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a b s t r a c t 

Risk assessment and mitigation programs have been carried out over the last decades in the attempt to reduce 
transportation infrastructure downtime and post-disaster recovery costs. Recently, the concept of resilience gained 
increasing importance in design, assessment, maintenance, and rehabilitation structures and infrastructure sys- 
tems, particularly bridges and transportation networks, exposed to natural and man-made hazards. In the field 
of disaster mitigation, frameworks have been proposed to provide a basis for development of qualitative and 
quantitative models quantifying the functionality and resilience at various scales, including components, groups 
and systems within infrastructure networks and communities. In these frameworks, the effects of aging and en- 
vironmental aggressiveness must be explicitly considered, affecting the structural performance and functionality 
of civil infrastructure systems. Significant efforts have been made to incorporate risk and resilience assessment 
frameworks into informed decision making to decide how to best use resources to minimize the impact of hazards 
on civil infrastructure systems. This review paper is part of these efforts. It presents an overview of the main prin- 
ciples and concepts, methods and strategies, advances and accomplishments in the field of life-cycle reliability, 
risk and resilience of structures and infrastructure systems, with emphasis on seismic resilience of bridges and 
road networks. 
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The quality of life of modern communities strongly relies on the
bility of infrastructure networks to cope with hazards when they oc-
ur, absorbing the impact of disastrous events and restoring as soon
s possible the pre-event or better conditions. Designing lifelines and
nfrastructure components to meet modern safety standards and plan-
ing proper management policies are key tasks to satisfy the primary
eeds of communities not only under operational conditions, but also in
 state of emergency [ 1–4 ]. In this context, structure and infrastructure
ystems, such as buildings, bridges, and transportation networks play a
ey role in the aftermath of hazardous events. Bridges and infrastructure
acilities guarantee the connectivity between origins and destinations of
aily trips carried out by commuters in urban areas and ensure a quick
eployment of emergency aids and resources to distressed communi-
ies. This is essential for a prompt repair of damaged lifeline compo-
ents and buildings. Among all the elements within transportation sys-
ems, bridges are crucial components highly vulnerable to natural and
an-made hazards, as narrow and fragile “bottlenecks ” seamlessly in-

eracting with the environment where they operate. They are not easily
etoured, since they are designed to go either over or underneath an ob-
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tacle such as a road or water body. Moreover, they cannot be treated
s standalone elements, as they are essential in preventing or minimiz-
ng outages and disruptions at the community level. Furthermore, the
etrimental effects of aging and deterioration processes due to aggres-
ive chemical attacks and other physical damage mechanisms can lead
tructure and infrastructure systems to exhibit over time unsatisfactory
erformance under service loadings or accidental actions and extreme
vents, such as earthquakes [ 5–9 ]. 

During the last decades, risk assessment and mitigation programs
ave been carried out in an attempt to reduce future losses and post-
isaster recovery costs [10] . Despite the scientific and practical ad-
ances in civil and structural engineering resulting in new design and
onstruction policies, there has not been enough progress in developing
ethodologies and best practices for life-cycle design, assessment, main-

enance and management of bridges located in seismic regions. Bridge
amage can cause direct monetary losses due to the necessary repair
nterventions to be carried out to restore the bridge carrying capacity
nd transit safety, as well as indirect losses due to network downtime
nd traffic delay. Therefore, it is fundamental to relate the vulnerabil-
ty of critical bridges and the impact of their damage on the operability
f affected communities. It is hence necessary to relate the functional
22 
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onnectivity provided by critical viaducts within the transportation net-
ork and the load-carrying capacity of vulnerable bridges under hardly

oreseeable load patterns. 
In this context, resilience is becoming a driving concept for new

enerations of Building Codes and Standards and informing innovative
rends and practical policies for performance-based design and manage-
ent of critical structures and infrastructure facilities. Resilience can

e related to the capability of structures, infrastructure systems, and
ntire communities, to withstand the effects of extreme events and to
ecover efficiently the original performance and functionality [ 11,12 ].
n the field of disaster mitigation, frameworks have been proposed to
rovide a basis for development of qualitative and quantitative models
easuring the functionality and resilience at various scales, including

ommunities and societies [ 11,13–20 ] as well as lifeline components
nd systems, such as health care facilities [ 21–23 ] and road networks
 24–32 ]. 

From the semantic point of view, the meaning of the term resilience
arks back to the Latin word “resilio ”, which means “to jump back ” or
to bounce back ”. In general, the concept of resilience represents a com-
rehensive synthesis of the ability of the investigated system to cope
ith the emergency conditions induced by sudden disruptive events
 33–37 ]. The definition of optimal ex-ante preventive retrofit interven-
ions and ex-post effective recovery actions for key system components
ecomes critical to ensure suitable resilience levels of road infrastruc-
ure networks. Furthermore, structural systems are subjected not only to
udden harmful events that may impair the emergency response of the
ffected communities, but they are also called to cope with deterioration
echanisms and relentless aging. Nonetheless, the time-variant perfor-
ance of structures and infrastructure systems should be evaluated in
robabilistic terms, accounting for the uncertainties propagating over
uring their lifetime and associated with the loadings and resistances of
tructural components [ 38–42 ], structural systems [ 2,6,43–45,46 ] and
ritical infrastructure networks [ 47–51 ]. Resilience of aging structures
nd infrastructure systems depends on the time of occurrence of ex-
reme events and a proper resilience quantification must be based on
he assessment of the structural systems over their entire life-cycles by
aking into account the effects of deterioration processes [ 27,52,53 ],
ime-variant environmental stressors [30] , and maintenance and repair
nterventions under uncertainty [ 54–56 ]. 

This paper presents a review of the main principles and concepts,
ethods and strategies, advances and accomplishments in the field of

ife-cycle reliability, risk and resilience of structures and infrastructure
ystems, with emphasis on seismic resilience of bridges and road net-
orks under uncertainties. Existing reviews on the subject of resilience
re mainly emphasizing the available definitions of resilience in the
ontext of disaster risk reduction. Significant reviews oriented to the
efinition of resilience indicators of critical infrastructure systems are
vailable, mostly regarding different dimensions [57] , taxonomy [58] ,
omputational tools [59] . Among all hazards and critical infrastructure,
articular efforts have been devoted to seismic risk assessment [ 60,61 ]
f transportation systems [ 62–64 ], with specific focus on bridge net-
orks [ 65–67 ]. Probabilistic frameworks for life-cycle seismic risk and
ssessment based on performance indicators of system resilience cov-
ring the emergency response under seismic and other natural hazards
f vulnerable components are considered. In most of these frameworks
he physical damage suffered by vulnerable bridges in the aftermath of
azardous events is associated with traffic limitations enforced by in-
rastructure managers to ensure the users’ safety, temporarily impairing
he system functionality. Then, the post-event repair actions enable the
rogressive release of the imposed restrictions under the attainment of
tructural capacity targets, leading to the definition of a comprehensive
easure of network resilience. The likelihood of occurrence of extensive

nd prolonged network functionality losses depends on several factors
argely affected by uncertainties, such as the occurrence rate of detri-
ental events, the capacity of crucial bridges to remain functional un-
er the imposed demand, and the actual availability of resources and
24 
edundancies to efficiently restore the system operability quickly after
he disaster strikes. In this context, the effects of aging and environ-
ental aggressiveness must be considered, since they are affecting the

tructural performance and functionality and, consequently, enforcing
he dependency of system resilience on the time of occurrence of ex-
reme events. Recent efforts made to develop these frameworks and in-
orporate them into practical policies to inform and support the deci-
ion making process of public authorities, owners and political system
or life-cycle management of aging structural systems and infrastruc-
ure networks, particularly in earthquake prone regions, are reviewed
nd discussed. 

This review paper addresses the past and recent developments re-
ated to resilience of aging structures and infrastructure systems with
mphasis on seismic resilience of bridges and road networks. The struc-
ure of the paper is conceived to convey these developments by incor-
orating life-cycle concepts in the seismic resilience of aging bridge
etworks under uncertainties associated with seismic hazard and inter-
ction with environmental stressors. Through the lessons learnt from
ast seismic events, Section “Concepts and methodologies for infras-
ructure resilience assessment ” presents the motivation and formalizes
ualitative definitions and quantitative frameworks to capture features,
imensions, means, goals of infrastructure resilience. Then, Section “Re-
ilience under a probabilistic life-cycle perspective ” focuses on the key
erspective offered by this review paper, which is the focus on a life-
ycle and probabilistic approach to seismic resilience assessment of ag-
ng bridge networks. Section “Probabilistic seismic damage assessment
f structural systems and infrastructure networks ” reviews available
ethodologies and open issues on regional seismic hazard and fragility

ssessment of spatially-distributed deteriorating bridges. Finally, Sec-
ion “Performance and recovery of infrastructure road networks ” re-
iews the commonly adopted methodologies for impact analysis and
etrics for functionality quantification of road networks as well as

trategies and models for bridge recovery assessment for life-cycle re-
ilience assessment under uncertainties. 

oncepts and methodologies for infrastructure resilience 

ssessment 

essons from the past 

The impact of recent and ancient disasters on physical infrastructure
nd communities provides clear examples of the need to build resilient
acilities to foster the ability of communities to cope with catastrophic
vents. From the technical point of view, developing comparative anal-
sis of the historical data helps to identify vulnerabilities in the infras-
ructure systems to avoid disruptions of daily operational activities of
tricken communities. Nonetheless, learning lessons from past experi-
nces and building awareness in societies and individuals help commu-
ities to avoid repeating the same mistakes. In the past two decades and
n different parts of the world, severe seismic events have caused phys-
cal damage, economical upsetting and tragic fatalities that profoundly
hocked the communities affected by the earthquake both in the emer-
ency response and in the long-term. These events also lead to the first
xamples of empirical calibration of seismic fragility curves and large-
cale assessment of seismic damage and economic losses encompassing
tructural, infrastructure, and community levels [ 68,69 ]. 

