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Abstract 

Modeling generic size features of delamination, like area or length, has long been considered in the literature 

for damage prognosis in composites through specific models describing damage state evolution with load 

cycles or time. However, the delamination shape has never been considered, despite that it holds important 

information for damage diagnosis and prognosis, including the delamination area, its center, and perimeter, 

useful for structural safety evaluation. In this context, this paper develops a novel particle filter-based 

framework for delamination shape prediction. To this end, the delamination image is discretized by a mesh, 

where control points are defined as intersections between the grid lines and the perimeter of the delamination. 

A parametric data-driven function maps each point position as a function of the load cycles and is initially 

fitted on a sample test. Then, a particle filter is independently implemented for each node whereby to predict 

their future positions along the mesh lines, thus allowing delamination shape progression estimates. The new 

framework is demonstrated with reference to experimental tests of fatigue delamination growth in composite 

panels with ultrasonics C-scan monitoring. 
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1. Introduction 

Composites have been widely used in numerous industries due to their striking benefits such as high strength-

to-weight ratio and corrosion resistance, yet they suffer from multiple damage processes, among which fatigue 

degradation is one of the most common. The degradation initially results in internal damages such as matrix 

cracking and delamination and eventually brings to fiber, yet catastrophic, failure. In order to timely avoid 

this issue, inspections are usually required for evaluating the damage state in composites, often resulting in 

service disruption and therefore high maintenance costs. One desirable scenario for ensuring structural 
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integrity while keeping maintenance costs at a minimum is to schedule the maintenance just before the damage 

reaches a critical limit. To this end, an advanced damage prognosis technology is required to provide an 

anticipated and accurate picture of the future state of damage.  

Current damage prognosis practices in composites usually have considered several physics-based 

damage modes observed during the degradation process, including matrix crack density 1, delamination length 

or area 2, 3, crack length 4, and stiffness reduction 1, 2, 5, 6, or damage-sensitive statistical features extracted from 

measured signals, like normalized cumulative energy 7 and cumulative risetime and amplitude 8. They are 

based on the fact that damage evolution with load cycles or time under a certain service condition follows a 

specific pattern, thus the future condition can be calculated by the current state through a proper model 

depicting such a pattern. From the perspective of the type of information used for modeling the degradation 

behavior in composites, namely physical knowledge or experimental and in-field data, damage evolution 

models can be classified either as physics-based 1-5 or data-driven 6-8. The former ones generally lie within the 

scope of Paris’ law or its extensions, where the rate of damage evolution (e.g., strain energy release rate or 

stress intensity factor) is analytically calculated 1-3, 5 or fitted from numerical simulations through a data-

driven modeling strategy such as Gaussian process 4. On the other hand, the data-driven approaches, e.g., 

using neural networks 6 or Markov models 7, 8, resort to sufficient damage data or statistical features extracted 

from measured signals during the actual degradation process for describing the above relationship. 

In practice, the efficiency of any damage evolution model is case-specific, and in general, they 

provide good results under a number of assumptions 9-11. However, their capability to account for the 

uncertainties arising from complex structural degradations, environmental effects, and sensor health 

conditions is limited 12, 13. A well-acknowledged strategy to improve their prognostic performance with 

consideration of the uncertainty is to set the model parameters as unknown state variables to be updated using 

data by a state estimation technique, such as the particle filter (PF), given its versatility for non-linear and 

non-Gaussian problems 14-16 and also its demonstrated performance for damage prognosis 2, 3, 17. The latter 

implies quantifying the current damage state through a direct or indirect measurement system, depending on 

whether the damage state can be directly measured or not. More specifically, if a direct measure of the damage 

is pursued, e.g., by observing the matrix crack density and delamination area through X-ray 1, 2 or the stiffness 

reduction by strain observations 1, 2, the measurement model will be a simple formulation with the observation 

equal to the damage state, possibly corrupted by measurement noise. In the case of indirect damage 

observation, an analytical 4 or data-driven function 3 is required to describe the relationship between the 

internal damage state and the external observations, for example, relating any local strain 3 or distributed 

scatter 15 feature to the damage. 
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Within the referred approaches, delamination prognosis has attracted the attention of the research 

community due to its threats to structural integrity with invisible warnings 2, 3. However, delamination shape 

has never been considered, although it holds important information for damage diagnosis and prognosis, 

including the delamination area, its center and perimeter, useful for damage growth rate prediction, and finally, 

structural safety evaluation. Similar to other damage state variables, the progress of delamination shape under 

a certain loading condition also follows a specific pattern 18, which can be directly observed by X-ray 5 and 

ultrasonic C-scan 19, 20 or indirectly reconstructed from digital image correlation 20 and guided waves 19, 21.  

This paper, therefore, develops a novel particle filter-based delamination shape prediction framework, 

where C-scan is adopted for delamination imaging. The delamination shape, rather than its area or a specific 

length, serves as the damage state to be predicted, thus limiting the loss of useful information for prognosis. 

More specifically, considering the delamination shape is described by some artificially defined control points 

(CPs), i.e., the intersections between some grid mesh lines and the perimeter of the delamination, the motion 

of each CP can be modeled with a data-driven parametric function, whose parameters are online updated by 

a particle filter. The future position of each CP can be located through the updated models and then adopted 

to reconstruct the future delamination shape. This method is demonstrated with reference to experimental tests 

of fatigue delamination growth in composite panels with ultrasonics C-scan monitoring. 

