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1 Introduction 26 

Masonry is an ancient but still widely used material. Its usage has been mainly fostered by the simplicity 27 

of this type of construction, where masonry units are laid together with or without the use of bonding 28 

mortar. Features such as its durability, aesthetics, low maintenance, adaptability, good sound and 29 

thermal insulation properties (Hendry 2001) are also important allowing the masonry to continuously 30 

find an application. Unreinforced masonry (URM) buildings are a relevant part of the worldwide 31 

building stock. These include stone, brick, adobe or earthen masonry structures and represent, in 32 

countries such as Mexico, Pakistan, and Peru, more than 75% over its total buildings’ inventory. In 33 

other countries as Iran, Australia, Indonesia or Italy, the relative percentage is higher than 50% (Frankie 34 

et al. 2013). A similar trend is found for the case of Portugal, with a value ranging the 50% according 35 

to the Portuguese Census of Population and Housing. 36 

The widespread of most of this built heritage has been achieved based on empirical knowledge passed 37 

by generation to generation and, therefore, the structural behavior of URM was often ill-understood. 38 

These constructions have been typically made to withstand vertical loads and its low strength/mass ratio 39 

makes them rather vulnerable to dynamic horizontal loads as earthquakes, impact or blast actions. This 40 

addresses the importance of carrying out urgent measures in the URM built stock to avoid human and 41 

societal consequences and to minimize future economic impacts. Yet, intervening in these constructions 42 

is a complex process, due to the lack of structural information and due to their high importance. A 43 

scientifically based process is less susceptible to inadequate actions, which clearly sets a convenient 44 

context for the continuous development of numerical strategies.  45 

Advanced computational strategies have been developed in the last few decades. Conversely to concrete 46 

and steel structures, the design guidelines for masonry did not go always hand in hand with the 47 

application of innovative methods. Still, it is nowadays well accepted that sophisticated strategies, 48 

mainly based on the finite element (FE) method, constitute important tools and are the ones deserving 49 

more attention from the scientific community. Three main modeling strategies for the mechanical study 50 

of masonry can be put together, namely: (i) the direct numerical simulation or micro-modeling 51 

approaches (in which masonry constituents, i.e. unit and joint, are represented separately); (ii) the 52 
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macro-modeling (in which masonry constituents are smeared in a homogeneous composite); and (iii) 53 

the multi-scale techniques (in which upscaling from the meso-scale to the macro-scale is adopted). The 54 

mechanical complexity of masonry may demand, in some cases, more detailed analysis with a focus on 55 

the components level. Although accurate, a direct numerical simulation (micro-modeling) is expensive 56 

to carry out from a computational standpoint and, therefore, macro- or multi-scale techniques can be 57 

more appropriate for large or super-large problems. An engineering compromise between the solution 58 

accuracy and the time-cost demand needs to be assumed which, depending on the nature of the problem, 59 

may constitute a real challenge.  60 

2 General scope 61 

Prevailing design rules or analytical approaches still are, within engineering practice, the most useful 62 

towards the structural analysis of URM buildings. These pose, however, several well-identified 63 

limitations that may lead to potential unrealistic or conservative results (Theodossopoulos and Sinha 64 

2013). Other simplified procedures, as the story-mechanism (Tomaževič 1999) and the equivalent 65 

frame-based models (Lagomarsino et al. 2013; Quagliarini and Maracchini 2017) can also be found in 66 

the literature. Such models, however, hardly consider the out-of-plane failure modes and thus these are 67 

generally disregarded in most study cases. More suitable and yet conceptually simple procedures, as 68 

the rigid-body approaches (D’Ayala and Shi 2011; Konstantinidis and Makris 2007) or the well 69 

disseminated kinematic methods (D’Ayala and Speranza 2003; Griffith and Magenes 2003; Calvi et al. 70 

2006), are useful to provide closed-form solutions under dynamic excitations but are very complex for 71 

walls subjected to two-way bending. 72 

Sophisticated FE computational strategies are the ones which deserve more attention from the scientific 73 

community. Several advances have been achieved in the last few decades and these constitute important 74 

(sometimes indispensable) analysis tools. For the masonry field, it is recognizable that two scale levels 75 

are of interest when analyzing its structural behavior (Paulo B. Lourenço 2009; Roca et al. 2010), the 76 

macro- and the meso-scales as depicted in Fig. 1. Again, three main modeling strategies can be put 77 

together, namely: (i) the direct simulation or the micro-modeling; (ii) the macro-modeling; and (iii) the 78 

multi-scale modeling. 79 
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 80 

Fig. 1 – Representation of the three scales considered in the analysis of masonry for this study: macro-81 

scale and meso-scale. Definition of the modeling strategies adopted to represent masonry.  82 

In the micro-modeling approach, both masonry components (units and mortar joints) are explicitly 83 

represented. These are certainly capable of well reproducing both in- and out-of-plane orthotropic 84 

nonlinear behavior of masonry but are characterized by long processing times, being only recommended 85 

for limited size structural problems (Giambanco and Rizzo 2001; Macorini and Izzuddin 2011; Lotfi 86 

and Shing 1994; Macorini and Izzuddin 2013; Sejnoha et al. 2008; Lemos 2007; Sarhosis et al. 2014; 87 

