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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Tissue engineering techniques are central for the development of biomedical scaffolds, which are primarily employed in the biofabrication of 
various artificial human tissue and organ models. Bioprinting is a new technique of creating tissue constructs that can sustain cell proliferation. 
The development of printing techniques proceeds together with the development of the biomaterials to be printed, which is why studying the 
printability of these specific biomaterials must be explored. An appropriate hydrogel used as bioink should have numerous rheological, 
mechanical, and biological properties for producing appropriate tissue constructs. However, reaching the right trade-off between a desirable 
bioactivity and high printability is challenging, and despite numerous optimization studies for different materials, printing defects often occur 
during printing. Herein, methods are proposed to automatically identify these drifting processes in commonly used geometries and how they 
affected subsequent layers, as well as printing defects within each layer. Several structures were printed with standard commercial bioink as proof 
of concept. The constructs were analyzed using optical images from a coaxial camera. The images were then digitally processed to get geometrical 
data from which patterns of defectology to be monitored were derived. This automation should decrease the time in post-processing 
characterization of constructs and should provide a standardized tool to compare different bioinks. 
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State of the art 

Bioprinting is an additive manufacturing (AM) technology 
whose goal is to fabricate parts that mimic the functionality of 
real tissues and organs by combining cells and biomaterials 
with a specific three-dimensional (3D) spatial organization. As 
in traditional AM, the goal is achieved with the use of 
computer-aided design (CAD) to generate 3D models of the 
geometry of the tissue or organ of interest in order to produce 
bioconstructs that have many applications in regenerative 
medicine, tissue engineering, reconstructive surgery, drug 
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State of the art 

Bioprinting is an additive manufacturing (AM) technology 
whose goal is to fabricate parts that mimic the functionality of 
real tissues and organs by combining cells and biomaterials 
with a specific three-dimensional (3D) spatial organization. As 
in traditional AM, the goal is achieved with the use of 
computer-aided design (CAD) to generate 3D models of the 
geometry of the tissue or organ of interest in order to produce 
bioconstructs that have many applications in regenerative 
medicine, tissue engineering, reconstructive surgery, drug 
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discovery, pharmacokinetics, and basic medical and cell 
biology research[1, 2]. Thus, one of the main challenges is to 
avoid the death of living cells not only during the process but 
also in the post-printing phases where the geometry of the 
printed constructs can influence the feeding possibilities of the 
cells. 

In light of these numerous applications and due to the 
increasing interest in personalized medicine, bioprinting has 
gained the attention of both academia and industry in recent 
years[3]. During the last decade, many new techniques and 
technologies related to bioprinting have emerged in the state of 
the art, from specific 3D printers that fabricates bioconstructs 
by depositing layer-by-layer biomaterials, called bioprinters, to 
specific soft biomaterials loaded with living cells, called 
bioinks[4, 5]. 

As with traditional AM processes, different bioprinting 
techniques differ in how the biomaterial is deposited in layers. 
Some are based on nozzle deposition, which resolution depends 
mainly on the nozzle diameter (in the case of extrusion 
printing) or on the droplet formation mechanism (in the case of 
inkjet printing). Others are based on optical technologies, as 
laser beams to create droplet of bioinks (laser-assisted 
bioprinting) or light used as initiator of photopolymerization 
(using the traditional or two-photon process)[6–9].   

The bioprinting literature is very rich with articles that 
address method classifications, biomaterials, and tissues 
investigated[5, 10], but lacks papers focused on tools and 
methods for measuring the quality of printed geometries, and 
eventually controlling and correcting deposition errors[11–13]. 

Nowadays, extrusion-based bioprinting is the most common 
and studied printing technology in the field, but, despite recent 
technological advances, the fabrication of good quality 
constructs remains a major challenge. The main limitations of 
extrusion bioprinted constructs are the low spatial resolution 
and the low accuracy in depositing materials (discontinuity, 
nonuniformity and irregularity[14]). 

The lack of quality assurance of parts produced via 
bioprinting is a key technological barrier to the development of 
products of increasing complexity, like vascularization. 
Moreover, the development of non-destructive monitoring 
systems would allow the implementation of in-line control 
methods for the printing processes themselves. 

