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Exploiting coherent patterns for the analysis of qualitative motion and the design of bounded
orbits around small bodies

Nicol6 Bernardini!, Gianmario Merisio?, Matteo Losacco’, Sebastiano Raffa*, Roberto Armellin’,
Nicola Baresi®, Stephanie Lizy-Destrez’, Francesco Topputo®, and Elisabet Canalias’

Missions around small bodies present many challenges from their design to the operations, due to the highly non-linear and
uncertain dynamics, the limited Av budget and constraints coming from orbit determination and mission design. Within this
context, mathematical tools to enhance the understanding of the dynamics behavior can be proven useful to support the mission
design process. Chaos indicators are adopted to reveal patterns of time-dependent dynamical systems and to enable the identi-
fication of practical stability regions, which are then exploited to design bounded orbits in the proximity of small bodies. The
methodology is applied to study the MMX and Hera missions. In the MMX context, the final goal is to obtain bounded orbits
useful for the global surface mapping and gravity potential determination of Phobos. On the other hand, concerning the Hera
mission, a qualitative analysis of the natural motion about the Didymos binary asteroid system is carried out to compute bounded
orbits convenient for the global characterization of the two asteroids and to investigate potential landing trajectories. Sensitivity

analyses via Monte Carlo simulations are performed to prove the robustness of the different bounded orbits.

1 Introduction

Interest towards asteroids and small planetary bodies drasti-
cally increased in the last decade thanks to the central role they
play in the understanding of the formation our solar system [1],
for the opportunity they give for gathering resources through
mining [2] and also for the potential hazard they present in the
context of planetary defence [3].

However, designing and operating missions around small bod-
ies are challenging tasks due to the limited AV budget, highly
perturbed and uncertain dynamics, and constraints coming
from orbit determination and communication with the ground
station. A primary objective for a good outcome of these mis-
sions is to design operational orbits that meet mission require-
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ments, require low fuel consumption for their maintenance and
transfers, and that are robust to uncertain parameters and un-
modeled dynamics. Within this context, mathematical tools to
improve the understanding of the behavior of the dynamics can
shown to be useful to support the mission design process.

In this study, the more general approaches for the characteriza-
tion of the dynamical system is investigated. Based on the ex-
perience from the fluid dynamics field, it is possible to exploit
the intrinsic information embedded within coherent patterns of
dynamical systems to better understand the underlying struc-
ture that is responsible for the creation of such features [4—6].
These features and different behaviours in the dynamics can be
identified by Lagrangian coherent structures (LCS). LCSs en-
able to distinguish regions of qualitatively different dynamics
in the state space throughout time [4]. A lot of research has
been performed on LCSs and the way to compute them. Dif-
ferent indicators, like finite-time Lyapunov exponents, trajec-
tory length indicators, probabilistic transfer operator and many
others [7] have been found useful to highlight coherent struc-
tures in the phase space of non-linear dynamical systems and
in [4, 8] a variational theory approach to LCSs presents the suf-
ficient and necessary conditions for the existence of LCSs and
their numerical implementation for two dimensional dynamical
models and expanded to three dimensional system in [9, 10].
These different indicators have already been used in the field of
astrodynamics for different applications in perturbed two body
problems [11] and for N-body problems [12—14]. Some exam-
ples of those, focused on the ballistic capture topic, are found
in [10, 15, 16]. In [17] preliminary studies showed that chaotic-
ity maps, obtained with fast Lyapunov indicators (FLI), can be
used to locate favorable regions in the phase space in which
the orbits for the Martian Moons eXploration (MMX) mission
could be placed.
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This work generalizes the concept of invariant manifolds the-
ory to non-autonomous dynamical systems and performs a
qualitative analysis of the dynamics around small bodies in or-
der to highlight practical stability regions. The methodology is
applied to the case studies of MMX and Hera missions.

The developed technique is used to obtain bounded orbits in
the case of motion about Martian moons (within the context
of MMX mission) and binary asteroids (in the framework of
Hera mission). Regarding MMX mission, a qualitative anal-
ysis of the natural motion about the martian moons, in par-
ticular Phobos, is performed. The goal is to obtain bounded
orbits useful for the global surface mapping and gravity po-
tential determination of Phobos [18]. On the other hand, in
relation to Hera mission, a qualitative analysis of the natural
motion about the Didymos binary asteroid system is carried out
to compute bounded orbits useful for the global characteriza-
tion of the asteroids belonging to the system and to investigate
potential landing trajectories. To conclude, sensitivity analy-
ses are performed on the different trajectories for both cases
with Montecarlo simulations in order to assess the robustness
to injections errors of the different initial conditions.

2 Chaos indicators

In autonomous dynamical systems invariant manifold theory is
very useful in determining the qualitative properties of groups
of trajectories. They act as separatrix of the phase space for
problems with less than two degrees of freedom and the tra-
jectories show different behavior depending on the side of the
manifold in which they are located. The big advantage of in-
variant manifolds is that, being the system autonomous, they
remain invariant with respect to time, in accordance with the
independence of the dynamical system from the independent
variable. The behavior of an autonomous dynamical system,
with respect to its initial condition, can be completely stud-
ied via fixed points. However, these properties are lost in the
case of non-linear non-autonomous dynamical systems, linked
to complex dynamical phenomena.
A mathematical tool suited to study complex non-linear non-
autonomous dynamical systems is represented by LCSs [4, 13,
19, 20]. The word Lagrangian highlights the evolution of such
structures in the state space throughout time, as opposed to
the Eulerian specification of the flow. LCSs represent a ro-
bust skeleton of special material surfaces which distinguish re-
gions of qualitatively different dynamics [6]. For this reason,
LCSs can be considered as a generalization of invariant man-
ifolds in non-autonomous systems with arbitrary time depen-
dence. They are time-evolving structures in the phase space
of a generic dynamical system which form the skeleton of ob-
served tracer patterns. The definition of a LCS is based on two
key properties [4]:
¢ a LCS should be a material surface, since it must have
sufficiently high dimension to have visible impact and act
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as a transport barrier, and it must move with the flow to
act as an observable core of evolving Lagrangian patterns;