In 1989 the Loma Prieta earthquake occurred on California’s Cen-
ral Coast and hit the Bay Area in San Francisco. The earthquake im-
aired 91 state highway bridges and forced the closure of 13 of them
 70 ]. Severe disservice in the transportation network has been docu-
ented due to the closure of major infrastructure elements such as the

an Francisco-Oakland Bay Bridge and the Cypress Street viaducts. The
atter was one of the busiest routes in the city of Oakland and the col-
apse of its viaducts caused the highest number (i.e., 42) of earthquake-
nduced fatalities, about two thirds of the total [71] . Based on traffic
stimates, the preliminary death toll could have been worse. In fact,
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any local residents who would have normally been on the freeways
ere already at home during rush hour [72] . The reduction of traffic

apacity of the transportation system induced heavy traffic congestion,
ince the temporary closure of important routes forced the daily users of
he bridges to find alternative ways to reach their destinations, dramat-
cally increasing average travel times and distances [73] . Loma Prieta
arthquake made local communities realize the importance of risk mit-
gation policies in such a high-risk environment [74] . Besides causing
ignificant damage to physical facilities, the earthquake also overloaded
he health care system in the San Francisco Bay area, increasing by 15%
he total number of patients in hospitals [75] . The severity of the con-
equences of Loma Prieta earthquake exceeded all predictions, pointing
ut the importance of performance-based earthquake engineering in the
SA [76] . 

Five years after Loma Prieta earthquake, another major seismic event
ccurred in California. The 1994 Northridge earthquake caused dam-
ge to 286 bridges along four major freeways in the area of Los Ange-
es [ 68,77,78 ]. These routes have been restored within several months
nd it has been estimated that traffic delays and infrastructure recov-
ry accounted for $1.5 billion in indirect losses due to business inter-
uptions, nearly a quarter of the total economic disruption in the Los
ngeles metropolitan area [ 34,70,79 ]. The disastrous consequences of
orthridge earthquake are acknowledged to be mainly due to structural

nadequacy of the steel connections of the bridges, pointing out the
mportance of ductility in the design and construction practices [76] .
orthridge earthquake provides interesting examples of latent interde-
endencies across urban infrastructure systems. Electric power was lost
or nearly a day in the Van Norman complex, which treated about 75%
f the potable water in the city of Los Angeles. A smaller station with
ombustion engine pumps partially made up for the failure of the city
umping system but refueling was impaired by the damage to the trans-
ortation network [80] . 

In 1995, the Hyogoken Nanbu earthquake in Japan lead to severe
onsequences on the highly populated region surrounding the city of
obe [81] . The epicenter was close to the second largest urban area in
apan, causing thousands of fatalities and injuries. Widespread of phys-
cal assets was reported, causing outages to the transportation network
or about two years, as well as to electric power and telecommunica-
ion lines for over a week, water and natural gas supply systems for two
o three months, and railways for up to seven months [34] . The most
ffected element within the transportation network was the highway
ranch between Kobe and Ashiya providing an important connection
etween the metropolitan areas of Osaka and Kobe. Nearly 30 km were
losed, and the entire route was reopened after more than 20 months.
ajor viaducts as the Meishin and the Chugoku National Expressways
ere severely damaged. From the structural point of view, Kobe earth-
uake led to widespread collapse of foundations due to soil settlements
nd slope instability. Scientists and practitioners tried to promptly use
he lessons from the disastrous evidence of the earthquake. The Japanese
oad Association Code for bridge design was modified the year follow-

ng the mainshock [76] . Kobe earthquake provides an outstanding ex-
mple of the key role played by the transportation lifeline in the early
ours after the mainshock, since the interruption of the access routes
imited the work of firefighters and first responders and amplified the
amage induced by the earthquake with a total amount of 5500 fatalities
71] . The lack of service largely affected the nationwide economy due to
he temporary suspension of various activities and due to the additional
ravel distances and times [ 70 ]. Immediately following the earthquake,
he traffic conditions in the city of Kobe were in a “a state of confusion ”
or three days to one week, in which traffic volumes dropped sharply
ith extreme congestion at daytime followed by an increased traffic
olume at night [82] . “A state of settlement ” began the first week fol-
owing the earthquake, with a gradual return of daytime traffic levels
eginning to gradually return to their pre-event conditions, until “a state
f stability ” was reached the month following the earthquake. In terms
f long-term permanent effects, the habits of commuters substantially
25 
hanged at the regional level [73] . Furthermore, Kobe used to host the
ixth largest container port worldwide in terms of cargo throughput. At
epair completion two years after the earthquake, the port was ranked
eventeenth [17] . 

In 2011, major seismic events harmed large Pacific urban communi-
ies in Japan and New Zealand. During the Tohoku-oki earthquake, over
500 highway bridges were damaged and about 30% of them suffered
raffic limitations [83] . Damage included minor nonstructural damage
s well as collapse and large-scale cracking damage to main roads su-
erstructure [84] . Bridge damage due to ground shaking and the subse-
uent aftershocks was minor, mainly to bridges not yet retrofitted since
obe earthquake. Although many bridges survived despite being totally
ubmerged, tsunami-related damage included complete loss of span and
rosion of backfills. On the other hand, the Christchurch earthquake
as characterized by not particularly high magnitude, but shallow fo-

us and close proximity resulted in locally very high ground motions
ith widespread liquefaction [85] . The majority of the damaged bridges

uffered rotations of their abutments due to lateral spreading and were
losed for a few days immediately after the earthquake while their safety
as assessed [86] . 

efinition of resilience 

One of the first scientific field that aimed to comprehensively de-
ne and to quantitatively assess resilience can be found in biophysics
nd ecology. Holling [87] provided the first definition of ecosystems
esilience as “the amount of disturbance that can be sustained by a sys-
em before a change in system control or structure occurs ”; “it could be
easured by the magnitude of disturbance the system can tolerate and

till persist ”. Ecosystems are perceived as “a mosaic of spatial elements
ith distinct biological, physical, and chemical characteristics that are

inked by mechanisms of biological and physical transport ”. This work
rovided the first guidelines for the definition of models for resilience
uantification perceiving the multi-faceted issues relating system post-
hock response with the entity of the disturbance the system has to cope
ith and its ability to learn, adapt and self-organize. Holling’s original
efinition of resilience has been revised and extended over the years in
he biosystems framework to incorporate key concepts concerning the
elationship between human communities and their infrastructure [88] ,
he speed with which a system returns to its original state following a
erturbation [89] , the entity of the perturbation [90] , and the phases of
cosystems adaptive processes [91] . 

After the seminal paper by Holling [87] , the concept of resilience
as evolved from the disciplines of materials science and environmental
tudies to become extensively used and applied to several engineering
ranches [ 92,93 ]. In material science, the concept of resilience is com-
only associated to the mechanical properties of tested specimens. Even

hough the mechanical behavior of the majority of metallic materials is
haracterized by ductility and toughness, these materials may experi-
nce brittle failures in presence of adverse factors such as flaws, low
emperature, fast rate of load application. A resilient material is able to
bsorb high amounts of energy before it collapses and this amount of
nergy is a measure of the susceptibility to brittle or ductile failures. 

The concept of resilience finds numerous applications also in psy-
hology and health sciences, especially in the aftermath of COVID-19
andemic [ 94–96 ]. Mental resilience is the ability of people to prevent
he growth of mental disorders and to thrive in the face of adverse condi-
ions. Improving resilience is the target of any a priori prophylaxis and
ost-traumatic treatment. The research upon this topic is particularly
eterogeneous and a comprehensive review was proposed in Davydov
t al. [97] . The mechanisms behind the comprehension of mental re-
ilience can be either neuronal or genetic. Resilience can be fostered
y harm-reduction approaches to quickly recover from stress, by pro-
ection approaches to empower self-defense mechanisms, and by pro-
otion approaches to build barriers in the immune system and specific

rainings to overcome fears and negative experiences. It is worth not-
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ng that concepts and definitions of resilience in mental health sciences
nd emergency management of critical infrastructure are rather com-
arable, despite their differences in the fields of applications. Similar
atterns characterize, on the one hand, the patients’ ability to recover
rom psychological distress and, on the other hand, the ability of an in-
rastructure system to restore its functionality through the recovery of
ts damaged components. 

The conceptual patterns defined and developed for ecosystems can
e extended to different kinds of systems, such as societies, economies,
ations or enterprises seeking for a stability and equilibrium of forces
nd wellness. Like in ecosystems, resilience is a property of communi-
ies as a whole and it concerns the quality of life of the society that
akes use of the infrastructure facilities. Furthermore, resilience is not

nly a matter of resisting disturbances, but it also concerns with the
resence/lack of means and resources allowing for effective and prompt
ecovery: prolonged severe distress on ecosystem components may lead
o extended and possibly irreversible disruptions, dramatically affecting
he community welfare. Promoting the concept of resilience of com-
unities and societies is a key issue that several researchers tried to

ystematically frame, in order to define guidelines and promote good
ractices at the societal level [ 98,74,99,100 ] and at the economic level
 80,101,20 ]. 

Community resilience is further conceptualized embracing four di-
ensions [ 102,11 ]: 

1 The technical dimension is related to the ability of physical systems
to maintain desirable performance levels when the shock occurs. 

2 The organizational dimension is associated with the ability of all
stakeholders involved in the management of critical facilities to take
effective actions. 

3 The social dimension refers to all countermeasures taken in order to
mitigate the impact of the disruptive event on society and its terri-
tory. 

4 The economic dimension concerns the capacity to reduce direct and
indirect financial losses resulting from impactful hazards. 