The rest of this paper is organized as follows: Section 2 gives the methodological details of the 

proposed framework, including the mesh discretization, the evolution model, and the PF framework for 

damage shape prediction. The validation of the proposed method by an experiment is given in Section 3. 

Finally, Section 4 concludes this paper with some topics for future work. 

 

2. Delamination shape prediction  

The proposed framework consists of four main steps, namely, (i) defining the mesh nodes and lines for 

discretizing the delamination shape, (ii) modeling the evolution for each node, (iii) independently updating 

the evolution parameters of each model through PF, and (iv) calculating the future delamination shape.  

 

2.1 Delamination shape discretization 

This study assumes that a delamination image is available through a C-scan monitoring system, or similar 

technique, as presented in Figure 1 (a). Figure 1 (b) shows the image segmented by some grid lines, whose 

layout, i.e., the locations of the eighteen cross markers, is kept constant during delamination evolution. Note 

that a number of control points (CPs) are located where the grid lines intersect the delamination perimeter, 
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whereas one control length (CL) is taken as the distance between one CP and one corresponding cross marker, 

e.g., CP4, CP14, CL4, and CL14 in Figure 1 (c).  

 

 
Figure 1 Definition of control points (CPs) and control lengths (CLs) in a delamination image 

 

Since the delamination shape in composites under fatigue loading can grow with a specific pattern 

18, the motion of each CP along its corresponding grid line, namely the evolution of each CL, is assumed to 

follow a certain law, as will be validated in Section 3.2. In this context, the delamination shape prediction 

problem is reduced to the predictions of these CLs, thus requiring a proper model to describe the evolution of 

each CL, as well as a state estimation technique to update the model parameters for predicting the future states. 

Note that, during damage progression, the delamination perimeter will intersect more and more mesh lines, 

thus increasing the number of CLs and, thus, their relative evolution models. Note that, in this preliminary 

application, each model is independently updated, under the assumption of the independent evolution of each 

CL. However, the method could be extended to consider the correlation among CLs’ evolutions, which is a 

matter of future research by the authors.  
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2.2 Definition of evolution models 

Let us assume the evolution of the l-th CL can be modeled as  

 

 𝑧𝑙,𝑘 = 𝑓𝑙(𝑁𝑘 , 𝜽𝑙) (1) 

 

where the subscript k means the k-th time step, 𝑧𝑙 is the control length, 𝑁𝑘 is the difference in the number 

of load cycles between the step of the CL occurrence (zero for all CLs in this study) and the time step k, 𝑓𝑙(∙) 

is a data-driven function governing the length evolution with the number of load cycles, and 𝜽𝑙 is a vector 

of model parameters.  

Given the uncertainties in the delamination growth, the parameters 𝜽𝑙  are assumed to vary in 

different specimens of the same structure, and they should be taken as uncertain components to be added in 

the state vector for online updating, based on a state-space model including the process and measurement 

equations, as follows:  

 

 {
𝜽𝑙,𝑘 = 𝜽𝑙,𝑘−1 + 𝝎𝑙,𝑘

𝑧𝑙,𝑘 = 𝑓𝑙(𝑁𝑘, 𝜽𝑙,𝑘) + 𝜈𝑙,𝑘
 (2) 

 

In the last equations, ω and  are the process and measurement noises, respectively. Note that the state space 

model for other CL is the same formulated as above, thus the amount of models utilized for shape prediction 

at k-th step equals that of CLs that are active at that step. Each model will be embedded into an online PF-

based scheme due to the assumption of the independent evolution for each CL. 

This choice of the state-space, which, as already stated, is also driven by the lack of reliable physics-

based descriptions of the delamination shape evolution in composite materials, intuitively allows estimating 

the parameters of a fitting curve describing the progression of the shape with the number of load cycles. Then, 

at a given load cycle, the most updated estimates of those parameters (in the form of a particle swarm) are 

used to project the future CLs, and finally to reconstruct the future delamination shape. The use of a particle 

filter allows casting this problem into a sequential Bayesian parameter estimation framework, very convenient 

for online, real-time applications. At the same time, the use of a zero-mean random walk as artificial dynamics 

for the augmented states representing the possibly constant parameters allows for a certain degree of 

adaptability of the filter with respect to both training on delamination dynamics different from the current one 

and sudden changes in the progression behavior, as shown for example in some works by some of the same 

authors 22, 23. 



    6 

To be a little more specific, uncertainties (or unknowns) from multiple sources like undetected flaws 

and environmental effects usually result in different fatigue delamination growths (or more generally, different 

state evolutions), as shown by the three specimens later. Most uncertainties can hardly be directly embedded 

into a model, for example, we can hardly find a model with a parameter describing an undetected flaw included. 

As also described above, the effects of uncertainties on damage growth (or state evolution) are then addressed 

automatically in the particle filter framework by online updating the parameters of the damage growth (or 

state evolution) model, as validated in many other damage prognosis investigations, e.g., in 22, 23. 