Bioprinting technology is growing very fast and in the last 
few years the interest is increasing also in the industrial sector, 
from biopharmaceuticals to food[3]. While, from the biological 
point of view there are several vital and metabolic assays that 
can be used (although most of them are destructive tests), for  
metrological control of bioprinted constructs there is not a wide 
range of useful technologies implemented in both commercial 
and custom printers of the various research institutions 
studying bioprinting, even though many types of sensors have 
been studied as for the traditional filament fusion 3D 
printing[15]. 

 Among non-destructive non-invasive methods the only  one 
used are the image-based analysis methods with images 
retrieved from laser displacement scanner[11–13], cameras[14, 
16, 17] or from optical coherence tomography[18–20]. Such 
methods are time- and cost-saving tools which are useable for 

printer characterization, bioink printability evaluation and 
process optimization[21]. In general, these few examples of in-
situ process monitoring systems aimed to ensure better 
structural and functional performances of 3D functional tissue 
constructs. Image processing can also be used for the study of 
reproducibility, since reliable production is important in the 
transition from research to industrial application, and more 
precisely to clinical studies[22]. 

The aim of this paper is to identify the current opportunities 
in the field of ex-situ and in-situ monitoring currently explored 
in extrusion-based bioprinting, and to try to propose possible 
solutions by integrating image analysis and statistical process 
control (SPC), not only to increase product quality but also for 
diagnostic analysis. 

The proposed monitoring system would fit in the context of 
advanced manufacturing solutions, improving the digitization 
of processes and systems, the management of "Big Data" and 
the fusion/integration of information from multiple sensors. It 
would also open the opportunity in developing a process 
control system, to modify control inputs to correct errors in 
subsequent layers[23]. This would be a key contribution to 
defining a new method to quantitatively evaluate the accuracy 
of printed constructs and improve their quality. 

The paper is structured as follows: in section 2 the materials 
and method used are described. In section 3, preliminary results 
of such an approach are herein presented. In section 4 critical 
issues and advantages of this approach are discussed. Finally, 
the main conclusions are drawn in section 5. 

Materials and Methods 

Experimental Setup 

For this study we used a pneumatic extrusion-based 
bioprinter, the BIO X (CELLINK, Gothenburg, Sweden). 

A square lattice pattern (15x15 mm in size in x-y plane and 
with a height of 4 mm, 20% infill density), commonly used in 
the bioprinting field, was chosen as printing sample. 

As testing material, we have used a commercial sodium 
alginate-based material, the CELLINK XPLORE (CELLINK, 
Gothenburg, Sweden). The ink is non-sterile and specifically 
designed for prototypes and tests, but its rheological and 
chemical properties are similar to CELLINK BIOINK, that is 
commonly used as material for experiments with cells. This 
leads to the possibility to consider the results of the experiments 
reproducible also with sterile and more cell-friendly bioinks of 
the same type and chemical composition. 

A 3 ml cartridge was filled with the above-mentioned ink, 
and it was loaded on the extrusion head of the BIO X printer. 
A printing nozzle with an inner diameter of 22 G (0.41 mm) 
was attached to the cartridge; this led to print constructs of 10 
layers. 

Once nozzle size and material were defined, the two main 
process parameters, pressure and print speed, were modified 
accordingly to manufacturer indications to obtain the best 
printability of the selected bioink. Pressure was set at 22kPa 
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and print speed at 10mm/s. Ideally, these parameters should 
have guaranteed a defect-free printing of the construct. 

A set of five constructs were printed. In two constructs, over 
extrusion defects were caused by manually increasing 
dispensing pressure in some higher layer, to simulate and 
emphasize what might happen because of rheological changes 
within a bioink, usually caused by uncontrolled changes in 
process parameters (temperature changes, presence of bubbles, 
etc.). Temperature was set to 37°C, both at the printhead and at 
the printbed, to mimic experimental condition suitable for cells. 
 

