
Pushing the Level of Abstraction of Digital System Design: a
Survey on How to Program FPGAs

EMANUELE DEL SOZZO, DAVIDE CONFICCONI, ALBERTO ZENI, MIRKO SALARIS,
DONATELLA SCIUTO, and MARCO D. SANTAMBROGIO, Politecnico di Milano, DEIB, Italy

Field Programmable Gate Arrays (FPGAs) are spatial architectures with a heterogeneous reconfigurable fabric.
They are state-of-the-art for prototyping, telecommunications, embedded, and an emerging alternative for
cloud-scale acceleration. However, FPGA adoption found limitations in their programmability and required
knowledge. Therefore, researchers focused on FPGA abstractions and automation tools. Here, we survey three
leading digital design abstractions: Hardware Description Languages (HDLs), High-Level Synthesis (HLS)
tools, and Domain-Specific Languages (DSLs). We review these abstraction solutions, provide a timeline, and
propose a taxonomy for each abstraction trend: programming models for HDLs; IP-based or System-based
toolchains for HLS; application, architecture, and infrastructure domains for DSLs.

Additional Key Words and Phrases: Digital Design, Field Programmable Gate Array (FPGA), Hardware
Description Languages (HDLs), High-Level Synthesis (HLS), Domain-Specific Languages (DSLs)

1 INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are reconfigurable integrated circuits that contain a
matrix of functional blocks interconnected together by a switching routing network [17, 29]. The
central feature of an FPGA is its fabric, which is reprogrammable at the circuit level after manufac-
turing, giving the name field-programmable. Consequently, unlike Central Processing Units (CPUs)
and Graphics Processing Units (GPUs), which rely on fixed data paths and topologies, an FPGA
can implement different custom circuits according to the configuration and interconnection of its
resources. For these reasons, in the past, FPGAs were mainly employed for Application Specific
Integrated Circuit (ASIC) prototyping and networking. In the last decades, the internal complexity
of FPGAs significantly increased, with single chips now containing hundreds of functionalities
(both reconfigurable and hardwired), multi-die devices [23, 50, 155], different system-level intercon-
nects [34, 164], and new device releases every year. Hence, academic researchers and companies
started investing in FPGAs and adopting them also as hardware accelerators [30, 32, 44, 83, 135, 140–
142, 150, 168, 175]. In this way, they can take advantage of a reconfigurable system able to efficiently
implement various functionalities, providing a good trade-off between the flexibility of general-
purpose CPUs and the performance and power efficiency of ASICs [29, 41, 54, 78, 168].
Despite the great opportunities, the fundamental drawback of FPGAs has always been their

challenging design process, profoundly impacting their programmability and steeping the learning
curve. The hardware design flow for FPGAs resembles the one available for ASICs (Physical Design
block of Figure 1). Historically, the primary way to develop hardware design for FPGAs and ASICs
consisted of using Hardware Description Languages (HDLs), especially Verilog and VHDL. Such
low-level languages enable the description and definition of digital multi-signal circuits abstracting
the behavior and structure, and they represent the standard for Register Transfer Level (RTL) design.
Indeed, many industrial and commercial Electronic Design Automation (EDA) tools, like the ones
by Xilinx (now part of AMD) [182], Synopsys [165], Intel [62], and Mentor Graphics [113], as well
as open-source tools such as Symbiflow, take RTL description as an input and, from that, perform
a sequence of steps towards the generation of the circuit. However, to efficiently leverage these

Authors’ address: Emanuele Del Sozzo, emanuele.delsozzo@polimi.it; Davide Conficconi, davide.conficconi@polimi.it;
Alberto Zeni, alberto.zeni@polimi.it; Mirko Salaris, mirko.salaris@polimi.it; Donatella Sciuto, donatella.sciuto@polimi.it;
Marco D. Santambrogio, Politecnico di Milano, DEIB, via Ponzio 34/5, Milan, Italy, 20133, marco.santambrogio@polimi.it.

2 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

A
bs

tr
ac

ti
on

 L
ev

el

C/C++
OpenCL
Python

Host codeHDL Design

Runtime/Driver
(e.g., OpenCL)

Field Programmable Gate Array

DSL (e.g., Halide)
DSL IR (e.g., DHDL)

C/C++
OpenCL

Physical Design
(e.g., Symbiflow, Vivado, Quartus)

Synthesis
Place&Route

Bitstream
Timing Analysis

DSL Design
HLS Design

Section 4

Section 2

Section 3

Fig. 1. FPGA Design Flow from source code down to FPGA configuration) with reference Sections numbered.

languages, the user requires significant knowledge and experience in hardware design. Besides,
despite the architectural evolution of FPGAs, the features and abstractions offered by Verilog and
VHDL did not evolve as fast. Consequently, even though hardware designers and EDA tools still
use Verilog and VHDL, limitations like high verification effort and time-consuming/error-prone
design make these languages less attractive than how they used to be. As a result, over the last
years, new solutions have emerged to cope with the limitations of Verilog and VHDL.
In this scenario, we can identify three main categories of novel digital design abstractions:

high-level HDLs, High-Level Synthesis (HLS) tools, and Domain-Specific Languages (DSLs), as
the numbered blocks in Figure 1. Modern HDLs offer features and abstractions not available in
Verilog and VHDL, like polymorphism, while still providing a design experience close to the
hardware. HLS tools enable designers to rely on high-level languages, like C and OpenCL, to design
hardware architectures. Finally, DSL tools represent newer trends to increase further productivity,
performance, and ecosystem exploration beyond the HLS effort. Indeed, thanks to narrowing
the computational domain, these tools can optimize the resulting design, while their respective
languages significantly boost productivity and intuitively express the computation. Independently
from the category, the goal of such tools is to: increase the level of abstraction and productivity
for hardware design; enable high reuse and customization of IPs; reduce verification effort and
design errors; make FPGAs accessible to a broader audience of users and developers. Consequently,
these solutions are more appealing than Verilog and VHDL both to hardware designers, who want
to evaluate different architectures quickly, and to application developers, who want to hardware
accelerate applications, especially High-Performance Computing (HPC) ones [83, 135, 140, 191, 192].
In particular, HDLs incarnate a general-purpose solution to design whatever digital circuit1, from
processors to accelerators. On the other hand, modern HLS tools are more oriented to algorithm
acceleration, but they also support the development of generic IPs, with some restrictions though.
Finally, DSLs are the most specialized approach for domain-specific IPs, mainly accelerators.
This manuscript describes the research efforts on digital design abstractions for FPGA pro-

gramming divided into HDLs (Section 2), HLS (Section 3), and DSLs (Section 4). Even though the
literature already contains surveys on the theme of digital design abstractions for FPGAs, they

1We consider here neither analog nor mixed analog-digital circuit design.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 3

Hardware Description
Languages

Section 2

Functional
Paradigm

Imperative
Paradigm

SystemVerilog
Extensions

2.1 2.2 2.3

High-Level
Synthesis

Section 3

HLS tools

3.1

ACS tools

3.2

Domain-Specific
Languages

Application
Domain

Architectural
Domain

Intermediate
Infrastructure

Section 4

4.1 4.2 4.3

Target Design:
Processors, Generic IPs, Accelerators

Target Design:
Generic IPs (with limitations), Accelerators

Target Design:
Domain-Specific IPs (Accelerators)

Fig. 2. Proposed taxonomy for the considered digital abstractions along with their target designs.

mainly focus on a single abstraction and its techniques [21, 36, 60, 81, 104, 108, 116, 170]. Thus, we
believe that none of them comprehends an overall picture of the abstractions efforts in a unique
survey proposing a taxonomy based on the trends and reporting a timeline. For other details on
FPGA internal architecture and reconfigurability features, we point the interested reader to other
surveys [17, 29, 79, 168, 177]. Within this survey, for each of the three abstraction efforts, we
consider languages and tools that are still active or were born in the last ten years, to the best of
our knowledge. Besides, we provide: a timeline (Figures 3, 5 and 6), reporting the first available
dates of the tool appearance; a taxonomy (Figure 2), including the target designs and the trends
we identified, such as Programming Model (Figure 3), Synthesis Target (Figure 4), or Target Domain
(Figure 6); a review of the main characteristics2 of each analyzed work (Tables 1 to 3). Finally,
in Section 5, we give insights on possible future trends.

2 HARDWARE DESCRIPTION LANGUAGES
In this Section, we analyze various state-of-the-art HDLs. An HDL aims at describing the behavior
of digital logic circuit designs both for ASICs and FPGAs. In the 1980s, VHDL and Verilog emerged
as HDLs in literature introduced to help the electronic designers in the simulation and verification of
Integrated Circuits (ICs), still needing the human for HDL to schematic translation [26, 67, 107, 124].
With the advent of logic synthesis and digital circuits’ growth, EDA vendors pushed HDLs from
just simulation and verification languages to design languages. However, for the most prominent
HDLs from the 1980s (i.e., Verilog and VHDL), a significant portion of the language is not thought
for synthesizing the circuit itself but for simulation purposes. Indeed, we speak of synthesizable
or non-synthesizable constructs when speaking of VHDL and Verilog [26, 67, 107, 124]. Currently,
VHDL and Verilog, now merged in SystemVerilog, are IEEE standards, part of commercial EDA
tools, and the de facto standard for many FPGA and ASIC designers, though not the only alternative.

The impressive technology improvements increased the complexity of the hardware devices, e.g.,
in terms of logic gates and heterogeneity [17, 29, 107], demanding continuous research on tools able
to handle such complexity and support the designers. Undoubtedly, both VHDL and SystemVerilog
are evolving to keep up with technology improvements (e.g., VHDL-2008 and SystemVerilog itself).
The interested reader can compare state-of-the-art surveys of the early 2000’s [29, 79] with more
recent ones [17, 168] to catch the device differences. Meanwhile, both academic and industrial
users found limitations in the two standard HDLs and their productivity, hence proposing new
programming paradigms. For this reason, this Section reviews emerging state-of-the-art HDLs.
Most of the emergent HDLs were born to increase productivity and keep up with the pace of

technology development: from design to simulation and verification time, from using synthesizable
HDL to complete system design, from code reuse to portability, from parametrization to generators.

2Appendix B and Table 4 define the technical terms reported throughout the survey.

, Vol. 1, No. 1, Article . Publication date: August 2022.

4 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

BlueSpec SystemVerilog Genesis2 TL-Verilog

ArchHDL

PyMTL PyRTL

PyVerilogPHDL

MyHDL

JHDL

MaxJ

Functional-based

2.1

Imperative-based

2.2

SystemVerilog
Extensions

2.3

Output: VHDL SystemVerilog VerilogC++ PythonEmbedded: ScalaJava Haskell SML

HML

Clash

Chisel

SpinalHDL

DFiant

VeriScala

2009 20142012 20172007 20132010 2015 201920042000 20211998 … …… … … … … …

2009 20142012 20172007 20132010 2015 201920042000 20211998 … …… … … … … …

2009 20142012 20172007 20132010 2015 201920042000 20211998 … …… … … … … …

Fig. 3. HDL clustered by programming model with their embedded and output languages.

Some of these HDLs have their own syntax and constructs, while others are embedded in high-
level languages like Scala and Python. Eventually, each of these HDLs translates into VHDL or
(System)Verilog3, as they remain the only languages supported by modern synthesis tools.

All these HDLs, along with HLS tools and DSLs, aim to boost the designer’s productivity thanks
to a higher level of abstraction, to hide complexity, and to reduce the time needed for hardware
design. In this Section, we describe their main features, programming models, and their specific
advantages or limitations to the best of our understanding and knowledge of each language. While
programming models derive from the embedded language and advantages/limitations are language-
dependant, the main features present the following structure. We highlight whether they support
parametrization and polymorphism for high-level abstractions and if the HDL includes a built-in
simulator. Moreover, we show other features to which an FPGA developer would have access
whenever developing through VHDL or SystemVerilog, such as different clock domains, Double
Data Rate (DDR) designs, digital verification (either functional or timing), and other IPs integration.

We propose an HDL taxonomy based on the characteristics of the programming model employed
in the embedded languages. Our taxonomy has three main clusters: HDLs based on functional lan-
guages (such as Scala) (Section 2.1), HDLs based on imperative languages (such as C++) (Section 2.2),
and SystemVerilog extensions (Section 2.3). Figure 3 shows the schema of how the HDLs analyzed
fall in our taxonomy, their year of birth, and their embedded and output languages.

2.1 Functional-based HDL
The first category of HDLs derives from functional programming languages and embeds the
characteristics of such a paradigm within the low-level hardware development flow. There are
three different languages employed by HDL developers: SML [55], Haskell [6], and Scala [121].

While the first two languages are mainly devoted to functional features, Scala provides abstrac-
tions for object-oriented style, making it very appealing for new languages [5] and represents the
current wave of functional-based HDLs. The great variety of abstractions and support from a grow-
ing community are essential factors that continuously push the development of these languages to
embed low-level design features of native HDLs such as multi-clock domains.

HML: Hardware ML (HML) [95] is an HDL based on the functional language Standard ML
(SML) [55]. HML heavily relies on strong type polymorphism permitting to design a function

3This means both Verilog and SystemVerilog

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 5

operating over several different data types. HML enriches SML syntax with specific hardware
description features, including hardware function declaration, signal assignments, bit-vector op-
erations, and extensions for describing both behavioral and structural hardware. Besides, since
no clock information is required in HML, there is no sensitivity list like in VHDL. On the other
hand, this design choice implies that HML supports only one clock domain. Variables in HML
can be declared throughout the program, overcoming a typical restriction of traditional HDLs. In
particular, designers can explicitly declare variable data types and nature (e.g., input/output) or let
HML infer them. Finally, HML translates the code into VHDL.

Clash: Built on top of Haskell, Clash [4] is a functional HDL with its compiler and library.
Clash is a strongly typed system with a high degree of type inference. Moreover, Clash has a
fully interactive read-eval-print loop (REPL) that enables an interactive design, testing, and fast
simulation. Clash does not support recursion, floating, and double, while it provides fixed-point
data type. Clash applies optimizations at the top-design level, and it also provides a fine-grain
control on the design. For instance, with Clash, a hardware designer may define multiple clock
domains and type-safe clock domain crossing, and even define reset polarity.

Chisel: Chisel [5] is an HDL embedded in Scala, which offers a more straightforward approach
to HDL design compared to Verilog. For instance, the designer can define functions using Scala
conventions, build and nest data structures, design components as classes, and redefine operators.
Chisel specific libraries permit the designer also to employ custom data types. A key for embedding
Chisel in Scala is to support highly parametrized circuits generators, a weakness of traditional
HDLs. In this way, designers can declare parameterizable classes and recursively create hardware
subsystems. For instance, RocketChip System-on-Chip Generator [2] is a Chisel-based framework.
As another exciting feature, Chisel abstracts the memory representation. The designers can first
define it and then create ports for it. Chisel offers a fast C++ simulator for RTL debugging and
a Verilog translator, which permits fine changes and integration with already designed Verilog
modules as black-boxes. Additionally, Chisel supports multi-clock domain designs, and it is used
for a plethora of FPGA and ASIC designs [2, 99, 151], though it lacks in verification features [99].

SpinalHDL: Started in 2014 and completely open-sourced, SpinalHDL emerges as an alternative
to standard HDL languages [126]. Thought by design to be interoperable with VHDL/Verilog
existing tools, SpinalHDL provides a relevant abstraction layer for hardware design and verification
along with out-of-the-box IP integration. Embedded in Scala, SpinalHDL exploits a functional
programming paradigm. It provides no logic overhead, generates VHDL and Verilog code completely
simulatable with standard EDA tools, and preserves naming and components hierarchies. SpinalHDL
provides an abstraction level close to the one of VHDL/Verilog but enables a fast and easy reuse
and creation of abstraction utilities. Moreover, it supports even multiple clock domains. Indeed,
SpinalHDL supports customizing a clock domain from the polarity of the signals (e.g., positive
edge), to the target domain frequency, from implicit clock enable feature to simulation support
and timing verification. SpinalHDL provides several built-in abstractions that remarkably ease the
development. For instance, the bus slave factory and the generator framework are an easy way
to provide custom protocols integration, such as the AXI4 protocol and an out of order hardware
elaboration for complex systems generations, such as VexRiscv4.

DFiant: Aiming to bridge the gap between HLS and HDLs, DFiant [130] is a dataflow hardware
description language. Authors argue that on the HDLs’ side, there are issues in coupling degree of
functionality and timing constraints and portability, whereas on the HLS’s side, concurrency and
fine-grain control are lost. For these reasons, DFiant is a Scala-based HDL, inheriting a polymorphic
type system and object-oriented programming, with a clock-agnostic dataflow model that generates

4https://github.com/SpinalHDL/VexRiscv

, Vol. 1, No. 1, Article . Publication date: August 2022.

6 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Verilog code. A hardware designer that exploits DFiant has to care for the dataflow model to
implement. Since DFiant aims at clock-less designs, the clock is an abstract concept considered only
by the compiler. For this reason, multi-clock designs are not supported, nor clock-crossing domain
regions. Moreover, the designer can exploit the automatic pipelining of DFiant, which takes care of
retiming and pipeline balancing in an automatic way, similar to an HLS tool.

VeriScala: Primarly focused on the cooperation of hardware and software developers, VeriScala
[98] is a Scala-based HDL. Indeed, the authors propose a framework to develop hardware descrip-
tions with software-like features, such as code-reuse, high-level abstractions, and recursion. The
framework also includes a novel runtime that enables a Scala-to-accelerator direct communication
on top of the Xilinx PCIe subsystem. VeriScala generates synthesizable Verilog and inherits all the
Scala features, such as high parametrization, polymorphic type-system, and extensibility.

2.2 Imperative-based HDL
The second category of HDLs relies on imperative paradigms, such as those offered by Java
and Python. These languages’ programming model is closely related to hardware description
where components are reused across hierarchical and, whenever possible, decoupled designs.
Although Scala-based HDLs adopt object-oriented features, they provide many functional constructs
that collide with this category. This class of HDLs mainly exploit objects and classes along with
polymorphism features. These features are at the basis of an easy-to-use and extend language [27,
40, 100] and tight integration with the target host machine [10, 61].

JHDL: Just another HDL (JHDL) [10] is a language designed to integrate the host and kernel
development through a set of Java libraries for both circuit simulation and hardware support. JHDL
leverages Java object-oriented nature to manage circuit resources as Java objects. A single class that
wraps all its components and connections represents the whole circuit defined in JHDL. Java meth-
ods describe the behavior of the hardware modules, which support parametrization. The designer
can easily select the target of JHDL code execution (hardware or simulation) by just changing the
class description. This permits a simple host configuration as the program can be written in one
place, and requires an explicit hardware/software partitioning. The simulation at the clock level
happens through the JHDL simulation kernel, where the circuit class first checks all its components
and connection, then starts the simulation. Conversely, if the designer aims at running the design
on an FPGA, JHDL translates a set of limited Java statements into VHDL and then produces the
bitstream. Finally, a relevant feature of JHDL is the support for constructors/deconstructors to
reconfigure the circuits on the host side through method calls.

MyHDL: MyHDL [40] is a language that exploits the Python infrastructure to implement HDL
specifications to open hardware development to beginners. Its HDL description is similar to Verilog,
but with a more manageable approach to verification; indeed, it is possible to convert MyHDL code
into Verilog/VHDL through specific built-in libraries and use constructs to verify the designs easily.
MyHDL supports waveform viewing as well. MyHDL models hardware as interactive light-weight
threads that communicate with each other. In particular, MyHDL description structure is based
around generators, namely modules that wait for a specific signal to perform specific actions, that
communicate through generator functions. Moreover, generator functions allow to keep the state
of the employed functions and resume them if needed, making them usable as ultra-light threads.
In this way, it is possible to pass control information to the dedicated runtime simulator. Finally,
MyHDL supports co-simulation via other HDL simulators by translating MyHDL code into Verilog.

PHDL: Python HDL (PHDL) [105] is a Python framework that aims to increase the level of
abstraction of hardware design, making designers more aware of what they are doing. The PHDL
framework has two main components: framework classes and a component library, which contains
pre-made descriptions for the low-level components. Designers build components and systems using

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 7

mainly three types of objects: connectors, components, and connections. Connectors represent
actual wires and special collections of them. PHDL components may be either meta- or vanilla
components: meta-components are in charge of choosing the best component to employ for a
target design, vanilla ones implement the actual logic. Connection objects take care of tying
connectors together. Designers implement components and wires as classes through templates
provided by PHDL and connections as functions. Finally, PHDL enables the parametrization of
hardware modules and integration with existing libraries through a wrapper.

MaxJ: MaxJ [61, 96] is an HDL language derivative of Java devised to describe spatial and
parallel computations targeting Maxeler’s Dataflow Engines (DFEs). MaxJ offers a remarkable
level of abstraction for the designer, also providing easy integration between host and FPGA. The
designer employs Java constructs and features (e.g., parametrization and polymorphism) to design
the kernel and define components and signals, while the syntax remains close to the one of HDL
languages. On the other hand, the designer may write the host code in different languages, like
C/C++, MATLAB, etc. MaxCompiler translates MaxJ code into output compatible with the FPGA
synthesis tools. MaxCompiler schedules the design into a pipelined dataflow architecture and
connects components through FIFOs, whose size is inferred implicitly. In this way, MaxCompiler
can synchronize different paths with different latencies. Finally, starting from the kernel description,
MaxCompiler automatically generates the interfaces to allow the communication between host
and kernel, synthesizes the kernel, and produces the bitstream.

