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Abstract—Systems performing scientific computing, data anal-
ysis, and machine learning tasks have a growing demand for
application-specific accelerators that can provide high com-
putational performance while meeting strict size and power
requirements. However, the algorithms and applications that need
to be accelerated are evolving at a rate that is incompatible
with manual design processes based on hardware description lan-
guages. Agile hardware design tools based on compiler techniques
can help by quickly producing an application specific integrated
circuit (ASIC) accelerator starting from a high-level algorithmic
description. We present the SODA Synthesizer, a modular and
open-source hardware compiler that provides automated end-
to-end synthesis from high-level software frameworks to ASIC
implementation, relying on multi-level representations to progres-
sively lower and optimize the input code. Our approach does not
require the application developer to write any register-transfer
level code, and it is able to reach up to 364 GFLOPS/W effi-
ciency (32-bit precision) on typical convolutional neural network
operators.

Index Terms—Compiler Techniques, MLIR, High-Level Syn-
thesis, Hardware generation, Silicon Compiler

I. INTRODUCTION

Many applications, from environmental monitoring, to nav-
igation and control, to scientific experiments, require efficient
processing of a combination of data analysis, machine learning
(ML), and scientific computing algorithms. They need systems
that can effectively support each phase of the computation
and adapt in real-time to changes in the environment, under a
variety of energy, performance, area, and latency constraints.
All these requirements combined make general-purpose pro-
cessors no longer a viable solution and render application-
specific accelerators a necessity.

Typically, domain experts design and validate their algo-
rithms in high-level programming frameworks (most of which
are based on Python). Both algorithmic methods and program-
ming frameworks are evolving quickly, especially in the data
science and ML areas, making it extremely difficult to design
custom accelerators able to support a wide variety of solutions.
At the same time, the conventional hardware design cycle has
significant productivity limitations. Manually designing cus-
tom accelerators in hardware description languages (HDLs) is
complex and time consuming, preventing effective exploration
of alternative architectures and often requiring a new design
cycle each time new algorithms or models appear. General
and automated solutions are needed to quickly transition from

the formulation of an algorithm to the implementation of a
dedicated accelerator.

More in detail, hardware designers usually extract key
computational patterns from the algorithms that need to be
accelerated, identify parallelism and data reuse opportunities,
and design custom functional units for specific kernels at the
register-transfer level (RTL) with an HDL. A common alter-
native to accelerate this process is to implement the functional
units in C/C++ and convert them to HDL through High-Level
Synthesis (HLS) tools such as Vitis HLS from Xilinx, Catapult
C from Siemens, or Stratus HLS from Cadence. In both cases,
after functional verification, the HDL kernels are passed to
downstream logic synthesis and physical design tools, and
finally integrated into a system. This kind of design flow,
with part manual coding and part automated processing, is
standard practice for designing hardware. However, it still
requires tremendous effort, and the quality highly depends on
the designers’ expertise. Moreover, the interactions between
multiple Computer-Aided Design (CAD) tools at different
levels of abstractions make the design process tedious and
error-prone, introducing significant verification overheads and
forcing manual propagation of changes across different stages
of the design flow.

To address these issues, we developed the SODA (Software
Defined Accelerators) Synthesizer, an open-source, modular,
and extensible hardware compiler for the generation of highly
specialized accelerators from algorithms designed in high-
level programming frameworks. The SODA Synthesizer is
composed of a compiler-based frontend, to interface with high-
level programming frameworks and apply high-level optimiza-
tions, and a compiler-based backend, to generate Verilog code
and interface with external tools that compile the final design
(either application-specific integrated circuits - ASICs - or field
programmable gate arrays - FPGAs).