Process sensing 

The images were taken using the integrated high-definition 
(1280x720) camera present on the bioprinter; the camera was 
mounted close to the printhead, letting us acquire in-situ co-
axial images. A black background has been placed on the 
printbed to increase the contrast and reduce reflectivity 
phenomena, for a better acquisition of images. The images 
were then processed by a custom-made MATLAB® R2020b 
(MathWorks, Natick, USA) script. Only one manual 
calibration of the machine (for both axis movement and camera 
focusing) was performed before the entire printing session. 

The integrated HD camera automatically moves over the 
construct after each layer is printed and takes pictures of the 
sample (Figure 1). The images are saved to mobile storage 
device and are then processed with a computer. 

Image and statistical analysis 

The proposed method started after data gathering and data 
preparation for image processing and then resulted in the 
statistical analysis of the acquired data. 

Image processing was the first core stage and was currently 
based on custom-made methods of image registration, 
segmentation and binarization. The algorithm was applied to 
images of the bioprinted sample, taken after the printing of each 
layer. In points: 

• in the first step the image of a layer was cropped and 
rotated around the region of interest. This was done to 
reduce the size of the images to which the next steps are to 
be applied, to reduce the workload and processing time. 
Landmark points were placed on it for further registration 
operations. 

• in the second step the image was segmented through the 
K-means clustering function of MATLAB®, 
imsegkmeans, that is one of the most popular iterative 
algorithms in clustering and segmentation. The K-means 
algorithm was used to partition an image into k clusters. 
The k cluster were manually selected to identify 
foreground, background and region of interest (ROI) 
excluded background. This led to the choice of k = 4 and k 
= 3 depending on whether there were artificially 
introduced errors or not, respectively. The algorithm 
assigns each pixel in the image to the cluster that 
minimizes the distance between the pixel and the cluster 
center, based on the color of each pixel. Then re-computes 
the cluster centers by averaging all of the pixels in the 
cluster and repeats the previous two steps until 
convergence is attained (i.e. no pixels change clusters) 
[24]. 

• in the third step a binary image containing only the pixel 
of the pre-processed ROI was obtained, where pixels with 
value 1 indicated pixels where the material was present and 
0 where there was void. 

As the limitations of the method were also investigated, and 
the first two processes were critical steps. 

The binarized nominal image (where pixels with value 1 and 
0 have the meaning previously stated) of the respective layer 
was taken from the sliced model and registered on the binarized 
image obtained from the camera thanks to the previously 
placed landmark points. The registration was performed using 
the fitgeotrans function of MATLAB®, by applying the 
'nonreflectivesimilarity' properties, in which, while shapes in 
the moving image were unchanged, the image was distorted by 
combination of translation, rotation, and scaling (straight lines 
remain straight, and parallel lines are still parallel).  

 

Figure 2. Example of the data and image processing of a photo of a 
layer. In the first step the image is rotated and cropped. In the second 
step it is segmented. In the third step it is binarized. Once binarized it 
is fragmented into the 36 structural cells and each cell is subtracted 
from the corresponding structural cell extracted from the binarized 
nominal image of the corresponding layer. The new image is formed 
only by pixels that have value -1, 0 and 1. 

Figure 1. Experimental set-up. The integrated HD camera of the 
bioprinter automatically moves over the construct after each layer is 
printed and captures the photo. 
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At this point the binarized nominal image of the respective 

layer was automatically fragmented in structural cells, through 
a custom-made ROI identification algorithm. In this case, due 
to the type of infill pattern (and the relative infill density), the 
structure was formed by 36 structural cells, some of which of 
flatter dimensions near the perimeter of the construct (see the 
nominal image of a layer in Figure 2). 

Thanks to the previous registration, these structural cells 
were superimposed on the binarized image obtained by the 
integrated camera to get the respective structural cell that have 
to be monitored layer-by-layer.  

Then the algorithm automatically performed a pixel-by-
pixel subtraction operation between the binarized cell of the 
nominal image of the respective layer and the binarized 
structural cell of the camera image (Figure 2). 