* a LCS should exhibit locally the strongest attraction, re-
pulsion or shearing in the flow, which is essential to dis-
tinguish a LCS from all nearby material surfaces.

In particular, repelling LCSs are the core structures, generat-
ing stretching. On the other hand, attracting LCSs act as cen-
terpieces of folding. Finally, shear LCSs delineate swirling
and jet-type patterns. Thus, from their physical interpretation,
LCSs result of very interest for the study of the dynamics. They
separate different dynamics of the flow in space and time, act-
ing as the most important barriers for material flux across them.
LCSs can be classified following the same logic used when an-
alyzing invariant manifolds:

* hyperbolic LCSs are structures characterized by the
strongest attraction/repulsion;

* elliptic LCSs are closed material surfaces;

 parabolic LCSs are structures characterized by the
strongest shearing.

When considering autonomous dynamical systems, examples
of LCSs are stable and unstable manifolds of fixed points and
periodic orbits. The big advantage of LCSs is that they still
remain applicable to more complex flows with arbitrary time
dependence or only defined over a finite time interval (com-
puted or measured). While in autonomous systems LCSs cor-
respond to invariant manifolds, in time-dependent ones LCSs
evolve with the flow while continuing to bound distinct regions
of behavior [21].

In order to detect LCSs in the phase space different indica-
tors and methodologies are present in literature [7]. For this
research the main indicators investigated are the Lagrangian
Descriptors (LD).

2.1 Lagrangian Descriptor

LDs are a heuristic technique for revealing the underlying
template of geometrical structures that determine transport in
phase space for a generic dynamical system [22]. In essence,
LDs are based on the integration of a bounded, positive prop-
erty of the trajectory for a finite time [22]. The first definition
of LD relied on the computation of the arc length of particle
trajectories as they evolve forward and backward in time [23].
Later, the method was extended to include other positive quan-
tities. The methodology found several applications in different
scientific areas, such as ocean currents, atmospheric sciences,
and chemistry [22, 23].

Let’s consider a general time-dependent vector field on R™

dx(t)

T v(x,t), withx € R" and ¢t € R.

1

Assuming the velocity field C" (r > 1) in x and continuous in
t, a unique solution allowing for linearization exists. M; is the
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Tab. 1: Different LDs with integrand and used norm [22].

LD Integrand Norm
M;  magnitude of velocity !

M>  magnitude of acceleration Lt

Ms  magnitude of acceleration or velocity L% or L?
M4 magnitude of time derivative of acceleration Lt

Ms  positive quantity related to curvature !

Euclidean arc length of the curve in the phase space defined by
propagating an initial state x(¢*) = x* through Eq. (1). The
initial time is ¢* and the integration time interval is [t* — 7, t" +
7]. M is computed as follow [22]:

t* 1
Ml(X*7t*77') :/
t*—7

> (40 =

t*+7’
_ / v, £)[|dt.
t

*—T

@

Trajectories propagated from close initial conditions that re-
main close as they evolve in time are expected to have similar
M [22]. Differently, boundaries between regions comprising
trajectories with qualitatively different behavior are expected
to exhibit an abrupt change in the derivative of M; along the
direction perpendicular to these boundaries [22]. Results de-
pend on the integration time span chosen, in particular on the
selected (x*,¢") and 7. In addition to the M; indicator, there
exist other positive intrinsic physical or geometrical properties
of trajectories that can be integrated to successfully identify the
geometrical structures of underlying template characteristic of
the dynamical system. The general formulation is written as
follows:

t* 1

M(x*,t*,r)=/
t*—71

t* 1
et = (f
t

*—T

| F(x(t))|"dt for y<1

|}"(x(t))\”dt>; for 7> 1
3)

where ~ defines the L” norm of the integrand. Several types
LDs are listed in Table 1.
M; can be broken in a natural way into forward (Mif ) and
backward (MY?) integration. The forward integration should
highlight stable manifolds of the dynamical system, while

The definition of any function

the backward propagation recovers unstable ones [21, 24].
The great advantage of LD is that to obtain the indicator
is sufficient to include the integrand of Equation 3 into the
dynamics; Algorithm 1 presents the procedure to obtain the
LD scalar field.

C)
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Procedure INITIALIZATION

Define the grid of initial conditions Go;

Define the time initial time and the time interval
[to, T} )

Procedure LD SCALAR FIELD

for Vxg € Go
Integrate forward, from %o to o + 7 the

dynamics in Eq. 4 and obtain the final value
of M, My ;

Integrate backward, from ¢g to tg — 7 the
dynamics in Eq. 4 and obtain the final value
of M, My ;

Compute M (xo,to,7) = Mj — My ;

end
Plot M (xo, to, 7) VX0 € Go;

Result: LD scalar field.
Algorithm 1: LD computation.