 

2.3 Particle filter-based model updating 

Following a Bayesian approach, the unknown state vector at k-th step 𝜽𝑙,𝑘  can be inferred from the 

measurement, as follows: 

 

 𝑝(𝜽𝑙,𝑘|𝒛𝑙,1:𝑘−1) = ∫ 𝑝(𝜽𝑙,𝑘|𝜽𝑙,𝑘−1)𝑝(𝜽𝑙,𝑘−1|𝒛𝑙,1:𝑘−1)𝑑𝜽𝑙,𝑘−1 (3) 

 𝑝(𝜽𝑙,𝑘|𝒛𝑙,1:𝑘) ∝ 𝑝(𝑧𝑙,𝑘|𝜽𝑙,𝑘)𝑝(𝜽𝑙,𝑘|𝒛𝑙,1:𝑘−1)  (4) 

 

where 𝒛𝑙,1:𝑘 are the measurements collected from time step 1 to k, the terms 𝑝(𝜽𝑙,𝑘|𝜽𝑙,𝑘−1) and 𝑝(𝑧𝑙,𝑘|𝜽𝑙,𝑘) 

stands for the transition distribution and the likelihood function, which are driven by the process and 

measurement equations, respectively, and finally 𝑝(𝜽𝑙,𝑘|𝒛𝑙,1:𝑘−1)  and 𝑝(𝜽𝑙,𝑘|𝒛𝑙,1:𝑘)  are the prior and 

posterior probability distribution functions, respectively.  

Equations (3) and (4) form the basis for the optimal Bayesian solution, which is rarely possible to be 

analytically calculated in a nonlinear and non-Gaussian system. Therefore, the sampling importance 

resampling (SIR) PF 24, 25 is used in this study as an efficient and general state estimation technique. Table 1 

lists a pseudo-code implementation of the SIR PF for one CL. Note that, at each time step, a number of PFs 

equal to the number of active CLs are running in parallel and independently.  

 

Table 1 Sampling importance resampling particle filter for one CL 

Initialization: draw Np particles {𝜽𝑙,0
𝑖 : 𝑖 = 1,2, … , 𝑁𝑝} from the initial distribution 𝑝(𝜽𝑙,0) 

For k=1, 2, …, 

 Prediction in PF: draw Np particles {𝜽𝑙,𝑘
𝑖 : 𝑖 = 1,2, … , 𝑁𝑝} by 𝜽𝑙,𝑘

𝑖 ~𝑝(𝜽𝑙,𝑘|𝜽𝑙,𝑘−1
𝑖 ) 

 
Weight update: calculate the weight 𝑤𝑘

𝑖  by 𝑤𝑘
𝑖 ∝ 𝑝(𝑧𝑙,𝑘|𝜽𝑙,𝑘

𝑖 ), and assign its  

normalized form 𝑤̃𝑘
𝑖  to each particle 𝜽𝑙,𝑘

𝑖  

 Resample for {𝜽𝑙,𝑘
𝑖 : 𝑖 = 1,2, … , 𝑁𝑝} using the particle weights {𝑤̃𝑘

𝑖 : 𝑖 = 1,2, … , 𝑁𝑝} 



    7 

 Approximate the estimate 𝜽̂𝑙,𝑘 as 𝜽̂𝑙,𝑘 =
1

𝑁𝑝
∑ 𝜽𝑙,𝑘

𝑖𝑁𝑝

𝑖=1  

End 

 

2.4 Future delamination shape prediction 

The target of this SHM application is that of predicting the future CLs based on the updated PF estimates 𝜽̂𝑙,𝑘, 

then locating the future CPs, and finally constructing the future delamination shapes. Thus, by combining the 

evolution model by Eq. (1) and the k-th posterior distribution of its parameters 𝑝(𝜽𝑙,𝑘|𝒛𝑙,1:𝑘), the j-th step 

ahead of the l-th CL 𝑧𝑙,𝑘
𝑗

 can be calculated as in Table 2: 

 

Table 2 Calculation of future l-th control length 

For i = 1 : Np 

 For j = 1, 2, 3, … 

 Calculate future 𝑧𝑙,𝑘
𝑖,𝑗

 as 𝑧𝑙,𝑘
𝑖,𝑗

= 𝑓𝑙(𝑁𝑘+𝑗 , 𝜽𝑙,𝑘
𝑖 ) 

 End 

End 

 

Figure 2 reveals how this method works for one future step, while the same procedure also applies 

to all the other future steps. Figure 2 (a) shows the means and 95% confidence boundaries (CBs) of the 

predicted CL after one step, which can then be used for locating the corresponding CPs, as plotted in Figure 

2 (b). By resorting to a curve fitting strategy, i.e., the MATLAB® function ‘cscvn’, is used in this study, the 

delamination shape can be constructed by these discrete CPs, as shown in Figure 2 (c). Note that a simple rule 

will be used to merge these discrete CBs into a global CB for delamination shape: those lying within the mean 

delamination shape will be adopted for building the lower global CB of delamination shape, while those 

outside the mean shape are used for upper global CB. 

