NgAX0IPAY
-€)Alod 104

[910T
“le 13 ueddny|]

anssi
3OS pue BSOdNW JO UONeISUSH3I BY) pue p|oeds

A A N 3 N S N N pasake|-a3.y1 e Jo A11|IqISeS) SY] JO JUDWISSISSY SEIERY uloiqy|Is pue Dd  [§10Z “|e 19 bunyd]
uolnesauabal 3psnw pue
uonezijelayuda [eniur Jouadns ureqo o1 SSOSIY (SDSWY)

yum papaas ‘(poddns 1D yim Jake| undsouidale

S|]92 W3S PaALIRP

A K N S S 3 S s Nd) 1on1Isu0d Jejngni patakel-omy e jo ubisag -asodipe uewnH nd [020T “|e 3@ wiy]
sobeaul|
3|2snhwi pue [eljayiida ojul uonenualsyIp
SnoaueNWIS I[NWIIS |ediueydaw Aq SOSIY
u A N S S N I 3 pue’poyeds.iengnl paiakel-a|qnop e jo ubisag PaALISP-MOLIBW duOog nd [610T "2 32 np]
(s19Ke| uaiayip
a1 pue) anssiy [eabeydosa snousbopus jo (SDSWe) S][92 WS
y1molaHai 9Y1 uo 10n41su0d undsoildald dD11aYIuAs JewAyduasaW PaALIDP [8L0Z
A K N S S 3 3 S e U0 SSHS|Ae Buipaas Jo 10949 syl Apnis -asodipe snobojoiny Nd  “|e19 edsaduel] eT]
plojjeds
Jejngny pasake|iynw e jo ubisap Aq adepns
101I91X3 dY} UO JaAe| 3PS e pue ‘@dejns SOSIN PaALIRp [6102
u A N S S I N N Jeurwn| ay3 uo winij2yuds ue jo uoneisusbay -asodipe auldiod nd “|e 19 uewi|os]
(esoonwiqns)
9BS0dNW SLIB[NISNW 3Y) Ul $I9q1) D1ISe|D
uiy) pue eudoud eujwe| sy Ul SNSSI d13Se|D
uIy1 aYa d1wiw 01 pado|anap si 1aAe| snoiqioueu [9L02 wa1sAs
u u N N N S S 13 9Y1 Yd1ym Ul 10n13suod paiakeliq e jo ubisag Jejn||dy nd “|e 12 bueiyaAl aAsabiq
uonesdyljoid pue uoisaype H3
|eayoeuy pue A1iAloe 314301puoyp Joy [enualod
S)1 pue ‘p|oyjeds ay1 Jo uonezuendse-aid uabejjod pue
pue buipass-[|93 J0 10949 aY1 ‘butuuldsonds|e s914>01puoyd pue sHJ (1D-¥11)d) (duoidejoided
A u 3 § S N N N eIA p|OJJeds Jejngnl patakeliq e jo ubissg |eaydesy snobojoiny -02-apnoe|-1)Ajod [£10Z "2 3@ NpA]
NN LIA €49 ¢dg L49E€ HINT WL 4N « 40
pnis ay3 ul suonduny [ed1bojoisAyd uoneisausbal
9cuauiad [edibojoiq pue [ediueydsly  /siulod A3y [edlwoleuR UO SND0) pue eapl ubissg [opow [ed1bojoig 92104)d [eLIR1. Apnis/saduaia)ey 10453

(Panunuod) € 3|qeL

431

Cells Tissues Organs 2022;211:420-446

DOI: 10.1159/000519207

Tubular Bioartificial Organs



uonesauabal spsnw

yroouws a1e|nbas pue uonez
ajowoid 01 wie sy} yum Aujigiedwodowsy
aA0Jdwi 03 upeday Yyum pazijeuonduny

‘}jeib Jejndsen une@b/1dd pHUgAy e jo ubisag

Je|nj|dy

unedb pue od

[610Z “|e 12 1yS]

uonesausabal

19559/ po0|q 104 (uneRb pue 1) 19ke|
eI11JUSApE S JO (u1lejab pue DAL d) 19Ke| eipaw
Se p|oyeds Jengni undsoJ1d9|d ue o uonedlge

Jenjjdy

uneab

pue (DN 1d) 1euoq.ed
audjAyldwinkjod “1Od

[ozoZ'610T
“|e 39 Aor]

9oueldwod pue ainssaid

15INQ ‘UOIUS1AJ ININS :p[0JJeds 1yeib Jejndsen

e Jo saiuadoud |edtueydsw ay) anoidwi 01
spjoyjeds undsoaidals Jejngni diseydiq jo ubissg

Je|njjdy

Nd puedd

[810T
“Ie 33 Aey-|epqy]

SOWS

JO s19Ke| [IDASS pue JaAe| |eljayl0pUD 919]dwod
e Jo pasodwod aNss1109U JO uolelausbHal