Drawing an idealistic comparison with the medical science, the four
imensions of resilience are all as crucial to foster community resilience
s vital organs for the survival of human bodies [74] . Technical and
rganizational resilience is guaranteed by physical lifelines and infras-
ructure managers, which are the “body ” of the city or region of interest
s they play the role of bones, arteries and muscles within living beings.
ocial and economic resilience is achieved when the “brain ” of the city
unctions properly, which is the set of institutional components such
s schools, agencies, and all enterprises and organizations allowing the
ommunity to direct its activities, to respond to its needs and to learn
rom past experiences. 

eatures, dimensions, means and goals of infrastructure resilience metrics 

One of the most common and well-established frameworks that gave
he basis to current guidelines for resilience assessment and enhance-
ent of civil infrastructure systems has been provided in Bruneau et al.

11] , with specific focus on seismic hazard. Disaster resilience represents
he capability of a system to: 

1 Resist an extreme event, limiting operational outages and irreversible
damage 

2 Absorb its impact in terms of performance downtime and physi-
cal disruptions inducing direct monetary or indirect socio-economic
losses 

3 Recover promptly the pre-event condition, “bouncing back ” as
rapidly as possible to adequate operability conditions. 

Since resilience covers social and technical aspects too broadly, there
s no single generally accepted definition [ 65,54,103 ]. The quantifica-
ion of this three-fold qualitative definition of resilience relies on the
26 
efinition of a functionality metric Q , which describes the system per-
ormance by a comprehensive quality index. Functionality is monitored
etween the occurrence time t 0 , i.e., the instant in which the event oc-
urs, and the horizon time t h , i.e., a fixed “control time ” set to com-
are the results with under different hazard scenarios and recovery
trategies. The resilience R after an extreme event is often defined as
 11,17,21,27 ]: 

 = 

𝑡 ℎ 

∫
𝑡 0 
𝑄 ( 𝑡 ) 𝑑𝑡 (1a)

Alternatively, the value of resilience can be normalized with respect
o the investigated time horizon in order to have a non-dimensional
ndex [ 22,25,51,104 ]. This commonly adopted quantitative indicator of
ystem resilience is represented by the integral mean of the functionality
rofile from the time of event occurrence t 0 up to the fixed horizon time
 h : 

 = 

∫
𝑡 ℎ 
𝑡 0 

𝑄 ( 𝑡 ) 𝑑𝑡 

𝑡 ℎ − 𝑡 0 
(1b)

An infrastructure system such as a network of bridges is resilient
f a disruptive event does not induce severe short-term losses and if
t can rapidly restore its functionality at the pre-event or better lev-
ls for the most critical components. Resilience is promoted by man-
gers and decision makers if the actions taken positively affect both
ystem robustness and recovery rapidity, which represent the ends to
uarantee that the infrastructure is resilient. If robustness and rapid-
ty are the desired goals, resourcefulness and redundancy are the prop-
rties representing the means for resilience enhancement. Robustness,
apidity, resourcefulness and redundancy represent the properties of
esilience [11] . 

Concerning resilience ends, robustness is the ability of a system to
ithstand an external shock and maintain acceptable performance lev-

ls without suffering severe losses of functionality under a given dis-
urbance, and it is also referred to as the residual functionality at oc-
urrence time Q ( t 0 ) = Q 0 . Rapidity represents the capacity to achieve re-
overy goals in a timely manner and, being a feature of the post-event
ctions aiming to promptly restore sufficient performance levels. In gen-
ral, the recovery process starts after an idle time t i necessary to plan the
ecovery strategy for all damaged bridges in the network and to design
he related repair activities to be carried out to restore the network func-
ionality up to the final time t r . Therefore, rapidity can be approximately
easured as the ratio between residual functionality and recovery time

nterval t r – t i . 
Concerning resilience means, resourcefulness refers to the ability of

ystem managers and decision makers to apply proper knowledge and
eploy the economic resources to effectively and rapidly cope with the
ccurrence of extreme events. In this context, resources such as econom-
cal investments in materials and human resources represent the set of
kills needed to manage a disaster as it unfolds: a resourceful system
anager is able to identify problems, establish priorities and mobilize
aterials and workforce in order to take prompt and effective decisions.
he resourcefulness of a system also concerns with the ability to de-
ne ex-ante adequate emergency plans and recovery policies, but also
o change them ex-post by learning from mistakes or even to impro-
ise effectively in extreme conditions. On the other hand, redundancy

epresents the ability to mitigate the effects of the extreme event and
ncrease the recovery rate based on underlying alternative ways to cope
ith disasters when some elements fail [ 105,106 ]. The properties of re-

ilience are strongly interrelated. A system is redundant if it satisfies
ufficient functional requirements after its partial disruption. Similar to
he property of resourcefulness, it depends on the complex links and
idden interrelations between elements in a structure, structures in a
etwork and networks in a community. Also, redundancy and resource-
ulness can be seen as the two faces of the same medal: the availability of
esources can activate redundancies that did not previously exist, whilst
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edundant systems are able to provide alternative resources to cope with
ncertainties. 

rameworks for seismic resilience assessment of structural systems and 

etworks 

The consequences of natural and man-made catastrophes show how
ommunities are heavily affected by outages and disruptions of crit-
cal facilities. Therefore, understanding their performance under ex-
reme hazards is a key issue for scientific disciplines, such as civil and
tructural engineering. Communities are resilient to disruptive events
f the interdependent infrastructure systems can maintain acceptable
evels of functionality during and after the ground motion occurrence,
ince they enable efficient emergency response and long-term recov-
ry. In particular, road infrastructure networks play an important role
n the emergency response to seismic events and related hazards to en-
ure both a quick deployment of aids and resources to distressed com-
unities and a prompt repair of the surrounding lifelines and build-

ngs [ 26,31,107,108 ]. Different qualitative definitions of resilience have
een developed by the scientific community, depending on the seman-
ic and epistemological orientations as well as the theoretical back-
round of the reference [92] . These developments have been reviewed
nd applied to resilience of bridges and infrastructure networks for the
ssessment of condition rating [109] , risk mitigation and adaptation
 110,111 ], optimal maintenance [51] , retrofit design [ 112–115 ], and
estoration strategies [ 24,25 ]. Over the last decade, specific methodolo-
ies have been developed and implemented for probabilistic quantita-
ive assessment of resilience under seismic hazard of bridges and road
etworks [51] based on scenario events [116] or relying on integrated
imulation procedures [ 117,26,27,54,118–120 ]. It is worth mentioning
hat in most of the research works that tackled the problem of quanti-
ying resilience to support maintenance and management programs of
ging and deteriorating structures the main focus was mainly associated
ith planning optimal retrofit strategies to reduce the risk of network

noperability due to the failure of existing vulnerable assets. Further re-
earch is needed to address network design and improvement strategies
ased on structural upgrade [ 121,122 ] in the context of large-scale in-
rastructure investments aimed at enhancing the system functionality
 26,103,123,124 ]. 

Flowcharts summarizing the computational framework for integrat-
ng resilience and loss assessment, for the evaluation of probabilistic
eismic resilience, rapidity, and socio-economic impact, and for deter-
ining retrofitting prioritization based on risk and resilience of road net-
orks are indicated in Decò et al. [54] , Li et al. [119] , and Ishibashi et al.

107] . Moreover, flowcharts of computational frameworks for life-cycle
robabilistic seismic resilience and cost-based seismic risk assessment of
ging bridges and bridge networks are presented in Bocchini and Fran-
opol [25] , Dong and Frangopol [ 29,31 ], Capacci and Biondini [26] ,
essore et al. [125] , and Qian et al. [126] . The flowchart presented in

ig. 1 summarizes the procedural steps of a general methodology for
ife-cycle resilience assessment of bridges and road networks [127] . The
hysical damage s b suffered by vulnerable bridges in the aftermath of
udden disruptive events (such as earthquakes) coupled with long-term
eterioration (such as corrosion) is associated with traffic limitations
 b enforced by infrastructure managers to ensure the users’ safety, tem-
orarily impairing the system functionality Q given the traffic restriction
ombination d on every vulnerable system component. Given the dam-
ge state combination s , the post-event repair actions r b ( t ) allow progres-
ively releasing the imposed restrictions d b ( t ) under the attainment of
pecific capacity targets, leading to the definition of a stepwise function-
lity profile Q ( t ) and the related measure of network resilience R . This
tepwise functionality profile was quantified in the optimal resilience
nd cost-based post-disaster intervention prioritization for bridges in
occhini and Frangopol [24] . Damage occurrence and repair rapidity
re related to the vulnerability of key bridges within the network. Traf-
c limitations and their progressive release inform the exposure metrics
27 
f the transportation system, representing the large-scale consequences
f damage and repair of network components in terms of system func-
ionality loss, recovery and overall resilience. 

esilience under a probabilistic life-cycle perspective 

erformance under uncertainty and risk-based frameworks 

Enhancing the seismic resilience of infrastructure systems is a so-
ial need since the prosperity of communities can be heavily harmed by
utages and disruptions of critical facilities. The economic impact on
ifeline systems of sudden impactful events coupled with long-term de-
erioration processes can be exceptionally high, particularly for bridges
nd transportation networks. The concept of risk characterizes the un-
erlying threats of a disastrous event both in terms of its likelihood of
ccurrence and the consequences that it would lead to. In particular, risk
ssessment allows quantifying the consequences of various hazardous
cenarios with their related probabilities, whilst risk management con-
ists in defining policies and taking action based on the involved un-
ertainties [128] . In several scientific fields and engineering disciplines,
isk is merely quantified as the sum of the effects of a disruptive event
eighted by their probability of occurrence. Within the civil engineering

cientific community, analytical frameworks for risk assessment have
een developed in the attempt to assess the seismic risk of structures, in-
rastructure systems and entire communities. In the attempt of planning
isk mitigation strategies, several countries and institutions are currently
evoting significant efforts in assessing the risk of the built environment
n hazard-prone areas as well as the residual lifetime of critical exist-
ng facilities, including buildings, bridges, roads, railways, dams, ports,
mong other lifelines and infrastructure components. Along with the
ecessary monetary and technical efforts of infrastructure owners and
anagers, significant advances are necessary in many research fields

elated to modeling, analysis, maintenance, repair, and design of civil
ngineering systems. In general, risk varies dynamically upon changes
o the combination of three components [129] : 

1 Hazard, i.e., the detrimental event causing losses. 
2 Vulnerability, i.e., the likelihood of damage occurrence when the

hazard occurs. 
3 Exposure, i.e., what or who is threatened by the hazard and is af-

fected by disruptions of vulnerable elements. 