Finally, inspired by the cumulative relative accuracy (CRA) in 26, a new CRA is developed in this 

study to evaluate the accuracy of the shape predicted at j-th ahead step based on the estimates at k-th step as, 

 

 𝐶𝑅𝐴𝑘,𝑗 =  
1

𝑁𝑟
∑ (1 −

|𝑑𝑡𝑎𝑟𝑔𝑒𝑡
𝑘,𝑗,𝑞

−𝑑𝑝𝑟𝑒𝑑
𝑘,𝑗,𝑞

|

𝑑𝑡𝑎𝑟𝑔𝑒𝑡
𝑘,𝑗,𝑞 )

𝑁𝑟
𝑞=1  (5) 

 

where 𝑁𝑟 means the number of reference lines (RLs), each of which is a ray starting at the reference point 
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(RP, simply defined as the center of the image in this study) with a certain angle α to the x-direction, 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 

is the distance between the RP and the target shape perimeter along with a specific RL, whereas 𝑑𝑝𝑟𝑒𝑑 is the 

distance between the RP and the predicted shape perimeter, as shown in Figure 2 (d). Note that the CRA 

indicator should lie in the [-∞,1] interval, where a higher CRA means a more accurate prediction, and vice-

versa. 

 

 

Figure 2 Future shape prediction procedure and performance evaluation 

Note: ‘CL, ‘CP’, ‘CB’, ‘RP’, and ‘RL’ means ‘control length’, ‘control point’, ‘confidence boundary’, 

‘reference point’, and ‘reference line’, respectively. 

 

3. Application 

The context of the engineering application of this manuscript is given in this subsection, along with 

information on the source of the data used and how they have been processed for reproducibility. 

 

3.1 Experimental setup 

The proposed framework is applied to fatigue cycling data obtained from a set of run-to-failure fatigue 

experiments in cross-ply carbon-epoxy laminates. The tests were conducted using a servo-hydraulic 
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Instron/Schenk 100 kN tension-tension test machine with hydraulic clamps (see Figure 3(a)). Cycom 977-

2-35-12 k HTS pre-impregnated (commonly known as prepreg) material was used for rectangular 250 × 35 

[mm] coupons with 2 [mm] thickness and [0/90]4S stacking sequence. The coupons were cured in an autoclave 

at 177 [°C] for 3 [h] using a pressure of 7 [bar]. To induce an initial local state of matrix-cracks and 

delamination, impact damage was introduced using a semi-spherical striker drop weight tower, which 

produced 3.8 Joule impact energy. The fatigue tests were carried out at a maximum applied load of 49 [KN], 

a frequency 𝑓 = 6 [Hz], and a stress ratio 𝑅 = 0.1. Further details about the material properties along with 

the fatigue test data are given in Table 3.  

 

Table 3 Mechanical and manufacturing parameters of the  

Type Parameter Value Units Description 

Mechanical Em 3.52 GPa Matrix stiffness 

𝜈𝑚 0,35 -- Poisson’s ratio of the matrix 

Efx 240  GPa X-axis laminate stiffness 

Efy 28  GPa Y-axis laminate stiffness 

𝜎𝑓𝑥 1160 MPa X-axis failure tension 

Manufacturing vf 0.65 -- Fiber volume fraction 

𝜌𝑓 1770 Kg/m3 Fiber density 

 

Monitoring data were collected from laser extensometer for online strain measurements, and infrared 

thermography and C-scan for off-line delamination monitoring, although in this work, only the C-scan data 

are used for demonstration purposes. C-scan measurements were carried out using a USPC 3040 DAC from 

Ingenieurbüro Dr. Hillger system (see Figure 3 (b)), with a resolution of 20 [MHz] and amplification of up 

to 106 [dB] in 0.5 [dB] steps. Figure 3(c) shows a sample C-scan image obtained during the experiments. 
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Figure 3 Fatigue test for composite panel with ultrasonic c-scan monitoring system 

 

3.2 Image processing 

Figure 4 shows the four steps for processing the raw ultrasonic C-scan delamination image to identify the 

control points (CPs) and control lengths (CLs). They can be taken as a sequence of actions triggered after an 

alarm is drawn by a damage detection and localization strategy: 

(i) Image cropping: a 55 × 15 [mm] rectangle sub-image, centered on the delamination, is extracted 

from the raw image at each load cycle step. Though specific for the case under analysis, in the most general 

case, the rectangle dimension can be tuned according to limits on damage sizes imposed by certification 

authorities or airworthiness. 

(ii) Extraction of delamination contour. The dB unit provides a measure of the depth of delamination, 

such that a lower amplitude means deeper delamination within the laminate thickness. As a generic rule of 

thumb specific to this application, the contour is selected as the area limit where the signal amplitude is less 

than -6 dB. Though a visual check is adopted here for better control of the target delamination perimeter, 

automatic delamination contour identification is possible, leaving the PF the assignment to filter the additional 
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unavoidable uncertainty.  

(iii) Definition of grid lines, using seven grid lines to segment the image, located at the following x - y 

coordinates: x = 22.5, 27.5, 32.5, and y = 5, 6.5, 8.5, 10, where the units are expressed in [mm]. 

(iv) Definition of CPs and CLs: the CPs can be defined as the intersections between the grid lines and 

the delamination contour, whereas the CLs are taken as the distance between the CPs and the corresponding 

cross-markers. 

 

Figure 4 Image processing procedure  

 

The delamination shapes at different load cycles for three specimens S1, S2, and S3 are extracted by 

Steps (i) and (ii), and they are given in Appendix A.1. Note that for each specimen, the delamination grows 

under a similar pattern, i.e., it propagates along the x-direction (the load direction) but not along the y-direction. 