The procedure just presented enables to compute the LD scalar
field and it was show in how it used to detect the evolution of
LCS and how it highlights both stable and unstable manifolds
[22]. Since the focus of this study is not the identification of
stable and unstable manifolds, but the main goal is study the
evolution of the dynamics forward in time and the detection of
bounded motion the results that are presented in the following
sections utilize only the LD computed using the forward prop-
agation (M) while My is not computed.

Similar to other indicators, like the FTLE [7], the Lagragian
Descriptors are heuristic indicators and do not present neces-
sary and sufficient conditions for the existence of LCSs like the
variational theory for LCSs [4] and the abrupt changes of the
LDs might fail in identifying the LCs in certain situations. On
the other hand, the implementation of LD indicators is simpler
than the application of variational theory and it can be easily
generalized to n-dimensional dynamics. In addition to that, the
computation of LDs requires a very small computational ef-
fort since it is sufficient to integrate one additional term to the
existing dynamics, enabling to obtain the desired map of the
phase space in relatively short amount of time with a high grid
resolution. In general, the LD indicators will be shown to be
sufficiently accurate in capturing the main features of the phase
space and in highlighting the practical stability regions which
represent the main goal of this research.

3 Application to the MMX mission

3.1 Dynamics around Phobos
This section contains the equation of motion used to describe

the dynamics in the proximity of Phobos that will be used later
on in the study.
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3.2 Equations of motion around Phobos
3.2.1 Eccentric Hill problem

To describe the motion around Phobos the dynamics is ex-
pressed in a rotating reference frame centred around the Mar-
tian Moon. The x axis is always aligned with the Mars and
Phobos direction and pointed from Mars to Phobos; the Z is
parallel with the angular momentum of the orbit of Phobos
around Mars while the y completes the orthogonal triad [25]
as shown in Figure 1.

For this study the Phobos barycenter is considered to be in an
Keplerian eccentric orbit around Mars. The gravity of Phobos
is modelled as a tri-axial ellipsoid and it is known that the mar-
tian satellite is in a tidal-locked configuration [25], meaning
that the satellite completes a revolution around its main axis of
inertia () in the same time it performs an orbital period around
Mars. Thanks to the small ratio between the mass of the Mar-
tian moon and Mars and the close distance between the space-
craft and Phobos, the dynamics can be approximated by the
elliptic Hill problem with the non-spherical gravity of Phobos
as disturbance [25, 26] . The equations of motion are written
as:

Vg

Vy

Uz

20y + 22+ go

=205 + gy

)

—2Z+ 9

where the dot represent the differentiation with respect to the
true anomaly of Phobos; X = [z, v, 2, &, 9, #] is the spacecraft
state in pulsating normalized coordinates; v = 1 + e, cos(v)
and g = [ga, gy, g-] is the acceleration given by the Martian
Moon. The main physical parameters are listed in Table 2.
The gravitational acceleration given by Phobos can be com-
puted as follow:

g =kR.[I'G (6)

Ze iy 73, being pp = ap(1 — ep) the semi-

where k = pye

1/3
latus rectum of Phobos’s orbit and € = (”—p) ; R[] rep-

3Y;
resents a rotation matrix about the z axis:

cos(I')  sin(I") O
R.[I'= |—sin(l') cos(T) 0 @)
0 0 1

where I' = v — M is the kinematic libration angle given by the
difference between Phobos true and mean anomaly.

The vector G = [G,, Gy, G| represents the gravity accel-
eration given by an ellipsoidally-shaped body [25]. The com-
ponents in the principal axis frame of the Phobos are given by:

3 o0 1 dl
Go = —2ppX
2 /0 (aQ+A+l> A+ N)

IAC-22,C1,1PB,5,x71401

(82)

Fig. 1: Schematic representation of the dynamics around Pho-
bos. In the red rectangle the libration of Phobos is highlighted

3, Y/°° 1 di

3 > 1 dl
e _75””2/0 (72+A+l) A+ A)

where R = [X,Y,Z] = eppy 'R.[-T][z,y,2]" is the
dimensional position of the spacecraft in the principal-axis

Gy =

(8b)

(80

frame of Phobos, @, 3,7 are the largest, intermediate and
smallest semi-major axes of Phobos. The value A(l 4+ A) is
computed as:

AL+ =@+ A+ DF + A+ DT +A+D) ©)
and A is the positive root of the following polynomial:

X? y? Z?

-1=0.
a+A+32+A+72+A

10)

The three elliptic integrals in Equation 8a - 8b - 8c are com-
puted numerically following Ref. [27].

Tab. 2: Physical properties

Symbol Quantity Value Units
a Largest semi-major axis 13.03 km
E Intermediate semi-major axis 11.40 km
07 Smallest semi-major axis 9.14 km

op Density 1.860 g/em?®
Mp Mass 1.058 x 10'¢ kg
wp Phobos Gravitational Parameter ~ 7.060 x 10™%  km®/s?
s Mars Gravitational Parameter 4.283 x 10* km?®/s?
ap Phobos’ semi-major axis 9377 km
Pp Phobos rotational Period 7.66 hr
wp Phobos spin Rate 2.279 x 1074 rad/s
ep Phobos orbit eccentricity 0.0151 -
LU Unit length 23.92 km
TU Time length 4387.63 S
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3.2.2  Orbit elements around Phobos