The characteristics of phenomena for natural and built environments
re related to the concept of hazard. Hazard assessment refers to the
rocedure of mapping intensity and frequency of occurrence of the trig-
ering causes of failure and damage based on historical or empirical
vidence and physics-based models. The sources of hazards for pop-
lations at the societal level can be natural, technological or socio-
olitical. These categories can be further broken down into two typolo-
ies of events [130] : long-term gradual stress events (e.g., aging due
o environmental aggressiveness, climate change, etc.) and short-term
udden shock events (e.g., earthquakes and landslides, snowfalls and
valanches, floods and tsunamis, storms and wildfire, large-scale strikes,
rowded public events leading to traffic congestion and road closures,
errorist attacks, etc.). Seismic hazard and environmental hazards can
e considered as a natural shock event and a natural gradual event,
espectively. Seismic hazard assessment for a given geographical area
enerally relies on seismological studies based on historical data and the
eophysical/seismogenic characteristics of the site. Researchers heavily
elied on empirical evidence of historical events to predict the effects
f future earthquake learning from the geophysical consequences ad-
ressed by past ground motions. 

Vulnerability refers to the probability of occurrence of damage, fail-
re or collapse of a structural system depends on the complex, uncer-
ain and eventually unpredictable relationship between the demand im-
osed by hazardous events and the capacity to fulfill it. Vulnerability
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Fig. 1. Flowchart for resilience assessment of road networks with vulnerable bridges (Adapted from [127] ). 
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s a property of the studied system, and it refers to the inherent possi-
le inability of structures and infrastructure systems to cope with the
mpact of hazardous events. It is related to resisting patterns that pro-
ide the capacity to prevent damage to the exposed assets under the
ccurrence of hazardous events of given intensity. A common way to
nalytically and graphically assess the vulnerability of a system or one
f its components is given by the fragility curves, which represent the
onditional probability of occurrence of a specific disruptive event as a
unction of an appropriate hazard intensity measure (e.g., the likelihood
f overcoming a specific structural limit state given the earthquake in-
ensity). In practical applications, the seismic reliability assessment of
nfrastructure networks can be carried out based on simulation tech-
iques [131] or analytical methods relying on suitable mathematical
ormulations [132] . Assessing the vulnerability of a large-scale network
an be a challenging task not only due to the computational costs as
ell as incomplete information on the bridge vulnerability and on their

tatistical dependency [ 133,134 ]. 
In the context of community risk assessment, exposure represents

hysical assets (e.g., buildings and infrastructure), social communities
i.e., individuals and their organizational systems) and economic busi-
esses at risk of losses in the aftermath of hazardous events [129] . Expo-
ure assessment of vulnerable communities requires the quantification
f the consequences of a disastrous event in impairing primary needs
nd basic safety of infrastructure users and people relying on lifelines.
he exposure of communities to seismic hazard concerns with the health
nd safety of people who could be in danger during and after disrup-
ive ground motions, as well as the users that may suffer from losses
f functionality and temporary closure of critical facilities in the in-
rastructure systems. Both vulnerability and exposure of infrastructure
ystems and communities can be difficult not only to be quantitatively
28 
easured, but even to be qualitatively defined due to the interconnect-
dness between critical lifelines and their key components. For this rea-
on, the infrastructure assessment should rely on systemic approaches.
xposure is often quantified by direct monetary losses induced by re-
air activities carried out to restore damaged assets. Nonetheless, issues
uch as delays in emergency response and long-term system operability
annot be easily translated in financial terms, providing a limited per-
pective on the real consequences of infrastructure damage. Therefore,
xposure can be assessed indirectly based on performance metrics that
uantify in non-monetary terms the disaster-induced losses at the com-
unity level. In this context, quantitative metrics of system resilience

an be considered as a measure of system exposure under emergency
n the aftermath of the occurrence of shock events, such as earthquakes
 26–28,135,30,73,136,137 ]. 

An example of comprehensive research effort for risk mitigation is
rovided by SYNER-G, a European collaborative research project funded
y the European Commission [138] . Its main objective is to develop an
ntegrated methodology for the systemic seismic risk analysis of build-
ngs, lifelines, infrastructures, transportation and utility systems and
ritical facilities accounting for the interactions between different com-
onents and systems. Another recent example is related to seismic risk
f compliant structures designed with the current Italian Code, namely
he ongoing RINTC joint research project of ReLUIS and EUCENTRE,
wo centers of competence for seismic risk assessment of the Italian
ivil protection [139] . The goal of this project is to assess in an ex-
licit manner the seismic risk of code-compliant archetype structures
ssociated with different typologies (masonry, reinforced concrete, pre-
ast reinforced concrete, steel, and seismically isolated buildings) at
ifferent sites spanning the seismic hazard scenarios at the national
evel. 



L. Capacci, F. Biondini and D.M. Frangopol Resilient Cities and Structures 1 (2022) 23–41 

R

 

i  

u  

d  

a  

n  

p  

p  

p  

t  

d  

s  

t  

t  

c  

p  

a  

u  

n  

t  

a  

v  

b  

t
 

v  

m  

p  

t  

i  

a  

t  

q  

m  

p  

e  

r  

a  

r  

i
 

e  

w  

p  

b  

c  

e  

s  

w  

t  

p  

s  

t  

o  

e  

p  

t  

c  

f
 

o  

p  

e  

o  

Fig. 2. Uncertainties involved in probabilistic resilience assessment (Adapted 
from [54] ). Uncertainties are represented by qualitative PDFs. 
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esilience under a life-cycle-oriented perspective 

The economic impact of aging and deterioration processes on exist-
ng structures and infrastructure systems is exceptionally high, partic-
larly for bridges and transportation networks [140] . Assessment and
esign of structural systems should be based on a probabilistic-oriented
pproaches that reliably and effectively model the deterioration mecha-
isms and time-variant loading conditions governing demand and ca-
acity of structures at risk [ 141,142,6,1,7,143,103,41,123,144 ]. De-
ending on the environmental conditions to which structures are ex-
osed, chemical attacks and physical damage may dramatically reduce
he mechanical properties of key structural members [145] . The local
amage at the structural element level is then reflected at the structural
ystem level, harming the capacity of the structural system to withstand
he demand imposed by service loadings or hazard-induced extreme ac-
ions. Analogously, the effects of complex aggressive phenomena on cru-
ial components of infrastructure systems, such as bridges, may also im-
air over time the emergency response of communities in hazard-prone
reas. These problems pose a major challenge to structural engineers
sed to the classical time-invariant criteria. Methodologies for design
eed to be reviewed to account for the actual behavior of structural sys-
ems throughout their entire life-cycle. Therefore, life-cycle structural
nd infrastructure performance should be investigated based on time-
ariant indicators [ 141,142,146,147 ] such as reliability [ 148,149 ], ro-
ustness [ 150–152 ], redundancy [ 153,154 ], risk [ 155,125 ], and sus-
ainability [ 156 , 135,157,158,56 ]. 

In this context, resilience goals can be achieved by means of in-
estment of resources. Enhancing the resourcefulness with retrofit and
aintenance on vulnerable system components would increase the pre-
aredness of the system to withstand the consequences of the disrup-
ion, whilst allocating resources in adequate restoring planning would
ncrease the recovery rate. The outcomes of both strategies on resilience
re reported in Franchin [159] . The beneficial effects of ex-ante preven-
ive actions reduce vulnerability leading to higher post-shock system
uality levels and likely faster recovery. The initial functionality drop
ay even be imperceptible if extremely effective (although expensive)
revention strategies are deployed. On the other hand, the beneficial
ffects of investment of resources on ex-post corrective actions are rep-
esented by the unaltered initial functionality drop under no preventive
ctions, whilst the system performance in the post-shock phase tends to
egain its pre-event standards with rate proportional to the amount of
nvested resources. 

As the hearsay goes “prevention is better than cure ”, it is likely that
x-ante prevention policies would reduce bridge recovery times and net-
ork functionality loss in a more effective manner with respect to ex-
ost restoration activities. Nevertheless, infrastructure resilience cannot
e straightforwardly formulated in deterministic terms, since many un-
ertainties ultimately affect the decision-making process for resilience
nhancement. In the context of lifeline risk analysis, uncertainties are as-
ociated with frequency of occurrence and intensity of hazardous events,
ith the vulnerability of critical bridges to damage and failure and with

he large-scale consequences of transportation system downtime and its
rompt restoration. Fig. 2 illustrates with qualitative probability den-
ity functions the uncertainties involved in the parameters of the func-
ionality profile [54] . The rate of occurrence of rare hazards affects the
ccurrence time t 0 , whilst the intensity of the hazard affects the post-
vent functionality Q 0 as well as the idle time t i necessary to design and
ut in practice the necessary countermeasure to restore the system from
he shock. Uncertainties also affect the recovery process in terms of re-
overy profile Q ( t ) as well as repair completion time t r and the related
unctionality after recovery Q r . 