To better understand the damage evolution pattern, Figure 5 shows the growths of four selected CLs from 

three specimens, where can be observed that both CL12 and CL14 remain stable during the fatigue test, whilst 

CL4 decreases with load cycles but at different rates. These observations demonstrate that CLs from different 

specimens can evolve under a similar pattern, and also that a deterministic evolution model can hardly provide 

an accurate prediction, as already mentioned in 14-16. The latter is even more evident in Figure 5 (d), where 

CL8 from specimens S2 and S3 remain stable with load cycle steps, while those from S1 strictly decrease 

over fatigue cycles.  
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Figure 5 Growths of selected control lengths from specimens S1 – S3 

 

3.3 Modeling and PF parameters 

Given the demonstrated performance of polynomial fitting for depicting fatigue degradation 27, 28, a second-

order polynomial function is adopted to map the l-th CL and the number of load cycles, as follows 

 

 𝑧𝑙,𝑘 = 𝑝1,𝑙,𝑘𝑁𝑘
2 + 𝑝2,𝑙,𝑘𝑁𝑘 + 𝑝3,𝑙,𝑘 (6) 

 

where the polynomial coefficients 𝑝1,𝑙, 𝑝2,𝑙 and 𝑝3,𝑙 are taken as the evolution parameters for the l-th CL.  

Thus, the state space model for the l-th CL can then be formulated as  

 

 {
[

𝑝1,𝑙,𝑘

𝑝2,𝑙,𝑘

𝑝3,𝑙,𝑘

] = [

𝑝1,𝑙,𝑘−1

𝑝2,𝑙,𝑘−1

𝑝3,𝑙,𝑘−1

] + [

𝜔1,𝑙,𝑘

𝜔2,𝑙,𝑘

𝜔3,𝑙,𝑘

]

𝑧𝑙,𝑘 = 𝑝1,𝑙,𝑘𝑁𝑘
2 + 𝑝2,𝑙,𝑘𝑁𝑘 + 𝑝3,𝑙,𝑘 + 𝜈𝑙,𝑘

 (7) 

 

where 𝜔1,𝑙 , 𝜔2,𝑙  and 𝜔3,𝑙  are the process noise, and 𝜈𝑙  is the measurement noise. Additionally, kernel 

smoothing 29 is adopted to improve the estimation performance for the parameters 𝑝1,𝑙, 𝑝2,𝑙 and 𝑝3,𝑙, as 
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already used in 3, 16. Taking the parameter 𝑝1,𝑙 as one reference example, kernel smoothing can be presented 

as:  

 

 𝑝1,𝑙,𝑘 = √1 − ℎ2𝑝1,𝑙,𝑘−1 + (1 − √1 − ℎ2)𝑝̂1,𝑙,𝑘−1 + 𝜔1,𝑙,𝑘 (8) 

 

where 𝑝̂1,𝑙,𝑘−1  is the estimate of 𝑝1,𝑙,𝑘−1 , and h is the kernel smoothing parameter. The same procedure 

applies to the other two parameters 𝑝2,𝑙 and 𝑝3,𝑙. 

Next, the model for each l-th CL is updated within an independent PF whose hyperparameters have 

been selected through a trial-and-error procedure, as reported in Table 4. More details on the effects of these 

parameters on the estimate and confidence boundary can be found in literature, as for the number of particles 

30, the standard deviation (STD) in the likelihood function 3, the kernel smoothing parameter 3, the initial 

ranges 30, and the process noise 3, 30, while some comments are provided hereafter as for the selection of the 

initial ranges of model parameters.  

 

Table 4 Particle filter parameters for the l-th control length 

Number of particles Np STD in likelihood function 𝜎𝑦 Kernel smoothing parameter h 

6000 0.4 0.2 

Initial ranges for {𝑝1,𝑙, 𝑝2,𝑙, 𝑝3,𝑙} 

𝑝1,𝑙,0~U(𝑚1,𝑙 − 𝑟1,𝑙, 𝑚1,𝑙 + 𝑟1,𝑙) 𝑝2,𝑙,0~U(𝑚2,𝑙 − 𝑟2,𝑙, 𝑚2,𝑙 + 𝑟2,𝑙) 𝑝3,𝑙,0~U(𝑚3,𝑙 − 𝑟3,𝑙, 𝑚3,𝑙 + 𝑟3,𝑙) 

Distributions of process noises {𝜔1,𝑙, 𝜔2,𝑙, 𝜔3,𝑙} for {𝑝1,𝑙, 𝑝2,𝑙, 𝑝3,𝑙}  

𝜔1,𝑙~𝒩(0, (1 × 10−12)2) 𝜔2,𝑙~𝒩(0, (1 × 10−7)2) 𝜔3,𝑙~𝒩(0, 12) 

Note: (a) {𝑚1, 𝑚2, 𝑚3} and {𝑟1, 𝑟2, 𝑟3} are the PF parameters for defining the initial ranges; (b) the terms 

U() and 𝒩() indicate uniform distribution and Gaussian probability density function, respectively. 