ArchHDL: ArchHDL [148] is an HDL for RTL modeling based on C++ that focuses on intuitive
module descriptions and flexible testbench description. ArchHDL’s primary objective is to speed
up hardware simulation and provide easier access to hardware implementation. Designers can
easily compile code written using the ArchHDL library (which offers features like non-blocking
assignments and all Verilog constructs) with a C++ compiler, parallelize it using OpenMP, and
simulate the hardware design executing the resulting binary. These factors enable to achieve
significant simulation speedup over Synopsys VCS simulator. Despite having all the benefits of C++,
ArchHDL has some limitations. Since ArchHDL has to be translated into Verilog, the ArchHDL
library only supports Verilog’s data types. In particular, the implementation of some ArchHDL
data types directly derives from C++ ones, e.g., wire and integer types come from C++ integer, and
thus requires the introduction of some restrictions (e.g., arrays are at most bi-dimensional). Finally,
ArchHDL supports only one clock signal and assigns variables only at the positive edge of the
clock, thus limiting the possible designs.

PyMTL: PyMTL [100] is a highly productive language for Cycle-Level (CL), Functional-Level (FL),
and RTL modeling. In PyMTL, the module construction follows a bottom-up approach. At first, the
designer focuses on the functionality of the algorithm, thus trying multiple implementations of it.
PyMTL permits rapid prototyping due to the language’s nature and provides optimizations libraries
for this step. The next step analyzes the operations done within a cycle. The designer can tweak
this step to achieve the desired performance and enforce some optimizations provided by PyMTL
libraries. At last, PyMTL implements the RTL model and generates Verilog. In terms of language
features, PyMTL supports dynamic types, providing more flexibility to the possible implementations
and a highly parametrizable behavioral and structural components. On the other hand, PyMTL
handles the simulation using SimJIT. This custom JIT specialization engine leverages the LLVM
compiler and Verilator [158] to automatically generate C++ for CL and RTL models speeding up the
simulation. Besides, PyMTL permits the reuse of testbenches created for the CL and FL also for the
RTL step. The current third version of PyMTL [9, 68] includes new features such as SystemVerilog
generation, component parametrization, and improved simulation speed [68].

PyVerilog: PyVerilog [166] is an open-source, Python-based toolkit for analysis and code gener-
ation of RTL designs. The various tools available permit a fine grained analysis of the design, thus

, Vol. 1, No. 1, Article . Publication date: August 2022.

8 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

providing the developer with numerous ways to optimize the code, but with additional complex-
ity. PyVerilog offers a code parser, dataflow analyzer, control-flow analyzer, visualizer, and code
generator for Verilog. The code parser analyzes PyVerilog code and generates an Abstract Syntax
Tree (AST) based on the preprocessing of the code. From that, the dataflow analyzer constructs a
dataflow graph that represents relationships among signals. The dataflow analyzer first passes the
AST, builds a list of all the modules within it, classifies signals, and checks modules’ connections.
After that, the dataflow analyzer checks signal assignments and constructs a dataflow graph for each
signal. The control-flow analyzer generates a graph representation of Finite State Machines (FSMs)
in hardware, exploring the previously generated graph. This tool infers the values of candidate
conditions from the assignment conditions and identifies the assertion conditions of the signals for
state transitions. Finally, the code generator of PyVerilog generates a source code in Verilog from
the intermediate representation of a PyVerilog AST.

PyRTL: Embedded in Python, PyRTL [27] is an HDL that aims to lower the barrier to digital de-
sign, promote hardware co-design, and allow complex hardware design patterns to be easily reused.
PyRTL is designed for simplicity, usability, clarity, and extensibility rather than optimizations and
performance. Indeed, PyRTL provides a comprehensive infrastructure in addition to the language
per se. In this way, authors want to enable fast prototyping solutions in analysis and simulation
other than design only. For instance, PyRTL infrastructure enables direct code instrumentation in
the overall process from the intermediate representation to the code transformation applied.

2.3 SystemVerilog Extension HDL
First appeared in 2002 [144], SystemVerilog represents a significant improvement over his prede-
cessor Verilog. Thanks to many features borrowed from the object-oriented world, SystemVerilog
increases the abstractions for hardware developers (both design and verification people). The
third category of HDLs based its power on extending SystemVerilog syntax for different purposes:
from a new design experience to highly customizable hardware generators [152], and new design
paradigms, such as the transaction-level paradigm.

BlueSpec SystemVerilog: Bluespec SystemVerilog (BSV) [16, 119] is an HDL that aims to pro-
vide a general-purpose language for hardware design using atomic transactions. Atomic transactions
are rules that dictate the behavior of the described hardware to enable a high level of parallelism
and smoothly refinable designs. The designer develops modules in BSV and implements, for each
module, both methods and rules. The modules represent the outwards interfaces, while the rules
update and modify the module’s internal state. Both rules and methods have guards, and they can
fire only if the guards are true and there are no conflicts concerning the considered rule, preserving
atomicity. The code in BSV heavily relies on these transactions to deliver concurrent execution and
easy reconfigurability. The designer can change the application order of the rules without modifying
the rules themselves, differently from SystemVerilog. The BSV synthesis tool compiles parallel
hardware for the rules, which is always logically equivalent to a serialized execution. Module
interfaces are components of atomic transactions and derive from C++ and Haskell interfaces. BSV
permits polymorphism to easily create complex, overloaded, and fully type-checked interfaces in a
bottom-up approach by constructing templates. Designers can easily design reusable components
to build a more complex architecture. Indeed, the generation mechanism of micro-architectures
supports conditionals, parametrization, loops, and even recursion, making the design process more
comfortable and more customizable. Moreover, BSV modules can coexist with SystemVerilog blocks,
thus giving the developer the possibility to use already existing ones. Finally, BSV supports design
with positive clock edge and reset asserted low by default, multiple clock domains, and DDR designs,
i.e., logic active on both positive and negative clock edges. Despite this possibility, BSV does not
support timing verification, which requires a standard Verilog simulator.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 9

Table 1. Comparison table of the presented HDLs.

HDL Language Embedded Output Parametrization Polymorphism Simulation Other Relevant
Language Language Features

Fu
nc
tio

na
l

HML SML VHDL Supported Supported Supported 3rd Party -

Clash†‡★ Haskell VHDL,
(System)Verilog Supported Supported Supported Multi-Clock and Reset Polarity

Chisel†‡★ Scala Verilog Supported Supported Supported Multi-Clock Design, BlackBox IPs,
Functional Verification

SpinalHDL†‡★ Scala VHDL/Verilog Supported Supported Supported Multi-Clock Design, DDR Design,
BlackBox IPs, Timing Verification

DFiant† Scala Verilog Supported Supported Supported Dataflow, Clock-less
VeriScala† Scala Verilog Supported Supported Supported Recursion, Scala-FPGA Runtime

Im
pe
ra
tiv

e

JHDL Java VHDL Supported Not Supported Supported Host Design,
Partial Reconfiguration

MyHDL†‡★ Python VHDL/Verilog Supported Not Supported Supported Verification
PHDL Python Verilog Supported Not Supported Not Supported -

MaxJ★ Java VHDL Supported Supported Supported DataFlow Optimizations
Host Design, Multi-Clock Design

ArchHDL C++ Verilog Not Supported Not Supported Supported -
PyMTL†‡★ Python (System)Verilog Supported Supported Supported -
PyVerilog†‡★ Python Verilog Not Supported Not Supported Not Supported -
PyRTL†‡★ Python Verilog Supported Supported Supported Instrumentation

Sy
st
em

Ve
ril
og

Ex
te
ns
io
ns

BlueSpec†‡★
SystemVerilog

Extension of
SystemVerilog SystemVerilog Supported Supported Supported Multi-Clock Design, DDR Design,

Functional Verification

Genesis2
† Extension of SystemVerilog Supported Not Supported Supported -SystemVerilog

TL-Verilog★ Extension of
SystemVerilog SystemVerilog Not Supported Supported Supported Timing Verification

† Open-source ‡ Last update in the last years (2020-2021) ★ Maintained, to the best of authors’ knowledge

Genesis2: Genesis2 [152] provides an extension of SystemVerilog functionalities without modi-
fying its formal syntax. Genesis2 provides hardware designers with a rich software language for
writing instructions that specify how to generate modules from a set of input parameters. The be-
havioral description is still in SystemVerilog. Even though it requires SystemVerilog to describe the
hardware modules, Genesis2 uses PERL to express module instantiation. To allow polymorphism,
Genesis2 enables designers to define and give default values to parameters and then provides a
simple mechanism for overriding these values from external configuration files. Genesis2 permits
implementing custom types for the parameters, increasing the flexibility of the modules. Every
time the Genesis2 compiler runs, it generates code and extracts the entire parametrization space
hierarchically into an XML-formatted description file, thus reading out the machine configuration.

TL-Verilog: Transaction-Level Verilog, or TL-Verilog, is an extension of SystemVerilog to support
a design methodology based on the concept of transaction [59]. A transaction represents a general
entity that might be a machine instruction, a packet flow control unit, or a memory read/write,
flowing through generic structures, such as pipelines, arbiters, and queues. TL-Verilog currently
outputs SystemVerilog code, has a timing-abstract design methodology, and shortly will support
parametrizable code. Despite the novel paradigm, it lacks characteristics that designers expect to
have (such as parametrization) and presents many experimental features not yet mature enough.

2.4 Summary
Table 1 summarizes the presented HDLs, clustered by programming model (functional, imperative,
SystemVerilog-based) and then ordered by date of appearance. The first two HDL clusters present
many languages in contrast to the reduced number of SystemVerilog extensions. Although the
semantics of these HDLs remains declarative, functional and imperative constructs and formalisms
enhance their expressive power to design parallel hardware architectures. Conversely, the third
cluster, which is smaller, extends an HDL such as SystemVerilog through language features that
further ease the hardware development, e.g., BSV rules or TL-Verilog transactions.

, Vol. 1, No. 1, Article . Publication date: August 2022.

10 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

High-
Level
Code

Parsing Source code
Optimizations

CDFG
Generation Scheduling

Allocation

Binding

Technology
Library

RTL
Generation

Functional
Verification

System
Integration

RTL
Code

Revise Solution

Functions to
Accelerate

IP Cores

Bitstream
Generation

IP Core
Management

Runtime
APIs

High-
Level
Code

Revise Solution

Application Bitstream and
SW Application

High-Level Synthesis Flow

Accelerator-Centric Synthesis Flow

OutputOutput

Fig. 4. High-Level Synthesis and Accelerator-Centric Synthesis flows and their integration.

All three clusters contain open-source languages, and their majority reports updates in the last
two years (2020-2021). This fact introduces a community building around languages that come
even before 2010 (e.g., Clash) and interests beyond the single research manuscript. Each of these
languages outputs standard HDL language, either VHDL or (System)Verilog. However, the majority
of the considered HDLs exploit only one of the two standards as the output language, especially
Verilog. Indeed, only Clash, SpinalHDL, and MyHDL support both VHDL and Verilog outputs.

As HDL relevant characteristics, we highlight if the target language supports parametrization
and polymorphism, two essential features for abstraction improvements. Moreover, functionally
verifying and simulating the stimuli response of a target design give the designers hints on the
process outcome; therefore, Table 1 displays the simulation support (if any) with a custom tool or
if they leverage third-party tools. Moreover, we report other features we believe relevant in the
last column of Table 1. Although VHDL and (System)Verilog are evolving, increasing abstractions
are essential features for both software development and the hardware ecosystem. For instance,
traditional hardware designers and verifiers demand support of standard HDL features, such as
multiple clock domains, IP integrations, timing closures. Without some of these features, these
HDLs are not considered ready for production purposes [99]. However, few HDLs offer features to
design and verify architectures with multiple clock domains.
Finally, among the presented HDLs, we see a promising direction from novel languages, such

as TL-Verilog. However, we believe that the most promising and mature languages are the ones
that provide standard HDL features (e.g., BlackBox IP, Verification), additional ones (e.g., higher
abstraction layers and constructs), a continuous development throughout the years, and a consistent
ecosystem. Examples are Chisel, SpinalHDL, and BlueSpec SystemVerilog.

3 HIGH-LEVEL SYNTHESIS
After discussing relevant HDLs in literature, we now focus on HLS tools [108]. HLS [36] represents
a step forward in the digital design flow, for it increases the level of abstraction of such a process.
HLS aims to enable users, not necessarily expert in the hardware domain, to develop a digital
custom architecture for FPGAs or ASICs starting from a high-level language. More specifically,
HLS alleviates the designer’s work and automates several tasks. Given an algorithmic/functional
specification (untimed description) of a design (often decorated with directives/pragmas), the HLS
tool translates it into an intermediate representation (usually a control and data flow graph). From
this point, the HLS tool determines the types of operators and memory elements the specification
needs and allocates the resources. Then, the next step schedules the operations within the specification
to clock cycles. Later on, the tool binds each operation and variable to a specific functional unit
and a memory element, respectively, and circuit interfaces (control and data signals) to peripherals
(such as memory interfaces). Finally, the HLS tool generates a fully timed RTL design. Thanks to

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 11

this approach, HLS improves the design productivity and facilitates the exploration of the design
space through source code and directives tweaking. Besides, HLS tools may reduce the verification
time. Indeed, they can automatically generate testbench and functionally validate the RTL design
with the very same test vectors used for the source code.

Despite the advantages, an HLS-based design flow has some relevant flaws. First of all, the user
has less control over the resulting RTL design [81]. Hence, the RTL quality significantly depends
on the tool internals and optimizations and may be lower than a handmade HDL design. Moreover,
the majority of HLS tools offer little to no support for specific kinds of RTL designs, e.g., the ones
including clock domain crossing or DDR transfers. Finally, the current generation of HLS tools
mainly focuses on datapath applications [104]; thus, it may not be the best choice for control ones.

According to Martin et al. [104], we are currently in the third generation of HLS tools. While the
first two generations failed for several reasons (e.g., immaturity of tools, poor quality of results,
improper input languages, and wrong target users), the third generation succeeded thanks to sound
design choices that fixed the past mistakes. One of these is the input language. Indeed, most HLS
tool vendors require designers to use languages they are already familiar with, like C variants
(C/C++/SystemC) or MATLAB, instead of specific languages or unfamiliar HDLs. Thanks to their
features, modern HLS tools significantly boosted FPGA programmability and helped reduce the
steepness of the FPGA learning curve, especially when the user’s goal is the acceleration of a given
application or part of it. Consequently, FPGAs gained increasing attention as a viable alternative to
CPUs and GPUs to speed up computations while maintaining a relatively low power profile.
The efficient design of an accelerator and its RTL generation is only a part of the whole FPGA

design process. Indeed, the next step, usually called system-level design, involves integrating the
resulting IP within a more extensive system. Usually, an FPGA is not the only on-board component,
but rather it is part of an ecosystem including off-chip memories, buses like PCIe, network interfaces,
to name a few. Therefore, the proper connection of the produced IP with such components is
paramount to deploy the accelerator, allowing the user to interact with the IP from the host
processor. However, HLS tools focus on designing an IP and do not cover/automatize the system-
level design step. Thus, this step involves different tools like Quartus or Vivado and is usually up
to the user, requiring solid hardware knowledge to properly and effectively perform it. For this
reason, in recent years, FPGA vendors started developing toolchains embedding both the HLS step
and automatic system-level integration of the resulting IP oriented to the hardware accelerator
design. We name such toolchains Accelerator-Centric Synthesis (ACS) tools: they represent a further
step in the FPGA development panorama and offer a CPU/GPU-like development experience. In
particular, to better resemble such an experience, these toolchains also began to support OpenCL
as input language. We categorize them as the fourth and latest generation of HLS, extending the
previous classification [104]. Figure 4 depicts the tight integration between HLS and ACS flows.
Throughout this Section, our analysis focuses on the most relevant HLS tools available in the

literature, whether they just perform the RTL synthesis step (Section 3.1) or the entire flow towards
the bitstream generation (Section 3.2). In particular, our study only examines tools that directly
implement the HLS/ACS flow. Consequently, we exclude solutions implementing similar high-level
and automated toolchains as they build upon the considered tools [30, 137, 156, 179].

3.1 High-Level Synthesis Tools
This Section describes the current status of the most relevant HLS tools belonging to the third
generation, reported in chronological order as in Figure 5. We only consider “pure” HLS tools, i.e.,
tools that do perform the HLS process without delegating it to third-party software [30, 137, 179]. For
each HLS tool, we provide an overview of their features, supported optimizations, and peculiarities.

, Vol. 1, No. 1, Article . Publication date: August 2022.

12 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

2012 20162014 2018 20202011 20152013 2017 20192010

⋅Vivado HLS
(Vitis HLS from 2020)

20082007 2009200620042003 2005

⋅Bambu

⋅HDL Coder ⋅GAUT ⋅ROCCC ⋅LegUp ⋅CyberWorkBench

⋅Stratus HLS
⋅Hastalayer

⋅SDAccel
⋅Xilinx Vitis
⋅Intel oneAPI

⋅XLS

ACS Tools Birth

⋅Altera OpenCL SDK
(Intel OpenCL SDK from 2015) ⋅SDSoC

⋅Intel HLS Compiler ⋅Dynamatic

⋅Catapult C
(Catapult-HLS from 2015)

2012 20162014 2018 202020152013 2017 2019

⋅TAPAS

Fig. 5. Timeline of High-Level and Accelerator-Centric Synthesis Tools (first release/published paper).

HDL Coder: HDL Coder [106] is a tool available within the MATLAB suite by Mathworks that
generates synthesizable Verilog/VHDL from MATLAB functions, Simulink models, and Stateflow
diagrams. The designer can employ the resulting RTL to target both FPGAs (Xilinx, Intel) and ASICs
(Microsemi SoC). Given a MATLAB function, HDL Coder first automatically converts floating-
point data types to fixed-point, then generates the RTL. The designer can tune the design via
optimization features, including loop optimizations, array mapping to on-chip memory, and area
optimizations. Similarly, given a Simulink model, HDL Coder generates RTL from the employed
library blocks. HDL Coder provides a workflow advisor integrated with both Xilinx and Intel
synthesis tools. The workflow advisor supports the designer during various phases, from synthesis
to FPGA programming. For instance, the designer can exploit the advisor to analyze the resource
usage or highlight the critical design tasks and annotate the Simulink model with such information
to identify the main bottlenecks. In terms of verification, the HDL Verifier tool allows the designer
to verify the generated RTL behavior functionally via either a MATLAB or Simulink testbench.
Likewise, the designer can test and debug FPGA implementations on Xilinx and Intel boards.

Catapult-HLS: Catapult-HLS (previously Catapult-C) [14, 112] is a commercial platform by
Mentor Graphics for both FPGAs and ASICs. During the design process, the user can target one or
more technology libraries and generate hardware designs for multiple FPGAs and ASICs starting
from the very same algorithmic description. In terms of input/output code, Catapult-HLS takes
a C++ or SystemC input and outputs RTL design in VHDL/Verilog. In particular, Catapult-HLS
completely supports both syntax and semantics of C++, as well as all basic statements, functions,
pointers, and templates. Only two restrictions apply and involve dynamic memory management
and code properties (e.g., array dimensions), as the input code must be statically determinable.
In addition to standard libraries, Catapult-HLS supports arbitrary precision for both integer and
fixed-point data types. Moreover, it enables the optimization of the resulting design at various levels
via directives/pragmas. For instance, the user may apply basic loop optimizations, hierarchical
synthesis, specific resource allocation, and scheduling optimizations. Finally, Catapult-HLS GUI
offers a set of built-in graphical analysis tools, such as the Gantt Chart Viewer for code profiling,
Resource Viewer for HLS results visualization, and a tool for quality coverage metrics.
GAUT: GAUT is an academic and open-source HLS tool dedicated to digital signal processing

(DSP) applications [35, 173]. GAUT GCC-based compiler accepts in input C/C++ code and generates
VHDL synthesizable by Xilinx, Intel, and Synopsys tools. It can also produce SystemC for simulation,
visual prototyping, or Design Space Exploration (DSE) purposes. In particular, the generated
SystemC models are cycle- and bit-accurate and employable in external platforms, like SocLib [35].
Thanks to the support for the Algorithmic CTM library from Mentor, GAUT supports bit-accurate
integer and fixed-point variables. Besides, the designer can specify constraints on the throughput
and the clock period, while the memory mapping and the I/O timing diagram are optional. The

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 13

compiler lowers the input code to an annotated dataflow graph and then to the GIMPLE-IR, where
most of the analyses and optimizations happen. Like most of the HLS tools, GAUT supports loops,
memory, and scheduling optimizations. After performing the standard HLS steps, GAUT generates
an RTL architecture that comprises: a processing unit, a memory unity, and a communication and
interface unit. Finally, GAUT automatically generates a test bench for architecture validation.