Furthermore, resilience should not be intended as a static property
f the infrastructure. Post-disaster functionality and recovery both de-
end on the time of occurrence of a shock event due to the long-term
ffects of bridge aging and deterioration [ 52,26,27,29,30,107,53 ]. The
ccurrence of disruptive events typically induces abrupt losses of net-
29 
ork functionality, whilst environmental damage harms progressively
n time the bridge structural capacity depending on the environmen-
al aggressiveness. Fig. 3 qualitatively shows the difference in the time
volution of system functionality for non-deteriorating and deteriorat-
ng systems [52] . When no aging is considered, the residual function-
lity corresponds to the functionality drop ΔQ in the aftermath of a
isruptive event, which only depends on shock event intensity and the
esilience measure depends on the recovery profile Q ( t ) from occurrence
ime t 0 to horizon time t h ( R 1 = R 2 in Fig. 3 a). The combined effects of
hock events and environmental aging lead to a reduction over time
f the post-event residual functionality and may also affect the recov-
ry pattern ( R 1 > R 2 in Fig. 3 b). The definition of lifetime resilience loss
f deteriorating structures is provided in Yang and Frangopol [53] in
he context of a general approach for life-cycle management based on
enewal-reward processes. 

Bridge network functionality profile and infrastructure system re-
ilience vary according to the degree of environmental aggressiveness on
ulnerable assets. Large concentrations of aggressive agents, low struc-
ural durability with respect to chemical and physical attacks, and fast
eterioration rates of bridge load-carrying capacity after damage initi-
tion are all features that reduce the residual bridge network function-
lity at a prescribed occurrence time t 0 . This is highlighted in Fig. 4 a,
hich allows comparing graphically the outcomes in terms of resilience
easure given prescribed post-event losses of functionality ΔQ induced

y (1) slight/moderate environmental exposure vs. (2) more severe ag-
ressiveness. Programming preventive maintenance on bridge assets is
n effective policy to extend the life-cycle serviceability of the exposed
nfrastructure network. Proactive bridge interventions at the operational
ime t m 

would lead to an increase in infrastructure functionality ΔQ m 

.
his has a beneficial effect on the emergency response in terms of re-
ilience at a subsequent event occurrence time t 0 , as shown in Fig. 4 b
or recovery profile (1) with and (2) without a prescribed maintenance
rogram. Finally, limited resources are generally available under emer-
ency conditions to restore the system functionality and different bridge
ecovery strategies may affect differently the long-term network perfor-
ance. Fig. 4 c compares both resilience and post-recovery functionality
rofiles of a deteriorating system under two repair actions that either (1)
ully or (2) partially restore the system functionality at the same final
epair time t f . 

robabilistic seismic damage assessment of structural systems 

nd infrastructure networks 

eismic hazard of spatially-distributed structures 

The severity of a seismic event can be measured by different quan-
itative indicators. Seismologists and researchers in seismic engineer-
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Fig. 3. Functionality Q and functionality losses ΔQ k due to the occurrence of sequential extreme events k = 1,2,…, of same magnitude at different time instants t 0, k 

and recovery over the time intervals [ t i , k ; t f , k ], with t i , k = t 0, k and t f , k = t h , k . (a) Non-deteriorating systems. (b) Deteriorating systems. (Adapted from [52] ). 
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structures within the network. The involved uncertainties are related 
ng have proposed several measures representative of different aspects
f ground motion events, such as the large-scale consequences of the
arthquake at the community level, on the magnitude of the physical
henomenon that generated the ground shaking, and the descriptive pa-
ameters of the shaking at the location of a vulnerable structure. Decades
f observations of seismic signals allowed seismologists to calibrate pre-
ictive models of earthquake intensity and occurrence rates [ 160,161 ].
acroseismic measures of seismic intensity have been widely adopted

nd still play a role of paramount importance in those regions in the
orld that lack the modern instrumentation, being the only viable tool

o quantify the consequences of seismic events [ 162,163 ]. The develop-
ent of direct measures of earthquake magnitudes started along with

he first applications of instruments capable of recording the displace-
ent of earthquake-induced ground vibrations [164] . Gutenberg and
ichter first observed from historical events that earthquake magnitude

ends to be inversely proportional to the rate of ground shaking occur-
ence [165] . 

Classical approaches to Probabilistic Seismic Hazard Analysis
PSHA) are based on the assumption that earthquakes occur according
o a Poisson process: earthquakes are therefore considered mutually in-
ependent, and the adopted model is stationary. For a Poissonian pro-
ess, the occurrence probability of at least one event in a prescribed
ime window depends on its mean annual rate of occurrence [166] . The
oissonian assumption is considered a reasonably good tradeoff between
he simplicity of the mathematical model and the accuracy with respect
o empirical evidence. For this reason, they are widely used in PSHA,
nd they adequately represent medium-to-low intensity earthquakes.
onetheless, they might lead to significant underestimation of recur-

ence rates for very large ground motion events cause by a single char-
cteristic source [ 167,168 ]. Time-dependent hazard models may prove
o be more representative of the physical sources of earthquake occur-
ence, mainly related to the sudden release of accumulated stresses in
he Earth’s crust. It is also worth mentioning that the main governing
ssumptions of traditional PSHA are generally valid when predicting
ainshock events, whilst alternative frameworks should be adopted for

ftershock hazard analysis [ 169–171 ]. In the aftermath of a mainshock,
ftershocks can occur with frequency that tends to exponentially decay
n time according to Omori’s law [ 172,173 ]. Furthermore, aftershocks
agnitude is generally lower with respect to the mainshock magnitude.
ccording to Bath’s law [174] , it is possible to establish a relationship
etween the average magnitude difference between a mainshock and its
argest aftershock (typically equal to 1.2). Different frameworks have
een proposed to account for aftershocks hazard with the related con-
equences and uncertainties in seismic vulnerability and infrastructure
isk assessment [ 175,30,176–180 ]. 

Regional seismic hazard assessment should account for the uncer-
ainties not only related to the rate of occurrence of future major earth-
30 
uakes, but also to their epicenter location informing the distance be-
ween the rupture zone and the sites of vulnerable facilities. Localization
nd modeling of active faults leads to the definition of the source-to-site
istance based on the topographical features of the region of interest.
omplex seismogenic models should be adopted for specific geological
roblems, such as subduction zones, whilst most detailed models rely
n the definition of linear earthquake sources when it is feasible to geo-
raphically identify faults and rupture zones [181] . Alternatively, area
ources are often used in practice to account for background seismicity
ssociated with the lack of information on local active faults or when the
omplex nature of historical earthquakes discourages the choice of haz-
rd models that attribute the epicenters to their causative fault [182] . 

In the context of PSHA, seismic Intensity Measures (IMs) provide
xplicit information on ground shaking induced by an earthquake at
he location of a structure to be designed or assessed. IMs parameter of
he ground motion at a reference site representative of its severity and
heir appropriate selection is a fundamental task to define reliable esti-
ates of damage probability through seismic vulnerability assessment

f single or groups of structures [ 183,184 ]. Even though it is inherently
mpossible to describe a complex phenomenon by a single number, and
 great deal of information is inevitably lost when this is attempted,
eismic vulnerability is traditionally assessed anchoring the ground mo-
ion severity to a single IM [185] . More refined models for probabilistic
tructural demand assessment can comprise multiple parameters defin-
ng the intensity measure [ 186,187 ]. Given the information on the seis-
ogenic source at the regional level, suitable predictive models known

s attenuation laws or Ground Motion Prediction Equations (GMPEs)
an be adopted to estimate the probability that a structure may undergo
arge shaking intensity levels during future major earthquakes. GMPEs
escribe the underlying statistical model of the Intensity Measure given
 set of seismic hazard scenarios in terms of earthquake magnitude,
picenter location, causative rupture mechanism, among other suitable
eismic hazard descriptors. The typical strategy to account for the nu-
erous parameters affecting the strong motions predictive model is to

alibrate suitable scaling parameters that adjust the attenuation laws by
eans of multivariate regression analysis based on historical datasets

 188–190 ]. Among these parameters, regional geological features and
ocal soil conditions may have a significant role in amplifying the ground
otions at the reference site [ 191–195 ]. In general, the median seismic

ntensity tends to linearly increase with earthquake magnitude and ex-
onentially decay with the distance from the epicenter [ 181,196 ]. 