We used typical linear algebra and deep neural network
workloads to test the efficiency of the SODA Synthesizer,
exploring its potential to generate optimized hardware designs
with high performance. Figure 1, for example, shows the
SODA implementations of several different layers from the
LeNet convolutional neural network model, in the standard
GDSII format for ASIC manufacturing. SODA users can
quickly evaluate different design points until they reach the
desired solution for their performance or area requirements by
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Fig. 1. ASIC implementations of LeNet layers automatically generated by
the SODA Synthesizer: with a brief exploration of available compiler options
it is possible to reach the desired performance-area trade-off.

selecting different command-line options. Such an exploration
would require multiple expensive redesigns with traditional
HDL- or HLS-based approaches, potentially never reaching
the optimal result due to limited design time available and
lack of integration between the different tools in the flow.
SODA, instead, provides a no-human-in-the-loop end-to-end
hardware compiler where no modifications to the input code
are needed, and its multi-level, modular, extensible design
offers new opportunities for exploring further analysis and
optimization passes.

II. THE SODA FRAMEWORK

Figure 2a provides an overview of the SODA Synthesizer
framework, which can be divided in two parts: a compiler-
based frontend and a compiler-based hardware generation
engine. The framework accepts input descriptions from high-
level Python frameworks, translated by the frontend into
a high-level intermediate representation (IR). The frontend
exploits the Multi-Level Intermediate Representation (MLIR)
[8] to perform hardware/software partitioning of the algo-
rithm specifications and architecture-independent optimiza-
tions. Subsequently, it generates a low-level IR (LLVM IR)
for the hardware generation engine, PandA-Bambu [4], a
state-of-the-art open-source HLS tool which, differently from
most commercial alternatives, can also accept LLVM IR as
input. Optimizations at all levels of the SODA toolchain are
implemented as compiler passes, significantly influencing the
generated hardware designs in terms of performance, area, and
power. An exhaustive exploration of the design space is made
possible by enabling and disabling compiler passes or tuning
their options.

A. SODA-OPT Frontend

SODA-OPT, shown in Figure 2b, is the high-level compiler
frontend of the SODA Synthesizer. Its role is to perform

search, outlining, optimization, dispatching, and accelera-
tion passes on the input program, preparing it for hardware
synthesis targeting FPGAs or ASICs. To implement these
functionalities, SODA-OPT leverages and extends the MLIR
framework.

MLIR is a framework that allows building reusable, extensi-
ble, and modular compiler infrastructure by defining dialects,
i.e., self-contained IRs that respect MLIR’s meta-IR syntax.
Dialects allow modeling code at different levels of abstraction,
enabling the use of specialized representations to facilitate
specific compiler optimizations. We refer to dialects that are
maintained in tree, along with the MLIR framework, as built-in
dialects. These include abstractions for linear algebra, poly-
hedral analysis, structured control flow, and others. Several
high-level programming frameworks for various domains such
as machine learning (TensorFlow, ONNX-MLIR, TORCH-
MLIR), scientific computing (NPCOMP), and general-purpose
languages (e.g., the FLANG frontend for Fortran) started
leveraging MLIR to implement their own specific dialects,
optimizations passes, and lowering methods to translate their
programs into built-in MLIR dialects. Built-in dialects are
entry points to the SODA Synthesizer, enabling high-level
frameworks to leverage our toolchain.

SODA-OPT introduces the soda dialect to partition input
applications into an orchestrating host program and custom
hardware accelerators. SODA-OPT analysis and transformation
passes ingest MLIR inputs from high-level frameworks, iden-
tify key code regions, and outline them into separate MLIR
modules. Code regions that are selected for hardware acceler-
ation undergo an optimization pipeline with progressive low-
erings through different MLIR dialects (linalg → affine
→ scf → cf → llvm), until they are finally translated into
an LLVM IR purposely restructured for hardware synthesis.
Instead, the host module is lowered into an LLVM IR file
that includes runtime calls to control the generated custom
accelerators.

Table I summarizes the high-level optimization passes in
the SODA-OPT pipeline, and their benefits for the hardware
synthesis process. Traditional HLS design flows expect manual
code modifications that restructure the original algorithm (to
create internal buffers or apply profitable tiling strategies) or
tool-specific pragma annotations (to guide unrolling or provide
alias information). Instead, SODA-OPT exploits dedicated and
context-specific MLIR dialects to apply systematic high-level
transformations. These can expose instruction- and data-level
parallelism, perform loop transformations, and apply various
other steps such as buffer hoisting or accumulation on tem-
porary variables. SODA-OPT leverages the linalg dialect
to identify operations and separate hardware and software
partitions, then it optimizes loops through the affine dialect,
and finally performs CSE, DCE, and SRoA optimizations
through the cf, arith, and memref dialects. The opti-
mization pipeline is not monolithic: developers can easily
enable, disable, reuse, or tune SODA-OPT passes, providing
ample opportunities to enhance them for specific domains and
implement automated exploration strategies.
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Fig. 2. The SODA Synthesizer is an open-source, multi-level, modular, extensible, no-human-in-the-loop hardware compiler composed of a high-level
compilation framework and a lower-level hardware generator exploiting advanced HLS techniques.