Adam et al. 2010). The macro-modeling strategies smear out the heterogeneous assemblage of mortar 88 

and bricks into a fictitious homogeneous anisotropic material. The use of closed-form laws to represent 89 

the complex phenomenological behavior and damage of the masonry may be cumbersome as it may 90 

require a calibration step (usually achieved by thorough experimental campaigns). However, this 91 

approach allows studying large-scale structures without the drawbacks exhibited by meso-modeling 92 

(Dhanasekar et al. 1985; Paulo B. Lourenço et al. 1997; Berto et al. 2002; Roca et al. 2013). 93 

Multi-scale FE (or FE2) methods are in-between the latter two FE modeling schemes. The framework 94 

is being used to investigate the response of composites with different natures, see (Spahn et al. 2014; 95 

Leonetti et al. 2018; Trovalusci et al. 2015; Greco et al. 2017). It typically relies on a meso and macro 96 

transition of information and is, therefore, designated as two-scale or FE2 approaches. Full continuum-97 

based FE2 approaches result in a good compromise between solution accuracy and computational cost. 98 

Nevertheless, these methods still constitute a challenge if one desires to account for the material non-99 

linearity (Otero et al. 2015; Geers et al. 2010). In fact, the constant need of data between the macro- 100 

and meso- scales constitute a contentious issue, because a new boundary value problem (BVP) must be 101 
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solved numerically for each load step and in each Gauss integration point. The utility of the approach 102 

is compromised due to the involved computational time and thus full continuum-based FE2 approaches 103 

are seldom used for dynamic purposes or for complex structural analysis. An adequate possibility is the 104 

use of a two-scale simplified strategy, for instance by using a kinematic theorem of limit analysis at a 105 

macro-level to obtain the homogenized failure surfaces with a very limited computational effort (A. 106 

Cecchi and Milani 2008; Milani et al. 2006; de Buhan and de Felice 1997). Yet, the use of discrete FE-107 

based methods at a macro-level seems to be a promising alternative (Milani and Tralli 2011; Casolo 108 

and Milani 2010; Silva et al. 2017b). 109 

In this context, three advanced FE-based models, for which the authors gave their contribution, are 110 

hereafter addressed and each one belongs to one of the aforementioned modeling strategies (Fig. 1): a 111 

simplified micro-model; a macro-model; and a simplified two-scale (FE2) model. Note that the 112 

strategies can handle the masonry full softening behavior, anisotropy and its strain-rate dependency 113 

under fast dynamic cases. Furthermore, all the strategies have been implemented in advanced FE 114 

software’s. 115 

3 Modeling strategies proposed 116 

3.1 FE mesoscopic model 117 

An FE mesoscopic model firstly introduced by (Lourenço 1996) within the so-called simplified micro-118 

modeling approach is presented next. The interface model for masonry has the ability to reproduce the 119 

loading strain-rate effects on the material properties (Rafsanjani et al. 2015b). A multi-surface plasticity 120 

model, the so-called composite interface model, is typically considered for the mortar joints and is 121 

suitable to reproduce fracture, frictional slip and crushing along the interface elements. 122 

The assumption that all the inelastic phenomena occur in the interface elements leads to a robust type 123 

of modeling, which can follow the complete load path of a structure until the total degradation of 124 

stiffness. For a 3D configuration, the linear elastic relation between the generalized stresses and strains 125 

of the interface FE is given by 𝝈 = 𝑫𝜺, whereas the stiffness matrix is 𝑫 = 𝑑𝑖𝑎𝑔{𝑘௡, 𝑘௦, 𝑘௧} (the 126 

subscript n refers to the normal and the subscripts s and t to the shear components). 127 
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The constitutive interface model is defined by a convex composite yield criterion with three individual 128 

functions, specifically: (i) a tension cut-off criterion designated as 𝑓௖௥௜௧௘௥௜௢௡,ଵ and defined in Eq. (1); 129 

(ii) a Mohr-Coulomb shear criterion designated as 𝑓௖௥௜௧௘௥௜௢௡,ଶ and defined in Eq. (2); and (iii) a cap in 130 

compression designated as 𝑓௖௥௜௧௘௥௜௢௡,ଷ and defined in Eq. (3). Softening behavior is represented in all 131 

the modes. The tensile criterion (Fig. 2a) reads: 132 

𝑓௖௥௜௧௘௥௜௢௡,ଵ(𝝈, 𝜅ଵ) = 𝜎 − 𝜎തଵ(𝜅ଵ)  𝑎𝑛𝑑  𝜎തଵ = 𝑓௧exp (−
௙೟

ீ೑
಺ 𝜅ଵ)                                     (1) 133 

The shear criterion (Fig. 2b) is given as: 134 

𝑓௖௥௜௧௘௥௜௢௡,ଶ(𝝈, 𝜅ଶ) = |𝜏| + 𝜎𝑡𝑎𝑛𝜙(𝜅ଶ) − 𝜎ത௦(𝜅ଶ)  𝑎𝑛𝑑  𝜎തଶ = 𝑐 exp (−
௖

ீ೑
಺಺ 𝜅ଶ)                     (2) 135 

For the compressive yield function (Fig. 2c) and using a matrix form: 136 

𝑓௖௥௜௧௘௥௜௢௡,ଷ(𝝈, 𝜅ଷ) = 1
2ൗ (𝝈்𝑷𝝈) + 𝒑்𝝈 − 𝜎തଷ

ଶ(𝜅ଷ) (3) 137 

Here, 𝝈 is the generalized stresses, 𝑓௧ is the interface bond strength, 𝑐 is the interface cohesion strength,  138 

