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ADVANCES IN KOOPMAN OPERATOR THEORY FOR OPTIMAL
CONTROL PROBLEMS IN SPACE FLIGHT

Christian Hofmann*, Simone Servadio†, Richard Linares‡, and Francesco
Topputo§

A framework is presented where a nonlinear dynamical system is transformed into
a higher-dimensional bilinear system using the Koopman operator theory. The
nonlinear dynamics are projected onto a set of orthogonal polynomials via the
Galerkin method to obtain the evolution of the eigenfunctions, so that the time
evolution of any observable is described as a linear combination of the basis func-
tions. The method is applied to the low-thrust trajectory optimization problem
using a new set of orbital elements. The accuracy of the transformed system is an-
alyzed, and an example transfer to an asteroid is solved to assess the performance.

INTRODUCTION

In the past decades, not only the number, but also the complexity of space missions has grown
tremendously. The development of new electric propulsion systems that provide only low thrust
has lead to various new space missions such as NASA’s Deep Space 1 [1] and DART [2], or ESA’s
SMART 1 missions [3]. Especially CubeSats have become increasingly important due to their
low cost; a multitude of new missions is foreseen in the near future [4, 5]. Despite their severe
limitations, CubeSats are now a viable alternative for many space missions [6]. The main advantage
of low-thrust propulsion is the high specific impulse that can provide a large total ∆v, enabling
new missions that would not be feasible with conventional chemical propulsion. As the state of
the spacecraft changes only slowly due to the small control actions, transfer times increase because
the thruster has to operate over a significantly larger portion of the flight time. This causes new
challenges and requires new trajectory design techniques.

Designing a low-thrust trajectory is a complex task as it requires solving a nonlinear optimal
control problem. At the same time, obtaining solutions quickly and reliably is required in many
applications [7–10]. Direct and indirect methods are most commonly used to solve the low-thrust
trajectory optimization problem [11]. The optimal control problem is transformed into a parameter
optimization or two-point boundary value problem and solved numerically using some gradient-
based technique. Due to the highly nonlinear dynamics and often complex constraints, finding an
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optimal solution is still a challenging task as both approaches require a decent initial guess. For this
reason, approximate solutions using simplified models (e.g., Kepler or Stark model [12]), predefined
state or control profiles (e.g., shape-based methods [13] or constant radial and tangential thrust [14])
are often sought to generate the initial guess. However, these problems are still highly nonlinear and
difficult to solve.

In the past decade, convex programming has become a promising technique as it combines high
robustness, good accuracy, and low computational effort [15, 16]. Still, this approach requires all
constraints to be convex. Even though many constraints can be relaxed and convexified, handling
nonlinear dynamics properly is still a challenge [17]. As a consequence, dynamics are usually
approximated using a first-order Taylor series [18]. This, however, is only a local approximation
and can result in non-convergence if a poor initial guess is provided. How to deal with nonlinear
and non-convex dynamics in engineering problems is therefore a major challenge.

For this reason, linearization techniques have attracted a lot of attention in the last few years [19,
20]. Especially lifting nonlinear systems into a higher-dimensional space has become increasingly
important as this allows us to represent a nonlinear system as a linear one, and sophisticated linear
system theory can be applied. One drawback, however, is the higher (often infinite) dimensional
space of the transformed system. An important lifting technique is the linear, infinite-dimensional
Koopman operator that describes the evolution of observable functions [21]. It has been applied
to various problems in engineering, e.g. estimation [22], robotics [23], and fluid dynamics [24].
Despite the increasing popularity, its application in astrodynamics is very limited due to the high
accuracy required; standard data-driven approaches cannot achieve this [25]. Recently, the zonal
harmonics problem has been solved using Koopman operator theory (KOT) [26]. In addition, it
has been applied to attitude dynamics [27] and the motion of satellites around libration points [28].
However, KOT has mainly been used for the prediction and estimation of nonlinear systems without
considering an external control. Therefore, this work investigates how the benefits of KOT can be
used in modern optimal control theory, and how the current challenges can be overcome. A recently
developed set of orbital elements is modified and extended to allow for perturbing accelerations.
The theory of KOT is explained and then applied to the low-thrust trajectory optimization problem.
A direct method is used to solve the corresponding optimal control problem. We compute planar
interplanetary transfers to demonstrate the effectiveness of the approach. Even though the low-thrust
trajectory optimization problem is considered as an application, the theory presented in this paper
may be applied to other applications in space flight, such as powered descent guidance problems.