TABLE I
SUMMARY OF HIGH-LEVEL OPTIMIZATIONS IN SODA-OPT. PART OF THEM ARE EXISTING MLIR PASSES, WHILE OTHERS ARE CUSTOM,

HLS-ORIENTED IMPLEMENTATIONS.
Optimization Benefit for HLS Passes
Single basic block containing the
compute intensive part of the kernel More freedom to schedule operations Tiling, Unrolling

Increased instruction-level paral-
lelism

Schedule independent arithmetic operations on the same cycle when their inputs
are available Unrolling

Increased data level parallelism Schedule operations into different memory units on the same cycle Tiling, Unrolling, Temporary Buffer Al-
location

Avoid unnecessary reads from ker-
nel arguments Reduce expensive accesses to external memory Temporary Buffer Allocation, Alloca

Buffer Promotion
Reuse read results, aggregate on
scalars

Save scalar values loaded from memory and intermediate results in registers
rather than performing repeated memory accesses

Scalar Replacement of Aggregates
(SRoA)

Early alias analysis Schedule memory operations independently on regions that don’t alias Early Alias Analysis (noalias), Outlin-
ing pass

Remove redundant or unnecessary
operations Avoid wasting resources Common Sub-expression Elimination

(CSE), Dead Code Elimination (DCE)

The SODA Synthesizer multi-level approach aims at ex-
ploiting different abstractions for different transformations. In
the current implementation, there are optimization techniques
that can be applied both in the frontend and in the backend:
this is often the case for basic compiler passes such as DCE,
which are available both in SODA-OPT and in Bambu. Should
the two levels interfere with each other in a disruptive way,
we would currently intervene and control backend passes on
a case-by-case basis.

While the focus of this paper is the generation of hardware
accelerators, SODA-OPT can be extended to apply optimiza-
tions also on the host code generation path: for example, to
enable parallel execution of different accelerators, better use
the CPU cache hierarchy, and automatically re-use accelerators
when possible.

B. SODA Synthesizer Backend

The SODA Synthesizer backend (Bambu), shown in Fig-
ure 2c, leverages state-of-the-art HLS techniques to generate
accelerator designs starting from the low-level LLVM IR
produced by the SODA frontend. Bambu has several frontends
based on standard compilers (GCC or CLANG), it builds an
internal IR to perform HLS steps (including bitwidth analysis,
loop optimizations, resource allocation, scheduling, and bind-
ing algorithms), and finally generates the designs in a hardware
description language (Verilog or VHDL). Alongside synthesiz-
able HDL, it can also automatically produce testbenches for
verification. Bambu enables the SODA Synthesizer to target
FPGAs (from Xilinx, Altera, Lattice, NanoXplore) and ASICs.
For ASICs, SODA supports Verilog-to-GDSII generation with
both commercial (Synopsis Design Compiler) and open-source
(OpenROAD flow) logic synthesis tools.

Bambu is optimized to support a wide set of C and C++
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constructs, but it can also ingest LLVM IR through its internal
Clang frontend; through SODA-OPT, we connect Bambu with
MLIR code. The LLVM IR generated after SODA-OPT per-
formed high-level optimizations is explicitly restructured for
HLS, resulting in more efficient accelerators when compared
to an input obtained through direct MLIR to LLVM IR
translation (as will be shown in the experimental evaluation).

Bambu generates designs at the register transfer level (RTL)
following the finite state machine with datapath (FSMD)
model; the generated accelerators can subsequently be inte-
grated in larger system-level designs, with or without micro-
controllers driving the execution. Bambu also exposes modular
synthesis methodologies [10]: differently from other HLS
tools, it can generate modules representing functions that may
be reused or replicated across an entire design and composed
in a complex multi-accelerator system before generating the
RTL code.