It is possible to rewrite the dynamics previously presented
by deriving a set of orbit elements. Ankersen and Yamanaka
solved the Tschauner-Hempel equations analytically [28]
while providing the expression of six integral of motions
K1, K2, K3, K4, K5, K¢. This allows to rewrite the state as:

x = Koysin(v) + Ksvycos(v)+
+ K4 (2 — 3eJysin(v))
y =K1+ Ko(1+7)cos(v)+
— K3(1 +~)sin(v) — 3K4J7?
z = Kssin(v) + K¢ cos(v)
b= Kas" + Kac” = 3eKy (222 4 7)
y = —2Koysin(v) — K3(27vcos(v) — e)+
— 3K4(1 — 2eJvysin(v))
%z = K5 cos(v) — Kgsin(v)

1D

where s* = cos(v) + ecos(2v), ¢* = sin(v) + 2sin(2v) and
J = [} 1/~(7)*dr. From the formulation in [29], it is possi-
ble to rewrite the six integrals of motion gaining a geometrical
understanding of the Tschauner-Hempel equations:

Ae = K3, (12a)

Ay = Ko — 3eJ Ky, (12b)

0z = 2Ky, (12¢)

0y = K1 —3J Ky, (12d)

A= /A2 + A2, (12e)
—A,

o = arctan ( . ) , (12f)

B=,/K?+ K§, (12¢g)

B = arctan (%) (12h)

The position of the spacecraft can be rewritten as [30]:

z(v) = vyAcos(v + a) + 65

y(v) = —(1+7)Asin(v + a) + dy (13)

z(v) = Bsin(v + ).

By observing Equation 13 it is clear that the spacecraft
remains in the proximity of Phobos only if A, §, and &,
remain bounded. It is guaranteed when K4 = 0 since A, and
0y stay constant even if the integral term J is present [30].
The variable A represents the semi-major and semi-minor axis
of the ellipse while the position of the center of the ellipse is
described by J, and d,; it could be possible to associate the
variable A to the semi-major axis of Keplerian orbits when the
satellite is relatively far from Phobos, but when the trajectories
of interest get closer to the Martian moon it is not possible to
consider A alone since the three variables, A, 0., dy, together

IAC-22,C1,1PB,5,x71401

describe the shape of the trajectory on the plane. The variables
« and [ represent the fast changing variable of the system
while K5 and K¢ describe the out-of-plane motion.

The geometric interpretation of this new set of parameters is
shown in Figure 2a - 2b. As for the out-of-plane motion, it is
decoupled from the planar one like in the Tschauner-Hempel
equations and it behaves like an harmonic oscillator.

(a) Schematic representation of the physical meaning of
Aand o

(b) Schematic representation of the physical meaning of
0z and Oy

As shown in [30] the set of equations of motion obtained using
this new orbit elements & = [A, @, dz, dy, K5, Kg] can be
written as:

& = F(v,2) + G(v,2)u (14)

where the unperturbed dynamics is given by F'(v, %) :

3 esin(a) 5
27 42 T
3 ecosa

2 Ay2 5y

o

F(v, %) = (15)

|
vlw

‘cq

3]

2
[N

o O
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while G(v, ) becomes:

vsin(v + «) — 2esina

G(1,1) = T , (162)
G(1,2) = 7ecosa+(11—i'z)2cos(u+oz)7 (16b)
G(2,1) = —VCOS(ZXEIO‘):;;COSO‘, (160)
6(2.2) = esina+£(11(:rjlsi)n(u+a)7 (160,
G(3,1) = Qi%meﬁ”) (16e)
G(3,2) = % (16f)
G(4,1) = % (16g)
G(4,2) = —6(1%);“(”), (16h)
G(5,3) = cos(v), (161)
G(6,3) = —sin(v) . (16j)

The perturbation acceleration u represents the ellipsoidal grav-
ity field of Phobos and it is computed following the same
methodology explained in Section 3.2.1.

3.3 Integral of Motion

The non-autonomous system doesn’t allow an integral of
motion. However, it is always useful to refer to integral of
motions when available, in order to gain a better understanding
of the dynamics. For this reason, it is possible to simplify the
equations written before by considering Phobos on a circular
By fixing the eccentricity to zero the
equations of motion become autonomous and they allow an

orbit around Mars.

integral of motion:

J= 1'u — 1wp(39£2 —2°)+ U(r)

2 3 a7

where r = [z, y, 2] is the position vector; v is the norm of the
velocity vector; v = [, 9, 2]; U(r) is the potential given by
the gravity of Phobos [31].

It is possible to rederive the Jacobi constant in function of the
orbit elements instead of the state expressed in position and
velocity. By substituting [z, y, 2, &, ¥, 2] with their equivalent
in orbit elements:

IAC-22,C1,1PB,5,x71401

x =vAcos(v+ a) + 0z, (18a)
y =0y — (1 4+7v)Asin(v + ), (18b)
z = Bsin(v + 8), (18¢)
& =—Asin(v + o) — eAsin(2v + a)+ (18d)
- 36K4M
v
y = —2yAcos(v + a) + eAcos(a) — 3Ky, (18e)
Z = Bcos(v + B), (18f)

the Jacobi constant for the planar case (z = 0 and 2 = 0) can
be computed as follow:

J() = S A~ 282~ Ulee);

where U () is the potential given by the gravity of Phobos
expressed in orbit elements.