 

Though one can expect algorithm convergence without informative priors on model parameters, in 

order to limit the number of particles and to facilitate convergence to target parameters, we tested a scenario 

in which all the delamination images from two specimens are used to “train” the initial ranges of state 

parameters, while those from a third specimen are taken as the testing case. More specifically, results for 

training with S2 and S3 and testing on S1 are shown in Section 3.4, while discussion on other combinations 

is provided in Section 3.5.  

A general belief for this kind of problem is that ‘the predictions will be more accurate with an 
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increasing number of images (or CLs) used for initialization until the number of images becomes large 

enough’. For different applications (or different specimens in the same application, or even different numbers 

of load cycles for the same specimen), the definition of ‘enough’ should probably be different, and it can 

hardly be calculated online. Thus, a general recommendation could be to use the images as much as possible. 

In order to use more CLs for “training” the initial ranges of the parameters of each CL evolution 

model, the fourteen CLs have been classified into four groups based on their expected similarity, as listed in 

Table 5. For each group, the centers {𝑚1, 𝑚2, 𝑚3}  for the initialization ranges are defined as the mean 

parameters providing the best fitting on the initialization sets, while {𝑟1, 𝑟2, 𝑟3} (related to the parameter prior 

uncertainty) are defined through a trial-and-error procedure.  

 

Table 5 Four groups of control lengths 

Group Direction Control length (CL) {𝑚1, 𝑚2, 𝑚3} {𝑟1, 𝑟2, 𝑟3} 

1 x 1, 2, 7 ,8 {1.54 × 10−10, −4.42 × 10−5, 20.9} {4 × 10−10, 4 × 10−5, 4} 

2 x 3, 4, 5, 6 {0.44 × 10−10, −1.93 × 10−5, 20.2} {4 × 10−10, 4 × 10−5, 4} 

3 y 9, 10, 13, 14 {−0.82 × 10−10, 0.12 × 10−5, 3.67} {1 × 10−10, 1 × 10−5, 2} 

4 y 11, 12 {−1.29 × 10−10, 1.57 × 10−5, 1.87} {1 × 10−10, 1 × 10−5, 2} 

 

3.4 Shape prediction results  

Results for prediction of S1 degradation, based on prior knowledge within S2 and S3 degradations, are 

reported hereafter. Figures 6 (a) and (b) show the parameter estimation results for two CLs along the y-

direction, i.e., CL12 and CL14, respectively, while Figures 6 (c) and (d) show those for two CLs along the x-

direction, CL4, and CL8, respectively. In each plot, particles representing samples of the three evolution 

parameters in Eq. (6), namely p1, p2, and p3, gradually reduce their spread during the estimation process and 

finally accumulate within certain ranges, demonstrating that PF can provide satisfactory filtering. Noticeably, 

parameters of the two x-direction CLs exhibit larger shifts than those of the two y-direction CLs, due to the 

larger delamination growth along the x-direction, as shown in Appendix A1.  
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Figure 6 Parameter estimation results for four control lengths for specimen S1 

 

Figures 7 (a-b), 7 (c-d), and 7 (e-f) show the predictions for the two y-direction CLs based on their 

PF parameter estimates at 1000, 10000, and 25000 load cycles, respectively. Note the means of the predictions 

remain close to the target, and their 95% CBs embrace the target values, proving that the evolution models of 

the two selected CLs are correctly updated by the PF within a few measurement steps.  

Figures 8 (a-b), 8 (c-d), and 8 (e-f) show the predictions for the two x-direction CLs based on their 

PF parameter estimates at 1000, 10000, and 25000 load cycles, respectively. Predictions overestimate the 

target lengths at lower cycles, due to the shape bias between specimens S2 and S3 (used for setting the 

initialization ranges for parameters) and specimen S1 (used for testing). However, the predictions of the two 

x-direction CLs become more accurate as more delamination images are processed.  

The difference in the prediction performances of the CLs along the x and y directions is actually due 

to the adaptation speed of the filter, rather than to the fact that the artificial dynamics are used for the 

polynomial form coefficients. In turn, the adaptation speed is related to the number of available measurements 

(the more, the faster the filter) and also to the CL evolutions available for the initialization. It can be seen, in 

fact, that the evolutions of the x-direction CLs for specimens S2 and S3 are much slower than those of 
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specimen S1, so that the filter initially “expects” (and coherently predicts) a slower evolution: unfortunately, 

the number of observations available is not sufficiently high for the filter to capture the faster dynamics, at 

least not until the last observations, when it seems to finally converge.  

In general, it can be concluded from Figures 6, 7, and 8 that the proposed methodology can provide 

satisfactory estimates of the evolution model parameters and accurately anticipate the future CL, and thus the 

delamination shape, after a sufficient number of delamination images is processed for parameter updating.  

 

 
Figure 7 Predictions for two y-direction control lengths with the estimates  

at three selected load cycles for specimen S1 
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Figure 8 Predictions for two x-direction control lengths with the estimates  

at three selected load cycles for specimen S1 

 

After acquiring the future CLs, the control points (CPs) and their CBs can be located and then used 

to shape the future delamination, as performed in Section 2.4. For simplicity, only the delamination shape 

predicted with the estimates at 1000, 10000, and 25000 load cycles are given in Figures 9 (a), (b), and (c), 

respectively. It can be observed that the shape prediction becomes less accurate while increasing the steps 

ahead for prediction, as the uncertainties of delamination growth also increase ahead in the future. On the 

other hand, the prediction at one specific future step gets more accurate if more delamination images are 
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adopted for model updating, due to the convergence of the evolution parameters as shown in Figure 6. 