Y1IM ‘[9powl 1.l B Ul 12NnJ1su0d undsoi3d3fs snosod
-0Joew e Jo duewouad wisl-buo| syl uo Apnis

le|n||@dy

10d

[8L0Z “e 313 nMW]

19Ae| BIPaW pUE 3DB4INS USWIN| JO SUOIIDUN BY}
uo Buisnd0y4 ‘uolies|iyul pue Yyimolb |19 ajowoid
01 1on.15U0d snolquy pasake|-adul e jo ubisag

Jejn|jdy

10d

[810T “|e 32 Bueny]

(wnisyaopua) 5|12

|eljoyiopua pue (J1aAe| eipaw) SONS JO Yyimoibul
9yl pue uonisodap Jaq-usbe||od ‘uonessyijoid
||92 a30wo.d 01 JaAe| [eutalxa snosod Ajybiy e
pue s1aqyy paubije Ajjeuipniibuol Jo Jake| [eussiul
Uyl e yum pjogeds snoiquy paiake|iq e jo ubiseg

Jejn|jdy

10d

[£10T “|e19 ue]]

wa1sAs
K1oyenoaD

Jredai |ey3ain Joj eSOONW deISUIH3I
01 12N435U0D UNds041D33 U. JO SN Y3 uo Apnis

$)3 [BSODNW [RIO

uabej|od ‘uloiqy A|is “10d

[S10T “|e 13 I9M]

ERIVETobIV]
uonedljdwod pue A>ualed |euiwn| ‘uoneiauabal
anssi} ‘Abojoydiow [eayrain “uredas wnypyuds
|edy1a4n uo s12949 buiynsal ay3 pue uoneyue|dwi
01Joud $1on115U0d UndsoJ1d9]9 Je|Ngn] 9yl Uo
SSOSIYY bulpaas-aud jo aduanjjui ayy uo Apnis

Je[njjade pue (SOSWVY)
s|192 [ewAydouIsaW
>nojuwe uewny

D3d pue v1id

[81L0T "2 33 A7]

J19Ae| 3]2SNW Y100WS Y1 pue IaKke|
winijdy3o.n ayy bunessuabal ul |eualod sy pue
10NJ1SU0D Je|NQN] JB[N||9DE U JO 35N dY) U0 ApNiS

Je|n|jdy

1DV1d

Loz
“12 19 {SMOYSO|]

wa1sAs Aleuun

AN 1IN €49 7d9 Ld9€ JNT HN L 3N

2duauad [ed160jolq pue [edIuRYdRN

Apnis ay3 ul suonduny [eaibojoisAyd
/siutod £y |edlwoleUR UO SNJ0) pue eapl ubisag

[9pow [ed160jo1g

22104 [eld1e|y

Apnis/saduaiajay

jo
uonessausbal
104 53

(Ponunuod) € 31qey

Pien/Palladino/Copes/Candiani/Dubruel/

Van Vlierberghe/Mantovani

Cells Tissues Organs 2022;211:420-446

DOI: 10.1159/000519207

432



"z 3|qe 995 ‘suoielrsiqge 104

uonew.oy
XH1ew Jejn||@detixa [ewlou bunzowoid pue
‘uonlesauabal NS 3[110e13U0D ‘UOIIeZI|RIBYIOPUD
9duUBYUD 01 SYNYOo.IW [enp bunensdedus yelb
JlejnoseA palakel-111 aAneolq e Jo Juswdojansg

le|n||@dy

spndad

(A@3Y) [eA-dsy-n|D-Bay
‘(1073d) (duordejoided
-3-02-9pnoel-1)kjod
-0-(j024|6 auajAy1v)Ajod

[0Z0T “|e 10 usm]

3|2SNW Y100WS pue Wni|ayiopus ue jo
uolesauabail e ul bunnsai ‘Ajiqrredwod poojlq
anoidwi pue uoriesayijold |92 jowoid 01 Yeub

undso.1d9a patake|iq ausodwod e jo ubisag

HIERNEIENIIIES
UIDA [eD1]IqWiN UeWwnH

Nd pue sappnuedoueu
‘uabe||od 'vH1d

[610T “|e 32 bueny]

ewnul
-09u Jo uswdojanap alowoud pue Aljeuoriduny
uone|nbeodiue uswnj 1o} ANLIUOD