19)

3.4 Baseline Trajectories

It is not possible to orbit around Phobos in a keplerian-fashion
since the mass of the asteroid is too small in relation with the
close distance to Mars to outweigh the gravity of Mars. In
fact, the Martian moon is so small that its sphere of influence
is below its surface and considering the circular restricted three
body problem the Lagrange points are very close to its sur-
face [25]. Nonetheless, it is possible to orbit in the vicinity of
the Martian Moon by adopting three-body orbits called quasi-
satellite orbits (QSO), also known as distant retrograde orbits
[32]. These orbits are relative to the orbital plane of Phobos
and can be described as 2:1 ellipses centered on the barycen-
ter of the Martian moon. The periodic orbits used as reference
(Figure 3) are computed using a differential corrector algorithm
[33, 34].

Figure 4-5a-5b show the Jacobi constant and the initial condi-
tions of these orbits in position and velocity and the respective
orbit elements.

3.5 Understanding the autonomous system

This section explains the main methodology used to analyze
the maps obtained for the autonomous system, where the
eccentricity of the orbit of Phobos is set to zero. Even if the
main focus of this study is the non-autonomous case, it is
important to familiarize with the problem by starting with the
autonomous case.

Chaos indicators represent a visual approach to identify the
LCSs. This approach is straightforward when the dynamics
is two dimensional since the entire phase space can be easily
visualized through a 2D plot. However, this is not the case
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Fig. 3: Family of 2:1 QSOs

Jacobi |-

0 200 400 600 800 1000

Periodic orbit

Fig. 4: Jacobi constant of the initial conditions of the different
orbits of the 2:1 familys

of many non-linear systems, in particular in astrodynamics,
where the state of the spacecraft is usually six dimensional
and it is not possible to visualize the entire phase space of
the problem but only a two dimensional sub-space. In this
case, it is required to include some assumptions and fix some
variables in order to lower the dimensionality and reduce the
problem to a 2D map [35]. In this section the main strategy for
the analysis of the dynamics around Phobos is presented.

It is necessary to choose two variables that define the x-axis
and y-axis of the 2D map; 3 variables are then fixed by the user
and they remain constant for all the different initial conditions
of the grid and fixing the Jacobi constant defines the last
variable.

To start creating the maps with a sensible choice of the
boundaries of the grid it is helpful to observe how the initial
conditions of periodic orbits vary (Figure 5b). If the interest
is to identify the bounded motion and the periodic orbits
in the proximity of Phobos, the Jacobi constant has to be
chosen appropriately and, following the Jacobi constant, the

IAC-22,C1,1PB,5,x71401

), i 5
= -
1 0
0 500 1000 0 500 1000
Periodic orbit Periodic orbit
1
4 /
3 O Gl S
= <
2
pr—"_ A
0 500 1000 [} 500 1000
Periodic orbit Periodic orbit
(a) Position and velocity
4 e 55
3 e TR,
= S45
2 - 4
-
0 500 1000 0 500 1000
Periodic orbit Periodic orbit
1 0 | seemevrese
S —— - L
4 2L
0 500 1000 0 500 1000

Periodic orbit
(b) Orbit elements

Fig. 5: Initial conditions of different periodic orbits of the 2:1
family

other orbit elements can be selected. Since the periodic orbits
of interests are planar orbits, it is possible to remove the
out-of-plane motion by setting K5 and Kg to zero, reducing
the dimensions of problem to a four. By observing the initial
conditions of the periodic orbits, it is clear that the fast
changing variable is always 3/27. By fixing the value of « to
3/2m only three dimensions are left. The values of A and J,
are the two values that compose, respectively, the x-axis and
y-axis of the 2D map while d, can be retrieved by fixing the
Jacobi constant.

As shown in section 3.3, the Jacobi constant can be expressed
as a function of the orbit elements, but the gravity of Phobos
can only be computed numerically. To obtain the value of &,
a guess is first obtained by considering the spherical gravity
field which can be expressed analytically. The Jacobi can be
expressed with the spherical gravity of Phobos (Js,n) for the
normalized case (wp = 1 and pp, = 1):

1

1 1
Jsph(X) = Z(v3 +v)) — | =(32% — 2%) — = (20)
2 2 r
while written in orbit elements it becomes:
Joph () = A% — 262 1 (21)

T /(Acos(0)+02)2+(by —2Asin(0))>

where § = a + v, with v = 0 and a = 3 /2.
A first guess for J, can be obtained by rederiving Equation 21
in function of d,:

57 — 4A" sin(0)8, + 4A™ sin®(07)+
1 22)
3 =0
(a7 2o )

+(A" cos(07) 4+ 65)° —
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where * represent the fixed parameters.

The guess of J, is obtained by solving the quadratic equation
in J, and taking the smaller between the two possible values.
It is interesting to notice that certain combinations of A, J,
and J might result in imaginary values of §, which represent
unfeasible initial conditions with the particular choice of the
Jacobi and the orbit elements. The §, guess is then used as
input of a zero-solver method that finds the zero of:

AJ(8,) = J* — J(=). (23)

The value of J, found is the one that makes Jacobi constant
equal to J*. This procedure is repeated for all the combina-
tions of A and d, that compose the grid while checking that
the initial conditions are not inside the surface of Phobos. The
initial conditions inside the surface of Phobos are discarded a
priori and labeled as crashing conditions.

Once the grid of initial conditions is obtained, the maps are
generated following the procedures presented in Chapter 2;
note that an event function is included to stop the ingration
when the spacecraft passes through Phobos or it escapes from
the proximity of Phobos (distance from Phobos larger than 250
km). Table 3 summarizes the parameters used to obtain Figure
7.