We have extended Bambu with new HLS methodologies
that can integrate FSMD modules as processing elements in
coarse-grained dataflow designs [1], and in high-throughput,
dynamically scheduled, multithreaded parallel templates [9].
MLIR descriptions are naturally parallel and hierarchical, so it
will be possible to instantiate such architectural templates from
SODA-OPT. Rather than requiring manual annotations on the
input code, we can define the design hierarchy at a higher level
of abstraction by exploiting MLIR abstractions, which allow to
automatically identify independent operations (linalg) and
create task-parallel regions (affine) in the input code. Each
region can subsequently be optimized through the SODA-OPT
pipeline described in Section II-A.

C. SODA Resource Library and Verification

The resource library is a crucial component for any hard-
ware synthesis toolchain: it contains RTL descriptions of
functional units implementing the operations present in the IR
(adders, subtractors, multipliers, etc.), with different versions
for different data types. The HLS tool then combines func-
tional units together to build the design. To effectively drive
the synthesis algorithms, these functional units also need a
characterization in terms of performance (e.g., latency of the
critical path) and area for each target technology or device.
Area and performance estimates, together with related models
that describe the area and latency of the interconnections
among resources, directly affect many optimization passes and
synthesis algorithms: for example, they help decide whether
functional units can be chained together by removing interme-
diate registers, if their combined latency does not exceed the
required clock period.

The SODA backend can interface with commercial and
open-source logic synthesis tools. We introduced support for
the OpenROAD flow and the FreePDK (formerly Nangate)
45 nm cell technology library, providing a completely open-
source, end-to-end compiler-based hardware generation flow
from high-level programming environments to silicon. We
have also added support for the Design Compiler flow, target-
ing either the FreePDK 45 nm or the Global Foundries 12/14

nm technology node. To achieve this, we have extended the
characterization process of the functional units in Bambu: we
performed logic synthesis of functional units with FreePDK,
collecting all the relevant area and performance metrics to
build the resource library and model estimates.

The characterization is also relevant for the implementation
of floating point units. While Bambu can integrate hand
designed functional units and external intellectual property
(IP) libraries (e.g., for FPGAs we select FloPoCo1), for the
ASIC target in SODA we choose to generate floating point
units starting from the standard C soft float library (math.
h); this allows to easily support different data types (FP32
and FP64), and full IEEE754 compliance if required. The
characterization improves the quality of the generated floating
point units: for example, the FP32 multiplier has an overall
latency of 4 cycles at 200 MHz and 5 cycles at 500 MHz.

Finally, a key component in an end-to-end agile and au-
tomated design flow is verification, which assures that the
generated designs are functionally correct. Bambu includes
a suite of tools that enable automatic testbench generation
and validation of results, supporting external open-source and
commercial simulators; in the SODA toolchain, we choose to
leverage Verilator2. We provide Bambu with a set of input val-
ues for the synthesized kernel (for example, input arguments
of a function) in an XML file. Then, Bambu generates Verilog
testbenches and scripts to drive the execution of Verilator.
After HLS, Bambu launches the simulation and verifies that
the output values from the Verilog kernel correspond to the
golden results from the execution of the input code.

III. EXPERIMENTAL EVALUATION

In this section, we present results of our end-to-end hard-
ware generation flow. We first demonstrate the effectiveness
of the SODA-OPT high-level optimization pipeline on a set of
representative linear algebra benchmarks, and then evaluate
the entire toolchain by generating custom ASIC accelerators
for classic deep neural network models.

The SODA synthesizer enables the generation of custom
accelerators for any algorithm that can be described in MLIR.
The linear algebra and ML kernels that we considered in this
evaluation could also be executed on traditional templated
accelerators (i.e. dot-product, matrix-vector, matrix-matrix en-
gines), and our HLS-based approach could instead be used to
generate accelerators for less common computational patterns.
Nevertheless, we employ these kernels to demonstrate the
effectiveness of our high-level optimization flow because they
are broadly used in high-level scientific computing frame-
works.