ROCCC: Riverside Optimizing Compiler for Configurable Computing (ROCCC) [174, 176] is a
C-to-VHDL HLS compilation toolchain initially developed by the University of California Riverside
and then by Jacquard Computing Inc., the current maintainer. ROCCC is particularly suitable for
streaming applications and applies several restrictions on the input C code. For instance, since loops
are the main target of ROCCC optimizations, it requires perfectly nested loops with a fixed stride and
forbids the while loop construct. ROCCC provides an integrated control on code transformations
and optimizations (to improve throughput, memory accesses, and resources), manages the modules’
and cores’ instantiation into C code, defines the platforms’ interfaces, and generates the verification
test benches. Besides, the designer can manually tune the same code for different FPGAs by varying
the compiler optimizations/parameters, e.g., the channels’ number and bitwidth, without altering
the original code. ROCCC offers support for floating-point and integer operations, while it precludes
resource sharing in favor of better performance. Finally, ROCCC provides peculiar features like
native support for triple modular redundancy and smart buffers, i.e., on-chip buffers enabling data
reuse through loop iterations according to the data access pattern.

LegUp: LegUp is an HLS tool developed and released by LegUp Computing [90], whichMicrochip
Technology Inc. acquired in 2020. Up to version 4.0, LegUp was open-source, developed by the
University of Toronto [20], and available for non-commercial use [46]. LegUp can synthesize the
same design for Xilinx, Intel, Lattice, Microsemi, PolarFire, and Achronix FPGAs. It offers an Eclipse-
based IDE and accepts C/C++ as input languages with restrictions on dynamic memory allocation
and recursion. The tool exposes two design flows to the designer: only-hardware and software-
hardware. In the former, LegUp synthesizes the entire input C/C++ code to Verilog. In the latter,
LegUp profiles the software code and identifies the best candidates for hardware acceleration. After
the designer’s manual partitioning, LegUp generates a hybrid system comprising a processor (either
a MIPS softcore or a hard ARM processor) and one or more accelerators, which communicate via a
memory-mapped interface. LegUp supports standard HLS optimizations like loop transformations,
pthreads, OpenMP, and synthesizes the multi-threaded software into parallel hardware blocks.
Besides, LegUp can automatically apply bitwidth reduction via a static variable range and bitmask
analysis, multi-cycle path analysis, and register removal. Finally, the designer can simulate the
resulting RTL with ModelSim by Mentor Graphics.

CyberWorkBench: CyberWorkBench (CWB) [117] by NEC integrates an HLS design process,
comprising synthesis, simulation, and verification for both FPGAs (Xilinx and Intel) and ASICs.
The core idea of CWB’s suite is the “All-in-C” approach, which comprises All-in-C Synthesis (i.e.,
all modules described in C), and All-in-C Verification (i.e., all the verification tasks are at the C
level). CWB generates Verilog/VHDL from an extended ANSI-C, called BDL or Cyber-C, or SystemC
along with a set of design constraints, which may refer to clock frequency, resource kind, and
number. Moreover, CWB accepts RTL and netlists as black boxes, insertions of assertions/properties,
directives, and clock boundary areas, which help describe complex timing behavior concisely and
fix their scheduling. CWB is one of the few HLS tools able to handle clock domain crossing and
clock gating. Then, CWB provides a configurable and extensible base processor fully described
in BDL. Finally, CWB supplies a DSE tool, that given a set of constraints (e.g., area and latency),
produces multiple architectures with multiple trade-off charts. Through CWB, it is possible to
verify the hardware at behavioral and cycle-accurate levels, also thanks to the automatic hardware
testbench generation and the interaction with third-party tools.

, Vol. 1, No. 1, Article . Publication date: August 2022.

14 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Bambu: Bambu [129] is an HLS tool developed at the Politecnico di Milano as part of the
Panda framework [125]. Bambu takes as input a behavioral description written in C and outputs a
synthesizable RTL implementation in VHDL/Verilog and a testbench for simulation and functional
verification. Bambu targets multiple FPGA vendors, namely Xilinx, Altera/Intel, and Lattice, and
ASICs. Similarly, various simulators are integrable into Bambu, such as Mentor Modelsim, Xilinx
ISIM, and Verilator. Bambu supports most C constructs (e.g., function calls, multidimensional
arrays) and benefits from all the target-independent GCC-based optimizations. Currently, Bambu
does not support recursion, but, if necessary, GCC can automatically convert recursive forms into
non-recursive ones. Moreover, Bambu provides an additional speculative scheduling algorithm
and allows the possibility to specify fixed scheduling (as an XML file) as input. Furthermore, the
designer can activate the post-rescheduling option to distribute resources better. In terms of HLS
optimizations, Bambu supports operation chaining, resource sharing, and pipelining. It also offers
HW/SW partitioning features and provides various Pareto-optimal implementations (trading off
latency and resources). Finally, Bambu modular organization makes it is easily extensible.

Vivado/Vitis HLS: Vivado HLS [183], formerly AutoPilot by AutoESL and then acquired by
Xilinx in 2011, is a design suite for HLS that allows converting high-level languages in HDL. Vivado
HLS accepts C, C++, or SystemC as input specification languages and can generate Verilog or VHDL
hardware descriptions. The designer can specify the target FPGA and provide constraints on the
clock period, clock uncertainty and optimization directives to better control the HLS process. Vivado
HLS accepts most of the constructs of C/C++ while applying the usual restrictions, such as recursion
and dynamic memory allocation. Besides, Vivado HLS provides various built-in libraries that range
from mathematical operations to arbitrary precision for integer and fixed-point data types. The
designer can leverage multiple directives to improve the final design, such as loop transformations,
binding to specific resources, hardware interfaces definition, and dataflow execution model. Vivado
HLS supplies tools for functional verification of the resulting design at both software and hardware
level with the same software testbench. Moreover, Vivado HLS produces various reports about
circuit timing, resource usage, and scheduling. Finally, thanks to the integration with the other
Xilinx tools, the designer can invoke synthesis and place & route steps within Vivado HLS to assess
the design quality. From the 2020 release of its developer tools, Xilinx substituted Vivado HLS
with Vitis HLS [187], which automatically applies more optimizations and relies on AMBA AXI4
interface protocol to communicate with the off-chip memory by default.

Stratus HLS: Released by Cadence, Stratus HLS [19, 134] is a commercial HLS platform that
targets ASICs, SoCs, and FPGAs. After acquiring Forte Design Systems in 2014, Cadence created
Stratus HLS out of Forte’s Cynthesizer and its own C-to-Silicon Compiler. This HLS tool takes C,
C++, or SystemC descriptions and creates RTL (Verilog) implementations. In addition to the input
code, the designer can provide high-level implementation constraints, which are beneficial to tailor
the design to various target architectures without changing the input specification. Stratus HLS
provides an IDE that allows the designer to to actively trade off power, area, and performance.
This tool accurately identifies hotspots in the RTL, both in time and space, supports power-aware
scheduling, and offers many other low-power optimizations. After applying various optimizations,
the designer can exploit control and dataflow graph schematic viewer and pipeline analysis and
visualization tools to evaluate the impact of such optimizations. Finally, Stratus HLS helps automate
the design and verification flow of hundreds of blocks from transaction-level modeling (TLM) to
gates, providing tools for RTL verification, debugging, power analysis, and design exploration.

Hastlayer: Hastlayer is a free open-source HLS tool developed by Lombiq Technologies [101].
The goal of Hastlayer to enable software developers of the .NET platform to target FPGAs easily
and accelerate their applications. Since the .NET platform supports multiple popular programming
languages, Hastlayer supports languages such as Python, PHP, C++, JavaScript, to name a few.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 15

However, it applies restrictions on the synthesizable code. For instance, Hastlayer does not support
floating-point data types (float and double) or types wider than 64 bits. After the HLS process,
the tool integrates the resulting VHDL within the Hastlayer hardware framework and invokes
existing vendor toolchains to produce the bitstream file. Currently, Hastlayer offers two flows:
one for Xilinx FPGAs and one for Intel FPGAs available on the Microsoft Catapult cloud [135].
Hastlayer targets both FPGA-experts and developers with no hardware design knowledge. On the
one hand, with Hastlayer, a .NET software developer can select a compute-bound part of their
application. Then, the tool automatically swaps out the software implementation with the FPGA
one, hiding and abstracting the interaction with the hardware. On the other hand, Hastlayer assists
FPGA-experts by offering options to fine-tune their designs. Besides, the designers can leverage
both task-level and operation-level parallelism through standard .NET constructs.

Intel HLS Compiler: Intel HLS Compiler [64] takes untimed ANSI C/C++ as input and generates
RTL optimized for Intel FPGAs. It is part of Intel Quartus Prime Design Software for FPGA design.
Intel HLS Compiler has native support for fixed-point and floating-point data types and supports
arbitrary width integers. Like other HLS tools, the compiler has some limitations regarding the
supported subset of C99 and C++. For instance, the Intel HLS compiler does not support dynamic
memory allocation, virtual functions, function pointers, and C/C++ library functions except for
a few math functions. On the other hand, the Intel HLS compiler provides the designer with a
design exploration tool and high-level constraints and directives. In this way, the designer can
annotate the code and specify the optimizations the compiler has to apply (e.g., loop pipelining
and unrolling). Similarly, the Intel HLS Compiler can also perform device-specific optimization
and technology mapping for Intel FPGAs. Finally, the tool offers software testbench verification
features and generates interactive analysis reports with cross-probing support.

Dynamatic:Dynamatic [70] is an academic open-source HLS framework [69] developed at EPFL.
This tool converts C/C++ code into synchronous dataflow circuits. The main feature of Dynamatic is
its ability to schedule the resulting circuit dynamically. Usually, most HLS tools tend to schedule the
output circuit statically, forcing worst-case assumptions and, consequently, reaching suboptimal
results. This scenario particularly applies when the target application contains memory/control
dependencies that the HLS tool cannot identify at compile time. Conversely, Dynamatic’s approach
supports the design of dataflow circuits able to adjust the schedule at runtime. Besides, Dynamatic
leverages performance modeling to optimize the throughput through optimal buffers placement
and sizing. Finally, thanks to its open-source nature, developers can extend Dynamatic by adding
custom features, pragmas, and optimization passes.

XLS: XLS [53], or Accelerated HW Synthesis, is a project by Google for rapid hardware IP
development through HLS. Although not officially supported by Google, and still experimental, and
in rapid growth, XLS was born to make DSLX generate SystemVerilog synthesizable code and target
both ASICs and FPGAs. DSLX is a functional language that mimics Rust, able to express dataflow
computations. A developer describes through DSLX both hardware and host code. Currently, the
support for C++ code is under development. A peculiar feature of XLS is a fuzzer component for
random program generation. Indeed, fuzzing is a valuable tool for bug discovery in compilers,
though a successful fuzzer is highly costly due to the language support required [37]. Another
feature of XLS is its pure dataflow IR named XLS IR. This IR is specialized for generating circuitry
and embeds high-level parallel patterns to improve the final design effectiveness.

3.2 Accelerator-Centric Synthesis Tools
This Section analyzes ACS tools in chronological order, as depicted in Figure 5. These tools provide
a unified environment where the user can design both the host and accelerator code and integrate
them via high-level APIs. The ACS tool takes care of both the HLS process and the system-level

, Vol. 1, No. 1, Article . Publication date: August 2022.

16 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

integration according to the target scenario, i.e., host-to-IP communication via shared memory
(embedded) or PCIe (high-end/cloud). Once the code is ready, the user can “compile” it similarly to
a software flow and then deploy the output files on the target platform.

Intel FPGA SDK for OpenCL: Intel FPGA SDK for OpenCL [63], previously known as Altera
SDK for OpenCL (AOCL) [38], is a development environment that enables software developers to
accelerate their applications targeting heterogeneous platforms with Intel CPUs and Intel FPGAs.
The designer develops both the kernel and host code within the same environment. In particular,
the designer relies on the OpenCL computational paradigm to implement the accelerator and
its APIs to manage the interaction between host and kernel. Intel FPGA SDK for OpenCL offers
multiple tools to evaluate the quality of the current implementation. The tool inserts performance
counters in the FPGA design, and the result obtained can then be reviewed by the designer using
the Dynamic Profiler tool. Moreover, it provides analysis on the resources and performance, a fast
FPGA-based emulation, what-if kernel performance analysis, and support for symbolic debugging.
Once the host application and the kernel match the expected performance, Intel FPGA SDK for
OpenCL performs a complete compilation towards the bitstream.

SDAccel: SDAccel [185] is a Development Environment by Xilinx aimed at accelerating compu-
tational kernels in data centers (such as encryption, search, speech recognition, image recognition)
through FPGA resources. The SDAccel IDE provides functionalities for code development, de-
bugging, area reports, and profiling of kernel performance and memory transfers. It also offers
coding templates and software/hardware emulation to verify the kernel functional correctness. The
SDAccel compiler enables using any combination of OpenCL, C, and C++ to develop the hardware
kernel. Moreover, SDAccel automatically manages the FPGA runtime. In this way, applications can
have multiple kernels swapped in and out of the FPGA during runtime (via partial reconfiguration)
without disrupting the interface between the server CPU and the FPGA, i.e., the SDAccel shell.
Finally, SDAccel wraps Vivado HLS and Vivado Design Suite toolchains, abstracting and automating
all the steps towards the bitstream generation.

SDSoC: The SDSoC development environment [184] is a tool by Xilinx and has similarities
with SDAccel functionalities, even though they target different scenarios. Indeed, SDSoC pro-
vides a framework for developing hardware-accelerated applications for embedded systems using
C/C++/OpenCL languages. Specifically, it targets Zynq SoC and MPSoC platforms, i.e., systems
comprising both a hard ARM processor and an FPGA along with units for real-time and multimedia
processing (on Zynq MPSoCs) on the same chip. The compiler analyzes the input program to deter-
mine the dataflow between software and hardware functions. On the one hand, it automatically
implements the hardware functions on FPGA, and, on the other hand, it generates the host code
for bare metal, Linux, or FreeRTOS. It also allows design exploration and system-level profiling
without requiring prior knowledge of FPGAs. Indeed, SDSoC provides an automated flow for
software acceleration on FPGA and system connectivity generation, management of data transfer,
synchronization of hardware accelerators, and automatic hardware-software partitioning.

TAPAS: Built on top of a parallel IR called Tapir [149], TAPAS is an open-source toolchain
from Simon Fraser University, released in 2018 [103]. TAPAS aims to provide HLS support for
dynamic task parallelism and parallel programming in general. Among the supported patterns,
TAPAS handles arbitrarily nested parallelism, irregular task parallelism, and dynamic scheduling.
The tool is language-agnostic, but it heavily depends on Tapir’s supported languages/frameworks,
i.e., Cilk, Cilk-P, and OpenMP [103]. TAPAS operates in three stages. The first one analyzes the
IR and extracts task dependencies and the top-level Chisel (Section 2.1) module that instantiates
the DRAM interface, a shared L1 cache coherent with the L3 cache of the core processor, and the
task units. Then, stage 2 analyzes the program graph for each task and generates each unit’s RTL
dataflow. Finally, stage 3 configures a set of parametric components and generates the bitstream.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 17

Vitis Unified Software: Vitis [186] is a unified software released by Xilinx in 2019, which incor-
porates the functionalities of previous tools like SDAccel and SDSoC, adding new ones. In particular,
Vitis supports the development of accelerated applications and embedded software, targeting both
high-end and embedded FPGA-based platforms, as well as Xilinx’s ACAP platform [50]. Also, Vitis
relies on Vitis HLS [187] to synthesize C/C++ and OpenCL code into RTL.
One of the key components available within Vitis is Vitis AI. This development environment

permits users to accelerate the inference of Artificial Intelligence models on FPGA. Starting from
a high-level description in TensorFlow, PyTorch, or Caffe, Vitis AI optimizes and compiles the
model into a binary for Xilinx’s Deep Learning Processing Units (DPUs). Another relevant feature
of Vitis is a better integration with the Xilinx Runtime library (XRT) [189]. This library aims at
easing the communication between the host and the accelerators, independently from their physical
connection or target platform. Finally, Vitis offers a set of open-source out-of-the-box accelerated
libraries [188] covering various fields ranging from computer vision to linear algebra.

Intel oneAPI Toolkits: Intel oneAPI Toolkits [65] is a set of toolkits by Intel to deploy accel-
erated applications on systems comprising CPUs, GPUs, and FPGAs with a unified programming
model. It provides a common developer experience across different accelerator platforms to boost
performance and productivity. The core of oneAPI specification is Data Parallel C++ (DPC++), a
cross-architecture programming language based on the SYCL standard. DPC++ supplies explicit
parallel constructs and offload interfaces to target a broad range of heterogeneous computing
environments, including CPUs and FPGAs. Moreover, Intel oneAPI accepts partially other C-based
languages. Indeed, it can automatically migrate 80-90% of C/C++ and Compute Unified Device
Architecture (CUDA) code to DPC++, while the designer has to manually migrate the remaining
part and integrate it within the oneAPI/DPC++ flow. After implementing a kernel, the developer can
perform a software emulation on the CPU to verify functional correctness. Likewise, oneAPI can
generate various reports to identify the design bottleneck, view the schedule, and provide area and
timing estimates. In this way, the designer can fine-tune the kernel via directives. Once satisfied
with the performance design, oneAPI takes care of the FPGA bitstream compilation.

3.3 Summary
Table 2 reports the key characteristics of the analyzed HLS/ACS tools. Both companies and academia
contributed to the growth and success of the third generation of HLS. In particular, a significant
initial effort came from academia (Figure 5), whose research products, like LegUp, AutoPilot (now
Vivado HLS), and ROCCC, turned into commercial tools. Another pivotal factor that made this
generation successful is the adoption of C-based languages. Indeed, most tools rely on C-based
languages with specific restrictions, e.g., recursion, dynamic memory allocation. Only HDL Coder
and Hastlayer do not follow such a trend. Among the supported languages, OpenCL is getting more
attention, particularly for ACS, providing a unique language to target multiple devices.

Moving to the output of the HLS process, multiple tools generate RTL code suitable for more than
one FPGA vendor, as well as ASICs. This feature makes such tools particularly flexible, especially
when FPGAs are just an intermediate prototyping step towards ASIC deployment. On the other
hand, most ACS tools target just one vendor, which is also their developer. Indeed, since ACS tools
perform both HLS and system-level integration steps, it is easier for an FPGA vendor to integrate
different products within a unified environment and provide designers with a complete toolchain.
In this way, thanks to the predefined flow, the vendor can introduce additional optimizations to
improve the hardware design for the target FPGA.

Considering other relevant aspects, we believe that functional verification of a hardware design
is one of the essential features HLS tools should implement since it enables checking the correct-
ness of the produced RTL code. However, various tools, especially “pure” HLS ones, offer partial

, Vol. 1, No. 1, Article . Publication date: August 2022.

18 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Table 2. Comparison table of the presented HLS/ACS tools.

Tool License Owner Input RTL Target TestBench Simulation Domain Precision Other Relevant
Language Language Vendor Generation FP FixP Features

H
LS

HDL Coder★ Commercial Mathworks MATLAB VHDL, Verilog Intel, Xilinx Yes SW, HW DSP,
Image Proc. No Yes ASIC support,

graphical design

Catapult-HLS★ Commercial Mentor Graphics
(now Siemens) C++, SystemC VHDL, Verilog Intel, Xilinx Yes SW, HW All Yes Yes ASIC support

GAUT† Academic U. Bretagne
Sud C, C++ VHDL, SystemC Intel, Xilinx Yes HW DSP No Yes ASIC support

ROCCC† Commercial Jacquard
Computing C subset VHDL Xilinx Yes HW Streaming Yes No Smart buffers

LegUp★ Commercial LegUp Computing
(now Microchip) C, C++ Verilog Microchip Yes SW, HW All Yes Yes Pthread and

OpenMP support

CyberWorkBench Commercial NEC C, C++, SystemC VHDL, Verilog Intel, Xilinx Yes SW, HW All Yes Yes Multi-clock design,
clock-gating, ASIC support

Bambu†‡★ Academic PoliMI C VHDL, Verilog Intel, Xilinx,
Lattice Yes SW, HW All Yes No Modular and extensible,

ASIC support

Vivado/Vitis HLS★ Commercial Xilinx C, C++, OpenCL
SystemC

VHDL, Verilog,
SystemC Xilinx Yes SW, HW All Yes Yes -

Stratus HLS★ Commercial Cadence C, C++, SystemC VHDL, Verilog,
SystemC Agnostic Yes SW, HW All Yes Yes ASIC and SoC support

Hastlayer†‡★ Commercial Lombiq
Technologies .NET VHDL Intel, Xilinx No SW All No Yes Support for .NET

framework languages
Intel HLS Compiler★ Commercial Intel C, C++ Verilog Intel Yes SW, HW All Yes Yes -

Dynamatic†‡★ Academic EPFL C/C++ VHDL Xilinx Yes HW All Yes N/A Dynamically
scheduled circuits

XLS†‡★ Commercial Google DSLX, C++ SystemVerilog Agnostic No SW, HW All Yes Yes ASIC support, fuzzer,
HW-oriented IR

A
CS

Intel FPGA SDK★

for OpenCL Commercial Intel OpenCL VHDL, (System)Verilog Intel Yes SW, HW All Yes Yes System Integration
Bitstream Generation

SDAccel Commercial Xilinx C, C++,
OpenCL VHDL, (System)Verilog Xilinx Yes SW, HW All Yes Yes System Integration

Bitstream Generation

SDSoC Commercial Xilinx C, C++,
OpenCL VHDL, Verilog Xilinx Yes SW, HW All Yes Yes System Integration

Bitstream Generation

TAPAS† Academic Simon Fraser Cilk(-P), OpenMP Chisel Intel SoC No HW All Yes No System Integration
Bitstream Generation

Vitis Unified Software★ Commercial Xilinx C, C++,
OpenCL VHDL, Verilog Xilinx Yes SW, HW All Yes Yes System Integration

Bitstream Generation

Intel oneAPI Toolkits★ Commercial Intel C, C++, CUDA,
OpenCL VHDL, Verilog Intel No SW, HW All Yes Yes System Integration

Bitstream Generation

† Open-source ‡ Last update in the last years (2020-2021) ★ Maintained, to the best of authors’ knowledge

functionalities for design verification, as they just supply one type of simulation (SW or HW). In
contrast, most ACS tools provide a more comprehensive experience, implementing SW and HW
simulation and even performance analysis via profiling tools. Similarly, modern ACS/HLS tools
are now general and mature enough to implement features like floating and fixed-point data types
and enable the hardware design of applications belonging to different domains. This last aspect
shows a firm evolution compared to the first HLS tools of the third generation, which focused on a
specific computational field (e.g., HDL Coder and GAUT). Nonetheless, domain specialization has
its advantages, and Section 4 analyzes research efforts in that direction.