Tab. 3: Parameters map in A and &,

Symbol Quantity Value Units
€p Eccentricity of Phobos 0 -
Ao Minimum value of A 1.3 -
Af Maximum value of A 2.2 -
020 Minimum value of &, —-0.5 -
5a:f Maximum value of §,. 0.5 -
o Initial Phase of Phobos 0 -
vy Final Phase of Phobos 590(30days) -
N Grid size 1000 -
a” Fixed value of o 3/2m -
J* Fixed value of Jacobi constant 2.2 -

To better visualize the bounded regions, the initial condi-
tions that give trajectories that crashed on the Martian Moon
or that escaped the system are highlighted in black (—1) and
grey (—2) respectively. From the map it is clear that there are
two bounded regions for the specific choice of the Jacobi con-
stant. By looking at Figure 4 it is possible to see that there
are two periodic orbits for a Jacobi of 2.2. These periodic or-
bits are highlighted by the green and yellow dots in Figure 7.
It is interesting to observe that around the initial conditions of
these two periodic orbits two islands of bounded motion are

Tab. 4: MMX injection errors

Error Value Unit
1o Position  [50, 50, 50] m
1o Velocity 3,3, 3] cm/s

IAC-22,C1,1PB,5,x71401

identified. Some sampling of initial conditions have been used
(Figure 6) in order to understand the evolution of the different
trajectories and, for each state, the nominal trajectory is shown
in black while the trajectories in grey correspond the one ob-
tained by the initial conditions with the injection errors (Table
4). As expected, by selecting some initial conditions inside the
region of practical stability the motion of the spacecraft stays
bounded and the perturbed initial conditions around the chosen
state, generated by the Monte Carlo analyses behave in a sim-
ilar manner (Figure 6a - 6¢). When the initial condition is in a
very chaotic area, the behaviour of the trajectories around the
desired initial condition present clear differences given by the
chaoticity of that particular zone of the sub-space, as shown in
Figure 6b.

3.6 Bounded motion in the non-autonomous

system

Having understood the autonomous system, it is then interest-
ing to move to the non-autonomous case. To move to the time
dependent system it is sufficient to change the eccentricity of
Phobos from zero to its actual known value. The same ap-
proach for the generation of the map in the autonomous system
is here adopted. It is important to highlight that in the non-
autonomous system it is not possible to define any integral of
motion. Even if the Jacobi is not conserved, it remains inter-
esting to fix an initial value of the Jacobi and use it to define
the different initial conditions on the grid as done for the au-
tonomous system.

The parameters used for generating the map shown in Figure 8
are the same presented in Table 3 with the only difference be-
ing the value of the eccentricity which was set to e = 0.0151
(Table 2).

As for the autonomous case, initial conditions that bring the
spacecraft to escape the system or to crash on Phobos are high-
lighted in grey and black color. It is interesting to observe that
the two bounded regions where the two periodic orbits were lo-
cated are preserved when moving to the non-autonomous sys-
tem. Figure 9a-9c are two samples taken in the two regions of
practical stability. As for the autonomous system, the two sam-
pled initial conditions represent bounded trajectories which are
also sufficiently robust to the injection errors envisioned for the
MMX mission (Table 4). When an initial condition is selected
in a region which is not bounded, like the trajectory ’e’, the par-
ticular trajectory that is chosen crashes on the Martian moon
and the Monte Carlo samples present a chaotic behavior. Simi-
lar phenomena appear when selecting initial conditions around
the edges between regions of bounded motion, crashing regions
and escapes regions.

Having the same maps for the autonomous and non-
autonomous case it is possible to over-pose the two, in order
to highlight how the different regions change between the two
models. In Figure 10a - 10c the points of the grid which iden-
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(a) Orbit around Phobos a

(b) Orbit around Phobos b

(¢) Orbit around Phobos ¢

Fig. 6: Sample orbits in the autonomous system.

Fig. 7: Map in A and . with J = 2.2 in the autonomous sys-
tem. The yellow and green dot represent the initial conditions
of the 2:1 periodic orbits

tify regions of practical stability are highlighted by blue dots
for both the autonomous and non-autonomous system. The
figure in the middle, Figure 10b, presents the differences be-
tween the two maps: in blue are the areas of bounded mo-
tion that are present in the autonomous system and are not
bounded when the time dependency is added. The red color
indicates the zones of bounded regions that are identified in
the non-autonomous system and that are not present in the au-
tonomous system. It is interesting to show that when moving
from a less representative model to more accurate one, the re-
gions of practical stability don’t only decrease but they new
areas can appear. As shown in Figure 10 it is possible that
the non-autonomous system presents some different regions of
bounded motions compared to the autonomous case. By look-
ing at the number of initial conditions that give bounded mo-
tion there is a slight decrease in the number of points in the

IAC-22,C1,1PB,5,x71401

Fig. 8: Map in A and ¢, with J = 2.2 for the non-autonomous
case.

map when moving to the non-autonomous system.