01 Apoquue g¢ 1 gDd-ue pue uteday buipnpul
‘s1afe| [eIpaW pue [euiwn| ay1 buppiwiw

A £ N 3 S N N 13 plojyeds Jenosea paiake|iq e jo uonedliqey Je|n||ady uabe||03/107d [8L0T "o 12 npn]
eise|diadAy
Jewnul JuaAaad pue sHNS Jo uonesasjosd
pue adAjouayd ay3 a1e|NPOW 01 SYNYOIDIW pue SYNYoDIW pue
sopndad aaisaype diy1>ads yiim papeoj ‘1on13suod apndad (9dyA) A|1D-01d
A £ s 3 s S N N V¥91d undso1daja [euonouny e jo ubisag Jenidy  -Bly-|eA Yim papeo| vHd [£10T “|e 12 noyz]
uonelauabal DS pue s|[@d>
|elj2yiopus jo abesanod ay3 oy AdijiydoipAy
pue saiuadoud jesiueydaw paroiduwil Jo 12949
A u 3 3 S 3 N S 3y pue 1onJ1suo0d undso.1da]9-0d e jo ubisag SEIIERY Sad pue 1Dd [£10T "2 13 ued]
uolew.oy
Aiejided pue uonelauabai 3jsNW Yroows (493N)
‘UOI1RWIO WNI[SYIOPUD ‘UOIIRZIIR|N||9D ddURYUD 10108} yImoub [eljdylopus
01 (I49H-493A) uI104d UOISN YL YUM PILJIpow JejndseA pue (I4DH)
A £ 3 3 s 3 N S syesb sendsen undsould9|a Jo uoneduge Je|n||@dy uigoydoipAy | ssep “1Dd [£10T “|e 12 Buepp]

1aAe| NS pue uonezijelPYIopud Uo

12NJISUOD 3Y3 JO UOIIBN|RAS pUR ‘|9 snobojoine
pue pjoyeds undsol1da[a paIake|iq e uo paseq
1ONIISUOD JRNDSEA paziien||ad e jo uswdojpasg

SDINS snobojoine
pue s|j22 [eljay0pu3

uabe||0d pue 10d

[£10C "le33 nr]

S|9SS9A POO|q dAIIRU BY3 JO 3INIdNAIS [eleds
Pa1uaLI0 D11Dads-||9D ‘pasakel- NW Y1 DWW
01 5|[92 [eI[9YI0PUD PUB SDINS JO UOIIRIULIO
S14109ds-|[92 1e Bulwie pjoyeds undsoids|d
paiake|iq/parualio-jenp e jo Juswdojansg

SIER)
[eI[9Y10pUS pue SHN'S

uneab pue (ap1j024|6
-03-apide|-1°q) Ajod “10d

[ozoz "le3a "X 1]

NN LIA €49 7dg 1d9€ HNTHWL N

9duauJad [ed160jolq pue [ed1ueyda

Apnis ayy u suonduny [esibojoisAyd
/sautod £ay| |edIWO3eUR UO SNJ0) pue eapl ubisag

|[opow [ed16ojolg

32104 |eld1ey

jo
uonessusbal

Apnis/saduaiajay 10} 53

(Ponunuod) € 31qey

433

Cells Tissues Organs 2022;211:420-446

DOI: 10.1159/000519207

Tubular Bioartificial Organs



S

Strengths

= Design-specific and adapted to complex

hollow structures, with or without gradients

* Automatized process
= Micrometric resolution

W

Weaknesses

= Bioink formulation must be optimized for each

application

= MNozzle/needle clotting might be frequent with

O

Opportunities

+ High ial for further
automation and optimization

cylindrical and micro-cylindrical structures

= Medium to high equipment and process costs
= Relatively recent technology (more progress to

x h _— come o
+ Adaptable for patient-specific applications . CAD!}CAM software knowledge required @
* Operator independent process (training mandatory) g
* Clinical translational potential: medium to « Disassembly and re-assembling of all
high for use as cylindrical structures components required
= Difficult scale-up
F f ad d set-ups: Multi-]
satiin from :luld 5 needszsups Hatiies = Has already been explored and advanced a lot
= Ada ‘:ed o multiple materials, coaxial set-u) S s cLEe iz ans w1
H E,, h"" fibers and;for ps advancements to come %
of multiple materia;s} = Clinical translational potential: low to medism
= o for cylindrical structures
= Low-cost equipment (can be built in-house) crin .
. + Complex engineering and software-knowledge
= Very recent technigue - plenty of research is required (training mandatory) g
and development to come « Medium cost equipment o
= Clinical translational potential: high for « Still ongolng development and optimization = E

g = Fabrication of cellularized structures, with some biginks
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™ . Cell encapsulation in the whole construct during printing
(limiting cell infiltration issues) = Sterilization of each companent of the
= Multilayer and multi-cell types structure equipment required
fabrication in a single process
* Bioprinting on tubular mandrels
= Fabrication of micre- and nanofibers
(diameter < 50 am to 10 pm) = Use of organic solvents
] physiologically-relevant of = Random or aligned fibers but no mi
native ECM controlled structures
m = High surface area-to-volume ratio = Difficult for incorporating cells (due to organic
w1 = High aspect ratio solvents presence)
= Suitable for a number of polymers = Inadequate mechanical strength for load-
= Ease for further functionalization bearing applications
* Incorperation of bioactive factors = Low-volume output
= Possibility of sES on tubular mandrels
= Direct writing capability - design of
constructs with predefined architectures at = Paolymers require thermal stability - Only
g micra- and nanoscale level (fiber diameter 2 to suitable for a limited number of polymers
o 50 pm) = Paolymers must exhibit a glass transition
E = Precise control over pore size and temperature
interconnectivity = Mo possibility to incorporate cells (due to high
= Solvent-free and high reproducibili processing temperature for melt)