In the future, we foresee that vendors will keep furthering their toolchains, especially ACS ones,
to make FPGAs more appealing to software developers. Indeed, these tools, which we consider
the fourth generation of HLS [104], resemble the software development experience more than
the hardware one, hiding and automating low-level technicalities like system-level integration.
Besides, they represent the ideal entry point to both accelerating and deploying compute-intensive
workloads vendors’ accelerator cards. However, if, on the one hand, this approach helps the designer
as it offers automated system-level integration and runtime APIs to manage the interaction with the
FPGA, on the other, it constraints the development to a specific flow. For this reason, we believe that
“pure” HLS tools, i.e., the third generation, will continue to exist as they enable fast software-like
development of IPs for custom systems out of the scope of ACS tools.

4 DOMAIN-SPECIFIC LANGUAGES FOR FPGA DESIGN
So far, we have described the most relevant HDLs and HLS tools in the literature. Our analysis
highlights how such approaches provide a higher abstraction level than (System)Verilog and VHDL
when designing FPGA-based systems. In this context, it is worth noting that, as the abstraction
level increases, the required hardware expertise decreases, thus reducing the steepness of the FPGA-
design learning curve. For instance, ACS tools hide the system-level design phase, dramatically

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 19

Application
 Domain

Architectural
 Domain

Intermediate
Infrastructure

For DSLs

⋅Infrastructure for Delite-based DSLs

⋅Spiral

⋅P4-to-VHDL ⋅Hipacc ⋅Darkroom ⋅P4FPGA ⋅Halide HLS

⋅P4HLS⋅ExaSlang 4 ⋅Rigel ⋅RIPL

⋅FROST
⋅SuSy ⋅Spatial

⋅LIFT ⋅HeteroCL⋅DHDL

⋅HeteroHalide

⋅Calyx

⋅SPGen

2012 20162014 2018 20202011 20152013 2017 2019 2021

⋅AnyHLS

4.1

4.2

4.3

2012 20162014 2018 20202011 20152013 2017 2019 2021

2012 20162014 2018 20202011 20152013 2017 2019 2021

Fig. 6. Timeline of the reported DSLs and Intermediate Infrastructures from when FPGA support started.

simplifying the designer’s work. Nonetheless, some hardware knowledge is still necessary to
develop effective designs. For instance, given a target scenario, a designer may choose among
various architectural solutions (e.g., streaming, Systolic Array) and consider different optimizations
to improve the final circuit quality. To this end, automating the optimization of a hardware design
would further raise the abstraction level; however, it is no trivial task due to the vast design space
to explore, especially for tools covering different domains. While the literature contains several
approaches to optimize FPGA designs (semi)automatically under certain constraints [22, 137, 157,
172, 175, 194], this Section focuses on a precise solution, namely Domain-Specific Languages (DSLs).

Although they have been around for several decades [47], DSLs, and domain specialization in
general, gained a lot of popularity in recent years [58, 71, 97, 120, 139, 171] for many reasons. First
of all, modern DSLs enable developers to quickly and easily develop portable code for multiple
architectures, especially CPUs and GPUs, increasing productivity. Then, the domain restriction
allows DSL compilers to explore the design space quickly, identify the typical computational
patterns of the target domain, and produce highly optimized implementations. Similarly, the
language restrictions permit a better static code analysis, removing unnecessary constructs which
may impact its effectiveness, like pointer management [84]. Consequently, DSL applications may
reach remarkable performance with a relatively minor design effort than other more general
languages and frequently outtake hand-tuned libraries [7, 138].

Similar to CPUs and GPUs, DSLs are particularly convenient also for FPGAs. Thanks to domain
specialization, the compiler can quickly explore the design space and leverage the FPGA features.
In particular, such an exploration involves both evaluating many and different optimizations and
selecting the most proper base architecture. In this way, the compiler relieves the burden of manually
exploring various solutions, permitting designers to just focus on the functional description of the
target algorithm and further reducing the learning curve steepness. This aspect is highly beneficial
in the FPGA scenario, where the development of new solutions is highly time-consuming.
In this Section, we describe the most relevant DSLs targeting FPGAs available in the literature.

In particular, our analysis only examines languages of limited expressiveness developed for a
specific domain or intermediate frameworks upon which such languages can build to target FPGAs.
Therefore, we exclude other domain-specific tools that do not directly involve the usage of a
DSL. For instance, although they perform a similar task, we exclude the various machine learning
frameworks available in literature as they require as input a high-level description in a given format
(e.g., JSON, Protocol Buffers) that does not fall under the DSL definition [47]. However, an interested
reader may look at other specific literature surveys for more details about such tools [175].

, Vol. 1, No. 1, Article . Publication date: August 2022.

20 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

We group the DSLs in three main clusters according to a taxonomy based on the DSL features and
purpose. The first cluster considers DSLs that focus on a particular application domain (Section 4.1),
while the second contains the ones tailored to a specific architectural model (Section 4.2). Finally,
the third cluster comprises intermediate languages and infrastructures for DSLs (Section 4.3).

4.1 Application Domain
This Section examines the group of DSLs that concentrate on a given application domain. Such
languages implement specific constructs and abstractions that ease the development of efficient
code for image processing, packet processing, numerical solvers, and so on. From the code, the DSL
compiler generates the FPGA design enforcing effective optimizations for the target domain.

Spiral: Based on the Signal Processing Language (SPL) [190], Spiral is a hardware generation
framework that employs a high-level mathematical formalism to generate custom hardware im-
plementations of linear signal transforms [114], e.g., discrete Fourier transform (DFT) and fast
Fourier transforms (FFTs). Spiral developers extend SPL-based formulae to introduce on top of
SPL new datapath concepts for the sequential reuse of hardware structures called streaming and
iterative reuse. This extension of SPL is called hardware SPL (HSPL), being more friendly to hard-
ware generation. The overall compilation framework starts by inputting a signal transform and
performing algorithmic manipulation to produce an SPL-friendly formula. A step called formula
rewriting transforms the SPL-based formulae into HSPL-based ones, making explicit the sequential
reuse. Finally, the framework translates HSPL formulae into synthesizable Verilog code that can
target both FPGAs and ASICs. In 2018, the developers extended Spiral with a new formalism called
Operator Language (OL) and extended the support to both CPUs and GPUs [48].

P4 Frameworks: P4 [15] is a high-level language for programming packet processors born
in 2014 to answer the increasing demand for adaptable switches. In particular, P4 is a protocol-
independent, platform-agnostic, and field reconfigurable language. Indeed, a developer can compile
P4 code for both ASICs or software switches and change the packet processing after deployment.
Thanks to these features and the wide employment of FPGAs in the networking field, many
P4-to-FPGA frameworks were born after its release. Here we review the most relevant ones.

P4-to-VHDL is an experimental framework developed in 2016 that, starting from a P4 program,
produces a VHDL-based architecture for packet parser at 100Gbps [11]. The general architecture
P4-To-VHDL employs for the final VHDL translation is based on the so-called HFE M2 architec-
ture [11], which presents a structure based on two components: a protocol analyzer and a pipeline
of processing modules targeting Xilinx Virtex 7 FPGA. Based on this work, Cabal et al. propose a
new version of the target packet parser architecture that achieved even better throughput [18].

P4FPGA is a framework that provides a P4-to-BSV (Section 2.3) translation [178]. P4FPGA starts
by taking standard P4 IR [15], performs an IR-to-IR transformation, then composes the basic blocks
of the programmable pipeline, and finally emits the pipeline as BSV code for standard FPGA flow.
Besides, P4FPGA produces a runtime system that provides hardware-independent abstractions for
functionalities such as transceiver management, and host/control plane communication.

P4HLS is an open-source framework for the generation of programmable packet parsers [146,
147]. This framework outputs highly templated C++ classes that can then be synthesized through
traditional HLS toolchains. P4HLS obtains better trade-offs on latency and resource usage thanks
to its architectural improvements and its graph reduction algorithm for pipeline simplification.

Hipacc: Born in 2012 for GPUs mainly [109], Hipacc is an open-source framework [111] from
a joint effort of Nürnberg and Saarland Universities that enables the design of image processing
kernels in a domain-specific language [110]. The developers extend their framework to support
the generation of C- and OpenCL-based kernels for HLS toolchains of Xilinx [143] and Intel [142],

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 21

respectively. The Hipacc DSL is embedded in C++, and the framework exploits LLVM infrastruc-
ture [85] for a source-to-source compilation. Moreover, Hipacc generates optimized code for a
target architecture leveraging vendor-specific optimizations. For instance, the first FPGA-capable
version [143] employs a float-to-integer conversion of convolution coefficient to exploit the FPGA
resources better. Finally, Hipacc produces a testbench for the verification step on HLS toolchains.

Darkroom: Darkroom [56] is an image processing DSL and a compiler embedded in the Terra
language [45]. Designers can exploit Darkroom to realize image processing pipelines for FPGAs,
ASICs, and CPUs. Darkroom expresses image processing algorithms as direct acyclic graphs of image
operations, restricting them to fixed-size stencils. In particular, Darkroom implements such pipelines
based on the line-buffering architectural pattern, which consists of storing intermediate data
between the pipeline stages. This pattern permits minimizing thememory bandwidth and improving
performance and power efficiency. Given an input pipeline, Darkroom finds the minimal buffer
size via an integer linear programming formulation and automatically schedules the computation.

ExaSlang 4: ExaStencils language (ExaSlang) [150] is a multi-layer DSL designed to accelerate
multigrid-based numerical solvers on FPGA. ExaSlang consists of four abstraction layers tailored
to different classes of users. ExaSlang 4 represents the most concrete layer where designers can
develop procedural programs exploiting domain-specific elements (e.g., stencils and fields) and
communication statements to manage the layer parallelism. A peculiar feature of ExaSlang 4 is the
Level Specification, which enables designers to define objects, like functions and stencils, depending
on the multigrid level, thus overriding default ones. Finally, ExaSlang 4 implements the multigrid
algorithm as a sequence of kernels connected by FIFOs and translates it into code for Vivado HLS.

Rigel: Based on the Darkroom framework, Hegarty et al. presented a new DSL framework for
image processing called Rigel [57], whose paradigm focuses on productivity rather than supplying
automatic scheduling. In contrast with Darkroom, Rigel can also support pyramids image processing
and sparse computations thanks to a new multi-rate architecture. The Rigel DSL is embedded in
Lua and enables two different flows. The first flow translates Rigel into Terra modules to allow a
fast cycle-accurate simulation environment. The second flow compiles Rigel into an intermediate
representation, called Systolic, which is translated into Verilog modules.

RIPL: Rathlin Image Processing Language (RIPL) [160, 161] is an open-source declarative DSL
for memory-efficient FPGA-based image processing pipelines. RIPL provides the designers with
stream combinator primitives, or algorithmic skeletons, to specify and compose image processing
kernels. These skeletons capture common data access patterns (e.g., filters, convolutions, and map
operations). Their composition defines a dataflow graph that the RIPL compiler can analyze to
extract and minimize the on-chip memory requirements. From this analysis, RIPL produces a
sequence of small computational modules connected by FIFOs. Finally, RIPL leverages Xronos [12],
an open-source HLS tool for the RVC-CAL language, to generate RTL code for Xilinx FPGAs.

Halide-HLS: Halide-HLS extends the Halide language and compilation framework [138] to
accelerate image processing pipelines on Xilinx Zynq SoCs [133]. Halide is an open-source image
processing DSL that decouples the computation from the scheduling. Since Halide was developed
for CPUs and GPUs, Halide-HLS provides Halide with additional scheduling commands to control
some crucial aspects of the resulting FPGA designs, like the depth of the FIFOs between kernels.
Moreover, the overall framework eases the user in the HW/SW partitioning task and generates an
integration infrastructure of kernel drivers and APIs that enable an easy-to-use accelerator. Finally,
this infrastructure increases the cooperation within a heterogeneous device where CPU and FPGA
can work concurrently on different computation steps [133].

HeteroHalide: HeteroHalide [94] is an end-to-end solution that compiles Halide programs to
FPGA designs simplifying the overall process. The compilation flow takes an algorithm defined in
Halide and its scheduling commands and translates them into code for HeteroCL [82] (described in

, Vol. 1, No. 1, Article . Publication date: August 2022.

22 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Section 4.3). In particular, HeteroHalide exploits HeteroCL as an Intermediate Representation (IR)
and its multiple backends to generate FPGA accelerators. The authors also extended the Halide
scheduling commands with lazy transformations. In this way, Halide does not implement the
command directly into its IR but explicitly lowers it to HeteroCL to produce efficient code.

4.2 Architectural Domain
The second cluster of DSLs shifts the focus from the application level to the architectural one.
Indeed, they implement a particular architectural model/template and offer features and constructs
to support classes of algorithms that benefit from it. Eventually, the compiler takes the input code
and customizes the underlying architecture to better fit it.

SuSy: Born from a joint effort from Cornell, Intel, and UCLA, SuSy is a framework that comprises
a DSL and a compilation infrastructure for productively building Systolic Arrays [76] on FPGAs [83].
Since Systolic Arrays are a killer application for spatial architectures, this framework extends the
Halide OpenCL generation framework to tailor those specific classes of computations. The extended
programming framework exploits the inherited decoupling of computation and scheduling from
Halide [138] and proposes a DSL based on Uniform Recurrence Equations (URE) [72] for space-
time transformations [77, 86]. Besides, SuSy provides a set of spatial optimization primitives that
do not require any change in the algorithm structure but offer several spatial mappings. Finally,
the compilation framework maps the application on a Systolic Array architecture based on a
shift-register processing element designed in OpenCL for Intel FPGAs.

Spatial: Spatial [73, 169] is an open-source DSL and compiler for the design of spatial accelerators
targeting FPGAs, CGRAs, and ASICs. Spatial provides various target-agnostic abstractions able
to boost both productivity and design performance, while the compiler manages most of the
optimizations. Spatial compiles the code to C++ (host) and Chisel (accelerator). According to the
target device, Spatial relies on either Xilinx and Intel’s toolchains, Plasticine CGRA [132], or
Synopsys tools. Spatial builds upon four criteria that the developers considered necessary to offer
a good balance between productivity and performance, namely control, memory hierarchy, host
interfaces, and DSE. First, Spatial provides multiple control structures to enable the designers to
describe the accelerator architecture briefly. Such constructs range from finite-state machines
and loops to streaming and parallel ones. Then, the memory hierarchy supplies various memory
templates to abstract and yet control data allocation on both on-chip and off-chip memories. Within
Spatial code, the designer can implement both the accelerator and the host, leveraging constructs
that abstract the underlying communication interfaces between host and target device. Finally,
even though the Spatial compiler automatically optimizes the control and memory constructs
according to statically inferable information, Spatial also provides a DSE engine based on the
HyperMapper [13] machine learning framework.

SPGen: Streaming Processing Generator (SPGen) is a DSL framework for designing streaming
processing FPGA accelerators based on OpenACC in the HPC context [145, 180]. Given an OpenACC
code, the framework analyzes it and extracts both an OpenCL host and kernel code. Next, the
framework implements the kernel converting body loops into SPGen code, which is then translated
into an HDL module. Given the lack of support for memory access of SPGen, the framework also
instantiates an OpenCL kernel wrapper to enable memory access. The final result is an OpenCL
code with an HDL-based IP that leverages Intel FPGA SDK for OpenCL to produce the bitstream.

4.3 Intermediate Infrastructure for DSLs
The third and last cluster covers those solutions that propose an intermediate layer lying between
the DSL and the RTL/HLS code. Developers can rely on such a layer to design new DSLs or extend
existing ones to support FPGAs as target devices. In this way, the intermediate infrastructure

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 23

further decouples the code development from the hardware-related translation and optimization,
increasing the compilation flow modularity.

Infrastructure for Delite-based DSLs: Based on an extension of the Delite compilation frame-
work [89, 162], George et al. [51] proposed a compiler infrastructure generating a complete FPGA-
based system from an application expressed in Delite-based DSLs (e.g., OptiML [163]). This infras-
tructure leverages Delite to automatically extract a set of computational patterns (that they also
call kernels) and a dependency graph. Then, it generates the hardware based on an architectural
template, which accommodates both softcore and custom kernels, along with interconnection and
interface components. The compiler maps serial kernels on the softcore. In contrast, it creates
optimized HLS-based implementations for the parallel ones. The compiler produces several imple-
mentations, called variants, to provide several area-performance trade-offs. Nonetheless, it picks
the top-performing one if it fits the resources budget. An exciting feature of this infrastructure is
the ability to manage dynamic memory allocation within a maximum size. The final step, also called
system synthesis, selects the kernel variant, interconnects every component within the architectural
template, and creates the control circuitry for kernel scheduling and dynamic memory allocation
management. In particular, if that memory overflows, the execution terminates immediately. After
this step, the compiler follows the standard flow for Xilinx FPGAs to generate the final bitstream.

DHDL: Delite Hardware Definition Language (DHDL) [74, 131] is an intermediate language
devised to describe hardware datapaths. More technically, DHDL is a DSL embedded in Scala, and
designers can either write code directly in DHDL or target it from another DSL or high-level lan-
guage. DHDL aims to generate efficient hardware implementations for FPGA from parallel patterns,
like map, reduce, groupBy, etc. To this end, DHDL provides a set of parametrized architectural
templates that capture parallelism, locality, and off- and on-chip access pattern details. DHDL
represents the given program as a dataflow graph where the nodes are the selected templates, and
the edges are the data dependencies. The analysis of the dataflow graph provides estimates of both
cycle count and area usage. Moreover, DHDL offers a DSE tool that relies on such estimates to
explore the design space. From the final design, DHDL emits MaxJ code for Maxeler’s DFEs.

FROST: FROST [42, 43] is a common backend for DSLs that enables them to generate FPGA
designs even though they do not support FPGAs natively. In particular, FROST targets data-parallel
algorithms operating on dense arrays and tensors and provides an Intermediate Representation
(IR) that DSLs can target. Alternatively, a designer can use one of the already supported DSLs, i.e.,
Halide [138] and Tiramisu [7]. FROST also exposes a scheduling language like Halide that provides
various commands the designer can apply to optimize the code. Such scheduling commands affect
the final design at multiple levels, from the computation (e.g., pipelining) and local memory usage
(e.g., partitioning) to the overall architecture (e.g., dataflow). Given the input code and the scheduling
commands, FROST optimizes the IR to produce C/C++ suitable for the SDAccel toolchain by Xilinx.

HeteroCL: HeteroCL [82] is a multi-paradigm programming infrastructure that decouples the
algorithm specification from hardware customization. In particular, HeteroCL is a Python-based
DSL extended from TVM [24], a tensor-oriented declarative DSL. In addition to TVM features,
HeteroCL enables designers to exploit both hardware optimization techniques and an imperative
paradigm. On the one hand, after specifying the algorithm, the designers can customize and optimize
three hardware components: compute (e.g., loop transformation and parallelization), data type (e.g.,
bit-accurate types and quantization schemes), and memory (e.g., partitioning and reuse buffers). In
this way, the designers can easily explore the performance/area and accuracy trade-offs. On the
other hand, the support for the imperative paradigm permits the designers to implement algorithms
not suitable for a declarative one (e.g., sorting algorithms). Finally, HeteroCL features three different
backends: a general backend that compiles to code for HLS tools, a stencil backend based on the
SODA framework [25], and a Systolic Array backend based on the PolySA framework [33].

, Vol. 1, No. 1, Article . Publication date: August 2022.

24 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

LIFT: Aiming at performance portability across heterogeneous architectures [159], LIFT [75] is
a code generation framework building upon a high-level, data-parallel intermediate language. A
designer can either target LIFT parallel primitives from DSLs and software libraries or directly write
code in LIFT to generate code for FPGAs, CPUs, GPUs. FPGA backend takes the input computations
expressed as lambda functions and translates them into VHDL code. At the same time, the remaining
part becomes the host code on a Xilinx Zynq system. LIFT also provides an automatic design space
exploration based on a rewriting rule methodology that applies optimization to the code. The
proposed mapping optimizations are tiling, vectorization, and what the authors call coarse-grained
parallelism. For instance, considering a dot-product computation, tiling divides the data processed in
a loop improved locality, vectorization operates on multiple data simultaneously, and coarse-grained
parallelism replicates the same dataflow numerous times, i.e., multi-row processing.