4 Application to the Hera mission

4.1 Dynamics in the vicinity of the Didymos
binary system

The perturbed planar bi-elliptic restricted 4-body problem
(PBER4BP) describes the motion of a particle in a gravita-
tional field generated by three bodies moving in elliptic or-
bits. The configuration of the bodies is schematically shown
Let the primaries be Didymos (D1) and Di-
morphos (D2). The model is expressed in the synodic ref-
erence frame centered at the primaries barycenter, which ro-
tates and pulsates to keep their distance unity [36]. Let u =
mpz2/(mp1 + mpz), where mp1 and mps are the masses

in Figure 11.
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Fig. 9: Sample orbits in the non-autonomous system.
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Fig. 10: Comparison of practical stability regions between autonomous and non-autonomous system

of D1 and D2, respectively. The positions of D1 and D2 are
(=, 0) and (1 — p, 0), respectively. The equations of motion
(EoM) are scaled such that the sum of D1 and D2 masses is
set to one as well as their distance, and their period is scaled
to 27 [36]. By designating the primaries true anomaly f as the
independent variable of the system, the EoM are [36, 37]

" 0 _2 /
=VQ
+ 2 0 :| r =VQ4
24
rs r—rgs r—rs
- =+ = | +
<||r3||3 ||F*FS\|3) ﬂHF*rSHg
o — (14 escos)? (1—eh)*? 25)
=7 (1—€%)3/2 (1+epcosf)?

where ()" and (-)”" denote the first and second derivatives with
respect to the true anomaly f; 0 is the true anomaly of the dou-
ble asteroid barycenter (D) with respect to the Sun (S) and its
derivative is obtained through the chain rule [36]; r = (z,y)
and rs = (xs,ys) are the nondimensional position vectors
of the spacecraft and the Sun, respectively, expressed in the
synodic reference frame; .y, a(.y, and e(.y refer to the grav-
itational parameter, the semi-major axis, and the eccentricity

of the body (-), respectively (see 5). Then, 2 is the potential

IAC-22,C1,1PB,5,x71401

function that reads [36]

1 1, 5 2 1—p [
_ I 26
1+epcosf 2(36 )+ D1 +7“D2 (26)

where rp1 and rp2 are the distances from Didymos and Di-
morphos, respectively. The nondimensional coefficients «, 3,
and ~y are computed as

Us

S 27

@ up(1+epcosf) @7)
Pyd%yCA

f— 2

B up(1l+ epcos f)m’ and 28)
3

y = Hs (aj) (29)

\ uo \as

where Py = 4.56 N km 2 is the solar radiation pressure (SRP)
at 1 AU [38]; dau = 149597 870.700 km is the Astronomi-
cal Unit [38]; C, = 1.3 is the assumed reflectivity coefficient;
A = 0.5m? is the assumed Sun-projected area on the space-
craft for SRP evaluation; m = 10 kg is the assumed spacecraft
mass.
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The planar circular restricted 3-body problem (PCR3BP) is re-
covered setting o = 0, § = 0, and ep = 0 in Egs. (24),
and (26), and by replacing the true anomaly f with the nondi-
mensional time ¢. The EoM have been integrated with a 8th-
order Runge—Kutta integrator with 7th-order error control, the
coefficients were derived by Prince and Dormand [39], with
relative tolerance set to 10~ 2 [40].

4.2 Baseline trajectories

A binary asteroid environment is characterized by a low-
gravity field where small dynamical perturbations affect sig-
nificantly the dynamics [37, 41]. In this work, LDs have been
used to get insight on the qualitative behaviour of orbits in the
vicinity of the Didymos binary system. Specifically, they have

IAC-22,C1,1PB,5,x71401
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Fig. 13: Family of Lyapunov L; orbits

been used to identify regions of bounded motion close to Di-
morphos, the tiny moon of Didymos. The LD indicator is com-
20,
so corresponding to 10 revolution of the primaries about their

puted as presented in Section 2.1. In this study, f; =

common center of mass.

Distant retrograde orbits (DROs) about D2 and Lyapunov or-
bits (LOs) about the Lagrangian point L; have been first com-
puted in the PCR3BP through differential correction [42, 43].
Families of DROs and LOs are shown in Figure 12 and 13.
In the specific case of the Didymos system, many LOs impact
with the surface of Dimorphos. They are shown in gray in Fig-
ure 13.

4.2.1 Understanding the autonomous system

The families of periodic orbits are inspected against the LD
scalar field of the Didymos system for classification. Our study
is focused on the qualitative motion of orbits, thus an initial
classification of the region featured by the LD in a simplified
autonomous dynamics is necessary. The LD field is computed
on the phase space section yo = x(, = 0. The same section
used to derive through differential correction the initial con-
ditions (ICs) of DROs and LOs families has been used. The
grid of ICs is defined on the domain 2o € [—0.35,—0.05]
and 3§ € [0.3,0.9], with grid resolution 400 x 400. The map
presented in Figure 14 shows the results of the classification
procedure. Levels -2 and -1 corresponds to escape and crash
trajectories, respectively. A trajectory is considered to escape
from D2 when the particle distance from the center of the moon
is larger then ap. The portion of the LOs family plotted in the
map completely crash against D2. Conversely, the DROs fam-
ily is fully contained within two basins of ICs separated by a
bottleneck. The basin located further from D2 develops in a
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Tab. 5: Physical properties Didymos system.

Symbol Quantity Value Units
m Mass ratio parameter 0.214228 x 1073 -
735} Didymos system gravitational parameter ~ 3.522601 x 10™%  km®s™>
Us Sun gravitational parameter 1.327124 x 10" km®s2
ap Dydimos system semi-major axis 1.19 km
as Sun-Didymos system semi-major axis 2.460 287 x 10° km
ep Dydimos system eccentricity 0.03 -
es Sun-Didymos system eccentricity 0.383638 -
Rp1 Didymos radius 390 m
Rs p2 Dimorphos semi-major axis 103 m
Ry D2 Dimorphos semi-minor axis 79 m

long narrow channel containing several bounded orbits resem-
bling large DROs in shape.