 

 
Figure 9 Shapes predicted at future load cycles based on the estimates  

at three selected load cycles for specimen S1 

Note: the load cycles at which the future shape is predicted are in the left-top corner. The black curve, blue 

curve, and white area are the target shape, the predicted shape, and its 95% CBs, respectively. 

 

After defining RF as the center of the delamination image, i.e. [27.5 mm, 7.5 mm] based on the 

reference system of the s-scan images in Figure 9, and 𝜶 =

[0, 5, 10, 15, 45, 90, 135, 165, 170, 175, 180, 185, 190, 195, 235, 270, 315, 345, 350, 355]  degrees with 

respect to the x-direction, the CRA prognostic performance metric is shown in Figure 10 for different future 
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load cycles based on the parameter estimates at different steps of delamination growth. The same conclusions 

drawn after Figure 9 are valid, as highlighted by the red and green arrows. 

 

  

Figure 10 Cumulative relative accuracies (CRAs) of shape predictions for specimen S1 

 

Note that our case study is based on a series of laboratory tests, not focused on studying the effects 

of variable loading. However, according to our previous experience and the results obtained in some previous 

works by some of the same authors 22, 23, we can expect that the filters, even if initialized on the basis of 

different load amplitude, should be able to adapt to the new, changed conditions (provided they are not too 

different from the initial ones), albeit at the expense of some convergence delays. 

 

3.5 Predictions for other specimens 

The proposed framework is also tested for specimens S2 (with parameter initialization based on S1 and S3) 

and S3 (with parameter initialization based on S1 and S2), while the same procedure as in Section 3.3 is used 

for the definition of {𝑚1, 𝑚2, 𝑚3}. Also, the other PF hyperparameters are the same as those in Section 3.3.  

The CL predictions for specimen S2 and S3 are presented in Figures 11 and 12, respectively, and 

shape predictions and CRAs are presented in Figures 13 and 14, respectively, yielding the same conclusions 

drawn from Figures 7 ~ 10, demonstrating the robustness of the proposed method over different specimens. 

Though the performance of the method for each specimen is noted slightly different, due to the stochasticity 

of delamination growth and also the initial ranges for those CL parameters, the method could cope with these 

uncertainties by online updating the CL model parameters. 
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Figure 11 Predictions for two x-direction control lengths with the estimates  

at two selected load cycles for specimen S2 
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Figure 12 Predictions for two x-direction control lengths with the estimates  

at two selected load cycles for specimen S3 
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Figure 13 Shape predictions for specimens S2 and S3 

Note: the load cycles at which the future shape is predicted are in the left-top corner. The black curve, 

blue curve, and white area are the target shape, the predicted shape, and its 95% CBs, respectively. 
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Figure 14 Cumulative relative accuracies (CRAs) of shape predictions for specimens S2 and S3 

 

4. Conclusions 

This paper has developed a novel particle filter-based delamination shape prediction method for composites 

by taking the delamination shape as a damage state for damage prognosis. By artificially defining a number 

of control lengths (CLs) to discretize the delamination contour, the shape prediction problem can be simplified 

into the predictions of these CLs, whose efficiency has been demonstrated with reference to experimental 

tests of fatigue delamination growth in composite panels with ultrasonics C-scan monitoring during the entire 

run-to-failure process. This method has been proven robust over different specimens, as it can consider the 

uncertainties of damage evolution by online updating the CL model parameters.  

To move towards a more practical application for delamination shape prediction, one may consider 

four potential development paths for this research. 

⚫ Sufficient experimental or in-field delamination images during the run-to-failure process are 

required in this study to train the initial ranges in PF, which, however, may not always be feasible 

due to unconceivable costs. Thus, one may resort to simulated data, e.g., from a finite element 

model, for the definition of the initial ranges. The uncertainties arising from the difference 

between the numerical and experimental delamination growths can then be automatically taken 

care of by the adaptation capabilities of PF.  

⚫ In case even numerically generated data are not available, one may, for example, fit the model 

parameters by assuming no delamination growth during the fatigue test and then create 

sufficiently wide initial ranges for the parameters in PF implementation, probably at the expense 

of slower convergence and larger uncertainty intervals at early steps, thus calling for some PF 

modifications for fast convergence. 

⚫ Provided that the adaptability of a quadratic function may not be sufficient for other practical 

cases with too large uncertainties, involving, for example, more complex delamination shapes, 

delamination depth, etc., a more sophisticated surrogate model like Gaussian process or neural 

network could be implemented for building a more detailed damage evolution model.  

⚫ Given the difficulty of the online implementation of the Ultrasonic C-scan monitoring system, 

an online measurement system, e.g., guided wave, can be adopted for inferring the delamination 

shapes through a data-driven function mapping between the shape and measurements, finally 

yielding an online damage prognosis framework for industrial application. 

Finally, the general idea discussed in this work, i.e., the simplification of a 2-dimensional prediction 



    24 

problem into the predictions of some control points, can potentially contribute to the other applications, e.g., 

for the deformation estimate during the service life of a structure, which is left for the interested readers.  