= Possibility of MEW on tubular mandrels

limited knowledge at the moment

Fig. 6. Strengths, weaknesses, opportunities and threats (SWOT) of the 3 advanced processing techniques dis-
cussed in this review. 3DBP, 3D bioprinting; sES, solution electrospinning; MEW, melt electrowriting.

thus, on the fabricating process onto a rotating mandrel).
For more details on MEW onto rotating mandrels, and
the MEW design parameters of tubular constructs for
TERM applications in general, the authors would like to
refer to the work of Jungst et al. [2015], Brown et al.
[2016], McColl et al. [2018], Ibrahim et al. [2019], and
Paxton et al. [2020]. The focus of this review goes to the
use of MEW to fabricate tubular constructs for the regen-
eration of the introduced 4 hollow tubular organs (Ta-
ble 4).

Strengths, Weaknesses, Opportunities, and Threats

Each one of the presented fabrication techniques has
specific advantages and limitations that should be consid-
ered when scientists want to develop a BAO. Strengths,
weaknesses, opportunities, and threats (SWOT) of each
technique are summarized in Figure 6 in a parallel SWOT
analysis of the 3 mentioned techniques.
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Correlation between Processing, Mechanical and

Biological Performances

As discussed above (Part 1), the anatomical hierarchi-
cal structure of healthy native tissues (Fig. 2) and their
corresponding complex physiological functions result in
very specific mechanical and biological design require-
ments when engineering a BAO (Table 1). On the one
hand, the MRs and BRs for the construct design influence
the process selection. It is worth noting that when looking
into the SOTA of the fabrication, and more precisely into
the advanced processing techniques (Part 2), a wide vari-
ety of materials and biological models have been investi-
gated (Tables 2, 3, 4). Engineering a bioartificial tubular
organ not only depends on the choice of the applied pro-
cessing technique, its corresponding processing param-
eters and the construct design, but also on the material
properties and on the biological model (i.e., cells and bio-
logical cues) selected for the fabrication. This means that
afirst correlation can be found within the fabrication pro-
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cess itself: (i) material choice, (ii) biological model, and
(iii) processing technique (including process parameters
and construct design). On the other hand, the selection of
the fabrication process (i.e., processing, materials, cells)
when engineering a BAO influences the resulting me-
chanical and biological properties of the developed con-
struct. These resulting properties can now be linked back
to check if the requirements have been met, and to evalu-
ate the mechanical and biological pertinence of the pro-
cessing technique. In other words, there is also a correla-
tion between (i) the construct requirements to match (de-
pending onanatomyand physiology) and (ii) the resulting
properties obtained (depending on the fabrication pro-
cess).

These intrinsic correlations are discussed based on ex-
amples from literature, in the paragraphs below, and aim
at showing the advancements and limitations per tech-
nique and/or per tubular organ.

Cellularization of a BAO

As shown in Table 1, some of the physiological func-
tions of each organ rely on the presence of the proper cell
types of each layer. For this reason, the cellularization of
the scaffold is an important step in engineering BAOs. Be-
cause of process-related limitations [Dalton et al., 2015;
Hong et al,, 2019], both MEW and sES mainly provide a
tubular “skeleton”, which acts as a mechanical structural
support for (i) cell seeding prior to implantation or (ii) to
trigger cell migration after implantation. Lv et al. [2016]
reported on a bioengineered construct produced by sES
for urethral repair, in which they compared (i) a cell-based
model [i.e., mesenchymal stem cells (MSCs) seeded prior
to implantation] with (ii) an acellular model. Results
pointed out that the cell-based models outperformed the
acellular models, for urethral defect repair in rabbits.
However, the long production time of a cell-based model
(i.e., for cell seeding and maturation) and the vast biolog-
ical expertise required for its fabrication are some of the
reasons why acellular models are still widely investigated.

In contrast to MEW and sES, 3DBP has the possibility
to directly incorporate cells and/or biological molecules
in the construct during its fabrication. Different cell types
can be printed in the same process, with the desired spa-
tial distribution, in order to reproduce the physiological
multilayered structure of tubular organs. Using this strat-
egy, Bae et al. [2018] were able to print epithelial cells in
the inner layer of their trachea construct, well separated
from the layer of MSCs. After in vivo implantation in rab-
bits, this allowed the formation of a ciliated respiratory
epithelium, thus fulfilling one of the BRs (BR1 in Table 1).
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Regarding the source for the BAO cellularization, Ta-
bles 2, 3, 4 show a large use of MSC:s as a cell source for
the construct cellularization. These multipotent stem
cells can be easily harvested from different sources, in-
cluding bone marrow and adipose tissue, and many stud-
ies have demonstrated the possibility to differentiate
them into different cell types through biochemical and
mechanical cues [Huang and Li, 2008]. The use of MSCs
is convenient from a clinical perspective, thanks to the
possibility to use an autologous source in the construct
fabrication. This is true both at the animal and human
trial level, and it is well represented in the tables, where
most of the animal in vivo studies have been conducted
using autologous MSCs. However, the use of MSCs also
implies that at the time of its fabrication, the construct is
not able to reproduce the physiological functions shown
in Table 1, and thus it does not satisfy the BRs. After a
transition period for cell differentiation, the construct
should be able to fulfil the BRs and thus should be able to
replace the organ functions.