The paper is structured as follows. Section II describes the general Koopman operator theory.
In Section III, the set of orbital elements is explained and the low-thrust trajectory optimization
problem is stated. Section IV addresses how KOT is applied to the optimal control problem, and
Section V presents the results of the numerical simulations. Section VI concludes this paper.

KOOPMAN OPERATOR THEORY

The Koopman operator is an infinite-dimensional, linear operator that describes the evolution of
observable functions. Given a general nonlinear dynamical system

dx(t)

dt
= f(x), x(t0) = x0 (1)

where x ∈ Rn and f ∈ Rn are defined in the n-dimensional state space. Let g(x) be an observable
function. KOT describes how these functions evolve in an extended, infinite-dimensional Hilbert
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space [20]:
dg(x)

dt
= K(g(x)) = (∇xg(x))

dx(t)

dt
= (∇xg(x))f(x) (2)

where K is the Koopman operator. The following relationship holds as the operator is linear:

K (c1g1(x) + c2g2(x)) = c1K(g1(x)) + c2K(g2(x)) (3)

with constants c1 and c2. The major goal is to find a new set of coordinates that result in a linear
representation of the dynamics. Due to the linear property, it is possible to perform an eigendecom-
position:

Kϕ =
dϕ(x)

dt
= (∇xϕ(x))

dx(t)

dt
= λϕ(x) (4)

where ϕ are the right eigenfunctions. The evolution of the system is therefore given by combinations
of the eigenfunctions. If each component of the vector valued function g lies in the span of the
eigenfunctions, it can be written as

g(x) =
∞∑
i=1

ϕi(x)vj (5)

Once the eigenfunctions are known, the evolution of the observables is given by Eq. (4) where the
observables are projected onto the span of the eigenfunctions. This operation is also referred to as
the Koopman mode decomposition, and vj are the Koopman modes [20]:

vj =


⟨ϕi, g1⟩
⟨ϕi, g2⟩

...
⟨ϕi, gm⟩

 (6)

The partial differential equation (4) is approximated using the Galerkin method to determine the
eigenfunctions [26], and eventually a linear representation of the system. The idea is to project the
Koopman operator onto a subspace that is defined by orthonormal basis functions. These projections
⟨·⟩ are computed using the inner product of two functions f1(x) and f2(x):

⟨f1(x), f2(x)⟩ =
∫
Ω
f1(x)f2(x)w(x)dx (7)

where w(x) is a weighting function. In this work, we use orthonormal Legendre polynomials in the
domain Ω = [−1, 1] and w(x) = 1. Defining Lj as the jth basis function and recalling Eq. (2), we
can write

dLi(x)

dt
=

dLi(x)

dt
= (∇xLi(x))f(x) (8)

Using the inner product, the Koopman operator (and thus, the derivatives) can be projected onto the
basis functions to obtain a finite-dimensional matrix representation of K [26]:

Kij = ⟨(∇xLi(x))f(x), Lj(x)⟩ =
∫
Ω
(∇xLi(x))f(x)Lj(x)w(x)dx (9)

where Kij defines the elements of the Koopman matrix K. Considering all basis functions, Eq. (2)
can be rewritten as

d

dt
L(x) = KL (10)
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where L = [L1, L2, . . . , Lm] is a vector of m basis functions. This representation allows us to
perform the eigendecomposition of K if K is diagonalizable. Defining Φ(x(t)) ..= V−1

r L(x(t))
as the vector of eigenfunctions with Vr being the matrix that contains the right eigenvectors in its
columns, the evolution of the observable functions can be computed using

g(x(t)) = PL(x(t)) = PVrΦ(x(t)) = PVre
DtΦ(x(t0))

= PVre
DtV−1

r L(x(t0))
(11)

where P denotes the projections of x onto the basis functions, and D is a diagonal matrix of eigen-
values. Note that we are interested in the identity observable in this work, and hence g(x) ≡ x.