In all following experiments, execution times are obtained
through simulation using randomly generated test vectors.
Area and power results are obtained after OpenROAD place-
and-route. Baseline designs (noopt) are synthesized from
MLIR code without high-level optimizations. All designs

1https://gitlab.inria.fr/flopoco/flopoco
2https://www.veripool.org/wiki/verilator
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(baseline or optimized) are synthesized with Bambu -O2
optimizations.

A. Linear Algebra Kernels

Table II demonstrates the impact of the SODA-OPT op-
timization pipeline, applied to feed an optimized and re-
structured low-level IR to the HLS tool for RTL generation.
In these experiments, we generate ASIC accelerators for 14
linear algebra kernels from PolyBench3 translated from C
to MLIR affine, representing common computations per-
formed within scientific computing and machine learning high-
level programming frameworks. We simulate each kernel in
isolation, without system-level considerations, to focus on the
effects of the optimization pipeline. Kernel Size refers to the
size of all the dimensions of input and output tensors.

We compare the performance of accelerators generated by
simply lowering the benchmarks to LLVM IR (No High Level
Opts.) against the performance of accelerators generated after
performing the SODA-OPT optimizations listed in Table I
(SODA-OPT Pipeline). In particular, we apply full unrolling
on the three innermost nested loops, apply all buffer-related
transformations, mark function arguments as not aliasing,
apply CSE, DCE and SRoA. Providing an optimized and
restructured LLVM IR to Bambu results in more performant
designs: accelerators generated from the optimized IRs exhibit
an average speedup of 18x, with peaks of 86x, over the
baseline. Three kernels exhibit only a small performance
improvement (syr2k and syrk improve between 2x and 3x,
while trmm does not improve). The reason is that these kernels
include inner-loop bounds which depend on the induction
variables of the outer loops, and the Scalar Replacement of
Aggregates (SRoA) pass could not perform scalar replacement.
This can be solved in the future by adding an additional
optimization pass to simplify index calculations when the loop
bounds are known.

B. Neural Network Models

We used the SODA Synthesizer to automatically gener-
ate accelerators for relevant operators of the LeNet, Mo-
bilneNetV2, ResNet-18, and ResNet-50 convolutional neural
network models. These models were trained with TensorFlow
in 32-bit floating point precision, converted into protobuf files,
and translated into built-in MLIR abstractions (tosa and
linalg). No modifications to the original high-level models
were required. By default, SODA-OPT selects and partitions the
input model to create one accelerator for each DNN layer. For
the sake of conciseness, and because the same computation
patterns are repeated multiple times in the network, we se-
lected a subset of layers for our experiments. We outlined them
into isolated kernels, applied selected high-level optimizations
or the complete SODA-OPT pipeline, and generated Verilog
targeting ASIC technologies. We report execution time, area,
power, and efficiency (expressed as FLOPS per Watt) for
each experiment. Although the total end-to-end synthesis time

3https://web.cse.ohio-state.edu/∼pouchet.2/software/polybench/ and https://
github.com/wsmoses/Polygeist-Script

from high-level description to GDSII varies depending on
the specific kernel, all designs required less than 3 hours of
processing on a node with two AMD EPYC 7282 16-Core
CPUs and 256 GB of DDR4 3.2 GHz memory.

a) LeNet: - In the top part of Table III, we present
runtime, area and power metrics of LeNet accelerators that
cover 98% of its execution time (45 nm technology). Each line
in the table corresponds to a single accelerator. We previously
showed the final floorplans of these accelerators in the top
part of Figure 1. We applied a subset of the available MLIR
optimizations at the linear algebra and affine abstractions,
observing speedups up to 6.2x and an efficiency between 2.68
and 41.75 GFLOPS/W.

b) MobileNetV2: - Table III also shows results for rel-
evant MobileNetV2 Depth-Wise convolution (DWC2D) lay-
ers, representing 35% of MobileNetV2 inference time. The
simplest optimization (leveraging high-level abstractions to
propagate alias information automatically) already results in
speedups of around 2x and designs reaching an efficiency
over 1 GFLOPS/W. All the selected MobileNet layers have
the same structure (varying only tensor dimensions and loop
bounds), and thus benefit in the same way from the applied
optimization, i.e., allowing Bambu to schedule memory op-
erations on different arguments in parallel because the input
arguments do not alias.