A critical issue when dealing with large-scale assets composed by
patially distributed vulnerable elements is the spatial correlation of the
round motion. The seismic intensity at any location in the region is
enerally modelled as a lognormal random field, from which it is pos-
ible to extrapolate the seismic intensities at the site of the vulnerable
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Fig. 4. Effects of the deterioration process and related factors on the time- 
variant system functionality Q = Q ( t ) and resilience R = R ( t 0 ). (a) Environmen- 
tal aggressiveness with 1 ○ slight/moderate exposure or 2 ○ severe exposure. (b) 
Maintenance programs 1 ○ with and 2 ○ without repair interventions. (c) Post- 
event recovery actions with 1 ○ total restoring of the initial functionality or 2 ○
partial restoring of the pre-event functionality (Adapted from [52] ). 
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o the scatter in observed ground motion intensities for a given mag-
itude and source-to-site distance, as well as the within-event spatial
orrelation and the related site-to-site variability of the seismic demand
 197–203 ]. In the context of risk assessment of spatially distributed in-
rastructure systems [ 70,28 ], the statistical seismic hazard models allow
imulating seismic intensities maps at the sites of vulnerable compo-
ents [ 204–208 ]. 

eismic vulnerability assessment of aging bridges 

Bridges are network components that highly affect the robustness di-
ension of resilience metrics, since the capacity of bridge structures to
ithstand external shocks enables the transportation infrastructure to
aintain acceptable performance levels without suffering severe losses
31 
f functionality. Many research efforts have been dedicated to the de-
elopment of seismic fragility assessment methodologies of vulnerable
nfrastructure systems. In this context, the concept of fragility curves is
idely adopted [209] . Fragility curves represent the exceedance proba-
ility a damage state conditional on the occurrence of a ground motion
f prescribed intensity [ 210,69 ]. With reference to the b -th bridge in a
oad network, fragility curves can be defined as the probability that the
andom variable I s,b representing the seismic capacity with respect to a
rescribed damage state s b is exceeded by the seismic intensity measure
 b : 

 

[
𝑆 𝑏 ≥ 𝑠 𝑏 |𝑖 𝑏 ] = 𝑃 

[
𝐼 𝑠,𝑏 ≤ 𝑖 𝑏 

]
(2)

Analytical fragility curves rely on a direct relationship between seis-
ic actions and the effects on the mechanical response of structural

ystems. Several methodologies have been developed to frame the seis-
ic vulnerability problem based on physical models typical of struc-

ural engineering discipline. Structures of paramount importance from
he socio-economic point of view should be analyzed with constitutive
odels and load patterns that accurately reproduce the uncertainty in

he mechanical behavior and the subsequent damage induced by earth-
uakes [ 211,212 ]. Alternatives to analytical frameworks based on re-
ned physics-based models are empirical fragility curves, which cor-
elate measured seismic intensities with damage datasets obtained via
n-field reconnaissance reports to backtrack the seismic capacity of the
uilt environment in the aftermath of past earthquakes [68] . It is also
orth mentioning hybrid Bayesian frameworks that can combine differ-

nt types of data (e.g., empirical and analytical) to generate fragility
urves that aim to compensate the disadvantages of each methodol-
gy [ 213,214 ]. Depending on the available data related to earthquake-
nduced damage, several statistical procedures have been developed to
alibrate the related fragility curves [ 215–217,69 ]. The lognormal ana-
ytical distribution is a simple yet historically highly adopted paramet-
ic model that suitably describe structural fragility to earthquake events
218] . 

One of the most adopted methodologies for seismic response assess-
ent of structural systems involving non-linear time-history analysis is

ncremental Dynamic Analysis (IDA), that is a parametric method for
omprehensive assessment of the seismic performance of a structure
ased on the outcomes of a set of time-history non-linear dynamic anal-
ses for a ground motion suite scaled to match different levels of seismic
ntensity [ 219,220 ]. IDA provides a complete overview of the structural
esponse at different intensity levels from the elastic regime up to incipi-
nt collapse. The final outcome of the analysis is represented by the IDA
apacity curve, as qualitatively shown in Fig. 5 , providing the relation-
hip between seismic intensity and an engineering demand parameter
epresentative of the overall structural response and, in turn, of the de-
ree of damage induced by the seismic event. The typical IDA curve is
haracterized by an initial elastic response that may be followed by a
ardening branch, in which similar drift values are encountered over a
ertain range of intensity measures, generally related to energy dissipa-
ion enforced by hysteretic cycles. IDA curves tend to show decreasing
lope approaching failure, reached when the numerical results of the
ime-history non-linear analysis experiences numerical instability and
oes not converge to a realistic solution. The accuracy of the seismic
apacity estimate can be improved by bracketing the points around the
atline, reducing the distance between the highest non-collapse point
nd the actual dynamic collapse point. The qualitative response ex-
ected by IDA curves also inspires the traditional procedures adopted for
heir generation. Automated and simple algorithms that progressively
cales the ground motions are adopted to obtain sub-optimal grids of
ntensity levels reproducing the structural response in the range of in-
erest of the demand parameter representative of seismic damage. In the
unt phase, the intensity is progressively increased with step-wise reg-
lar intervals ( Fig. 5 a). In the bracketing phase ( Fig. 5 b), the resolution
n proximity of the dynamic collapse condition is improved by adding
ntensity-demand points are obtained in proximity of the flatline with



L. Capacci, F. Biondini and D.M. Frangopol Resilient Cities and Structures 1 (2022) 23–41 

Fig. 5. Procedure for the generation of Incremental Dynamic Analysis (IDA) capacity curves: (a) Hunt phase, (b) Bracketing phase, and (c) Fill phase (Adapted from 

[127] ). 

Fig. 6. Example of MSA results. (a) Safety factor samples and collapse frequency estimates for each stripe. (b) Failure probability estimates (Adapted from [127] ). 
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 step-reducing routine based on simple numerical procedures, such as
he bisection rule. Finally, the fill phase ( Fig. 5 c) consists in improv-
ng the resolution of the IDA curve also for intensity levels lower than
he collapse capacity threshold. The overall IDA curve is finally obtained
y interpolation, such as linear, coordinate-transformed splines or other
unction fitting methods. 

Another prominent method currently gaining credit for seismic
ragility analysis is Multi-Stripe Analysis (MSA), where IDA curves
over a wide range of seismic intensities spread along the interval be-
ween elastic response threshold and incipient dynamic collapse [221] .
onetheless, non-linear time-history analyses can be time-consuming
ven for simple structural systems. An accurate reproduction of IDA
urves comes with a computational cost that tends to increase with seis-
ic intensities that force the structure to experience plastic strains and
ysteretic dissipation. Fig. 6 illustrates the typical results obtained by
SA with respect to the attainment of a prescribed state for the b -th

tructure in the network s b associated with safety factor Θs,b . The dots
n Fig. 6 a represent 20 samples of the safety factor scattered across ten
tripes associated with the seismic intensity 𝑖 𝑏 , whilst the bars at each
tripe represent the sample collapse frequencies N col over the total num-
er of analyses N tot . The statistical representation of the safety factor Θs,b 

oupled with the estimate of the collapse frequencies allows assessing
he failure probability of the reference stripe with intensity 𝑖 𝑏 repre-
ented in Fig. 6 b. The failure probability can be estimated based on the
32 
ample failure probability 𝑝̂ 𝑓 defined as the ratio between collapse fre-
uency N col and the total number of analyses N tot for prescribed seismic
ntensity ̂𝑖 𝑏 and damage state 𝑠 𝑏 : 

̂ 𝑓 
(
𝑖 𝑏 , 𝑠 𝑏 

)
= 

𝑁 𝑐𝑜𝑙 

(
𝑖 𝑏 , 𝑠 𝑏 

)
𝑁 𝑡𝑜𝑡 

(
𝑖 𝑏 
) (3) 

Based on the model adopted in Iervolino et al. [139] relying on the
otal probability theorem and on a lognormal statistical representation
f the safety factor Θs,b , the failure probability can be estimated as the
um of the sample failure probability 𝑝̂ 𝑓 and the safety factor CDF eval-
ated at Θs,b ≤ 1 scaled by the sample safety probability 1 − 𝑝̂ 𝑓 : 

 

[
𝑆 𝑏 ≥ 𝑠 𝑏 |𝑖 𝑏 ] = 𝑝̂ 𝑓 + 

(
1 − 𝑝̂ 𝑓 

)
⋅Φ

( 

− 

𝜆Θ𝑠,𝑏 

𝜁Θ𝑠,𝑏 

) 

(4)

here 𝜆Θ𝑠,𝑏 
= 𝜆Θ𝑠,𝑏 

( ̂𝑖 𝑏 , 𝑠 𝑏 ) and 𝜆Θ𝑠,𝑏 
= 𝜁Θ𝑠,𝑏 

( ̂𝑖 𝑏 , 𝑠 𝑏 ) are respectively mean
nd standard deviation of the logarithm of the safety factor Θs,b . These
umerical samples can be processed to calibrate a suitable parametric
istribution [215] . The results of MSA are particularly suitable in the
tatistical characterization of the structural response over a pre-defined
ange of intensity levels: the failure probability with respect to a given
imit state for each stripe as the proportion between failed analyses and
otal number of observations. 
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Both linear and non-linear models as well as static and dynamic
ethods for structural analysis should be considered as complimentary

ather than competing in structural engineering practice [222] . Even
hough non-linear time-history analysis can seldom be replaced by sim-
lified analysis tools in the assessment of key lifeline systems, mak-
ng the definition of simplified static procedure a viable solution when
omputational costs are not sustainable. Several assessment approaches
ased on the capacity spectra have been proposed and adopted by stan-
ards and codes such as the ATC-40 approach [223] , the coefficient
ethod in FEMA-356 [224] , and the N2 method [ 225 , 226–228 ]. These

pproaches do not account for the variability present in natural spec-
ra derived using recorded ground motions signals, since they generally
equire a standardized reference spectrum commonly defined as a para-
etric function. They also require the natural vibration modes of the

tructural system to identify acceleration- and displacement-sensitive
egments of the demand spectrum. Other methodologies also rely on
tatic analyses for seismic fragility assessment limiting the computa-
ional cost [ 229–234 ]. 

Uncertainties involved in seismic fragility assessment are mostly re-
ated to record-to-record variability related to the input ground mo-
ion and the aleatory model uncertainties in the investigated structure.
egardless of the method used for structural assessment under seis-
ic hazard, the characteristics of the acceleration time-histories may

everely affect the accuracy of results of dynamic analyses for relia-
ility assessment. Time-histories for seismic response analysis are ei-
her natural records, selected from past events and eventually scaled
o match a target seismic scenario, or artificial ground motions, syn-
hetically generated based on random vibration theory. The best de-
cription of ground motions in engineering applications is an ensem-
le of real or synthetic acceleration time-histories with appropriate in-
ensity, duration, frequency characteristics, and consistency with pre-
iously recorded motions for a specific site [184] . In simulation-based
pproaches, it is necessary to adopt a sufficiently large ground motions
ataset and the sample time-histories and/or spectra should reflect the
eismic hazard of the particular site based on the regional seismicity
nd that selection of ground motion records should be carried out with
ppropriate procedures [235] . 