Bilinearization of Control-Affine System. Adding an external control u, the new dynamical sys-
tem reads

ẋ = f(x,u) (12)

We redefine the states and controls such that we can rewrite the original system in a control-affine
form

ẋ = p(x) +B(x)u

= p(x) +

q∑
i=1

biui
(13)

with x and u being the states and controls, respectively, and bi(x) being the q columns of B(x).
Let T(x) = [T1(x), . . . , Tl(x)]

⊤ be a vector of l eigenfunctions related to the dynamics p(x) (i.e.
the unactuated system) whose ith entry is defined as follows [29]:

Ti(x) = ϕi(x) if ϕi(x) ∈ R (14)

[Ti(x), Ti+1(x)]
⊤ = [2Re(ϕi(x)),−2 Im(ϕi+1(x))]

⊤ if ϕi(x) ∈ C (15)

where ϕi+1 is the complex conjugate of ϕi. The Koopman matrices Kbi with respect to the control
vector fields bi can be obtained by calculating Kbi(T(x)):

Kbi
jk =

〈
dT bi

j

dt
, Lk

〉
(16)

The total derivatives are given by:

dTj

dt
=

∂Tj

∂x1
bi,1 +

∂Tj

∂x2
bi,2 + · · · =

n∑
k=1

∂Tj

∂xk
bi,k (17)

where n is the number of states. Assuming that the Koopman operators with respect to the control
vector fields lie in the span of the eigenfunctions corresponding to the unactuated system, Eq. (13)
can be transformed into a bilinear system [29]:

ż = Dz+

q∑
i=1

Eizui (18a)

x = Cz (18b)
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with the transformed states z, and constant matrices D, E, and C. D is a block diagonal matrix
with the entry Di,i = λi (λi being the eigenvalue associated with the eigenfunction ϕi) if ϕi is
real-valued. Otherwise,

[
Di,i Di,i+1

Di+1,i Di+1,i+1

]
= |λi|

[
cos (Arg (λi)) sin (Arg (λi))
− sin (Arg (λi)) cos (Arg (λi))

]
(19)

where Arg (·) denotes the argument of a complex number. Ei are comprised of the Koopman modes
of Kbi(T(x)), and C contains the Koopman modes of the observable. This system describes the
evolution of the eigenfunctions z ≡ T(x) instead of the original states x. These can be retrieved
using the linear relationship in Eq. (18b).

OPTIMAL CONTROL PROBLEM

Even though the projection of the Koopman operator onto a finite subspace allows us to calculate
the eigenfunctions and thus, the evolution of the states, it is important to understand that this is only
an approximation. We can only use a limited number of basis functions and eigenfunctions, and
therefore, the approximation is more accurate the more linear the original system is. With regard
to the low-thrust trajectory optimization problem, we make use of a set of orbital elements that
results in a linear representation for the unperturbed case. As the control actions are small due to
the low-thrust propulsion, the problem can be considered a perturbation problem where the control
term is small compared to the linear, unperturbed term. This section addresses the set of coordinates
and extends the equations of motion to the case when controls are present. Moreover, the optimal
control problem is stated.

Set of Orbital Elements

Defining the six orbital elements as [Λ, η, s, γ, κ, β], the equations of motions read in the unper-
turbed case [26]

dΛ

dτ
= −η (20a)

dη

dτ
= Λ (20b)

ds

dτ
= γ (20c)

dγ

dτ
= −s (20d)

dκ

dτ
= 0 (20e)

dβ

dτ
= 0 (20f)
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Their relationship to spherical coordinates is given by

Λ =
pθ
r

− µ

pθ

√
LU
µ

(21)

η = pr

√
LU
µ

(22)

s = sin(ϕ) (23)

γ =
pφ
pθ

cos(φ) (24)

κ =
1

pθ

√
µLU (25)

where pr, pλ, and pφ are the conjugate momenta of the corresponding Hamiltonian,

pr = ṙ (26)

pλ = r2λ̇ cos2 (φ) (27)

pφ = r2φ̇ (28)

and pθ is the angular momentum:

pθ =

√
p2ϕ +

p2λ
cos2(ϕ)