AnyHLS: AnyHLS [123] is an open-source [122] framework for the design of high-level and
modular domain-specific libraries targeting HLS. It builds on top of AnyDSL [92], a compiler
framework for the functional language Impala that leverages partial evaluation [49] and shallow
embedding [91]. The former enables the optimization of algorithm variants at compile-time, the
latter supports the addition of domain-specific structures without affecting the compiler. AnyHLS
inherits such features from AnyDSL and exploits them to build abstractions for FPGA design.
Specifically, AnyHLS offers design utilities about loop transformations, reductions, finite state
machines, and memory types and abstractions. Given a functional description of the algorithm in
Impala, AnyHLS combines the previously mentioned utilities and then synthesizes optimized HLS
code for either Vivado HLS or Intel SDK for OpenCL.

Calyx: Aiming at combining high-level abstraction and control flow details of HLS imperative
languages and HDL structural details and high performance, Calyx is an intermediate language
that provides a shared compilation infrastructure to quickly design and deploy computational accel-
erators in Verilog [118]. Calyx provides a higher level of abstraction than IR for RTL languages [66]
and grants precise control over scheduling logic generation, borrowing the decoupling of algorithm
and scheduling from Halide [138] while explicitly representing low-level resources. Calyx is not
tied to any specific hardware design methodology, and it provides a general infrastructure to let
new DSL-to-RTL be fastly prototyped. Indeed, the developers present two frontends based on
a Systolic Array generator and Dahlia, an annotation language for predictable HLS accelerators
designs. However, Calyx does not provide any target-specific optimizations, e.g., mux cost in ASIC
or FPGA designs [118], and does not guarantee any feasibility on the design implementation.

4.4 Summary
Table 3 summarizes the main features of the tools we described in this Section. As reported by
the second column, most owners are universities, which usually developed such DSLs for internal
research projects or collaborations with other institutes/companies and then released them as open
source. However, some of these languages are currently not maintained anymore, according to the
last updates on their repositories. In terms of the input language, while some developers designed
a new language from scratch (e.g., Rigel, RIPL), the majority leverage existing languages and adapt
their structure to target FPGAs, especially when considering the first two clusters. On the other
hand, developers can exploit the intermediate infrastructure of the third cluster to either build a
new language that directly supports FPGAs or add FPGA support to multiple existing languages.
Moving to the domain, the first cluster of DSLs mainly focuses on image and packet processing
domains, in which FPGAs are particularly effective. The same holds for the second cluster, shifting
the specialization from the application level to the architectural one. Finally, the third cluster broads
the supported domains thanks to their agnostic approach.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 25

Table 3. Comparison table of the presented DSLs for FPGA design.

Tool Owner Input Domain Output Target Other Relevant
Language Vendor Features

A
pp

lic
at
io
n
D
om

ai
n

Spiral CMU OL Signal Processing Verilog Xilinx ASIC, CPU, GPU

P4-to-VHDL CESNET a.l.e.
Netcope Tech. P4 Packet Processing VHDL Xilinx -

Hipacc† Nürnberg Saarland C++ DSL Image Processing OpenCL/C++ Intel, Xilinx CPU, GPU

Darkroom† Stanford Terra Image Processing Verilog Xilinx CPU and ASIC Support,
Automatic Scheduling

ExaSlang 4 ExaStencils
Consortium ExaSlang 4 Numerical Solvers C/C++ Xilinx Abstraction Layers,

Level Specification
Rigel†‡★ Stanford Rigel Image Processing Verilog Xilinx Simulation by Terra

RIPL†‡ Heriot-Watt
University RIPL Image Processing Verilog Xilinx Algorithmic Skeletons

P4FPGA† P4FPGA Project P4 Packet Processing BSV Xilinx -

Halide-HLS† Stanford, Berkeley Halide Image Processing C/C++ Xilinx Automatic Integration
(APIs, Drivers)

P4HLS† Montréal P4 Packet Processing C++ Xilinx -
HeteroHalide†‡ UCLA Halide Image Processing HeteroCL Intel, Xilinx Lazy Transformations

A
rc
hi
te
ct
ur
al

D
om

ai
n

SuSy Cornell, Intel,
UCLA URE Systolic Arrays OpenCL Intel Extends the Halide OpenCL

Generation Framework

Spatial†‡★ Stanford Spatial Application
Accelerators Chisel Intel, Xilinx DSE, CGRA and

ASIC Support

SPGen Riken Center,
University Tsukuba OpenACC Streaming Processing OpenCL,

SPGen Intel -

In
te
rm

ed
ia
te

In
fr
as
tr
uc
tu
re

fo
rD

SL
s

Infrastructure for
Delite-based DSLs EPFL, Stanford OptiML Delite Languages Bitstream Xilinx Dynamic Memory

Allocation

DHDL Stanford DHDL,
other DSLs Parallel Patterns MaxJ Intel,

Maxeler’s DFE
Cycle Count and

Area Estimates, DSE

FROST PoliMI, MIT Halide,
Tiramisu Data-Parallel C/C++ Xilinx Scheduling Commands

HeteroCL†‡★ UCLA,
Cornell University HeteroCL Any C/C++, SODA,

PolySA Intel, Xilinx Decoupling of Algorithm
and HW Customization

LIFT†‡ Edingburgh
Glasgow LIFT Functional Patterns VHDL Xilinx Host Generation,

Automatic DSE

AnyHLS†‡ University
Erlangen-Nürnberg Impala Any C/C++/OpenCL Intel, Xilinx Partial Evaluation,

Shallow Embedding

Calyx†‡★ Cornell University Systolic Arrays,
Dahila, TVM Any Verilog Xilinx Support for Any DSL

† Open-source ‡ Last update in the last years (2020-2021) ★ Maintained, to the best of authors’ knowledge

After processing the input code, most DSLs generate either RTL or code for HLS/ACS tools,
whereas just one DSL offers a full flow that produces the bitstream as output. Therefore, they all
need to interact with commercial tools to complete the design flow. According to the point where
this interaction starts, this dependency may become more and more binding. Consequently, the
DSL infrastructure may require continuous updates to keep pace with FPGA tool changes. In this
scenario, a modular approach similar to the third DSL cluster eases maintaining the language.

Summing up, the domain specialization introduces an additional abstraction layer that impacts
the design for FPGAs at multiple levels. On the one hand, it reduces the steepness of the FPGA
learning curve, mainly requiring domain knowledge to write the algorithm in a given language.
On the other hand, it automates various analyses and optimizations that, otherwise, would take
too much time in a multi-domain scenario, relieving the designer from this burden. Nonetheless,
making a DSL successful is no easy task as, at first glance, many DSLs look similar, especially when
considering the same domain. We believe that maintaining a language and building a community
around it, especially if open source, is paramount for its success. Likewise, being a vendor-agnostic
DSL and supporting heterogeneous architectures help cover a broader range of designers. Even
though this aspect potentially implies a higher complexity, a modular structure may ease addressing
it thanks to the decoupling of the internal components. Finally, despite the automatic optimizations,
we believe that a DSL would be more comprehensive if it exposed a manual optimization flow (e.g.,
a scheduling language like in Halide) that expert designers may exploit to hand-tune their designs.

, Vol. 1, No. 1, Article . Publication date: August 2022.

26 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Conciseness

Flexibility
Design

Productivity

Verification
Productivity

Resource Efficiency Performance

(Best)

HDL HLS DSL

Fig. 7. A qualitative comparison of HDLs, HLS tools, and DSLs over three levels (the arrangement does not
say anything about a quantitative comparison when two or more solutions belong to the same level).

5 CONCLUSIONS AND FINAL REMARKS
FPGAs are becoming increasingly pervasive in the computing landscape, from small low-power
embedded systems to large-scale datacenters [17, 52, 168]. Similar to what happened with program-
ming languages and frameworks for general-purpose processors [102], tools for FPGA hardware
design changed and evolved according to the developer’s needs and target contexts. Indeed, mod-
ern HDLs and HLS tools offer a new level of abstraction and productivity than (System)Verilog
and VHDL. On the one hand, hoisting of abstraction level allows to reduce the design time, and
facilitate IP reuse, customization, and verification. On the other hand, it makes the FPGA learning
curve smoother for non-hardware designers. Examples are ACS tools, which offer an efficient
HLS environment and completely abstract and automatize the hardware design flow, hiding the
complexity of the system-level design. Despite the high level of abstraction provided, both HDLs
and HLS tools require knowledge and familiarity with hardware design. The possibility to use
high-level languages like C, C++, and OpenCL is for sure advantageous over HDLs; however, such
languages are not natively designed to describe hardware. While HLS compilers do a great job
in translating and scheduling high-level languages into hardware RTL, the designer must clearly
know the desired hardware architecture and implement it consequently to ease the HLS process.
Moreover, manual optimization through options and directives is often required to guide this
process further, increasing the productivity level than HDLs at the cost of a lower design control
and a time-consuming exploration [81, 116]. Therefore, DSLs emerge to overcome these drawbacks
and exploit the narrowing of the domain specialization. In this way, hardware developers benefit
from specialized toolchains and infrastructures, optimized architectural templates, and expressing
computations more simply and intuitively. Figure 7 shows a qualitative evaluation of HDLs, HLS
tools, and DSLs according to six metrics5 that combine our analysis and literature comparisons on
single case studies [51, 128, 143]. The chart highlights how HDLs offer the best solution in terms
of flexibility, performance, and resource efficiency at the cost of design and verification time, and
conciseness. Conversely, DSLs boost productivity and conciseness and deliver good design quality.
Finally, HLS represents an adequate trade-off between HDLs and DSLs.
Overall, the community efforts push towards a constantly increasing abstraction of FPGAs’

programmability to ease their usage and open to a broader public. Indeed, many of the toolchains
we described in this manuscript and other domain-specific toolchains that do not leverage a DSL as
5Appendix C and Table 5 define the six qualitative metrics.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 27

intended in this manuscript (such as machine learning ones [39, 172, 175] or general IR [154]) push
the FPGA democratization. Although these toolchains cover several application fields — acceleration
mainly —, we believe a low-level component (HDL) is still necessary to devise a complete design
experience. For instance, designing processors [1, 2, 28, 31, 127] or components at the analog/digital
boundaries is not straightforward through HLS or DSLs.

We identify six big takeaways from the body of knowledge presented in this survey.
Takeaway 1: The field of digital design abstraction for FPGAs is cyclical. From a very specific

language for hardware description (i.e., VHDL and Verilog), we move to HLS with the employment
of generic C language (after two failure tools generations [104]), and we finally find DSLs with
their extreme specificity for given computations.

Takeaway 2:HDLs will be a constant standard, and researchers will foster further improvements,
given their fundamental role in hardware design and verification. They still represent the most
efficient hardware design methodology, though highly time-consuming. (System)Verilog and VHDL
will not be the unique way for hardware description [99], given the wide variety of high-level HDLs
(as discussed in Section 2). However, a designer will think in low-level hardware components or
at the RTL level with wires and registers. In the future, we envision a further bloom of high-level
generators for architectures [8, 193] or more complex systems [1, 80].

Takeaway 3: The introduction of efficient HLS tools broaden the userbase of FPGA systems,
enabling non-expert hardware designers to this technology. However, these tools move the com-
plexity from the IP design towards the system-level design. Therefore, ACS tools come into play
to automate this flow, particularly useful for accelerators design. Nevertheless, custom designs
beyond accelerators exclude ACS and require low-level hardware design knowledge. We envision
that both HLS and ACS tools will remain essential for enabling a faster hardware development
cycle than HDLs, especially for accelerators or application domains continuously evolving [88].

Takeaway 4: DSLs fall at the extreme of specialization, where the designer needs algorithm
or applicative domain knowledge, and the compiler takes the burden of efficiently implement the
hardware. Although they are highly beneficial in targeting specific domains (both applicative and
architectural), at the current status DSLs heavily rely on the toolchains on top of which they build,
creating a tight bind with DSL and tool.

Takeaway 5: Among DSL clusters, the intermediate infrastructure one represents an exciting
trend for hardware design. Indeed, this approach embodies a trade-off between generality and
specificity. Besides, its modularity enables researchers to build general-purpose languages that
run on CPUs and FPGAs [154]. Undoubtedly, this trend will require a specialized compilation and
toolchain flow for a hardware design that can be vendor-agnostic and open, similar to LLVM [85].

Takeaway 6:What comes naturally after the fifth takeway is our belief in a future open FPGA
ecosystem. Similarly to the RISC-V revolution [3], we envision a open ecosystem for FPGAs6 from
the architecture itself [93, 167] to the design toolchains [115, 153]. Indeed, open-source FPGA-based
projects are more and more, and even some vendors started to open their toolchains [87, 136, 181].
In conclusion all these three abstraction efforts are necessary as they cover different aspects of

digital design; thus, we believe the community will continuously push the research in the FPGA
programmability field, from low-level RTL design to domain-specific abstractions.

ACKNOWLEDGEMENTS
The authors are grateful for feedbacks from Reviewers and NECSTLab members, with a particular
mention to A. Damiani, A. Parravicini, E. D’Arnese, F. Carloni, F. Peverelli, and R. Brondolin.

6https://osfpga.org/

, Vol. 1, No. 1, Article . Publication date: August 2022.

28 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

REFERENCES
[1] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew, Albert Magyar,

Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao,
Krste Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation, and Implementation Framework
for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21. https://doi.org/10.1109/MM.2020.2996616

[2] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher Celio, Henry Cook,
Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[3] Krste Asanović and David A Patterson. 2014. Instruction sets should be free: The case for risc-v. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146 (2014).

[4] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Gerards. 2010. C𝜆ash: Structural descriptions
of synchronous hardware using haskell. In 2010 13th Euromicro Conference on Digital System Design: Architectures,
Methods and Tools. IEEE, 714–721.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek, and K. Asanovic. 2012. Chisel:
Constructing hardware in a Scala embedded language. In DAC Design Automation Conference 2012. 1212–1221.

[6] John Backus. 1978. Can programming be liberated from the von Neumann style? A functional style and its algebra of
programs. Commun. ACM 21, 8 (1978), 613–641.

[7] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang,
Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE.

[8] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey Lavrov, Mohammad Shahrad, Adi
Fuchs, Samuel Payne, Xiaohua Liang, et al. 2016. OpenPiton: An open source manycore research framework. ACM
SIGPLAN Notices 51, 4 (2016), 217–232.

[9] Shunning Jiang Christopher Torng Christopher Batten. 2018. An Open-Source Python-Based Hardware Generation,
Simulation, and Verification Framework. In Workshop on Open-Source EDA Technology (WOSET’18). 1–5.

[10] Peter Bellows and Brad Hutchings. 1998. JHDL - An HDL for Reconfigurable Systems. In IEEE Symposium on FPGAs
for Custom Computing Machines. IEEE.

[11] Pavel Benácek, Viktor Pu, and Hana Kubátová. 2016. P4-to-VHDL: Automatic generation of 100 gbps packet parsers.
In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE.

[12] Endri Bezati, Marco Mattavelli, and Jorn W Janneck. 2013. High-level synthesis of dataflow programs for signal
processing systems. In 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE.

[13] Bruno Bodin, Luigi Nardi, M. Zeeshan Zia, Harry Wagstaff, Govind Sreekar Shenoy, Murali Emani, John Mawer,
Christos Kotselidis, Andy Nisbet, Mikel Lujan, Björn Franke, Paul H.J. Kelly, and Michael O’Boyle. 2016. Integrating
algorithmic parameters into benchmarking and design space exploration in 3D scene understanding. In Proceedings of
the 2016 International Conference on Parallel Architectures and Compilation (Haifa, Israel) (PACT ’16). Association for
Computing Machinery, New York, NY, USA, 57–69. https://doi.org/10.1145/2967938.2967963

[14] Thomas Bollaert. 2008. Catapult synthesis: a practical introduction to interactive C synthesis. In High-Level Synthesis.
Springer, 29–52.

[15] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, et al. 2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[16] Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. 2020. The essence of Bluespec: a core language for
rule-based hardware design. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 243–257.

[17] Andrew Boutros and Vaughn Betz. 2021. FPGA Architecture: Principles and Progression. IEEE Circuits and Systems
Magazine 21, 2 (2021), 4–29.

[18] Jakub Cabal, Pavel Benáček, Lukáš Kekely, Michal Kekely, Viktor Puš, and Jan Kořenek. 2018. Configurable FPGA
packet parser for terabit networks with guaranteed wire-speed throughput. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 249–258.

[19] Cadence. 2021. Stratus High-Level Synthesis. https://www.cadence.com/ko_KR/home/tools/digital-design-and-
signoff/synthesis/stratus-high-level-synthesis.html.

[20] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H Anderson, Stephen Brown, and
Tomasz Czajkowski. 2011. LegUp: high-level synthesis for FPGA-based processor/accelerator systems. In Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable gate arrays. ACM, Association for Computing
Machinery, New York, NY, USA, 33–36.

[21] Joao MP Cardoso, Pedro C Diniz, and Markus Weinhardt. 2010. Compiling for reconfigurable computing: A survey.
ACM Computing Surveys (CSUR) 42, 4 (2010), 1–65.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1145/2967938.2967963
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 29

[22] Riccardo Cattaneo, Giuseppe Natale, Carlo Sicignano, Donatella Sciuto, and Marco Domenico Santambrogio. 2015. On
how to accelerate iterative stencil loops: a scalable streaming-based approach. ACM Transactions on Architecture and
Code Optimization (TACO) 12, 4 (2015), 1–26.

[23] Raghunandan Chaware, Kumar Nagarajan, and Suresh Ramalingam. 2012. Assembly and reliability challenges in 3D
integration of 28nm FPGA die on a large high density 65nm passive interposer. In 2012 IEEE 62nd Electronic Components
and Technology Conference. IEEE, 279–283.

[24] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18). 578–594.

[25] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: stencil with optimized dataflow architecture. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 1–8.

[26] Michael D Ciletti. 2003. Advanced digital design with the Verilog HDL. Vol. 1. Prentice Hall Upper Saddle River.
[27] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMahan, and Timothy Sherwood. 2017. A

pythonic approach for rapid hardware prototyping and instrumentation. In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 1–7.

[28] Alessandro Comodi, Davide Conficconi, Alberto Scolari, and Marco D Santambrogio. 2018. TiReX: Tiled regular
expression matching architecture. In 2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 131–137.

[29] Katherine Compton and Scott Hauck. 2002. Reconfigurable computing: a survey of systems and software. ACM
Computing Surveys (csuR) 34, 2 (2002), 171–210.

[30] Davide Conficconi, Eleonora D’Arnese, Emanuele Del Sozzo, Donatella Sciuto, and Marco D Santambrogio. 2021.
A Framework for Customizable FPGA-based Image Registration Accelerators. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. Association for Computing Machinery, New York, NY, USA, 251–261.

[31] Davide Conficconi, Emanuele Del Sozzo, Filippo Carloni, Alessandro Comodi, Alberto Scolari, and Marco Domenico
Santambrogio. 2022. An Energy-Efficient Domain-Specific Architecture for Regular Expressions. IEEE Transactions on
Emerging Topics in Computing (2022). https://doi.org/10.1109/TETC.2022.3157948

[32] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. 2010. Customizable domain-specific computing. IEEE Design
& Test of Computers 28, 2 (2010), 6–15.

[33] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-based systolic array auto-compilation. In 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 1–8.

[34] Achronix Semiconductor Corporation. 2020. Speedster7t Network on Chip User Guide (UG089) . https://tinyurl.com/
achronixnoc. Last accessed: June 15th 2021.

[35] Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric Senn, and Eric Martin. 2008. GAUT: A high-level
synthesis tool for DSP applications. In High-Level Synthesis. Springer, 147–169.

[36] Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres Takach. 2009. An introduction to high-level synthesis.
IEEE Design & Test of Computers 26, 4 (2009), 8–17.

[37] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler fuzzing through deep learning.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis. 95–105.

[38] Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael Kinsner, David Neto, Jason Wong,
Peter Yiannacouras, and Deshanand P Singh. 2012. From OpenCL to high-performance hardware on FPGAs. In 22nd
international conference on field programmable logic and applications (FPL). IEEE, 531–534.

[39] Andrea Damiani, Emanuele Del Sozzo, and Marco D Santambrogio. 2022. Large Forests and Where to “Partially” Fit
Them. In 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 550–555.

[40] Jan Decaluwe. 2004. MyHDL: a Python-Based Hardware Description Language. Linux journal 127 (2004), 84–87.
[41] André DeHon. 2000. The density advantage of configurable computing. Computer 33, 4 (2000), 41–49.
[42] Emanuele Del Sozzo, Riyadh Baghdadi, Saman Amarasinghe, and Marco D Santambrogio. 2017. A Common Backend

for Hardware Acceleration on FPGA. In Computer Design (ICCD), 2017 IEEE International Conference on. IEEE, 427–430.
[43] Emanuele Del Sozzo, Riyadh Baghdadi, Saman Amarasinghe, and Marco D Santambrogio. 2018. A unified backend for

targeting fpgas from dsls. In 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE, 1–8.