Finally, it is important to consider that 3DBP offers an
interesting and unique opportunity to print cellular
spheroids, without the support of any additional material
[Murata et al., 2020]. This possibility has been further ex-
plored and developed in a technique, known as Kenzan
method, to create hollow tubular structures starting from
needle arrays of cellular spheroids [Moldovan et al,
2017]. The absence of structural biomaterials can be seen
as a significant advantage in bioprinting where the bioink
formulation is challenging. However, the absence of bio-
materials also makes the resulting mechanical properties
more variable and unpredictable, and the fabrication pro-
cess is long and complex. This technique has been ex-
plored in almost all applications of TERM of tubular or-
gans, as shown in Table 2. While the early focus was
mainly on the biological outcomes of cellular spheroids
[Itoh et al., 2015], the development of this technique over
the years also allowed to improve and further investigate
the mechanical properties. Recently, Takeoka et al. [2019]
validated this method for the esophagus. They showed
that both excellent biological properties and satisfactory
mechanical properties could be achieved both in vitro
and in vivo.

Impact of the Processing Technique on Material

Structure and Geometry

Both MEW and sES are techniques that enable micro-
and nano-scale fiber production. Working at the fiber
level constitutes a significant advantage in mimicking
natural ECM in terms of hierarchical organization and
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properties. However, the fiber deposition in sES is ran-
dom (or aligned in the direction of rotation when sES is
performed with a high-speed rotating mandrel) [Eslami-
an et al., 2019; Niu et al., 2019] and cannot be controlled
in specific, complex patterns. In this direction, MEW
opened a new era by enabling the precise control of fiber
deposition and alignment in specific 3D patterns [Jungst
etal., 2015; Brown et al., 2016; McColl et al., 2018]. These
patterns can direct physiological tissue-like cell organiza-
tion and differentiation. Of note, cell orientation is im-
portant to recapitulate the physiological functions of the
different layers, individually and as a whole (Table 1). As
an example, when bioengineering blood vessels, it is pos-
sible to guide the orientation of smooth muscle cells in
order to enable vasodilation and vasoconstriction [Jungst
etal., 2019]. This has been studied by Jungst et al. [2019],
who guided the cell orientation in the media layer (i.e.,
smooth muscle cells) by varying the angle of the depos-
ited MEW fibers. As suggested by this study and as shown
in Table 4, research on MEW mainly focuses on matching
the BRs, but not (yet) on the MRs.

3DBP allows to control the material deposition down
to the micron level [Li et al., 2016]. Moreover, the 3DBP
approach can rely on cell-mediated matrix remodeling,
thanks to the possibility to incorporate cells inside the
construct. Matrix rearrangement can require a variable
period of initial growth and further maturation in vivo,
which may take up to months, to achieve a physiologi-
cally relevant construct. Freeman et al. [2019] reported
the effect of maturation of a bioprinted vascular construct
over 45 days in vitro. Volumetric reduction over time was
observed, and histology revealed significant matrix
changes and fiber alignment. Interestingly, this correlat-
ed with the evolution of mechanical properties. At day 0,
the constructs did not fulfil the MRs, such as elastic mod-
ulus, burst pressure, and ultimate tensile strength. How-
ever, maturation and remodeling allowed to withstand a
burst pressure of 1,110 mm Hg, which is a promising re-
sult in the cardiovascular tissue engineering scenario.

Some researchers also exploited the possibility given
by 3DBP to control the direction of the material deposi-
tion to obtain layers with different functions (i.e., perme-
ability, cell interaction), starting from the same material.
This way, they demonstrated the possibility to obtain
multilayered constructs with layer-specific functions. For
instance, Jangetal. [2020] alternated poly (e-caprolactone)
(PCL) and sodium alginate layers to obtain a vascular
construct. Diagonal cross-striping of PCL allowed to
achieve good nutrient exchange between the layers, while
helix deposition ensured protection against blood leak-
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age. A similar approach has been shown also by Bae et al.
[2018], but in this case for the generation of a tracheal
construct. They used PCL diagonal grid patterns with mi-
cro-pores for the exchange of growth factors between
cells and the surrounding ambient and helical form with-
out pores to keep the different cell lines separated. Like
this, they were able to respect the multilayered structure
shown in Table 1, in particular, the epithelial layer sepa-
rated from the other layers.