Thus, the new binarized image of the structural cell was a 
matrix in which only three results were possible: 0 where there 
was correspondence (void where should be void, 0-0=0; and 
material where should be material, 1-1=0) and 1 or -1 where 
there is discrepancy (over extrusion, where there is material 
where should be void, 1-0=1; and under extrusion,  where vice 
versa, 0-1= -1). A subplot of 36 images per layer, as shown in 
the bottom-right image of Figure 2, was obtained for each layer. 

A normalized metric called Over Extrusion was calculated 
for the over extrusion defect outcome. It was defined as the sum 
of all the pixel with value 1 with respect to the area of the 
structural cell under consideration, as this could change 
depending on whether the structural cell is at the edges or in the 
center of the construct (details of a structural cell analysis in 
Figure 3): 

 
 
  

The values were then used to produce an interval plot to 
assess and compare the 95% confidence intervals of the means 
of each group. 

 
 

Results 

Printing results 

Although all 5 samples were successfully printed up to the 
10th layer, almost all of them showed major and minor errors, 
especially in higher layers. From a visual inspection the inner 
voids of the grids were well defined and presented only minor 
defects, while the voids closer to the perimeter of the grids did 
not present the nominal squared shape. Moreover, during the 
printing phase it was possible to notice that from the sixth layer 
the weight of the layers below and the shrinkage of the already 
deposited material caused a compression of the construct, 
resulting in defects in the printing process due to the small gap 
between the underlying layers and the nozzle. 

In Table 1 the results of visual inspection are reported, to be 
compared with the results obtained in the following paragraph. 
 

  Layer 
Condition Sample 1 2 3 4 5 6 7 8 9 10 

𝑃𝑃 = 22 𝑘𝑘𝑘𝑘𝑘𝑘
𝑉𝑉 = 10 𝑚𝑚𝑚𝑚/𝑠𝑠 

1           
2           
3           
4           
5           

Table 1. Results of visual inspection: green boxes show layers with 
minor or no defects; blue boxes show layers where errors were 
manually added; red boxes show layers with major defects. 

1.1. Image and statistical results 

A complete dataset of 50 images has been obtained and 
analyzed. Visual interpretation of all the obtained segmented 
and binarized images (example in Figure 2) confirmed the 
suitability of the chosen value for k. 

Each image was automatically divided into 36 cells. For 
each cell, a value of Over Extrusion was obtained. Interval plots 
with 95% confidence intervals of the means of the 36 values of 
each layer are shown in Figure 4. The Over Extrusion metric 
showed an increasing trend as the layers increase in all the 
samples, even if with different slopes. It is possible to see that, 
although samples 1, 2 and 3 were “in control”, a slight drifting 
process in subsequent layers took place up to an Over Extrusion 
of 10%. Regarding sample 4 and 5 the introduction of major 
defects of over extrusion are clearly visible after layer 7, with 
Over Extrusion value above 20%.  

 

Figure 3. Detail of the analysis of a single structural cell. After pixel-
by-pixel subtraction all pixels with value 1 are summed to obtain the 
Over Extrusion metric. 
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Figure 4. Interval plots with 95% confidence intervals of the means of 
the metric Over Extrusion, for each layer of each sample. 

4. Discussion 

Accuracy in bioprinting process is currently limited by the 
lack of error monitoring techniques. Although the 
identification and the study of relationships between printing 
outcomes and process parameters were widely investigated, 
repeatability of the printing process is still far from being 
reached, especially in extrusion-based bioprinting[25]. Strauß, 
S. et al. used in their work non-invasive image-based analysis 
methods as tool for line construct characterization. It was an 
automated method to enable comparison of 3D printed lines to 
evaluate the influence of rheological properties and printing 
parameters on them[16]. Armstrong et al. used point cloud data 
from a laser scanner to obtain images of the printed samples. 
They then use a custom image processing algorithm to 
determine the error between the reference and printed 
trajectory[11–13]. A different approach was used by Wang, L. 
et al. In this study, optical coherence tomography was applied 
to acquire high-resolution images of hydrogel scaffolds. An 
image analysis algorithm was proposed to accurately quantify 
some morphological parameters (pore size, pore shape, surface 
area, porosity, and interconnectivity) and to develop a method 
for non-destructive and quantitative geometric characterization 
of printed scaffolds[18–20]. 