[44] Emanuele Del Sozzo, Marco Rabozzi, Lorenzo Di Tucci, Donatella Sciuto, and Marco D Santambrogio. 2018. A scalable
FPGA design for cloud n-body simulation. In 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 1–8.

[45] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. 2013. Terra: A Multi-Stage Language for
High-Performance Computing. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 105–116.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1109/TETC.2022.3157948
https://tinyurl.com/achronixnoc
https://tinyurl.com/achronixnoc

30 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

[46] ECE Department, University of Toronto. 2021. LegUp High-Level Synthesis. https://github.com/wincle626/HLS_Legup.
Last accessed: March 16th 2021.

[47] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[48] Franz Franchetti, Tze Meng Low, Doru Thom Popovici, Richard M Veras, Daniele G Spampinato, Jeremy R Johnson,

Markus Püschel, James C Hoe, and José MF Moura. 2018. SPIRAL: Extreme performance portability. Proc. IEEE 106, 11
(2018), 1935–1968.

[49] Yoshihiko Futamura. 1983. Partial computation of programs. In RIMS Symposia on Software Science and Engineering.
Springer, 1–35.

[50] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx adaptive compute acceleration
platform: VersalTM architecture. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 84–93.

[51] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J Brown, Arvind K Sujeeth, Martin Odersky, Kunle
Olukotun, and Paolo Ienne. 2014. Hardware system synthesis from domain-specific languages. In 2014 24th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 1–8.

[52] Maya Gokhale and Lesley Shannon. 2021. FPGA Computing. IEEE Micro 41, 4 (2021), 6–7.
[53] Google. 2021. XLS: Accelerated HW Synthesis. https://google.github.io/xls/.
[54] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. 2004. A quantitative analysis of the speedup factors of FPGAs

over processors. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays.
162–170.

[55] Robert Harper, David MacQueen, and Robin Milner. 1986. Standard ml. Department of Computer Science, University
of Edinburgh.

[56] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark
Horowitz, and Pat Hanrahan. 2014. Darkroom: compiling high-level image processing code into hardware pipelines.
ACM Trans. Graph. 33, 4 (2014), 144–1.

[57] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark Horowitz, and Pat Hanrahan. 2016. Rigel:
Flexible Multi-Rate Image Processing Hardware. ACM Trans. Graph. 35, 4, Article 85 (July 2016), 11 pages.

[58] John L Hennessy and David A Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2
(2019), 48–60.

[59] Steven F Hoover. 2017. Timing-abstract circuit design in transaction-level Verilog. In 2017 IEEE International Conference
on Computer Design (ICCD). IEEE, 525–532.

[60] Lan Huang, Da-Lin Li, Kang-Ping Wang, Teng Gao, and Adriano Tavares. 2020. A survey on performance optimization
of high-level synthesis tools. Journal Of Computer Science and Technology 35 (2020), 697–720.

[61] Maxeler Inc. 2021. Multiscale Dataflow Programming. https://www.maxeler.com/products/software/maxcompiler/.
[62] Intel. 2020. Intel Quartus Documentation. https://www.intel.com/content/www/us/en/programmable /products/design-

software/fpga-design/quartus-prime/user-guides.html.
[63] Intel. 2021. Intel FPGA SDK for OpenCL. https://www.intel.com/content/www/us/en/software/programmable/sdk-

for-opencl/overview.html.
[64] Intel. 2021. Intel HLS Compiler. https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/hls-

compiler.html.
[65] Intel Inc. 2021. Intel oneAPI. https://software.intel.com/content/www/us/en/develop/tools/oneapi.html.
[66] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Donggyu Kim, Colin Schmidt,

Chick Markley, Jim Lawson, and Jonathan Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction
languages, compiler frameworks, and transformations. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 209–216. https://doi.org/10.1109/ICCAD.2017.8203780

[67] Ricardo Jasinski. 2016. Effective coding with VHDL: principles and best practice. MIT Press.
[68] Shunning Jiang, Berkin Ilbeyi, and Christopher Batten. 2018. Mamba: closing the performance gap in productive

hardware development frameworks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1–6.
[69] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2019. DYNAMATIC - Dynamically Scheduled High-Level Synthesis.

https://github.com/lana555/dynamatic
[70] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2020. Invited Tutorial: Dynamatic: From C/C++ to Dynamically

Scheduled Circuits. In The 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 1–10.
[71] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings
of the 44th annual international symposium on computer architecture. 1–12.

[72] Richard M Karp, Raymond E Miller, and Shmuel Winograd. 1967. The organization of computations for uniform
recurrence equations. Journal of the ACM (JACM) 14, 3 (1967), 563–590.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://github.com/wincle626/HLS_Legup
https://google.github.io/xls/
https://www.maxeler.com/products/software/maxcompiler/
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/hls-compiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://doi.org/10.1109/ICCAD.2017.8203780
https://github.com/lana555/dynamatic

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 31

[73] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi
Nardi, Ardavan Pedram, Christos Kozyrakis, et al. 2018. Spatial: A language and compiler for application accelerators.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. 296–311.

[74] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and K. Olukotun. 2016. Automatic Generation
of Efficient Accelerators for Reconfigurable Hardware. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 115–127. https://doi.org/10.1109/ISCA.2016.20

[75] Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach. 2019. High-level synthesis of functional
patterns with Lift. In Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers
for Array Programming. 35–45.

[76] Hsiang Tsung Kung and Charles E Leiserson. 1978. Systolic Arrays for (VLSI). Technical Report. Carnegie-Mellon
University, Pittsburgh, PA, Department of Computer Science.

[77] S Kung. 1985. VLSI array processors. IEEE ASSP Magazine 2, 3 (1985), 4–22.
[78] Ian Kuon and Jonathan Rose. 2007. Measuring the gap between FPGAs and ASICs. IEEE Transactions on computer-aided

design of integrated circuits and systems 26, 2 (2007), 203–215.
[79] Ian Kuon, Russell Tessier, and Jonathan Rose. 2008. FPGA architecture: Survey and challenges. Now Publishers Inc.
[80] Andreas Kurth, Pirmin Vogel, Alessandro Capotondi, Andrea Marongiu, and Luca Benini. 2017. HERO: Heterogeneous

embedded research platform for exploring RISC-V manycore accelerators on FPGA. arXiv:1712.06497 (2017).
[81] Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D Hämäläinen. 2018. Are we there yet? A study on the state of

high-level synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018).
[82] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason Cong, and Zhiru Zhang. 2019. HeteroCL:

A multi-paradigm programming infrastructure for software-defined reconfigurable computing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 242–251.

[83] Yi-Hsiang Lai, Hongbo Rong, Size Zheng, Weihao Zhang, Xiuping Cui, Yunshan Jia, Jie Wang, Brendan Sullivan, Zhiru
Zhang, Yun Liang, et al. 2020. SuSy: a programming model for productive construction of high-performance systolic
arrays on FPGAs. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[84] William Landi. 1992. Undecidability of static analysis. ACM Letters on Programming Languages and Systems (LOPLAS)
1, 4 (1992), 323–337.

[85] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In International Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[86] Dominique Lavenier, Patrice Quinton, and Sanjay Rajopadhye. 1999. Advanced systolic design. Digital Signal Processing
for Multimedia Systems (1999), 657–692.

[87] C. Lavin and A. Kaviani. 2018. RapidWright: Enabling Custom Crafted Implementations for FPGAs. In 2018 IEEE 26th
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 133–140.

[88] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (28 05 2015), 436–444.
[89] HyoukJoong Lee, Kevin Brown, Arvind Sujeeth, Hassan Chafi, Tiark Rompf, Martin Odersky, and Kunle Olukotun.

2011. Implementing domain-specific languages for heterogeneous parallel computing. Ieee Micro 31, 5 (2011), 42–53.
[90] LegUp Computing. 2019. High-Level Synthesis For Any FPGA. https://www.legupcomputing.com/.
[91] Roland Leißa, Klaas Boesche, Sebastian Hack, Richard Membarth, and Philipp Slusallek. 2015. Shallow embedding

of DSLs via online partial evaluation. In Proceedings of the 2015 ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences. Association for Computing Machinery, New York, NY, USA, 11–20.

[92] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot, Richard Membarth, Philipp Slusallek, André
Müller, and Bertil Schmidt. 2018. AnyDSL: A partial evaluation framework for programming high-performance libraries.
Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[93] Ang Li and David Wentzlaff. 2019. PRGA: An open-source framework for building and using custom FPGAs. In The
First Workshop on Open-Source Design Automation; Florence, Italy. 1–6.

[94] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From image processing DSL to efficient FPGA acceleration. In
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 51–57.

[95] Yanbing Li and Miriam Leeser. 2000. HML, a Novel Hardware Description Language and Its Translation to VHDL.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8, 1 (2000), 1–8.

[96] Olav Lindtjorn, Robert G Clapp, Oliver Pell, Oskar Mencer, and Michael J Flynn. 2010. Surviving the end of scaling of
traditional microprocessors in HPC. IEEE Hot Chips 22 (2010), 22–24.

[97] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han, Shouyi Yin, and Shaojun Wei. 2019. A survey
of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and applications. ACM Computing
Surveys (CSUR) 52, 6 (2019), 1–39.

[98] Yanqiang Liu, Yao Li, Zhengwei Qi, and Haibing Guan. 2019. A scala based framework for developing acceleration
systems with FPGAs. Journal of Systems Architecture 98 (2019), 231–242.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1109/ISCA.2016.20
https://www.legupcomputing.com/

32 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

[99] Derek Lockhart, Stephen Twigg, Ravi Narayanaswami, Jeremy Coriell, Uday Dasari, Richard Ho, Doug Hogberg,
George Huang, Anand Kane, Chintan Kaur, Tao Liu, Adriana Maggiore, Kevin Townsend, and Emre Tuncer. 2018.
Experiences Building Edge TPU with Chisel. https://www.youtube.com/watch?v=x85342Cny8c.

[100] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A Unified Framework for Vertically Integrated
Computer Architecture Research. In 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE.

[101] Lombiq Technologies. 2019. Hastlayer SDK - GitHub. https://github.com/Lombiq/Hastlayer-SDK.
[102] Kenneth C Louden and Kenneth A Lambert. 2011. Programming languages: principles and practices. Cengage Learning.
[103] Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman, and Gilles Pokam. 2018. TAPAS: Generating

parallel accelerators from parallel programs. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 245–257.

[104] Grant Martin and Gary Smith. 2009. High-level synthesis: Past, present, and future. IEEE Design & Test of Computers
26, 4 (2009), 18–25.

[105] Ali Mashtizadeh. 2007. PHDL: A Python Hardware Design Framework. https://dspace.mit.edu/handle/1721.1/41543.
[106] MathWorks Inc. 2021. HDL Coder. https://www.mathworks.com/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf.
[107] Clive Maxfield. 2004. The design warrior’s guide to FPGAs: devices, tools and flows. Elsevier.
[108] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk Stroobandt. 2012. An overview of today’s

high-level synthesis tools. Design Automation for Embedded Systems 16, 3 (2012), 31–51.
[109] Richard Membarth, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert. 2012. Generating device-specific

GPU code for local operators in medical imaging. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium. IEEE, 569–581.

[110] Richard Membarth, Oliver Reiche, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert. 2015. Hipacc: A
domain-specific language and compiler for image processing. IEEE Transactions on Parallel and Distributed Systems 27, 1
(2015), 210–224.

[111] Richard Membarth, Oliver Reiche, Özkan Mehmet Akif, and Bo Qiao. 2013. Repo HIPacc. https://github.com/hipacc/
hipacc. Last accessed: March 31st 2021.

[112] Mentor Graphics. 2021. Catapult HLS. https://www.mentor.com/hls-lp/catapult-high-level-synthesis/.
[113] Mentor Graphics. 2021. Design Creation. https://www.mentor.com/products/fpga/hdl_design/.
[114] Peter Milder, Franz Franchetti, James C Hoe, and Markus Püschel. 2012. Computer generation of hardware for linear

digital signal processing transforms. ACM Transactions on Design Automation of Electronic Systems 17, 2 (2012), 1–33.
[115] Kevin E Murray, Mohamed A Elgammal, Vaughn Betz, Tim Ansell, Keith Rothman, and Alessandro Comodi. 2020.

SymbiFlow and VPR: An Open-Source Design Flow for Commercial and Novel FPGAs. IEEE Micro 40, 4 (2020), 49–57.
[116] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen, Hsuan

Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. 2016. A survey and evaluation of FPGA high-level synthesis tools. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 10 (2016), 1591–1604.

[117] NEC. 2011. CyberWorkBench: High Level Synthesis from C/C++/SystemC to ASIC/FPGA. https://www.nec.com/en/
global/prod/cwb/index.html.

[118] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A compiler infrastructure for accelerator
generators. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems. 804–817.

[119] Rishiyur Nikhil. [n.d.]. Bluespec System Verilog: efficient, correct RTL from high level specifications. In Proceedings.
Second ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04.

[120] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankaralingam. 2017. Stream-dataflow
acceleration. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). IEEE, 416–429.

[121] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Erik Stenman, and Matthias Zenger. 2004. The Scala language specification.

[122] M Akif Özkan, Arsène Pérard-Gayot, Richard Membarth, Philipp Slusallek, Roland Leißa, Sebastian Hack, Jürgen
Teich, and Frank Hannig. 2020. AnyHLS. https://github.com/AnyDSL/anyhls.

[123] M Akif Özkan, Arsène Pérard-Gayot, Richard Membarth, Philipp Slusallek, Roland Leißa, Sebastian Hack, Jürgen Teich,
and Frank Hannig. 2020. AnyHLS: High-Level Synthesis With Partial Evaluation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 11 (2020), 3202–3214.

[124] Samir Palnitkar. 2003. Verilog HDL: a guide to digital design and synthesis. Vol. 1. Prentice Hall Professional.
[125] Panda Team. 2021. Bambu: A Free Framework for the High-Level Synthesis of Complex Applications. https:

//panda.dei.polimi.it/?page_id=31.
[126] C Papon. 2017. SpinalHDL: An alternative hardware description language. FOSDEM (2017).
[127] Daniele Parravicini, Davide Conficconi, Emanuele Del Sozzo, Christian Pilato, and Marco D Santambrogio. 2021.

CICERO: A Domain-Specific Architecture for Efficient Regular Expression Matching. ACM Transactions on Embedded
Computing Systems (TECS) 20, 5s (2021), 1–24.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://www.youtube.com/watch?v=x85342Cny8c
https://github.com/Lombiq/Hastlayer-SDK
https://dspace.mit.edu/handle/1721.1/41543
https://www.mathworks.com/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf
https://github.com/hipacc/hipacc
https://github.com/hipacc/hipacc
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/products/fpga/hdl_design/
https://www.nec.com/en/global/prod/cwb/index.html
https://www.nec.com/en/global/prod/cwb/index.html
https://github.com/AnyDSL/anyhls
https://panda.dei.polimi.it/?page_id=31
https://panda.dei.polimi.it/?page_id=31

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 33

[128] Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, and François Berry. 2016. Design productivity of a high level
synthesis compiler versus HDL. In 2016 International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS). IEEE, 140–147.

[129] Christian Pilato and Fabrizio Ferrandi. 2013. Bambu: A modular framework for the high level synthesis of memory-
intensive applications. In Field Programmable Logic and Applications (FPL), 23rd International Conference on. IEEE.

[130] Oron Port and Yoav Etsion. 2017. DFiant: A dataflow hardware description language. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 1–4.

[131] Raghu Prabhakar, David Koeplinger, Kevin J Brown, HyoukJoong Lee, Christopher De Sa, Christos Kozyrakis, and
Kunle Olukotun. 2016. Generating configurable hardware from parallel patterns. Acm Sigplan Notices 51, 4 (2016).

[132] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan Hadjis, Ardavan Pedram, Christos
Kozyrakis, and Kunle Olukotun. 2017. Plasticine: A reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). IEEE, 389–402.

[133] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley, and Mark Horowitz. 2017.
Programming Heterogeneous Systems from an Image Processing DSL. ACM Trans. Archit. Code Optim. 14, 3, Article 26
(Aug. 2017), 25 pages. https://doi.org/10.1145/3107953

[134] David Pursley and Tung-Hua Yeh. 2017. High-level low-power system design optimization. In VLSI Design, Automation
and Test (VLSI-DAT), 2017 International Symposium on. IEEE, 1–4.

[135] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al. 2014. A reconfigurable fabric for accelerating
large-scale datacenter services. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). IEEE,
13–24.

[136] QuickLogic. 2021. QuickLogic Open Reconfigurable Computing (QORC) MCU + eFPGA SoC Open Source Software
Tools. https://www.quicklogic.com/software/qorc-mcu-efpga-fpga-open-source-tools/. Last accessed: July 2nd 2021.

[137] M. Rabozzi, G. Natale, E. Del Sozzo, A. Scolari, L. Stornaiuolo, and M. D. Santambrogio. 2017. Heterogeneous exascale
supercomputing: The role of CAD in the exaFPGA project. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017. 410–415. https://doi.org/10.23919/DATE.2017.7927025

[138] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines. ACM SIGPLAN Notices 48, 6 (2013), 519–530.

[139] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman, Marisabel Guevara, Clinton Wills
Smullen IV, Aki Kuusela, Raghu Balasubramanian, Sandeep Bhatia, Prakash Chauhan, et al. 2021. Warehouse-scale
video acceleration: co-design and deployment in the wild. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 600–615.

[140] Enrico Reggiani, Emanuele Del Sozzo, Davide Conficconi, Giuseppe Natale, Carlo Moroni, and Marco D Santambrogio.
2021. Enhancing the scalability of multi-fpga stencil computations via highly optimized hdl components. ACM
Transactions on Reconfigurable Technology and Systems (TRETS) 14, 3 (2021), 1–33.

[141] Enrico Reggiani, Eleonora D’Arnese, Andrea Purgato, and Marco D Santambrogio. 2017. Pearson Correlation
Coefficient acceleration for modeling and mapping of neural interconnections. In 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 223–228.

[142] Oliver Reiche, M Akif Özkan, Richard Membarth, Jürgen Teich, and Frank Hannig. 2017. Generating FPGA-based
image processing accelerators with Hipacc. In 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 1026–1033.

[143] Oliver Reiche, Moritz Schmid, Frank Hannig, Richard Membarth, and Jürgen Teich. 2014. Code generation from a
domain-specific language for C-basedHLS of hardware accelerators. In 2014 international conference on hardware/software
codesign and system synthesis (CODES+ ISSS). IEEE, 1–10.

[144] David I Rich. 2003. The evolution of SystemVerilog. IEEE Annals of the History of Computing 20, 04 (2003), 82–84.
[145] Kentaro Sano, Hayato Suzuki, Ryo Ito, Tomohiro Ueno, and Satoru Yamamoto. 2014. Stream processor generator for

HPC to embedded applications on FPGA-based system platform. arXiv preprint arXiv:1408.5386 (2014).
[146] Jeferson Santiago da Silva, François-Raymond Boyer, and JM Pierre Langlois. 2018. P4-compatible high-level synthesis

of low latency 100 Gb/s streaming packet parsers in FPGAs. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 147–152.

[147] Jeferson Santiago da Silva, François-Raymond Boyer, and JM Pierre Langlois. 2018. Repo P4HLS. https://github.com/
engjefersonsantiago/P4HLS. Last accessed: March 31st 2021.

[148] Simpei Sato and Kenji Kise. 2013. ArchHDL: a new hardware description language for high-speed architectural
evaluation. In 2013 IEEE 7th International Symposium on Embedded Multicore Socs. IEEE, 107–112.

[149] Tao B Schardl, William S Moses, and Charles E Leiserson. 2017. Tapir: Embedding fork-join parallelism into LLVM’s
intermediate representation. In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1145/3107953
https://www.quicklogic.com/software/qorc-mcu-efpga-fpga-open-source-tools/
https://doi.org/10.23919/DATE.2017.7927025
https://github.com/engjefersonsantiago/P4HLS
https://github.com/engjefersonsantiago/P4HLS

34 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Programming. 249–265.
[150] Christian Schmitt, Moritz Schmid, Frank Hannig, Jürgen Teich, Sebastian Kuckuk, and Harald Köstler. 2015. Generation

of multigrid-based numerical solvers for FPGA accelerators. In Proceedings of the 2nd International Workshop on High-
Performance Stencil Computations (HiStencils). 9–15.

[151] Sanjit Seshia, Albert Magyar, David Biancolin, John Koenig, Jonathan Bachrach, and Krste Asanovic. 2021. Golden
Gate: Bridging The Resource-Efficiency Gap Between ASICs and FPGA Prototypes. (2021).

[152] Ofer Shacham, Sameh Galal, Sabarish Sankaranarayanan, Megan Wachs, John Brunhaver, Artem Vassiliev, Mark
Horowitz, Andrew Danowitz, Wajahat Qadeer, and Stephen Richardson. 2012. Avoiding Game Over: Bringing Design
to the Next Level. In DAC Design Automation Conference. IEEE, 623–629.

[153] David Shah, Eddie Hung, CliffordWolf, Serge Bazanski, Dan Gisselquist, andMiodrag Milanovic. 2019. Yosys+ nextpnr:
an open source framework from verilog to bitstream for commercial fpgas. In 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 1–4.