Since the majority of ground motion databases contain primarily
mall-to-moderate records, one of the main limitations to the use of nat-
ral ground motion is the scarce availability of large datasets to seek for
trong ground motions. Unlike natural ground motions, artificial ground
otions merely represent a mathematical description of the seismic phe-
omenon compatible with the reference spectrum and a set of prescribed
arameters related to the input duration and they generally capture the
requency content of the earthquake in the strong motion phase. Even
hough artificially generated ground motions are acknowledged to lead
o overload the structures with respect to real-life events, they are based
n a standardized and automated procedure that guarantees the repli-
ability of the numerical analyses for different structural analyses prob-
ems. 

The number of recorded accelerograms has increased considerably
n recent years owing to the large number of events that took place
ately in countries with well-instrumented countries [ 236–239 ]. Physics-
ased numerical simulations of earthquake ground motion aim at com-
lementing the recorded data providing simulated signals based on lo-
al source and site configurations [240] . Automated procedures for the
election of natural ground motion suites for seismic response analy-
es have been developed [ 241–243 ]. Concerning model uncertainties,
eismic response analysis methods can be coupled with simulation-
ased techniques to account for uncertainties in structural model and
n input ground motion. Accounting for these uncertainties, nonlin-
ar time-history analyses and IDA capacity curves can show a wide
ange of behaviors that highlights how meaningful results can be ob-
ained only adopting under a probabilistic- and risk-based perspective
 244–250,209 ]. 
t  

33 
In the context of life-cycle fragility assessment, it is important
o highlight that deterioration processes are characterized by several
ources of uncertainty that propagate in time the variability of structural
nd seismic capacity of vulnerable network components. Seismic vulner-
bility assessment is traditionally carried out neglecting any deteriora-
ion mechanism that may adversely affect the performance of structural
ystems, implicitly assuming that structures are optimally maintained
uring their lifetime. Even though the vast majority of the analytical
ulnerability studies and risk assessment frameworks assume that the
echanical properties of structural systems remain the same throughout

ime, fragility functions should depend on the age of deteriorating struc-
ural system accounting for aging mechanisms. The environmental haz-
rd scenario can be taken into account based on a probabilistic modeling
f the associated random variables, exacerbating the impact of model
ncertainty in time-variant seismic reliability [ 38,251,252 ], fragility
urves calibration [ 253–260 ], life-cycle costs estimate [ 261,262 ], life-
ime performance assessment [ 263,264 ] and the related implications
t the infrastructure level [ 47 , 265 ]. Among the future research needs
n the development of seismic fragility curves, particular efforts should
e devoted to incorporating in the standard procedures for vulnerability
nalysis cumulative damage induced by multiple hazards [ 266,267 ] and
ging effects [138] . Despite the recognized influence of deteriorating
henomena, their consideration can be challenging and in large-scale
isk assessment [268] . 

erformance and recovery of infrastructure road networks 

opological and congestion-based functionality metrics 

The choice of adequate metrics for performance assessment of road-
ay transportation networks is not an easy task, since the actual defi-
ition of the concept of network performance cannot be univocally es-
ablished. A clear definition of standardized performance metrics for
he transportation networks is not just a key issue in the quantification
f resilience, but it is an important aspect also in the processes of pol-
cy making that can facilitate the communication between risk analysts
nd infrastructure managers [269] . Among all lifelines, transportation
etworks have the unique feature that all their nodes can be both ori-
ins and destinations of traffic demands. This characteristic property
f transportation systems encourages the use of different analysis tech-
iques with respect to reliability models used for other lifelines. These
ools must take into account not only the physical model of the network,
ut also the sociological aspects that let drivers adapt their routes and
estinations depending on the traffic conditions [51] . In analogy with
uid mechanics, the efficiency of the transportation service performance
epends on the smoothness with which the traffic flow spreads all along
he network. In general, measuring the performance of a road network
an be done based on topological metrics, measuring accessibility and
onnectivity of the network such as the possibility of reaching some
pecific destinations from some specific origins, and congestion-based
etrics, concerning with the system response and capacity in terms of

raffic flows and travel times [270] . 
Consistently with graph theory, road networks can be modeled by a

et of vertices connected by links. A graph G is defined as a pair of sets
 = { V,E }. In the context of road network analysis, edges E = { e 1 , e 2 ,…, e n }

epresent road segments and bridges in series connecting specific pairs
f nodes; vertices V = { v 1 , v 2 ,…, v n } contains specific starting and ending
oints of each and they can also be of interest used to define Origins
nd Destinations of trips transportation system users. Graphs connec-
ivity can be described by the adjacency matrix A , a Boolean square
atrix with same dimension of the nodes number. If nodes i and j are

onnected by one edge, A ij = 1, otherwise A ij = 0. Several topological per-
ormance metrics can be defined based on the graph layout. Topological
etrics are particularly effective in capturing the system performance
hen evaluating lifelines such as water, electrical and gas supply sys-

ems; other functionality measures are directly referred to the service-
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bility of the system, such as the percentage of households suffering out-
ges. In several works, different parameters characterizing the topology
f complex networks have been proposed as road performance parame-
ers ranking the network based on the connectivity between edges and
odes [ 271,272,118 ]. Topological metrics are often adopted for func-
ionality assessment of other infrastructure systems, such as power and
ater distribution systems, characterized by fixed sources such as sta-

ions and reservoirs connecting the network of customers though distri-
ution grids by transmission lines and pipelines. Nonetheless, the effi-
iency of these systems under emergency conditions can be more suit-
bly assessed by flow-based methods that analyze the complete physical
ynamics of power flow and water supply in a more realistic fashion
han the simplistic measures of network connectivity provided by topo-
ogical metrics [ 273,274 ]. 

Traffic analysis consists in evaluating the distribution of travels
ithin the transportation network given travel demand and network

opology [275] . Typical mathematical models for traffic assignment
ely on free-flow analysis and congestion-based methods. In free-flow
nalysis, the traffic assignment problem is reduced to the definition of
he shortest path between trips Origin and Destination nodes. Mathe-
atical techniques such as Dijkstra’s algorithm allow efficiently com-
uting the shortest path from a single node to all the other nodes in
he network [276] . On the other hand, congestion-based traffic assign-
ent accounts for the actual traffic capacity of road segments. Most

raffic analyses methods rely on the user-equilibrium assumption en-
orced by the Wardrop’s gravitational model [277] , which is based
n the principle that traffic flows are distributed in the network such
hat travel times on all routes are minimized. Several works stud-
ed the transportation system with a congestion-based approach and
aking into account the Origin-Destination demand of road networks
 278,279,113,157,158,31,280–285 ]. Functionality metrics in terms of
otal travel times and total travel distance of road users accounting for
he effect of partial or total closure of a bridge along a road and the
onsequent increase of travel time and distance due to the path detour
ave been proposed in Bocchini and Frangopol [ 265,286,287 ]. 

raffic demand under emergency conditions 

The definition of typical data related to Origin-Destination trips
s generally obtained by surveys or traffic monitoring. Under opera-
ional conditions, sociological patterns and economical activities within
he community lead traffic flows to dynamically fluctuate on a daily,
eekly, and seasonal basis. Mathematical models often rely on static

raffic data, averaging the users demand over prescribed time intervals,
uch as daytime or rush hours. Special care should also be taken in
ransferring at the network level the consequences at the social scale of
hysical damage suffered by individual bridges. Therefore, more refined
nd realistic traffic demand models should account for the elasticity of
he traffic demand, which incorporates the impact of disservices in the
ransportation network in affecting the activities of road users. 

Users’ travel times depend on the post-earthquake conditions and
n traffic restrictions applied to regulate the transit along bridges in
he road network [288] . During long-term interruptions, drivers tend
o modify their behavior to relieve the discomfort [289] . Connectivity
f transportation networks plays a key role in social communities’ daily
ife and sustainable growth [290] . Disruptions in the transportation ser-
ice prevent drivers to perform economically valuable activities such as
orking or shopping, changing the drivers’ trends and needs [ 291–293 ].
esides direct costs of infrastructure repair, business interruption may

nduce significant indirect losses also due to the change in traffic pat-
erns of road users. Several studies investigated the assessment of users’
osts induced by bridge closure and subsequent traffic capacity lim-
tations due to ongoing maintenance and rehabilitation activities
 294–298 ], inadequacies during normal operations [ 299,300 ],
nd the occurrence of damage induced by multiple hazards
 110,301,125,302,303 ]. In general, travelers can react to trans-
34 
ort infrastructure failure in different ways, not only detouring failed
inks using the portion of the network in service, but also changing
he travel modes and the destination of their planned tasks, or even
liminating such activity suppressing the trips in the process [280] . In
his context, there is evidence that the prevailing behavior of road users
n emergency conditions is to modify routes and departing times, whilst
he cancelation of the trip is a limited reaction [ 304–307 ]. Drivers’
eactions to infrastructure disservice would lead to a modification of
he behavior of the network users and, in turn, jeopardize of system
erformance. Thus, refined traffic analysis models should also take
nto account sociological aspects under emergency conditions that may
brupt changes in users’ planned trip as well as irrational behavior of
rivers eventually exacerbated by the unavailability of traffic informa-
ion [308] . Finally, the fulfillment of modern requirements associated
ith traffic flow capacity during the entire service life of transporta-

ion facilities should guide road management policies towards the
ompliance of old roads to new construction standards [309] . 

estoration of damaged components 

Structural repair activities consist in the actions needed to recover
trength, stiffness, ductility and/or other mechanical properties that
eteriorated due to adverse loading and/or environmental conditions.
hilst retrofit refers to the act of upgrading the capacity of a struc-

ure inadequately designed or detailed to meet the current standards
nd requirements, repair is associated with restoring to some extent a
amaged structure to its original as-built conditions. Even though repair
as become a viable option for restoring the use of earthquake-damaged
C elements, even when severely damaged, practical guidelines for de-
ign and implementation of structural repair actions for bridges dam-
ged by extreme events such as earthquakes are yet to be standardized
 310,311 ]. 