Impact of the Processing Technique on Material

Properties

When comparing the 3 processing techniques, only
sES and 3DBP enable the processing of natural materials
[Wang et al., 2020], which is not feasible using MEW be-
cause of the high thermal stability required for this tech-
nique [Muerza-Cascante et al.,, 2015]. However, when
bioengineering one of the 4 presented tubular organs, sES
and 3DBP combine natural with synthetic polymers in
order to attain the required mechanical properties [Lee et
al., 2008]. Since most of the biological macromolecules
are also sensitive to degradation or denaturation at high-
er temperatures, they are widely processed by sES and
3DBP, and seldom by MEW. The synergistic advantages
of combining natural and synthetic materials have been
shown by Wu T. et al. [2018a]. They have fabricated a bi-
layered vascular scaffold by combining a synthetic and
natural material, and incorporated biomolecules in them.
This way, they achieved better compliance performance
than the commercial expanded polytetrafluoroethylene
and matched compliance with the human saphenous
vein, while promoting rapid endothelialization and at-
taining a similar organization to the native blood vessel
[WuT.etal., 2018b].

The analysis of the SOTA revealed that PCL is the most
used synthetic material for 3DBP, sES and MEW applica-
tions, thanks to its low melting point and good thermo-
plastic properties that make it simple to be processed.
Moreover, PCL does not degrade into toxic products, and
it has been approved by the Food and Drug Administra-
tion (FDA; https://www.fda.gov). The study of Pan et al.
[2019] clearly shows that it is possible to tune and opti-
mize the properties of bare PCL to obtain excellent me-
chanical properties. Similarly, Zhang et al. [2017] com-
bined 2 synthetic polymers, PCL and poly (lactide-co-
caprolactone), to comply with the MRs of their engineered
urethra. However, in many studies dealing with the use of
synthetic polymers, despite the application in animal tri-
als, the MRs were not checked, leaving a big lack of infor-
mation.
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Impact of the Hierarchical Structure and

Physiological Functions in the Design of BAOs

Despite the importance of the multilayered organiza-
tion in tubular organs and its role in organ functions, the
SOTA reveals only a few studies reproducing the different
layers of native tissues. Many groups focus on a single- or
double-layered approach, which clearly cannot satisfy all
BRs illustrated in Table 1. It is important to consider the
whole life of the tubular construct. It is worth noting that
after in vitro maturation or in vivo implantation, cell in-
filtration and/or differentiation have an impact on the
biological properties of the construct. As an example,
Kim et al. [2019] obtained 80% of mucosal epithelium re-
generation in their tissue-engineered esophagus 2 weeks
post-implantation in rats. While at day 0, the BR1 was not
satisfied, due to the presence in the construct of MSCs
only, the implantation allowed to attain the desired bio-
logical characteristics in a relatively short time. However,
in vivo implantation may also cause inflammation or ste-
nosis, thus adversely affecting the properties of the con-
struct [Kaye et al., 2019].

When designing a BAO, the complex geometry is one
of the fundamental requirements. One of the important
innovations brought by 3DBP (and also MEW) is the pos-
sibility to design complex geometries through computer-
aided design models [Paxton et al., 2020; Sahai and Go-
goi, 2020]. This is relevant in TERM, since today’s tech-
nology provides tools to convert medical image data into
printable information, allowing for the fabrication of pa-
tient-specific designs. Ke et al. [2019] were able to design
a trachea based on a CT scan from human patients. This
combined with the use of human MSCs, which can be
used as an autologous cell source, constitutes the proof-
of-concept for clinical translation.

Impact of the Synergetic Combination of Multiple

Processing Techniques for BAO Design

An interesting approach is the combination of 2 differ-
ent techniques, in a multistep process for the final tubular
construct fabrication. In this context, the sES and 3DBP
techniques have been combined for optimal mechanical
and biological properties. Chung et al. [2018] focused on
the improvement and control of mechanical performance
of their artificial esophagus. They 3D printed sequential
reinforcement rings of PCL, which were then combined
with a tubular electrospun PCL layer. This allowed in-
creasing the mechanical properties, while keeping a good
structure for cell infiltration. Kim et al. [2019] combined
electrospun PU nanofibers in the inner layer with 3D-
printed PCL strands in the outer layer. The hypothesis of
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the study was to provide topographical cues for the mu-
cosal layer on the inner part and to give mechanical
strength and flexibility to the external layer, thus achiev-
ing both biological and mechanical good performance.
sES has also been combined with MEW. In this regard,
Pennings et al. [2020] used this combination with the aim
to induce and maintain multiple cell phenotypes within a
biomimetic structure. The sES was used for a randomly
oriented layer on the luminal side, whereas the deposition
of oriented MEW fibers served as a guidance for MSCs.
This way, they have succeeded in inducing layer-specific
cell differentiation with a blood-vessel native-like cell or-
ganization.

In vivo Studies Involving Tubular BAOs

Several works reported in vivo testing with animal
models, both on 3DBP and sES-based constructs. As a
general trend, the goal of in vivo testing was to assess the
biological response to the tubular construct implantation,
while mechanical properties after implantation were
rarely reported. The animal model was generally selected
based on the tubular organ to be implanted, regardless of
the used fabrication technique, i.e., rabbit for trachea.