Three baseline trajectories (orbits ‘a’, ‘b’, and ‘c’ in Figure 15)
have been selected by visual inspection. They are shown with
dots in Figure 14, while their exact ICs are reported in Table 6.
Orbit ‘a’ exhibits bounded motion, it is located in the basin
closest to Dimorphos, and it is very similar to a small DRO
(see Figure 15a). Orbit ‘b’ still exhibits bounded motion but
it is located very far from D2, in a region where the differ-
ential correction scheme failed in finding periodic orbits (see
Figure 15b). The last baseline trajectory, orbit ‘c’, crashes on
Dimorphos surface and it is a quasi-LO (see Figure 15c).

The robustness of the selected baseline trajectories have been
assessed through a Monte Carlo simulation, where 1000 tra-
jectories with perturbed initial states have been propagated.
The perturbed initial states have been derived assuming in-
jection errors on position Arg =
Awvp = 0.5mms ™. Those are at least 2 order of magnitudes

0.5m and on velocity

smaller than the expected injection errors for the Hera’s Cube-
Sats [44, 45], but such precision seems required to fly DROs
about D2 when only the point mass gravitational contributions
of the primaries are considered.

The results of the robustness analysis are shown in Figure 15,
where perturbed trajectories are plotted in gray. As can be seen
in Figure 15b, orbit ‘b’ appears less robust than orbits ‘a’ and
‘c’. In fact, not all perturbed initial states retain the qualitative
behavior of the baseline trajectory.

4.2.2  Bounded motion in the non-autonomous system

The identification of bounded motion regions in a more repre-
sentative, non-autonomous dynamical model follows. The LD
scalar field computed in the perturbed PBER4BP is shown in
Figure 16. The field has been computed when the Didymos
binary system is at the aphelion. Specifically, in the propaga-
tions g =
reports the families of periodic orbits and the location of the
Lagrange point L; computed in the PCR3BP. The major fea-
tures of the map are retained also in the PBER4BP. However,
accounting for the presence of the Sun gravitational attraction

7 at true anomaly fy. For comparison, the map
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Fig. 14: LD scalar field computed in the PCR3BP

and the SRP changed completely the qualitative behavior of
the nearest to D2 bounded motion basin visible in Figure 14.
Differently, the other region of bounded motion is maintained
although narrowed. Some visible changes in the map were ex-
pected since these perturbations, particularly the SRP, have a
strong effect on the dynamics when flying in low-gravity envi-
ronment [37, 41].

Also in this case, three baseline trajectories (orbits ‘d’, ‘e’, and
‘t” in Figure 17) have been selected. They are indicated as
white dots in Figure 16. Orbit ‘d’ is located in the only region
of bounded motion that still exists in the map. It is located
relatively close to the DROs family computed in the PCR3BP,
as a consequence its shape resembles a DRO (see Figure 17a).
Orbit ‘e’ is a trajectory impacting on Didymos surface and it is
shown in Figure 17b. Finally, orbit ‘f* has been chosen from
a chaotic region where different kind of behaviors are concen-
trated in a small portion of the phase space (see Figure 17c¢).
In a similar fashion as before, a robustness analysis on the se-
lected baseline trajectories have been carried out via a Monte
Carlo simulation. In this case, except for orbit ‘e’, the base-
line trajectories resulted to be less robust to perturbations. In
particular, many perturbed initial states diverge from orbit ‘d’.
Regarding orbit ‘f’, it belonging to a chaotic region, it is not
surprising that the trajectory resulted not robust at all.
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Tab. 6: I1Cs baseline trajectories for Hera mission.

Initial condition

Orbit 7 7

To—1l—p Yo T Yo o
a -0.105 0 0 0.433 -
b -0.330 0 0 0.771 -
c -0.259 0 0 0.579 -
d -0.207 0 0 0515 =
e -0.185 0 0 0353 =«
f -0.250 0 0 0610 =

5 Conclusion

In this paper Lagrangian Descriptors were adopted as chaos in-
dicators in order to detect coherent patterns in time-dependent
dynamical system to identify practical stability regions to be
exploited for the design of bounded orbits around small bod-
ies.

For the MMX mission it was possible to clearly detect the
bounded motion around 2:1 QSOs by selecting a grid of ini-

IAC-22,C1,1PB,5,x71401

tial conditions fixing the Jacobi constant. The approach with
the Jacobi constant enabled to detect similar regions of prac-
tical stability in the non-autonomous system. The trajectories
selected in the bounded regions for both autonomous and non-
autonomous systems were shown to be robust to injections er-
rors.

For the Hera mission it was shown that fixing four out of the six
dimensions and building the grid of initial conditions by chang-
ing only two parameters enabled to detect the entire families of
periodic orbit on the maps. Due to the strong effect given by
the solar radiation pressure a more significant difference was
detected between the two models compared to the MMX case.
The Monte Carlo analysis showed that not all the practical sta-
bility regions might be robust to the particular injection errors
that were selected and it suggests that, if similar orbits had to
be chosen, stronger requirements on the injection errors should
be required.

Future research will focus in exploring different combinations
of variables in order to highlight other families periodic orbits
and expand the current results, including the out-of-plane mo-
tion.
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