Monitoring may become a key factor for the spread of 
bioprinting technologies, in a context where more complex 
applications are needed. Through our study we have showed 
that it is possible to develop a layer-by-layer monitoring 
algorithm able to detect printing defects suitable for usage with 
cells. 

The method used in our work identified drift phenomena 
during the printing process. These were certainly more evident 
where the artificially added errors were introduced, with values 
of Over Extrusion above 20%. These errors could simulate 
rheological changes within bioinks, usually caused by 
uncontrolled changes in process parameters (temperature 
changes, presence of bubbles, etc.). Drifting processes were 
also detected in “in-control” samples, where, as expected, 
increasing the layers perpetuated the pre-existing condition of 
excessively extruded material. In both cases we were able to 
build a map of defects. The work here presented describe a 
simple monitoring experiment in which the feasibility of using 
visible imaging for geometry detection of printed constructs 

was demonstrated. More specifically, we have demonstrated 
the effectiveness in being able to discriminate defect between 
layers. The automated monitoring system has proven to be able 
to detect defects in deposition, giving to the operator a full 
understanding of the moment and the layer where the defect 
occurred, enabling the adoption of countermeasures in 
subsequent prints. 

Despite the encouraging results of the method used there are 
still several limitations that need to be addressed. The presented 
method suffers the common limitations of systems and devices 
operating with visible light (such as cameras) since they would 
be affected by the ambient brightness and transparency 
conditions of the bioinks. In some cases, the sensing system 
might be minimally affected by light reflected on the bioprinted 
construct, this would require the development of even more 
robust algorithms. Moreover, an image acquisition device with 
higher resolution and an integrated lighting system might solve 
such issues, increasing the reproducibility and the precision of 
measurements.  

Furthermore, in this study it should also be taken into 
account that, although the printing temperature was kept 
constant during the printing process, there was no possibility to 
control the temperature of the extrusion nozzle, due to the 
temperature control system of the bioprinter; this may have 
caused a slight change in the rheology of the ink due to the 
possible modifications of the ambient temperature, resulting in 
small differences in printing resolution. 

Moreover, the structure of the upper layers of the constructs 
was affected by the weight of the underlying layers and the 
shrinkage of the already deposited material, causing the not 
perfect deposition of ink and a lower printing resolution. 

Finally, it has to be said that the analysis of cells in which 
images were divided was not performed in real time. 

Despite these limitations this approach would also open the 
opportunity in developing a process control system, able to 
modify control inputs and to correct errors in subsequent 
layers. This approach may be of interest not only for the end-
users of extrusion bioprinters but also for manufacturers of 
bioprinters, since a monitoring system like the one proposed 
can be implemented also in machines already present on the 
market or added as a compatible tool for new bioprinters. 

As future development, a better image processing system, 
capable to identify more features and able to operate in real-
time should be developed. In-situ monitoring techniques with 
application of feedback systems for process control should also 
be implemented. 

The objective of this work is to take a first step in this 
direction. The results obtained have shown that it is possible to 
use this technique for the identification of defects, thus opening 
the doors to the development of new lines of research 
concerning the in-line monitoring for this type of processes. 

 

4. Conclusions 

3D bioprinting has a great potential for future expansions. 
In recent years, the growing interest from universities and 
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companies has shifted attention to the critical issues that still 
need to be addressed to improve these technologies. 

In the perspective of a shift towards production 
requirements, the need to develop techniques for quality 
control monitoring becomes increasingly evident. 

This work has demonstrated that there is workspace for the 
implementation of in-situ monitoring methods for bioprinting 
processes, despite the technological limitations and simplicity 
of the proof of concept described. 

We plan to develop alert systems able to identify several 
parameters at a time, geometric and non-geometric, detected by 
multiple types of sensors to realize a real in-situ monitoring 
platform, possibly based on machine leaning and data fusion 
approaches following the path of process digitalization. 
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