As example, Gao et al. [2019] performed a complete
biological characterization of a 3D bioprinted vessel after
implantation in a rat model. In this study, all 3 BRs for
bioengineered blood vessels were validated, as reported
in Table 1. Ultrasonography was used to assess the non-
thrombogenicity and immunohistochemistry to check
the multilayer composition and the endothelium integ-
rity. They showed a great potential of the co-axial nozzle
technique for the fabrication of artificial vessels. As in this
study, in general, immunohistochemistry was widely
used by all research groups to assess the biological prop-
erties after explantation.

When looking at the SOTA of sES-based constructs for
tubular BAO (Table 3), it can be concluded that most re-
search was mainly focused on the study of either biologi-
cal or mechanical properties. Wu et al. [2017] studied the
effect of cell-seeding and pre-vascularization on their bi-
layered tubular construct in a rat model. Based on this in
vivo evaluation, they concluded that pre-cellularized and
pre-vascularized constructs resulted in higher capillary
regeneration, and in lower immunogenicity, while im-
proving tracheal tissue regeneration. However, they did
not assess the mechanical performances. Nevertheless, in
some recent studies, research groups have started explor-
ing both biological and mechanical performances.
Townsend et al. [2020] mainly focused on studying the
BRs in depth in a rabbit model, but in addition, they also
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started exploring some of the mechanical properties re-
quired to design a functional BAO. The explanted tra-
cheas were studied for the lumen volume, minimum
cross-sectional area and the tracheal patency, enabling
better fine-tuning of the developed tubular constructs for
future studies.

As shown in Table 4, no in vivo testing has yet been
reported on MEW-based tubular constructs, due to the
very recent introduction of this technique. Research is
currently focusing on attaining more in vitro insights, be-
fore being able to step into the animal trial phase.

In conclusion, there are important consequences con-
sidering the intrinsic correlation between (i) the con-
struct requirements to meet, i.e., the MRs and BRs (de-
pending on anatomy and physiology) and (ii) the result-
ing properties obtained (depending on the fabrication
process), i.e., the mechanical and biological properties of
the final construct.

Clinical Translational Potential for Tubular

Constructs Processed by 3DBP, sES and MEW

As previously stated, in a scenario in which heterolo-
gous organ transplantation is burdened by the shortage
of donor tissue and currently available synthetic grafts
show issues in terms of biological and mechanical proper-
ties (especially on the long term), bioengineered artificial
tissues certainly represent a viable solution. The develop-
ment of physiologically relevant tubular tissues for regen-
erative medicine purposes can be used to correct defects,
restore functions, or substitute damaged tissues in pa-
tients suffering from life-threatening conditions [Hol-
land et al., 2018].

Tissue engineering-based constructs, in their journey
from the lab bench to clinical use, are subjected to strict
regulation. As stated by the U.S. FDA, the process of de-
velopment for new medical products and devices can be
divided in 5 stages: (1) discovery and concept; (2) pre-
clinical research, comprehensive of in vitro and in vivo
testing, and prototype; (3) pathway to approval; (4) FDA
device review, and (5) FDA post-market device safety
monitoring (U.S. FDA). sES and 3DBP to design, develop
and optimize tubular organs have already been reported,
while MEW, despite its novelty, is rapidly gaining atten-
tion in this field (Tables 2, 3, 4). Interestingly, contrarily
to more conventional tissue engineering strategies such
as decellularization [Elliott et al., 2012; Gonfiotti et al.,
2014], all hereby presented studies are at the preclinical
research level according to the FDA subdivision.

The current advanced TERM strategies (such as 3DBP,
sES, and MEW) are still affected by some limitations that
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impeach their successful translation into clinic. Despite
the promising results and achievements obtained in the
past years, the produced devices are still hampered by a
mismatch in functionality (both at the mechanical and
biological level) with the native tissues they are intended
to substitute [Holland et al., 2018]. Hunsberger et al.
[2016] reported that major drawbacks in the clinical
transfer of advanced TERM strategies are related to the
precise mapping of cells in the developed tissues (their
placement, organization, phenotype, and function), reli-
able sources for cells, immunosuppression, prosthetic tis-
sue integration with the host and vascularization.

Finally, these new technologies evolve in a specific and
precise regulatory structure allowing the scaling-up and
marketing of tubular BAOs [Mason et al., 2016; Holland
et al., 2018]. Although regulatory processes may appear
to limit their development, which might be true in some
cases, it should also be noted that this constitutes a unique
moment for regenerative medicine specialists, including
scientists, engineers, industrials, and clinicians, to seed
the basics of future regulations.