 

Appendix A1 

Figures A.1, A.2, and A.3 present the images of the delamination and its contour at different load cycles from 

specimens S1, S2, and S3, respectively. 

 

 
Figure A.1 Ultrasonic C-scan delamination images at different load cycles from specimen S1 

 

 
Figure A.2 Ultrasonic C-scan delamination images at different load cycles from specimen S2 

 



    25 

 
Figure A.3 Ultrasonic C-scan delamination images at different load cycles from specimen S3 
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Table 1 Sampling importance resampling particle filter for one CL 

Initialization: draw Np particles {𝜽𝑙,0
𝑖 : 𝑖 = 1,2, … , 𝑁𝑝} from the initial distribution 𝑝(𝜽𝑙,0) 

For k=1, 2, …, 

 Prediction in PF: draw Np particles {𝜽𝑙,𝑘
𝑖 : 𝑖 = 1,2, … , 𝑁𝑝} by 𝜽𝑙,𝑘

𝑖 ~𝑝(𝜽𝑙,𝑘|𝜽𝑙,𝑘−1
𝑖 ) 

 
Weight update: calculate the weight 𝑤𝑘

𝑖  by 𝑤𝑘
𝑖 ∝ 𝑝(𝑧𝑘|𝜽𝑙,𝑘

𝑖 ), and assign its  

normalized form 𝑤̃𝑘
𝑖  to each particle 𝜽𝑙,𝑘

𝑖  

 Resample for {𝜽𝑙,𝑘
𝑖 : 𝑖 = 1,2, … , 𝑁} using the particle weights {𝑤̃𝑘

𝑖 : 𝑖 = 1,2, … , 𝑁} 

 Approximate the estimate 𝜽̂𝑙,𝑘 as 𝜽̂𝑙,𝑘 =
1

𝑁
∑ 𝜽𝑙,𝑘

𝑖𝑁
𝑖=1  

End 
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Table 2 Calculation of future l-th control length 

For i = 1 : Np 

 For j = 1, 2, 3, … 

 Calculate future 𝑧𝑙,𝑘
𝑖,𝑗

 as 𝑧𝑙,𝑘
𝑖,𝑗

= 𝑓𝑙(𝑁𝑘+𝑗 , 𝜽𝑙,𝑘
𝑖 ) 

 End 

End 
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Table 3 Mechanical and manufacturing parameters of the  

Type Parameter Value Units Description 

Mechanical Em 3.52 GPa Matrix stiffness 

𝜈𝑚 0,35 -- Poisson’s ratio of the matrix 

Efx 240  GPa X-axis laminate stiffness 

Efy 28  GPa Y-axis laminate stiffness 

𝜎𝑓𝑥 1160 MPa X-axis failure tension 

Manufacturing vf 0.65 -- Fiber volume fraction 

𝜌𝑓 1770 Kg/m3 Fiber density 
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Table 4 Particle filter parameters for the l-th control length 

Number of particles Np STD in likelihood function 𝜎𝑦 Kernel smoothing parameter h 

6000 8 0.2 

Initial ranges for {𝑝1,𝑙, 𝑝2,𝑙, 𝑝3,𝑙} 

𝑝1,𝑙 𝑝2,𝑙 𝑝3,𝑙 

𝑈(𝑚1,𝑙 − 𝑟1,𝑙, 𝑚1,𝑙 + 𝑟1,𝑙) 𝑈(𝑚2,𝑙 − 𝑟2,𝑙, 𝑚2,𝑙 + 𝑟2,𝑙) 𝑈(𝑚3,𝑙 − 𝑟3,𝑙, 𝑚3,𝑙 + 𝑟3,𝑙) 

Distributions of process noises {𝜔1,𝑙, 𝜔2,𝑙, 𝜔3,𝑙} for {𝑝1,𝑙, 𝑝2,𝑙, 𝑝3,𝑙}  

𝜔1,𝑙 𝜔2,𝑙 𝜔3,𝑙 

𝒩(0, (2 × 10−11)2) 𝒩(0, (2 × 10−6)2) 𝒩(0, 202) 

Note: (a) {𝑚1, 𝑚2, 𝑚3} and {𝑟1, 𝑟2, 𝑟3} are the PF parameters for defining the initial ranges; (b) the terms 

𝑈() and 𝒩() indicate uniform distribution and Gaussian probability density function, respectively. 
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Table 5 Four groups of control lengths 

Group Direction Control length (CL) {𝑚1, 𝑚2, 𝑚3} {𝑟1, 𝑟2, 𝑟3} 

1 x 1, 2, 7 ,8 {3.09 × 10−9, −8.85 × 10−4, 417}- {8 × 10−9, 8 × 10−4, 80} 

2 x 3, 4, 5, 6 {0.88 × 10−9, −3.86 × 10−4, 404} {8 × 10−9, 8 × 10−4, 80} 

3 y 9, 10, 13, 14 {−0.16 × 10−9, −0.25 × 10−4, 73} {2 × 10−9, 2 × 10−4, 40} 

4 y 11, 12 {−2.57 × 10−9, 3.13 × 10−4, 37} {2 × 10−9, 2 × 10−4, 40} 

 

 

 

 

 

 

 

 

 

 

 

 