In seismic design of bridge structures, pier ends are often designed to
issipate energy sustaining inelastic deformations during strong ground
otions [312] . In reinforced concrete bridges, piers may experience
amage such as crushing and spalling of concrete cover, pullout of lon-
itudinal steel bars, and buckling or fracture of longitudinal or trans-
erse steel bars. Jacketing is the most common method to repair dam-
ged concrete columns [313] . For example, concrete jacketing consists
n covering the damaged concrete with a new layer of reinforcement
nd self-compacting concrete with dowel bars or steel connectors to im-
rove the bonding between preexisting and newly casted concrete. The
nterface between the surfaces of damaged column and jacket should
e roughened and treated with epoxy resin to improve bonding and
void the jacket to slip from the member [314] . Like traditional re-
air solutions based on ordinary concrete, jacketing can be obtained by
igh-performance fiber-reinforced cementitious composites (HPFRCC),
hich proved to be efficient in restoring ductility and durability of pre-

ast reinforced concrete columns [315] , and hybrid fiber-reinforced en-
ineered cementitious composite [316] . Besides the use of cementitious
aterial, steel jacketing is another traditional repair technique consist-

ng in restoring the cross-section with a new concrete layer and in-
talling a structural steel coating in adherence with the newly casted
oncrete with the aid of cement-based grout [ 317,313 ] or by mechan-
cally imposed pressure [318] . Also prestressed steel jacketing (PSJ)
ith strands wrapped around the tubular metal sheets can be adopted

or fast and permanent repair of columns damaged by seismic events
319] . 

Among the most investigated techniques in recent years, the adop-
ion of shape memory alloys (SMAs) represents an innovative and widely
nvestigated application to restore the mechanical properties of critical
egions of structural members where plastic hinges are expected to de-
elop under possible future shocks [ 320,321 ]. The application of SMA
pirals generally consists in wrapping prestressed wires along the ex-
ernal surface of damaged regions. The distinctive feature of SMAs is
heir self-centering ability, which permits them to experience large de-
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Table 1 

Performance levels, limit states and plastic limits a to attain system displace- 
ment threshold Δ=Δy + a Δp (Adapted from [52] ). 

Performance Level Limit State Plastic Limit a 

SP-1 Fully Operational 0.00 
SP-2 Operational 0.30 
SP-3 Life Safe 0.60 
SP-4 Near Collapse 0.80 
SP-5 Collapse 1.00 

Table 2 

Damage states, failure mechanisms, repair interventions, and downtime for 
concrete bridges (Adapted from [247] ). 

Damage State Failure Mechanism Repair Required Outage 

DS-1 Pre-Yielding None None 
DS-2 Minor Spalling Inspect, Patch < 3 days 
DS-3 Bar Buckling Repair Components < 3 weeks 
DS-4 Bar Fracture Rebuild Components < 3 months 
DS-5 Collapse Rebuild Structure > 3 months 
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ormations without impairing their mechanical properties and retrieve
ts original shape upon load removal, as well as high durability depend-
ng on the types of allows designed for each application. 

Effective and rapid design solutions are also provided by externally
onded carbon fiber reinforced polymer (CFRP) solutions for damaged
ridge piers [ 322–325,313 ] and girders [ 326,327 ]. Steel-reinforced
FRP jackets filled with non-shrink concrete can be adopted to relo-
ate the plastic hinge of damaged piers in proximity of foundation foot-
ngs and pier caps [328] . The effectiveness of these relatively cheap
echniques may be prone to debonding failures between repaired mem-
er and polymer coating that may impair its effectiveness [329] . Other
omposite materials can be adopted to externally confine and strengthen
amaged bridge components such as piers and abutments, such as basalt
bers (BFRP) [330] , glass fibers (GFRP) [331] , and soil-rubber mixtures
332] , among others. 

The formulation of recovery models is an integral part of resilience
ssessment. This formulation captures analytically the concept of rapid-

ty (i.e., one of the constitutive properties of resilience). The design of
epair activities of damaged bridges is directly related to the calibration
f the recovery models basic parameters and, subsequently, the achieve-
ent of rapidity goals for prompt restoration of adequate performance

t the infrastructure level. Effective analytical models to capture the re-
overy pattern have been proposed in several works. The calibration of
ach model can be based on expert surveys, statistical analysis from em-
irical data or engineering judgment. It also depends on the restoration
rocess and on the severity of the event that affected the system [293] .
everal analytical models with different peculiarities and complexities
an be found in ATC [223] , FEMA [333] , Padgett and DesRoches [334] ,
AZUS [335] , Bocchini and Frangopol [ 286,24 ], Decò et al. [54] , Bion-
ini et al. [52] , Karamlou and Bocchini [ 336,337 ], Sharma et al. [338] ,
isra et al. [339] , Mitoulis et al. [340] , Frangopol and Kim [32] . 

Different limit states could be established for buildings, bridges and
ther structures depending on the structural typology [333] . Table 1
rovides an example of structural performance (SP) levels and limit
tates identified with respect to the displacement demand, where Δy 

nd Δu are the displacement capacities of the structural system at first
ielding and ultimate states, respectively, and Δp =Δu - Δy is the available
lastic displacement [ 263,52 ] Threshold values of the diplacement de-
and are expressed in terms of the plastic limit coefficient a spanning

rom 0 (i.e., first yielding condition) to 1 (i.e., ultimate state). Depending
n the type of structure, recovery actions can be based on a suitable set
f limit state thresholds and discrete functionality states. This approach
s particularly effective in post-earthquake evaluation procedures with
amage levels qualitatively assessed by visual inspection. Table 2 gives
35 
n example of observed damage states and related repair interventions
or concrete bridges [333] , with estimation of the bridge outage [247] .
ontinuous nonlinear or constant stepwise relationships could be cho-
en to relate structural performance levels (SP) to damage states (DS) to
stablish suitable post-event repair and recovery actions. 

onclusions 

This paper provided a review of past research and recent advances
n the fields of life-cycle resilience of aging structures and infrastruc-
ure systems with emphasis on seismic resilience of bridges and road
etworks. An overview of the main principles, concepts, methods, and
trategies for resilience assessment is presented to address existing
rameworks developed for supporting the design, assessment, mainte-
ance, and rehabilitation of structures and infrastructure systems, par-
icularly bridges and transportation networks under seismic hazard.
hese developments are reviewed to also provide a basis for further
dvances on qualitative and quantitative models measuring the func-
ionality and resilience at various scale, including components, groups
nd systems within infrastructure networks and communities. The ef-
ects of aging and environmental aggressiveness have been highlighted,
howing that they affect structural performance and functionality and
ubsequently make the system resilience dependent on the time of oc-
urrence of extreme events. The decay in time of seismic resilience due
o aging processes can remarkably depend on the ground motion sce-
ario in terms of earthquake magnitude, focal distance and seismogenic
eatures of the reference region. Consequently, the impact of environ-
ental aggressiveness in exacerbating the effect of seismic events on

nfrastructure resilience may lead to increase the likelihood of occur-
ence of large functionality drops and late restoration processes. 

The efforts made to incorporate risk and probabilistic resilience as-
essment frameworks into practical policies to inform and support the
ecision-making process of public authorities have been also reviewed
nd discussed. Uncertainties are associated with multiple variables gov-
rning the investigated processes, including the time-variant seismic
ulnerability of spatially distributed bridges in transportation road net-
ork, the assessment of the recovery times, and recovery patterns af-

ecting resilience under combined post-earthquake damage states. Such
ncertainties tend to propagate along with the infrastructure age and
he severity of the hazardous event. 

Additional efforts are needed to achieve a more complete under-
tanding of the processes involved in the earthquake-induced disrup-
ions of structures and infrastructure systems, particularly bridges and
oad networks and communities and their effective and prompt recovery
y prioritizing maintenance and repair interventions. This includes the
ole of several features of the recovery process, such as idle time, recov-
ry time, target functionality, horizon time, and recovery profiles with
ime-variant parameters related to type, severity, and location of seis-
ic damage. In addition, recovery models should be further investigated

n order to establish robust estimates of their parameters and incorpo-
ate additional features such as interdependence of repair interventions,
umber and capacity of available construction firms, market setting un-
er emergency that is different from pre-earthquake conditions, work
lan and organization over multiple bridges, and funds availability. The
ffects of maintenance activities and repair interventions need also to
e incorporated in existing frameworks for lifetime probabilistic assess-
ent of seismic resilience of deteriorating structures and infrastructure

ystems. In this context, the detrimental effects of aging can also be mit-
gated by upgrading interventions that improve network connectivity
y means of new road branches and alternative travel paths. However,
t is worth noting that the initial beneficial effects of the upgrading can
e substantially reduced in the long-term by the detrimental impact of
eterioration of bridges located along the new routes. 

Concerning the time-variant vulnerability assessment of aging
ridges, existing frameworks should be adapted to take into ac-
ount more in-depth knowledge on the mutual interaction of different
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arthquake-related hazards on spatially distributed vulnerable struc-
ures, such as landslides, site amplification effects, liquefaction, and
umulative damage induced by multiple mainshocks or mainshock-
ftershock sequences, among others. Furthermore, the effects of climate
hange on the life-cycle seismic resilience of aging and deteriorating
tructures and infrastructure systems need to be further investigated to
ncorporate the detrimental impact at the road network level of warm-
ng scenarios on the deterioration process and the rate of occurrence of
xtreme events, harming the system performance and functionality. 
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