[154] Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony Nowatzki, and Arrvindh Shriraman. 2019.
𝜇ir-an intermediate representation for transforming and optimizing the microarchitecture of application accelerators.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 940–953.

[155] Sergey Shumarayev. 2017. Intel’s 14nm Heterogeneous FPGA System-in-Package Platform. In Hot Chips 29 Symp.
[156] Silexica. 2021. SLX FPGA. https://www.silexica.com/products/slx-fpga/.
[157] Marco Siracusa, Marco Rabozzi, Emanuele Del Sozzo, Lorenzo Di Tucci, Samuel Williams, and Marco D. Santambrogio.

2020. A CAD-based methodology to optimize HLS code via the Roofline model. In 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). 1–9.

[158] Wilson Snyder. 2004. Verilator and systemperl. InNorth American SystemCUsers’ Group, Design Automation Conference.
[159] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating performance portable

code using rewrite rules: from high-level functional expressions to high-performance OpenCL code. ACM SIGPLAN
Notices 50, 9 (2015), 205–217.

[160] Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deepayan Bhowmik, and Andrew M. Wallace. 2018.
RIPL: A Parallel Image Processing Language for FPGAs. ACM Transactions on Reconfigurable Technology and Systems 11,
1 (2018), 7:1–7:24.

[161] Robert Stewart, Greg Michaelson, Deepayan Bhowmik, Paulo Garcia, and Andy Wallace. 2016. RIPL. https://github.
com/robstewart57/ripl.

[162] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
2014. Delite: A compiler architecture for performance-oriented embedded domain-specific languages. ACM Transactions
on Embedded Computing Systems (TECS) 13, 4s (2014), 1–25.

[163] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf, Hassan Chafi, Michael Wu, Anand R. Atreya,
Martin Odersky, and Kunle Olukotun. 2011. OptiML: An Implicitly Parallel Domain-Specific Language for Machine
Learning. In ICML. 609–616.

[164] Ian Swarbrick, Dinesh Gaitonde, Sagheer Ahmad, Brian Gaide, and Ygal Arbel. 2019. Network-on-chip pro-
grammable platform in versal acap architecture. In Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 212–221.

[165] Synopsys. 2021. RTL Synthesis. https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html.
[166] Shinya Takamaeda-Yamazaki. 2015. PyVerilog: A Python-Based hardware design processing toolkit for Verilog HDL.

In Applied Reconfigurable Computing. Springer, 451–460.
[167] Xifan Tang, Edouard Giacomin, Baudouin Chauviere, Aurelien Alacchi, and Pierre-Emmanuel Gaillardon. 2020.

OpenFPGA: An open-source framework for agile prototyping customizable FPGAs. IEEE Micro 40, 4 (2020), 41–48.
[168] Russell Tessier, Kenneth Pocek, and Andre DeHon. 2015. Reconfigurable computing architectures. Proc. IEEE 103, 3

(2015), 332–354.
[169] The Stanford Pervasive Parallelism Lab. 2017. Spatial: Specify Parameterized Accelerators Through Inordinately

Abstract Language. https://github.com/stanford-ppl/spatial.
[170] Lenny Truong and Pat Hanrahan. 2019. A golden age of hardware description languages: Applying programming

language techniques to improve design productivity. In 3rd Summit on Advances in Programming Languages (SNAPL
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[171] Yaman Umuroglu, Davide Conficconi, Lahiru Rasnayake, Thomas B Preusser, and Magnus Själander. 2019. Optimizing
bit-serial matrix multiplication for reconfigurable computing. ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 12, 3 (2019), 1–24.

[172] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees
Vissers. 2017. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’17). ACM, 65–74.

[173] Universitè Bretagne Sud. 2020. GAUT – High-Level Synthesis Tool from C to RTL. http://hls-labsticc.univ-ubs.fr/.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://www.silexica.com/products/slx-fpga/
https://github.com/robstewart57/ripl
https://github.com/robstewart57/ripl
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html
https://github.com/stanford-ppl/spatial
http://hls-labsticc.univ-ubs.fr/

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 35

[174] University of California, Riverside. 2010. ROCCC 2.0. http://roccc.cs.ucr.edu/.
[175] Stylianos I Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Toolflows for Mapping Convolutional

Neural Networks on FPGAs: A Survey and Future Directions. ACM Computing Surveys (CSUR) 51, 3 (2018), 1–39.
[176] Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. 2010. Designing modular hardware accelerators in

C with ROCCC 2.0. In Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE Annual International
Symposium on. IEEE, 127–134.

[177] Kizheppatt Vipin and Suhaib A Fahmy. 2018. FPGA dynamic and partial reconfiguration: A survey of architectures,
methods, and applications. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–39.

[178] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate Foster, and Hakim Weatherspoon.
2017. P4fpga: A rapid prototyping framework for p4. In Proceedings of the Symposium on SDN Research. 122–135.

[179] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Compiler for High-Performance Systolic Arrays
on FPGA. In Proceedings of the 2021 ACM/SIGDA international symposium on Field-programmable gate arrays.

[180] YutakaWatanabe, Jinpil Lee, Kentaro Sano, Taisuke Boku, andMitsuhisa Sato. 2020. Design and preliminary evaluation
of openacc compiler for fpga with opencl and stream processing dsl. In Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region Workshops. 10–16.

[181] Xilinx. 2021. Vitis HLS Front-end is Now Open Source. https://github.com/Xilinx/HLS. Last accessed: July 2nd 2021.
[182] Xilinx Inc. 2013. Vivado Design Suite. http://www.xilinx.com/products/design-tools/vivado.html.
[183] Xilinx Inc. 2013. Vivado HLS. https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.
[184] Xilinx Inc. 2018. SDSoC. https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html.
[185] Xilinx Inc. 2019. SDAccel. https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html.
[186] Xilinx Inc. 2019. Vitis Unified Software Platform. https://www.xilinx.com/products/design-tools/vitis.html.
[187] Xilinx Inc. 2020. Vitis HLS. https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/introductionvitishls.html.
[188] Xilinx Inc. 2021. Vitis Accelerated Libraries. https://github.com/Xilinx/Vitis_Libraries.
[189] Xilinx Inc. 2021. Xilinx Runtime Library. https://github.com/Xilinx/XRT.
[190] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. 2001. SPL: A language and compiler for DSP

algorithms. ACM SIGPLAN Notices 36, 5 (2001), 298–308.
[191] Alberto Zeni, Guido Walter Di Donato, Lorenzo Di Tucci, Marco Rabozzi, and Marco D Santambrogio. 2021. The

Importance of Being X-Drop: High Performance Genome Alignment on Reconfigurable Hardware. In 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 133–141.

[192] Alberto Zeni, Kenneth O’Brien, Michaela Blott, and Marco D Santambrogio. 2021. Optimized implementation of the
hpcg benchmark on reconfigurable hardware. In European Conference on Parallel Processing. Springer, 616–630.

[193] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. SonicBOOM: The 3rd Generation Berkeley
Out-of-Order Machine. (May 2020).

[194] Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan Zhong, and Jason Cong. 2013. Improving polyhedral
code generation for high-level synthesis. In 2013 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS). IEEE, 1–10.

, Vol. 1, No. 1, Article . Publication date: August 2022.

http://roccc.cs.ucr.edu/
https://github.com/Xilinx/HLS
http://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/introductionvitishls.html
https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/XRT

36 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

A CODE EXAMPLES
This Appendix shows three implementations of a Blur Filter. The purpose is to highlight how the
implementation of the very same computation changes according to the employed language or tool.
To this end, we report one solution per design abstraction. In particular, we used SystemVerilog, as
it is the foundation of different Hardware Description Languages (HDLs), C/C++ for a Vitis HLS
design, and HeteroHalide, as Halide is the entry point of multiple image processing Domain-Specific
Languages (DSLs) for Field Programmable Gate Array (FPGA). Please note that this Appendix aims
to overview the implementation differences between these abstraction solutions. Thus, the reader
shall not consider these designs as fully optimized.

A.1 Blur Filter Background
A Blur Filter [36] is a widely used effect in image processing whose purpose is to reduce image
noise and details. This filter smoothens an input image through a 𝑁 × 𝑁 kernel. The following
formula defines a Blur kernel:

𝐾 =
1

𝑁 · 𝑁 ·


1 1 ... 1
1 1 ... 1
...

1 1 ... 1

 (1)

For our hardware designs, we chose 𝑁 = 3.
The implementation of this filter can exploit its separable property. Indeed, it is possible to divide

this process into two passes: the first one applies a one-dimensional horizontal or vertical kernel
on the input image. Then, the second applies the same one-dimension kernel in the remaining
dimension. The outcome is equivalent to the usage of a two-dimensional kernel. In the following
examples, we implemented a two-dimensional kernel.

Another aspect to consider when applying filters like the Blur one is the image borders. Indeed,
we cannot directly use the filter on the image edges as there are not enough pixels to convolve.
Consequently, the output image would be smaller than the input one, as shown by the following
formulae:

𝐻𝑜 = 𝐻𝑖 − 𝑁 + 1 (2)
𝑊𝑜 =𝑊𝑖 − 𝑁 + 1 (3)

where 𝐻𝑜 ,𝑊𝑜 , 𝐻𝑖 , and𝑊𝑖 are the height and width of output and input images, respectively. There
are various ways to handle the image borders in order to produce an output that maintains the
same size as the input. For instance, one approach consists of extending the input image boundaries
and filling them with values. The padding values may be the mirror of the borders, an extension of
the last pixel, or a fixed color. Our implementations of the Blur Filter assume that the host or a
previous hardware module has already padded the input image.

A.2 Blur Filter in SystemVerilog
Listing 1 reports a SystemVerilog implementation of the Blur Filter. The core of this design is the
blur_filtermodule, which reads and processes one pixel_t input pixel per clock cycle. The data
type pixel_t may refer to a single channel pixel or a three-channel one (e.g., RGB). This module
relies on a line buffer lb (lines 22 to 30) to store the portion of the input required to apply the filter.
On every clock cycle, lb extracts specific pixels from its internal buffer and fills the window of
pixels pixel_window (line 19). We omitted the internal implementation of the line buffer because
our focus is on the blur_filter module. Nonetheless, a possible design for this component could
use the on-chip memory to store the pixels. Please note that, in such a case, the designer has

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 37

to either instantiate the memory module explicitly or let the synthesizer infer it from the code.
Similarly, we could design pixel_window as a set of shift registers. We also omitted the definition
of the init (line 41) and blur_kernel (line 61) functions for the sake of conciseness. The former
function initializes the coefficients of the kernel, while the latter applies it.
It is evident from the code that the designer has to handle signals like reset, clock, and ready

manually. Moreover, it is up to the designer to decide whether a part of the module is sequential
(always_ff, lines 32 to 66) or combinational (always_comb, not used in this module). Finally, it
is worth noting that this module performs the whole computation in one clock cycle. Thus, this
approach may cause timing issues due to the long critical path if the designer wants to target a
high clock frequency. In such a case, the designer has to split the critical path and build a pipelined
design manually.

1 module blur_filter #(

2 parameter WIDTH = INPUT_WIDTH ,

3 parameter HEIGHT = INPUT_HEIGHT ,

4 parameter PADDING = IMAGE_PADDING ,

5 parameter KERNEL_SIZE = 3) (

6 input logic clk ,

7 input logic reset ,

8 input pixel_t data_in ,

9 input logic data_in_ready ,

10 output pixel_t data_out ,

11 output logic data_out_ready);

12

13 int unsigned row;

14 int unsigned col;

15

16 pixel_t curr_pixel;

17 logic curr_pixel_ready;

18 pixel_t blur_coeffs [KERNEL_SIZE * KERNEL_SIZE];

19 pixel_t pixel_window [KERNEL_SIZE * KERNEL_SIZE];

20 logic pixel_window_ready;

21

22 line_buffer #(. WIDTH(WIDTH), .HEIGHT(HEIGHT), .PADDING(PADDING),

23 .KERNEL_SIZE(KERNEL_SIZE)) lb(

24 .clk(clk),

25 .reset(reset),

26 .data_in(curr_pixel),

27 .data_in_ready(curr_pixel_ready),

28 .data_out(pixel_window),

29 .data_out_ready(pixel_window_ready)

30);

31

32 always_ff @(posedge clk) begin

33 curr_pixel <= 0;

34 curr_pixel_ready <= 0;

35 data_out <= 0;

36 data_out_ready <= 0;

37 row <= row;

38 col <= col;

39

40 if(reset == 1) begin

, Vol. 1, No. 1, Article . Publication date: August 2022.

38 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

41 init(blur_coeffs);

42 row <= 0;

43 col <= 0;

44 end

45 else begin

46 if (data_in_ready == 1) begin

47 curr_pixel <= data_in;

48 curr_pixel_ready <= 1;

49 end

50 if(pixel_window_ready == 1) begin

51 if(col == (INPUT_WIDTH - 1)) begin

52 col <= 0;

53 row <= row + 1;

54 end

55 else begin

56 col <= col + 1;

57 end

58

59 if (row >= (KERNEL_SIZE - 1) && row < INPUT_HEIGHT &&

60 col < INPUT_WIDTH && col >= (KERNEL_SIZE - 1)) begin

61 data_out <= blur_kernel(pixel_window , blur_coeffs);

62 data_out_ready <= 1;

63 end

64 end

65 end

66 end

67 endmodule

Listing 1. SystemVerilog Blur Filter

A.3 Blur Filter in Vitis HLS
Listing 2 contains a C/C++ implementation of the Blur Filter for Vitis HLS. At first glance, the
reader can note that this design has some relevant differences compared to the SystemVerilog one.
The first one is the absence of signals such as clock and reset. Indeed, this algorithmic/functional
specification of the filter is untimed and does not require the management of low-level signals;
the tool will automatically take of this aspect during the High-Level Synthesis (HLS) process.
Another difference is the usage of directives/pragmas (lines 3, 5, and 12) to guide the optimization
process. In particular, for this design, we explicitly report the implementation of the line buffer lb
to demonstrate how the designer can easily design such a component using pragmas. We modeled
lb as a bidimensional array partitioned per row. Similarly, we completely partitioned the window of
pixels pixel_window. The result is that the Vitis HLS allocates the rows of lb on different on-chip
memories and the elements of pixel_window in registers.

The pragma PIPELINE (line 12) enforces the design of a pipeline for the loop L1 (line 11). Actually,
Vitis HLS automatically flattens this loop and the previous one L0 (lines 10 and 11), resulting in a
pipeline covering the whole computation of the blur_filter function. Moreover, Vitis HLS chooses
the proper pipeline depth, targets an Initiation Interval (II) of 1, if possible, and automatically unrolls
the loops inside the pipelined one. Finally, just like in the SystemVerilog design, we do not report
the code of the blur_kernel function for the sake of conciseness.

As the last aspect, it is worth noting that we used two pixel_t pointers for the input and output
images, respectively. These pointers may refer to on-chip memory buffers or off-chip ones. In

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 39

the former case, Vitis HLS may implement them as First-In First-Outs (FIFOs), especially if the
designers modeled the overall design as a dataflow one. Alternatively, the designer can use the
Vitis HLS built-in templated class hls::stream<> to define these buffers as FIFOs explicitly. In
this case, the designer can also select the physical resource for the FIFOs (shift registers or on-chip
memories) or let the tool do that.

1 void blur_filter(pixel_t* input_img , pixel_t* output_img){

2 pixel_t lb[KERNEL_SIZE - 1][INPUT_WIDTH];

3 #pragma HLS ARRAY_PARTITION variable=lb dim=1 complete

4 pixel_t pixel_window[KERNEL_SIZE][KERNEL_SIZE];

5 #pragma HLS ARRAY_PARTITION variable=pixel_window dim=0 complete

6

7 unsigned int input_idx = 0;

8 unsigned int output_idx = 0;

9

10 L0:for(unsigned int i = 0; i < (INPUT_HEIGHT); i++){

11 L1:for(unsigned int j = 0; j < (INPUT_WIDTH); j++){

12 #pragma HLS PIPELINE

13 pixel_t current_pixel = input_img[input_idx ++];

14

15 L2:for(unsigned int k0 = 0; k0 < KERNEL_SIZE; k0++){

16 L3:for(unsigned int k1 = 0; k1 < KERNEL_SIZE - 1; k1++){

17 pixel_window[k0][k1] = pixel_window[k0][k1 + 1];

18 }

19 }

20

21 L4:for(unsigned int k0 = 0; k0 < KERNEL_SIZE - 1; k0++){

22 pixel_window[k0][KERNEL_SIZE - 1] = lb[k0][j];

23 }

24

25 L5:for(unsigned int k0 = 0; k0 < KERNEL_SIZE - 2; k0++){

26 lb[k0][j] = lb[k0 + 1][j];

27 }

28

29 lb[KERNEL_SIZE - 2][j] = current_pixel;

30 pixel_window[KERNEL_SIZE - 1][KERNEL_SIZE - 1] = current_pixel;

31

32 if (i >= (KERNEL_SIZE - 1) && j >= (KERNEL_SIZE - 1)){

33 output_img[output_idx ++] = blur_kernel(pixel_window);

34 }

35 }

36 }

37 }

Listing 2. C/C++ HLS Blur Filter

A.4 Blur Filter in HeteroHalide
Listing 3 shows a HeteroHalide design of the Blur Filter, which we adapted from the HeteroHalide
repository [33]. For this code example, we report the allocation of Halide buffers and variables (lines
1 to 3), Blur Filter computation (lines 5 to 13), scheduling commands (lines 15 and 16), and lowering
to HeteroCL code (lines 18 to 24). It is interesting to note how the designer can set up the whole
hardware design in a few lines of code, unlike SystemVerilog and HLS, which may also require

, Vol. 1, No. 1, Article . Publication date: August 2022.

40 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

additional code to manage the communication with the off-chip memory or other modules. Indeed,
the Halide paradigm offers a concise definition of the computation and enforcement of optimizations
through scheduling commands. In this case, the code contains the compute_root command only.
According to Halide documentation, this implies that a Func (e.g., blur_filter) is computed once
ahead of time, producing enough results to satisfy all its uses [19]. Nonetheless, please note that
the designer may exploit various other scheduling commands to optimize the resultant design
further. Finally, the output of this code is a HeteroHalide implementation (blur_filter.py) that
its infrastructure processes and optimizes to produce a design for the supported backends.

1 Buffer <pixel_t > input_img(INPUT_WIDTH , INPUT_HEIGHT , CHANNELS);

2 Buffer <pixel_t > output_img(OUTPUT_WIDTH , OUTPUT_HEIGHT , CHANNELS);

3 Var x("x"), y("y"), c("c");

4

5 Func blur_filter("blur_filter");

6 blur_filter(x, y, c) =

7 (input_img(x, y, c) + input_img(x+1, y, c) + input_img(x+2, y, c) +

8 (input_img(x, y+1, c) + input_img(x+1, y+1, c) + input_img(x+2, y+1, c) +

9 (input_img(x, y+2, c) + input_img(x+1, y+2, c) + input_img(x+2, y+2, c)) /

10 (KERNEL_SIZE * KERNEL_SIZE);

11

12 Func final("final");

13 final(x, y, c) = blur_filter(x, y, c);

14

15 blur_filter.compute_root ();

16 final.compute_root ();

17

18 std::vector <int > output_img_shape;

19 for (int i = 0; i < output_img.dimensions (); i++){

20 output_img_shape.push_back(output_img.extent(i));

21 }

22

23 final.compile_to_heterocl("blur_filter.py", {input_img}, output_img_shape ,

24 "final");

Listing 3. HeteroHalide Blur Filter

A.5 Summary
This Appendix gave an overview of the main high-level differences between the design abstractions
discussed in this survey. First, HDLs offer constructs to model low-level hardware designs. In this
scenario, the designer has complete control over the resulting solution, managing signals (e.g.,
clock and reset) and implementing combinational and sequential circuits. Increasing the abstraction
level, the current generation of HLS tools enables the designer to define a hardware component
through the constructs of an untimed algorithmic specification in languages like C/C++, taking care
of the production of the corresponding HDL code. Besides, the designer has access to multiple
directives/pragmas to handle and optimize aspects of the resulting solution (e.g., off-chip memory
interfaces and pipelining). Finally, domain specialization incarnates the highest abstraction level
for FPGA development so far. Indeed, DSLs shift most of the design burden from the designer to
the compiler, which exploits the domain specialization to enforce multiple transformations and
optimizations automatically. Besides, in the case of DSLs like Halide, the designer may also leverage
scheduling commands to suggest additional optimizations. Thanks to these features, the designer
only concentrates on the algorithmic specification.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 41

B TECHNICAL TERMS DEFINITION
This Appendix defines the technical terms reported throughout the survey. In this way, the reader
can easily understand the purpose of unfamiliar features employed by the analyzed tools/languages.

Table 4. Index and description of technical terms employed in the survey.

Technical Term Description Reference

Abstraction layer An approach to mask the details of an underlying layer, level,
or subsystem and decouple the internal aspects to ease inter-
operability.

Section 2.1, 2.4,
4.1, 4.4, Table 3

Algorithmic skeletons RIPL design primitives that are combinable in multiple ways
to form image processing kernels with common data access
patterns.