(29)

r denotes the radial distance, λ and φ the azimuthal and polar angle, respectively. The standard
gravitational parameter µ and some length unit LU are included to make the quantities dimension-
less. This is important as we use Legendre polynomials for the basis functions that are defined in
the domain [−1, 1]. Therefore, it is to be ensured that the values of the coordinates stay within this
range. Otherwise, their behavior cannot be captured accurately, and accuracy and convergence can
deteriorate. β is identical to the classical longitude of the ascending node. Note that a Sundman
transformation was performed, and Eqs. (20a)–(20f) are written in the τ domain that is defined as
follows:

dτ

dt
=

pθ
r2

(30)

The time can thus be obtained by integrating the following differential equation:

dt

dτ
=

1

κ(κ+ Λ)2

√
LU3

µ
(31)

The equations of motion with a perturbing acceleration ap can be determined by computing the
partial derivatives of each orbital element O with respect to the velocity v [30]:

dO
dt

=
dO
dt

∣∣∣
unpert.

+
∂O
∂v

ap, O ∈ {Λ, η, s, γ, κ, β} (32)

where the first term on the right-hand side refers to the unperturbed dynamics in Eqs. (20a)–(20f),
and the second term to the perturbation. We write the acceleration vector in the standard local-
vertical local-horizontal rotating frame:

ap = ar ir + at it + an in (33)
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where the first axis is the radial unit vector ir = r/r that points along the position vector. The
normal unit vector in points in the orbit normal direction with r × v = pθ in. The transversal unit
vector it is found with the right-hand rule. Using the definition of the elements, the chain rule, and
the fact that the state components are independent, the equations of motion are found to be:

dΛ

dτ
= −η +

2κ+ Λ

κ(κ+ Λ)3
LU2

µ
at (34a)

dη

dτ
= Λ+

1

κ(κ+ Λ)2
LU2

µ
ar (34b)

ds

dτ
= γ (34c)

dγ

dτ
= −s+

√
1− s2 − γ2

κ(κ+ Λ)3
LU2

µ
an (34d)

dκ

dτ
= − 1

(κ+ Λ)3
LU2

µ
at (34e)

dβ

dτ
=

s

(s2 + γ2)κ(κ+ Λ)3
LU2

µ
an (34f)

(34g)

Low-Thrust Trajectory Optimization Problem

The general optimal control problem can be written as

minimize
u(t)

J(x(t),u(t)) (35a)

subject to: ẋ(t) = f(x(t),u(t)) (35b)

h(x(t),u(t)) ≤ 0 (35c)

Ψ(x(t0),x(tf )) = 0 (35d)

where J(x(t),u(t)) is the performance index and Eqs. (35b)–(35d) are the dynamical, path, and
endpoint constraints, respectively. In this work, we intend to solve the low-thrust energy-optimal
problem. For demonstration purposes, we consider a planar, fixed final time rendezvous prob-
lem. Note, however, that it is straightforward to extend the approach to three-dimensional transfers.
Therefore, only the elements Λ, η, and κ are considered as they are affected by the perturbing accel-
erations at and as in the orbital plane. The states and controls are defined as x = [Λ, η, κ, t]⊤

and u = [at, ar, a]
⊤, respectively, where the time t is included to target a specific time, and

a =
∥∥[at, ar]⊤∥∥2 is the magnitude of the acceleration. For simplicity, the time rate of change

of the mass is neglected. The dynamics then read

f(x,u) =


η′

Λ′

κ′

t′

 =


−η
Λ
0

1
κ(κ+Λ)2

√
LU3/µ

+


0

1
κ(κ+Λ)2

LU2/µ

0
0

 ar +


2κ+Λ

κ(κ+Λ)3
LU2/µ

0
− 1

(κ+Λ)3
LU2/µ

0

 at (36)

where (·)′ denotes the derivative with respect to τ . After transforming the coordinates into the
extended configuration space z = T(x) and calculating the matrices D, E1, E2, and C according
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to the previous section, the optimal control problem is given by

minimize
u

∫ τf

τ0

a2 dτ (37a)

subject to: z′ =

[
z′1
z′2

]
=

[
Dz+E1zar +E2zat

1
κ(κ+Λ)2

√
LU3/µ

]
(37b)∥∥∥∥[arat

]∥∥∥∥
2

= a (37c)

z(τ0) = z0, z(τf ) = zf (37d)

zl ≤ z ≤ zu, ul ≤ u ≤ uu (37e)

z1 and z2 refer to the entries of z that correspond to the orbital elements and time, respectively. z0
is the initial state at τ0, and zf is the desired final state at τf . The subscripts l and u denote the lower
and upper bounds of states and controls, respectively.