Regulating a new BAO is a long and complex proce-
dure, which requires time, investment, and collabora-
tions. On the one hand, the International Standards Or-
ganization (ISO) has to be involved, mainly because qual-
ity control will require testing and evaluation of the final
products. ISO is open to extend and add new standards,
specific to testing and assessing the mechanical perfor-
mance, the stability, and the degradability of tubular
BAOs. On the other hand, contrarily to what is (some-
times) mentioned in some manuscripts, FDA does not
approve biomaterials, nor processes. The FDA is respon-
sible for protecting public health by regulating medical
devices (and a panoply of other industrial products, in-
cluding drugs, tobacco products, food for humans and
animals, cosmetics, and radiation-emitting electronic
products). Future commercialized BAOs, after having
been developed and fully tested in laboratories, must be
proven safe and effective to FDA’s satisfaction before
companies can market them in the interstate American
commerce. Future manufacturers must also prove they
are able to make the product according to federal quality
standards. The FDA does not develop or test products
before approving them. Instead, FDA experts review the
results of laboratory (in vitro), animal (in vivo), and hu-
man preclinical and clinical testing done by the manufac-
turers. If FDA grants an approval, it means the agency has
determined that the benefits of the product outweigh the
known risks for the intended use. FDA, and all other
country-specific regulatory bodies, will require to be con-
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vinced that the proposed BAOs will not present risks for
its population. An interesting example is constituted by
the recent effort between FDA and the National Institute
of Standard Technology, for the collaboration on stan-
dards development activities supporting innovation and
translation of regenerative medicine products [Arcidi-
acono etal., 2018]. Standards development can accelerate
product development cycles and broaden market oppor-
tunities in innovative fields such as regenerative medi-
cine. Standardization provides a forum for the conver-
gence of diverse scientific approaches; standardized ap-
proaches to address common scientific challenges can
enable broader application of innovative products with-
out stifling continuing innovation. Standardization ef-
forts made by national standards regulatory bodies, in-
dustry, and academia can lead to international harmoni-
zation and global marketing of regenerative medicine
products. Regulation and standardization, together have
the potential to facilitate the development and the trans-
lation of regenerative medicine products, such as BAOs.

Despite the above considerations, the advancements
achieved at the preclinical level by the above-detailed
strategies, and the rapid development of processing we
witnessed in the last decade, foresee that the gap separat-
ing them from the clinic will shortly be filled. In particu-
lar, we are convinced that the clinical translational poten-
tial of 3DBP of degradable scaffolds with living (including
autologous) cells is unique and very high. 3DBP clinical
translation would open the era of personalized medicine.
For example, from medical images acquired from the pa-
tient during the preoperative diagnostic phase, a 3DBP-
personalized process could be implemented for develop-
ing the required BAO to regenerate the diseased tissue or
organ. If on one side this constitutes a confined applica-
tion, it is on the other side important to highlight the high
impact that this would have in some specific clinical cas-
es. The clinical translation potential of sES and MEW for
polymeric scaffolds (not cellularized at the time of im-
plantation but able to attract and interact with a patient’s
surrounding cells all along the implantation time) will be
in high demand for local and long-term support for hol-
low tubular BAOs partially affected by localized diseases
(i.e., cancers or inflammatory processes).

Conclusions and Perspectives
Injury, diseases, and malfunctioning of hollow tubular

organs represent a unique challenge for bioengineers and
clinicians. A multidisciplinary approach needs to be ap-
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plied in order to successfully develop functional bioarti-

ficial organs. The main efforts in addressing the challenge

are summarized in the following key points:

i. The MRs and BRs should be the dictating factors dur-
ing the design phase of a BAO, being the key point to
address the anatomical i. structure and physiological
functions. This is true for all tissues and organs, but it
is particularly challenging in the case of tubular ones,
due to the complex hierarchical structure;

ii. Construct cellularization is a key point for replacing
diseased or damaged tissues and organs. On the one
hand, 3DBP enables the incorporation of cells directly
in the construct. On the other hand, sES and MEW rely
on post-processing seeding or on cell migration and
infiltration after implantation. In both cases, cell inte-
gration and cell-mediated remodeling are fundamen-
tal for a successful outcome of engineered BAOs;

.The main advanced techniques for the fabrication of
tubular BAOs are 3DBP, sES, and MEW. Although
they are not all at the same level of technological ma-
turity, they all have the potential for clinical transla-
tion. While 3DBP presents the unique advantage to
process materials and cells together, this also raises the
question of which cell source to use to ensure the best
outcome. Autologous outsourcing of cells looks like an
attractive possibility, but its clinical feasibility for per-
sonalized medicine remains low, due to possible auto-
contamination issues, regulatory processes, and ethi-
cal concerns. 3DBP, sES, and MEW all present unique
advantages to process materials leading to high repro-
ducibility at the micrometric level, nano- and microfi-
bers production mimicking the ECM, and precise spa-
tial deposition at fiber level, respectively;

iv. In the current research on the fabrication of function-
al tubular BAOs, there is a missing link that focuses on
the correlation between (i) the MRs and BRs of the
construct design dictated by the anatomical structure
and physiological functions, (ii) the fabrication pro-
cess, and (iii) the resulting mechanical and biological
properties of the developed tubular BOA. Even though
the development of functional tubular BAOs using the
presented processing techniques is still at the preclini-
cal level, the advancements in the last decade look
promising and speculate great potential for clinical
translation.
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