c) Reusable Accelerators: - Optimizing entire convolu-
tion operations in LeNet and MobileNetV2 does not allow
performance increases higher than 2.1x. Instead, applying an
appropriate tiling strategy to balance the size of the design
considering both operations and memory parallelism allows
to significantly improve performance. We tile a convolution
operation and outline the tile, so that the generated accelerator
is invoked multiple times to run a convolutional layer. We
also ensure that the same tile can be reused across different
layers in deeper networks (35, 14, and 46 convolutional layers
in MobileNetV2, ResNet-18, and ResNet-50, respectively).
Table IV shows results for the generated accelerators with and
without applying the SODA-OPT optimization pipeline, which
provides up to 15.2x speedup with respect to the unoptimized
baseline and efficiency between 103 and 364 GFLOPS/W in
the 12/14 nm technology. If we compare the results of the
tile approach with what can be achieved by outlining a full
convolution, we obtain, for example, that executing the fastest
version of the LeNet CONV 04 layer is 14.89x slower than
executing 44800 times the optimized LeNet tile in Table IV
(assuming 2 cycles latency for load and 1 cycle for store
operations from a private scratchpad memory with two ports).

Overall, our experimental evaluation demonstrates the ef-
fectiveness of an end-to-end modular silicon compiler. The
SODA Synthesizer allows generating, optimizing, and explor-
ing hardware designs without requiring to write any RTL
code. Optimizations implemented at different abstraction lev-
els across the modular compiler-based toolchain allow iterative
improvements of the generated accelerators, with high quality
results in terms of performance and efficiency.
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TABLE II
EXECUTION TIME (IN CLOCK CYCLES) FOR POLYBENCH KERNELS WITH ASIC TARGET - FREEPDK 45NM @ 500MHZ.

SPEEDUP SHOWN IN PARENTHESIS.
Opt. Strategy No MLIR Opts. SODA-OPT Pipeline

Kernel Size 2 4 8 16 2 4 8 16
symm 421 2,928 21,400 163,368 31 (13.6x) 34 (86.1x) 325 (65.8x) 2,600 (62.8x)

three mm 388 3,087 25,010 211,298 47 (8.3x) 82 (37.6x) 656 (38.1x) 5,248 (40.3x)
two mm 315 2,475 20,258 167,490 52 (6.1x) 86 (28.8x) 688 (29.4x) 5,504 (30.4x)

gemm 186 1,446 11,922 95,376 31 (6.0x) 56 (25.8x) 448 (26.6x) 3,584 (26.6x)
doitgen 277 4,282 67,666 999,698 29 (9.6x) 258 (16.6x) 2,064 (32.8x) 16,512 (60.5x)

bicg 129 518 2,058 8,482 26 (5.0x) 43 (12.0x) 85 (24.2x) 340 (24.9x)
mvt 130 514 2,051 8,195 26 (5.0x) 45 (11.4x) 89 (23.0x) 356 (23.0x)

gemver 283 1,118 4,393 17,617 77 (3.7x) 106 (10.5x) 424 (10.4x) 1,696 (10.4x)
gesummv 162 578 2,178 8,722 39 (4.2x) 56 (10.3x) 105 (20.7x) 420 (20.8x)

atax 132 523 2,067 8,227 44 (3.0x) 73 (7.2x) 292 (7.1x) 1,168 (7.0x)
syr2k 186 1,310 9,018 68,986 38 (4.9x) 567 (2.3x) 3,033 (3.0x) 24,264 (2.8x)

syrk 142 990 6,714 49,250 31 (4.6x) 453 (2.2x) 2,581 (2.6x) 20,648 (2.4x)
trmm 46 532 4,402 34,018 24 (1.9x) 532 (1.0x) 4,402 (1.0x) 34,018 (1.0x)

TABLE III
LENET AND MOBILENETV2 RESULTS - FREEPDK 45NM @500MHZ. GRAY ROWS SHOW BASELINE KERNELS.