NUMERICAL SIMULATIONS

We consider an interplanetary transfer from the Sun-Earth Lagrange point L2 (SEL2) to near-
Earth asteroid 2000 SG344. This is one of the potential targets of ESA’s Miniaturised Asteroid
Remote Geophysical Observer (M-ARGO) mission [10]. The nonlinear program is solved with the
optimal control software GPOPS-II [31] and the Interior Point Optimizer IPOPT [32]. Physical
constants of the simulation are given in Table 1, and the parameters for the transfer in Table 2. We
briefly assess the accuracy of the transformed dynamical system before addressing the transfer.

Table 1: Physical constants in all simulations.

Parameter Value

Gravitational constant µ 1.32712× 1011 km3/s2

Gravitational acceleration g0 9.80665× 10−3 km/s2

Length unit LU 0.9 · 1.49597× 108 km
Velocity unit VU

√
µ/LU km/s

Time unit TU LU/VU s
Acceleration unit ACU VU/TU km/s2

Mass unit MU m(t0)

Table 2: Parameters for SEL2 to asteroid 2000 SG344 transfer.

Parameter Value

Initial epoch 04-Feb-2024 12:00:00 UTC
Time of flight tf 700 days

Initial mass m(t0) 22.6 kg
Maximum acceleration amax 10−7 km/s2
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Accuracy of the Bilinear System

As only a finite number of eigenfunctions and basis functions is used, the obtained bilinear system
is only an approximation of the real nonlinear dynamics. In order to assess the accuracy of the
approximation, we propagate the transformed dynamics in Eq. (37b) and the real dynamics in Eq.
(34) and compare the results. The dynamics are integrated for a period of 890 days (approximately
two revolutions) with the following thrust profile:

a =


amax, if t ∈ [0, 100] days
amax, if t ∈ [400, 500] days
amax, if t ∈ [700, 800] days
0, otherwise

(38)

where amax = amax · [0.7, 0.7141]⊤ = 10−7 km/s2 · [0.7, 0.7141]⊤. The distribution and length
of the thrust arcs is based on typical thrust profiles of the M-ARGO mission [10]. Figure 1 shows
the position error for basis functions of orders 3 to 7. It is evident that using third order polyno-
mials results in a large error of 105 km throughout the transfer (see Fig. 1a). As expected, these
polynomials cannot represent the dynamical system accurately as fourth order terms appear in the
denominator of Λ′ in Eq. (34a). Therefore, Fig. (1b) illustrates the behavior of the orders 4 to 7
only. Remarkably, the errors decrease by one order of magnitude to a maximum value of 104 km.
Regardless of the polynomial degree, the error is small at the beginning and increases over time.
Still, the error can be reduced significantly if higher orders are used. As we consider an interplane-
tary transfer where the length scales are in the order of an astronomical unit, an error of 103 to 104

km is often considered acceptable for the cruise phase. Moreover, if a direct method is used to solve
the optimal control problem, the trajectory is divided into segments, and the dynamics need to be
accurate only for a short time period. Therefore, even lower orders can yield accurate results for
the transfer considered in this work. Note that the behavior of the velocity error is similar as can be
observed in Figs. 1c and 1d.