Section 4.1, Ta-
ble 3

ASIC support The design flow is also capable of targeting Application Spe-
cific Integrated Circuits (ASICs).

Table 2, 3

Automatic integration The feature of generating host APIs and runtime for CPU-
FPGA communication and management.

Table 3

Automatic scheduling The feature of scheduling the computations automatically
according to their architectural pattern.

Section 4.1, Ta-
ble 3

Bitstream generation The feature of a design flow to automatically go from a given
input design down to the bitstream.

Section 3, 3.2,
Table 2

Bitwidth analysis and
optimization

The process of determining the required data container (e.g.,
1, 3, 33, or 77 bits) for the target design [4, 10, 14, 15, 28, 31].

Section 3.1

BlackBox IP The feature of integrating custom Intellectual Propertys (IPs)
(mainly VHDL and (System)Verilog) in the target design flow.

Section 2.4, Ta-
ble 1

Clock-gating Low-power optimization that removes the clock signal when
the circuit is not used to reduce dynamic power dissipation.
It saves power by pruning the clock tree at the cost of adding
more logic and negligible leak currents.

Section 3.1, Ta-
ble 2

Clock-less DFiantHDL feature exposing an RTL experience where the
designer does not care about clock considerations, similarly
to the untimed description of HLS designs.

Section 2.1, Ta-
ble 1

Cross domain crossing In synchronous digital designs, the traversal of a signal from
one clock domain region into another.

Section 2.1, 3,
3.1

Cross-probing/cross-
linking support

Graphical editors’ features of linking/modifying the specific
graphical view and the associated source code.

Section 3.1

Dataflow A computational model describing an architecture where data
seamlessly flow through different concurrent modules as soon
as the operators are ready. Thus, this model does not require
a traditional control path based on a program counter.

Section 2.1, 2.2,
3.1, 3.2, 4.1, 4.3,
Table 1, Ap-
pendix A.3

DDR design Usually, a sequential design activates only on the negative
or positive edge of the clock, not both. Conversely, a Double
Data Rate (DDR) design is active on both the clock edges.

Section 2, 2.3,
3, Table 1

DSE engine/tool A component that automatically performs the Design Space
Exploration (DSE) to support the optimization process.

Section 3.1, 4.2,
4.3, Table 3

Dynamic memory allo-
cation/dynamic execu-
tion scheduling

The feature of dynamically scheduling some memory space
or functionalities (i.e., at runtime). Usually, HLS tools prevent
the usage of such dynamic constructs (e.g., malloc).

Section 3.1, 3.2,
3.3, 4.3, Table 3,
Appendix D

, Vol. 1, No. 1, Article . Publication date: August 2022.

42 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Technical Term Description Reference

Dynamically sched-
uled circuits

Almost every HLS tool schedules the operations statically (i.e.,
at compile time) and, if possible, reserves more resources than
necessary at runtime. Conversely, dynamic scheduling means
adapting this execution plan dynamically (i.e., at runtime).
Dynamatic website has a good example that showcases this
behavior, and we point the interested readers to it [17].

Section 3.1, Ta-
ble 2

External IP integration The feature of integrating into the design flow external IPs
packed in some formats, e.g., XACT.

Section 2.1

Functional verification The act of verifying that the considered design conforms to
specification.

Section 3.1, 3.3,
Table 1

Fuzzer An automated tool to create random input data (e.g., code
from a language grammar, in the case of XLS) for verification
purposes.

Section 3.1, Ta-
ble 2

Generators A kind of generalized hardware design that mixes some meta-
programming and parametrization to automatically combine
several modules for a more complex system like a System-on-
Chip (SoC) [3, 5, 18, 37].

Section 2, 2.1,
2.3

Graphical design The design flow supports a visual approach other than coding
to model the target solution.

Table 2

Hierarchical synthesis An optimization that generalizes pipelining, allowing various
functions to run in a parallel and pipelined manner [7].

Section 3.1

HLS binding The HLS step of binding specific operations to given func-
tional units [9, 12, 13, 26].

Section 3, 3.1

HLS resource alloca-
tion

The HLS step of allocating specific resources for given opera-
tions [9, 12, 13, 26].

Section 3, 3.1

Host code design The design of the code running on the host system in charge
of interacting with the FPGA.

Section 3.1, 3.2,
4.2, 4.3, Table 1,
Table 3

If-conversion A widely known software optimization [22] where all the
branches are executed in parallel with a simple guard deciding
which result should be committed [26].

Appendix D

Initiation interval The number of clock cycles after which a pipelined function-
ality/loop can begin a new iteration of the function/loop.

Appendix A.3

Instrumentation PyRTL feature of modifying the source code directly to mea-
sure performance or log significant events.

Section 2.2, Ta-
ble 1

Intellectual Property
(IP)

Reusable design blocks either internally developed or third-
party.

Section 1, 2,
2.1, 2.4, 3, 3.1,
3.2, 3.3, 4.2, 5,
Table 1

Lazy transformations HeteroHalide feature of not implementing directly a given
transformation in the Halide Intermediate Representation (IR)
but explicitly lowering it to HeteroCL.

Section 4.1, Ta-
ble 3

Level specification ExaSlang 4 feature of defining objects/functionalities for a
given multigrid level that override the default ones [29].

Section 4.1, Ta-
ble 3

Loop hoisting Loop hoisting is a traditional compiler-based optimization
(also called loop-invariant code motion or scalar promotion).
It mainly consists of moving statements or expressions outside
the body of a loop without affecting the semantics of the
program‡ [2].

Appendix D

‡https://compileroptimizations.com/category/hoisting.html

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 43

Technical Term Description Reference

Low-power optimiza-
tions

A collection of techniques and methodologies to reduce a
digital design’s dynamic and static power consumption [27].

Section 3.1

Multiple architectural
backends

HeteroCL feature of translating a DSL program into different
compatible backends.

Section 4.1, 4.3

Multi-clock design A design with multiple clock domains, e.g., a design that must
preserve a specific frequency for the I/O (such as PCIe) and
another for internal processing.

Section 2.1, Ta-
ble 1, 2

Non-linear pipeline PolyMage feature of dealing and supporting DAG-based
pipelines, where decoupled parallel stages execute without
serialization [11].

Appendix D

Non-synthesizable HDL abstractions that are not automatically convertible
from RTL to logic gates through the logic synthesis process,
hence, mainly devoted to functional/timing verification/simu-
lation [23].

Section 2

Operation chaining An optimization for scheduling multiple combinational oper-
ators together in a single clock cycle to avoid false paths [26,
32].

Section 3.1,
Appendix D

Operation-level paral-
lelism

Hastlayer parallelization of multiple operations (simpler than
a single task such as addition, multiplication), or SIMD-like
parallelization [21].

Section 3.1

Parallelism levels PolyMage feature of leveraging different parallelism levels in
the image processing domain, e.g., inter-state, channel-level,
data-level parallelism levels [11].

Appendix D

Parametrization The feature of determining some module parameters that
define the internal structure. For instance, a Flip-Flop may
be parametrized to store different compile-time data widths,
enabling the reuse of the same FF module across different
scenarios. This approach prevents rewriting the same module
for any possible data width.

Section 2, 2.1,
2.2, 2.3, Table 1

Partial evaluation AnyHLS feature of optimizing algorithm variants at compile-
time [16].

Section 4.3, Ta-
ble 3

Partial reconfiguration The feature of reconfiguring just a portion of the FPGA, leav-
ing the rest of the current configuration untouched [35].

Section 3.2, Ta-
ble 1

Polymorphism The feature of provisioning a single interface to entities of dif-
ferent types [6] or the usage of a symbol to represent multiple
different types [8].

Section 1, 2,
2.1, 2.2, 2.3, 2.4,
Table 1

Pthread/OpenMP sup-
port

The unconventional feature of HDLs and HLS toolchains to
manage dynamic thread constructs and translate them into
hardware modules.

Section 2.2, 3.1,
3.2, Table 2

Recursion A standard feature of programming languages usually not
supported in HDL/HLS/DSL flows since it involves dynamic
memory allocation.

Section 2.1, 2.3,
3.1, 3.3, Table 1,
Appendix D

Recursion The unusual feature of supporting standard recursion by the
design abstraction since it involves dynamic allocations.

Section 2, 3.1,
3.3, Appen-
dix D

Reset polarity The design abstraction feature of activating the reset on a
negative or positive edge or being active on logic high or
logic low.

Section 2.1, Ta-
ble 1

Scala-FPGA runtime The VeriScala software that handles the FPGA-CPU commu-
nication.

Table 1

, Vol. 1, No. 1, Article . Publication date: August 2022.

44 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

Technical Term Description Reference

Shallow embedding AnyHLS feature of supporting additional domain-specific
structures without affecting the compiler [20].

Section 4.3, Ta-
ble 3

Smart buffers On-chip buffers enabling data reuse through loop iterations
according to the data access pattern.

Section 3.1, Ta-
ble 2

System integration The feature of emulating/building a complete system and not
just the IP per se.

Table 2

Task-level parallelism The parallelism of having multiple tasks executed concur-
rently among the others.

Section 3.1

Timing verification Verifying that a given design respects some timing constraints. Section 2.1, 2.3,
Table 1

Tool for quality cover-
age metrics

Catapult HLS feature of reporting coverage metrics similar
to a software one. We report Siemens website details: “Use
traditional RTL metrics such as statement, branch, expression,
and toggle coverage, combined with functional verification
techniques from SystemVerilog to reach high-quality HLS-
aware coveragewithout slow and expensive RTL Simulation.”†

Section 3.1

† https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls-verification/coverage/

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 45

C QUALITATIVE METRIC DEFINITION
This Appendix describes the qualitative metrics we employed in Section 5 to compare HDLs, HLS
tools, and DSLs through Figure 7.

Table 5. Qualitative metrics of Figure 7

Metric Description

Design productivity The degree of features the language/tool offers to build a hardware
design.

Flexibility The capacity of implementing whatever hardware design with that
language/tool.

Conciseness The number of lines of code required to build a hardware design.
Performance The efficiency of a hardware design in terms ofmetrics such as latency

and throughput.
Resource efficiency The number of resources required to implement a hardware design

given a resource budget.
Verification productivity The degree of features the language/tool offers to verify a hardware

design.

, Vol. 1, No. 1, Article . Publication date: August 2022.

46 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

D REMOVED TOOLS AND LANGUAGES
This Appendix reports tools and languages we excluded from the survey due to space limitations.

D.1 High-Level Synthesis Tools
Kiwi: Kiwi [30, 34] is an open-source HLS toolchain developed by the University of Cambridge

and Microsoft Research and currently maintained by the former. Kiwi takes C# code, compiles it to
.NET bytecode, and then generates Verilog code for both Xilinx and Intel FPGAs. Kiwi supports
a broad subset of high-level features. For instance, the designer can leverage C# concurrency
constructs (e.g., threads, events, andmonitors) tomap parallel code to hardware efficiently. Moreover,
unlikemost HLS tools, Kiwi supports recursion (with some restrictions), dynamicmemory allocation,
and pointer manipulation. Internally, the Kiwi Compiler (KiwiC) relies on the Value State Flow
Graph (VSFG) technique to compile heavy control flow code. Thanks to this technique, KiwiC can
apply optimizations like dynamic execution scheduling, speculation, and loop transformations.

DWARV: DWARV [25] builds upon CoSy, an HLS compiler developed by ACE [1]. Therefore, its
characteristics are directly related to the features of CoSy: modular and robust backend, easiness of
extension with new optimizations. Besides, DWARV provides a flexible way to exploit standard and
custom optimizations, such as basic loop optimizations, loop hoisting, scheduling optimizations,
if-conversion, operation chaining, bit-width analysis, and more. Another feature of DWARV is a
general template that permits the description and integration of IP blocks from external libraries as
custom function calls. DWARV accepts general C code and outputs VHDL. Besides, it applies no
restrictions on the application domain and can generate hardware for both streaming and control-
intensive applications. Over the years, developers extended the subset of supported features,
including pointers, memory accesses, and integer and floating-point data types. On the other hand,
DWARV does not support global variables, recursion, or the standard C mathematical library.

D.2 Application Domain DSLs
PolyMage: PolyMage [24] is a DSL and compiler implementing optimized image processing

pipelines for both CPUs and FPGAs [11]. PolyMage supplies various operators (e.g., point-wise,
stencil, and up/downsampling) to specify the filters and supports both linear and non-linear
pipelines. The FPGA backend processes the functional input code and derives a directed acyclic
graph exposing producer/consumer relationships. The backend connects each producer pipeline
stage, which corresponds to a graph node, to the consumers with FIFOs, which correspond to the
graph edges. According to the filter performed in the consumer stage, the backend determines the
proper FIFO sizes. Furthermore, PolyMage leverages different parallelism forms when implementing
the hardware pipelines, from inter-stage to channel-level, maximizing the memory bandwidth
usage. Finally, PolyMage compiles the input pipeline into C/C++ code for Vivado HLS.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Pushing the Level of Abstraction of Digital System Design: a Survey on How to Program FPGAs 47

APPENDIX REFERENCES
[Appendix1] ACE. 2017. CoSy compiler development system. http://www.ace.nl/compiler/cosy.
[Appendix2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles, techniques. Addison wesley 7,

8 (1986), 9.
[Appendix3] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew, Albert

Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry
Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design,
Simulation, and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21. https:
//doi.org/10.1109/MM.2020.2996616

[Appendix4] Jonathan Babb, Martin Rinard, Csaba Andras Moritz, Walter Lee, Matthew Frank, Rajeev Barua, and
Saman Amarasinghe. 1999. Parallelizing applications into silicon. In Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (Cat. No. PR00375). IEEE, 70–80.

[Appendix5] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey Lavrov, Mohammad
Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, et al. 2016. OpenPiton: An open source manycore
research framework. ACM SIGPLAN Notices 51, 4 (2016), 217–232.

[Appendix6] Bjarne Stroustrup. 2007. Bjarne Stroustrup’s C++ Glossary. https://www.stroustrup.com/glossary.html#
Gpolymorphism.

[Appendix7] Thomas Bollaert. 2008. Catapult synthesis: a practical introduction to interactive C synthesis. In High-Level
Synthesis. Springer, 29–52.

[Appendix8] Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys (CSUR) 17, 4 (1985), 471–523.

[Appendix9] Joao MP Cardoso, Pedro C Diniz, and Markus Weinhardt. 2010. Compiling for reconfigurable computing: A
survey. ACM Computing Surveys (CSUR) 42, 4 (2010), 1–65.

[Appendix10] Stefano Cherubin and Giovanni Agosta. 2020. Tools for reduced precision computation: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1–35.

[Appendix11] Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula. 2016. A DSL compiler for accelerating
image processing pipelines on FPGAs. In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation. 327–338.

[Appendix12] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang. 2011. High-level
synthesis for FPGAs: From prototyping to deployment. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 30, 4 (2011), 473–491.

[Appendix13] Giovanni De Micheli. 1994. Synthesis and optimization of digital circuits. Number BOOK. McGraw Hill.
[Appendix14] Yang Ding and Weng Fai Wong. 2005. Bit-width analysis for general applications. (2005).
[Appendix15] Douglas do Couto Teixeira and Fernando Magno Quintao Pereira. 2011. The design and implementation of

a non-iterative range analysis algorithm on a production compiler. SBLP. SBC (2011), 45–59.
[Appendix16] Yoshihiko Futamura. 1983. Partial computation of programs. In RIMS Symposia on Software Science and

Engineering. Springer, 1–35.
[Appendix17] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2019. DYNAMATIC - From C/C++ to Dynamically-

Scheduled Circuits. https://dynamatic.epfl.ch
[Appendix18] Andreas Kurth, Pirmin Vogel, Alessandro Capotondi, Andrea Marongiu, and Luca Benini. 2017. HERO:

Heterogeneous embedded research platform for exploring RISC-V manycore accelerators on FPGA. arXiv
preprint arXiv:1712.06497 (2017).

[Appendix19] Halide Language. 2013. Documentation. https://halide-lang.org/docs/class_halide_1_1_func.html.
[Appendix20] Roland Leißa, Klaas Boesche, Sebastian Hack, Richard Membarth, and Philipp Slusallek. 2015. Shallow

embedding of DSLs via online partial evaluation. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences. Association for Computing Machinery,
New York, NY, USA, 11–20.

[Appendix21] Lombiq Technologies. 2019. Hastlayer SDK - GitHub. https://github.com/Lombiq/Hastlayer-SDK.
[Appendix22] Scott A Mahlke, Richard E Hank, Roger A Bringmann, John C Gyllenhaal, David M Gallagher, and Wen-

mei W Hwu. 1994. Characterizing the impact of predicated execution on branch prediction. In Proceedings
of the 27th annual international symposium on Microarchitecture. 217–227.

[Appendix23] Clive Maxfield. 2004. The design warrior’s guide to FPGAs: devices, tools and flows. Elsevier.
[Appendix24] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic optimization for

image processing pipelines. ACM SIGARCH Computer Architecture News 43, 1 (2015), 429–443.
[Appendix25] Razvan Nane, Vlad-Mihai Sima, Bryan Olivier, Roel Meeuws, Yana Yankova, and Koen Bertels. 2012. DWARV

2.0: A CoSy-based C-to-VHDL hardware compiler. In Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on. IEEE, 619–622.

, Vol. 1, No. 1, Article . Publication date: August 2022.

http://www.ace.nl/compiler/cosy
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616
https://www.stroustrup.com/glossary.html#Gpolymorphism
https://www.stroustrup.com/glossary.html#Gpolymorphism
https://dynamatic.epfl.ch
https://halide-lang.org/docs/class_halide_1_1_func.html
https://github.com/Lombiq/Hastlayer-SDK

48 Del Sozzo, Conficconi, Zeni, Salaris, Sciuto, and Santambrogio

[Appendix26] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen,
Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. 2016. A survey and evaluation of FPGA high-level
synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 10 (2016),
1591–1604.

[Appendix27] Preeti Ranjan Panda, BVN Silpa, Aviral Shrivastava, and Krishnaiah Gummidipudi. 2010. Power-efficient
system design. Springer Science & Business Media.

[Appendix28] Jason RC Patterson. 1995. Accurate static branch prediction by value range propagation. In Proceedings of
the ACM SIGPLAN 1995 conference on Programming language design and implementation. 67–78.

[Appendix29] Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Harald Köstler, and Jürgen Teich. 2014. ExaSlang: A
domain-specific language for highly scalable multigrid solvers. In 2014 Fourth international workshop on
domain-specific languages and high-level frameworks for high performance computing. IEEE, 42–51.

[Appendix30] Satnam Singh and David J Greaves. 2008. Kiwi: Synthesis of FPGA circuits from parallel programs. In 2008
16th International Symposium on Field-Programmable Custom Computing Machines. IEEE, 3–12.

[Appendix31] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. 2000. Bidwidth analysis with application to
silicon compilation. ACM SIGPLAN Notices 35, 5 (2000), 108–120.

[Appendix32] Leon Stok. 1994. Data path synthesis. Integration 18, 1 (1994), 1–71.
[Appendix33] UCLA VAST Lab. 2020. HeteroHalide: From Image Processing DSL to Efficient FPGA Acceleration. https:

//github.com/UCLA-VAST/heterohalide.
[Appendix34] University of Cambridge. 2016. Kiwi Scientific Acceleration using FPGA. https://www.cl.cam.ac.uk/~djg11/

kiwi/.
[Appendix35] Kizheppatt Vipin and Suhaib A Fahmy. 2018. FPGA dynamic and partial reconfiguration: A survey of

architectures, methods, and applications. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–39.
[Appendix36] OpenCV: Open Source Computer Vision. 2000. Image Filtering. https://docs.opencv.org/3.4/d4/d86/group_

_imgproc__filter.html. last accessed 6 February 2022.
[Appendix37] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. SonicBOOM: The 3rd Generation

Berkeley Out-of-Order Machine. (May 2020).

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://github.com/UCLA-VAST/heterohalide
https://github.com/UCLA-VAST/heterohalide
https://www.cl.cam.ac.uk/~djg11/kiwi/
https://www.cl.cam.ac.uk/~djg11/kiwi/
https://docs.opencv.org/3.4/d4/d86/group__imgproc__filter.html
https://docs.opencv.org/3.4/d4/d86/group__imgproc__filter.html

	Abstract
	1 Introduction
	2 Hardware Description Languages
	2.1 Functional-based HDL
	2.2 Imperative-based HDL
	2.3 SystemVerilog Extension HDL
	2.4 Summary

	3 High-Level Synthesis
	3.1 High-Level Synthesis Tools
	3.2 Accelerator-Centric Synthesis Tools
	3.3 Summary

	4 Domain-Specific Languages for FPGA Design
	4.1 Application Domain
	4.2 Architectural Domain
	4.3 Intermediate Infrastructure for DSLs
	4.4 Summary

	5 Conclusions and Final Remarks
	References
	A Code Examples
	A.1 Blur Filter Background
	A.2 Blur Filter in SystemVerilog
	A.3 Blur Filter in Vitis HLS
	A.4 Blur Filter in HeteroHalide
	A.5 Summary

	B Technical Terms Definition
	C Qualitative Metric Definition
	D Removed Tools and Languages
	D.1 High-Level Synthesis Tools
	D.2 Application Domain DSLs

	Appendix References