Model Kernel MLIR Opts. Cycles Area(umˆ2) Power(W) Runtime (s) GFLOPS GFLOPS/W Speedup
LeNet CONV 01 noopt 10,262,618 29,073 0.01380 20.53E-03 0.061 4.43 Baseline
LeNet CONV 01 noalias 4,627,982 124,255 0.05060 9.26E-03 0.135 2.68 2.22
LeNet BIAS 02 noopt 251,694 10,395 0.00434 503.39E-06 0.049 11.48 Baseline
LeNet BIAS 02 noalias+unroll 40,826 60,048 0.03410 81.65E-06 0.307 9.01 6.17
LeNet RELU 03 noopt 151,342 7,385 0.00399 302.68E-06 0.165 41.55 Baseline
LeNet RELU 03 noalias+unroll 38,446 35,695 0.01700 76.89E-06 0.652 38.39 3.94
LeNet CONV 04 noopt 85,380,948 36,814 0.01770 170.76E-03 0.058 3.32 Baseline
LeNet CONV 04 noalias 83,380,180 37,556 0.01800 166.76E-03 0.060 3.34 1.02
LeNet BIAS 05 noopt 62,932 10,409 0.00453 125.86E-06 0.049 11.00 Baseline
LeNet BIAS 05 noalias+unroll 10,222 60,007 0.03650 20.44E-06 0.306 8.41 6.16
LeNet RELU 06 noopt 37,844 7,464 0.00397 75.69E-06 0.165 41.75 Baseline
LeNet RELU 06 noalias+unroll 9,620 35,950 0.01760 19.24E-06 0.651 37.04 3.93
MobileNetV2 DWC2D 01 noopt 87,319,010 39,106 0.01800 174.64E-03 0.062 3.45 Baseline
MobileNetV2 DWC2D 01 noalias 43,966,946 62,676 0.02570 87.93E-03 0.123 4.80 1.99
MobileNetV2 DWC2D 02 noopt 65,482,874 38,108 0.01790 130.97E-03 0.015 0.87 Baseline
MobileNetV2 DWC2D 02 noalias 32,968,826 61,767 0.02500 65.94E-03 0.030 1.23 1.99
MobileNetV2 DWC2D 05 noopt 32,740,654 38,142 0.01720 65.48E-03 0.062 3.61 Baseline
MobileNetV2 DWC2D 05 noalias 16,483,630 61,684 0.02510 32.97E-03 0.123 4.91 1.99

TABLE IV
CONV2D KERNEL RESULTS @500MHZ. WHITE ROWS SHOW BASELINE KERNELS.

Operation and Kernel Information Runtime Information Synthesis Results for FreePDK 45nm Synthesis Results for GF 12nm
Target Model Dimensions MLIR Opt. Cycles Runtime (s) GFLOPS Avg. Speedup Area(um2) Power(W) GFLOPS/W Area(um2) Power(W) GFLOPS/W
LeNet 1,1,14,8,1,1,1 No Opt. 1,809 3.62E-06 0.061 Baseline 38,375 0.01760 3.52 8,470 0.00017 364.19
LeNet 1,1,14,8,1,1,1 SODA-OPT 125 250.00E-09 0.896 15.25 673,558 0.27400 3.27 169,635 0.00689 130.04
MobileNetV2 1,7,7,4,1,1,1 No Opt. 3,194 6.39E-06 0.061 Baseline 26,811 0.01050 5.84 6,257 0.00059 103.31
MobileNetV2 1,7,7,4,1,1,1 SODA-OPT 225 450.00E-09 0.871 14.20 752,356 0.38200 2.28 190,354 0.00523 166.56
ResNet18,50 1,1,1,64,1,1,1 No Opt. 963 1.93E-06 0.066 Baseline 15,994 0.00533 12.47 3,794 0.00038 176.75
ResNet18,50 1,1,1,64,1,1,1 SODA-OPT 99 198.00E-09 0.646 9.73 413,867 0.20200 3.20 105,053 0.00455 142.08

IV. RELATED WORK

Several works have explored generation of custom hard-
ware accelerators starting from high-level programming frame-
works, focusing in particular on Python and machine learn-
ing. They typically resort to one of two approaches: either
(1) compile and map functions to parametrized modules or
architectures, or (2) convert code to imperative languages
(C/C++) for HLS, often heavily annotated to work with
specific commercial tools.