Low-Thrust Trajectory Optimization

The feasibility and optimality tolerances of IPOPT are set to 10−6 and 10−5, respectively. We
use 40 segments with 5 nodes each. Basis functions of orders 3 to 7 are chosen. Regardless of the
order, the solver was able to find optimal solutions that are identical to the one obtained with the real
nonlinear dynamics. Figure 2a illustrates the optimized trajectory, and the acceleration magnitude
is shown in Fig. 2b. Clearly, the characteristic smooth behavior of energy-optimal profiles can
be observed, i.e. neither bang-bang (fuel-optimal) nor full thrust at all times (time-optimal). The
evolution of all orbital elements is given in Fig. 3, including the ones that are not affected by
perturbations in the orbital plane. Λ, η, s, and γ show the characteristic periodic behavior, whereas
κ behaves like the inverse of the specific angular momentum; β, instead, is constant. Similar to
the previous subsection, we compare the accuracy for different orders of the basis functions in
Fig. 4. This time, the dynamics of the bilinear and real system are integrated using the obtained
controls. As expected, the propagation error decreases for higher orders. Still, the overall error
is significantly smaller compared to propagating in one shot. Remarkably, even the third order
can achieve an acceptable accuracy when a direct collocation approach is used. Interestingly, the
number of iterations required by the solver is up to 50% lower for the bilinear system compared
to the original one. Yet, the CPU time can increase considerably from few seconds (low orders) to
minutes (high orders).
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(c) Velocity error for basis function orders 3 to 7.
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(d) Velocity error for basis function orders 4 to 7.

Figure 1: Position and velocity errors for basis function orders 3 to 7.
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Figure 2: Transfer trajectory from SEL2 to asteroid 2000 SG344 and the corresponding acceleration
profile.
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Figure 3: Evolution of the orbital elements.
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(a) Propagation error for basis function orders 3 to 7.
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Figure 4: Propagation error (position) for basis function orders 3 to 7.

CONCLUSION

This work presents the Koopman operator theory to reduce the complexity of nonlinear optimal
control problems. It was shown that the dynamics of the low-thrust trajectory optimization problem
can be transformed into a bilinear system using a new set of orbital elements. Even though this
approach requires some effort to transform the dynamical system into a higher-dimensional space,
this needs to be done only once. Preliminary results show that such a global approximation can yield
a sufficient level of accuracy even for lower-order basis functions. The Koopman operator theory
is therefore an interesting approach to address nonlinear systems, also within an optimal control
framework. Still, one of the open challenges is to handle the higher-dimensional space properly.
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[24] I. Mezić, “Analysis of Fluid Flows via Spectral Properties of the Koopman Operator,” Annual Review
of Fluid Mechanics, Vol. 45, No. 1, 2013, pp. 357–378, 10.1146/annurev-fluid-011212-140652.

[25] S. Servadio, D. Arnas, and R. Linares, “Dynamics Near the Three-Body Libration Points via Koop-
man Operator Theory,” Journal of Guidance, Control, and Dynamics, Vol. 0, No. 0, 0, pp. 1–15,
10.2514/1.G006519.

[26] D. Arnas and R. Linares, “Approximate Analytical Solution to the Zonal Harmonics Problem Using
Koopman Operator Theory,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 11, 2021,
pp. 1909–1923, 10.2514/1.G005864.

[27] T. Chen and J. Shan, “Koopman-Operator-Based Attitude Dynamics and Control on SO(3),” Journal of
Guidance, Control, and Dynamics, Vol. 43, No. 11, 2020, pp. 2112–2126, 10.2514/1.G005006.

[28] R. Linares, “Koopman Operator Theory Applied to the Motion of Satellites,” AAS/AIAA Astrodynamics
Specialist Conference, August Aug. 2019. AAS Paper 19-821.

[29] D. Goswami and D. A. Paley, “Global bilinearization and controllability of control-affine nonlinear
systems: A Koopman spectral approach,” 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), 2017, pp. 6107–6112, 10.1109/CDC.2017.8264582.

[30] R. Battin, An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series,
American Institute of Aeronautics & Astronautics, 1999.

[31] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for solving multiple-phase opti-
mal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear
programming,” ACM Transactions on Mathematical Software (TOMS), Vol. 41, No. 1, 2014, pp. 1–37.

[32] A. Wächter and L. T. Biegler, “Line Search Filter Methods for Nonlinear Programming: Motiva-
tion and Global Convergence,” SIAM Journal on Optimization, Vol. 16, No. 1, 2005, pp. 1–31,
10.1137/S1052623403426556.

13

https://arxiv.org/abs/1804.06539

	Introduction
	Koopman Operator Theory
	Bilinearization of Control-Affine System.

	Optimal Control Problem
	Set of Orbital Elements
	Low-Thrust Trajectory Optimization Problem

	Numerical Simulations
	Accuracy of the Bilinear System
	Low-Thrust Trajectory Optimization

	Conclusion