Approach (1) consists of solutions like VeriGOOD-ML [3],
which maps ML models described in the ONNX format to
three substantially different architecture templates for different
types of neural networks through the PolyMath compiler.
GEMMINI [5] provides a parametrized systolic array genera-
tor in Chisel that connects to a RISC-V core; the GEMMINI

toolchain then offloads operations from specific layers of
ONNX models to the systolic array. TVM’s VTA architecture
[11] is a specialized co-processor for matrix multiplication,
generated through HLS for FPGA; the TVM high-level frame-
work can compile machine learning models into a stream
of instructions for VTA. Additional ongoing work on TVM
proposes to compile specific deep neural network operators
into ASIC leveraging parametrized RTL templates. All these
solutions aim at automatically generating ASIC designs, but
they remain limited as they only support layers and kernels
that have a direct mapping to one of the provided hardware
templates. The SODA Synthesizer, instead, leverages high-
level and lower-level (HLS) compiler-based tools. Hence, it
provides a more general framework able to generate ASIC
designs for virtually any computational pattern, as long as a
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lowering to MLIR is available. Such automatically generated
accelerators lead to less flexible designs with respect to
dedicated parametrized templates, but they can provide higher
performance and efficiency. To the best of our knowledge,
our design flow is the first one to provide a completely
automated path from generic high-level code to fully custom
ASIC accelerators.

Solutions that implement approach (2) include PyLog [6],
which defines a high-level compilation infrastructure for
Python programs and generates annotated C/C++ code that
is then fed to Xilinx Vivado HLS for generation of the
accelerators. HeteroCL [7] partitions code between general-
purpose processor and FPGA, providing a library of functions
to insert hardware-specific information in the source code,
which is then used to generate annotated C/C++ for HLS
tools. ScaleHLS [12] is a tool that facilitates HLS through
high-level optimizations implemented in MLIR, potentially
allowing to synthesize accelerators starting from high-level
programming environments that lower to an MLIR represen-
tation; however, it also resorts to writing back annotated C
code for Vivado HLS. While all these tools bridge high-
level programming frameworks with hardware generators, they
have limited flexibility, as they define compilation pipelines
that only support specific high-level frameworks and backend
HLS tools. Moreover, after applying hardware-related opti-
mizations, they all generate code at a different (higher) level
of abstraction, potentially losing a considerable amount of
semantic information in the process.

Finally, the CIRCT (Circuit IRs Compiler and Tools) incu-
bator project [2] uses MLIR to build a set of interoperable
tools for hardware design. The project focuses on creating
relevant circuit-level IR abstractions for RTL generation. Once
matured, CIRCT dialects could be merged into the MLIR
framework, potentially becoming a building block for hard-
ware compilers.

V. CONCLUSIONS

This paper presents the SODA Synthesizer, a modu-
lar, multilevel, end-to-end compiler-based design automa-
tion tool that enables the generation of custom accelera-
tor designs starting from high-level software programming
frameworks. The framework is composed of inter-operating
open-source technologies: SODA-OPT (https://gitlab.pnnl.gov/
sodalite/soda-opt), an extensible high-level frontend and op-
timizer based on the MLIR framework, and PandA-Bambu
HLS (https://panda.dei.polimi.it), a lower-level hardware gen-
erator. The toolchain can interface with the OpenROAD Flow
(https://theopenroadproject.org) to provide a fully open-source
path to ASIC generation.

We have shown the effectiveness of compiler-based opti-
mizations on linear algebra kernels and deep neural network
models, discussed the impact of the optimizations on the
final ASIC designs, and demonstrated how our toolchain
allows generating efficient hardware designs without requiring
developers to write any RTL code. The SODA toolchain dra-
matically shortens the hardware design cycle from algorithmic

formulation to hardware implementation, considers system-
level implications, and enables rapid design space exploration
and agile hardware development.
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