𝜙 is the friction angle; P is a projection diagonal matrix and p a projection vector based on material 139 

parameters; Gf
I, Gf

II are the mode-I and mode-II fracture energy terms, respectively; 𝜎തଵ, 𝜎തଶ and 𝜎തଷ are 140 

the effective stresses of each the adopted yield functions governed by the internal scalar variables 𝜅ଵ, 𝜅ଶ 141 

and 𝜅ଷ, respectively. Note that the typical compressive hardening/softening law 𝜎തଷ(𝜅ଷ) is composed of 142 

three branches, as observed in Fig. 2c, which are in agreement with the 𝜎ത௖ଵ(𝜅ଷ), 𝜎ത௖ଶ(𝜅ଷ) and 𝜎ത௖ଷ(𝜅ଷ) 143 

laws defined in (Paulo B. Lourenço and Rots 1997) and presented in Eq. (4). Note that the subscripts 144 

i,m and r for both the yield stress value and scalar 𝜅 indicates the initial, medium and residual values, 145 

respectively. The compressive fracture energy Gf
IV depicted in Fig. 2c corresponds to a material input 146 

parameter of the model and allows computing the residual strength value 𝜎ത௥ (from the peak 𝜎ത௣ one). 147 

𝜎ത௖ଵ(𝜅ଷ) = 𝜎ത௜ + (𝜎ത௣ − 𝜎ത௜)ඨ
2𝜅ଷ

𝜅௣
−

𝜅ଷ
ଶ

𝜅௣
ଶ

(4𝑎) 148 

𝜎ത௖ଶ(𝜅ଷ) = 𝜎ത௣ + ൫𝜎ത௠ − 𝜎ത௣൯ ቆ
𝜅ଷ − 𝜅௣

𝜅௠ − 𝜅௣
ቇ

ଶ

(4𝑏) 149 

𝜎ത௖ଷ(𝜅ଷ) = 𝜎ത௥ + ൫𝜎ത௠ − 𝜎ത௣൯𝑒𝑥𝑝 ൬𝑚
𝜅ଷ − 𝜅௠

𝜎ത௠ − 𝜎ത௥
൰

ଶ

 , 𝑚 = 2
𝜎ത௠ − 𝜎ത௣

𝜅௠ − 𝜅௣

(4𝑐) 150 
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 151 

Fig. 2 – Multi-surface plasticity model adopted for the mortar joints (interface FEs). The behavior of 152 

quasi-brittle materials under (a) tensile loading (mode-I, 𝑓௧ is the tensile strength); (b) shear loading 153 

(mode-II, c is the cohesion) accounting with a potential pre-compression level; and (c) compressive 154 

load (𝑓௖ is the compressive strength; p and m are the peak and medium values, respectively). 155 

It may be highlighted that a penalty approach is not followed by the adopted interface FEs to 156 

phenomenologically represent the behavior of masonry crushing. Here, penetration and overlapping 157 

between neighboring brick units can occur which does not blur the adequacy of the strategy. The 158 

dynamic interface model has been implemented in the software DIANA (2017) (strain-rate 159 

independent) and in ABAQUS (2013) (strain-rate dependent). In the latter, a FORTRAN user-160 

subroutine was developed, and the material model is introduced by a failure criterion. A Euler backward 161 

algorithm (linear predictor-plastic corrector approach) is adopted for the stress update process. The user-162 

subroutine VUINTER provided in ABAQUS is involved to define contact interface behavior. The 163 

interface material is assumed to be bonded to each of two contacting surfaces (slave and master 164 

surfaces) and, again, the material strength values are sensitive to the load strain-rate level (see (Lourenço 165 

and Rots 1997; Rafsanjani et al. 2015b) for further details). 166 

3.2 FE macroscopic model 167 

Several continuum models have been presented in the literature albeit especially indicated for concrete-168 

like materials, such as the well-known ‘Barcelona’ model by (Lubliner et al. 1989), the ‘Microplane’ 169 

model by (Bažant et al. 1996), the Concrete Damage Plasticity (CDP) model by (Lee and Fenves 1998), 170 

and the Pontiroli, Rouquard, and Mazars (PRM) model presented in (Pontiroli et al. 2010). Here, a 171 

plasticity continuum model is presented for the static and dynamic study of masonry. The model stems 172 
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from the anisotropic continuum model for masonry shells and plates proposed in (Lourenço 1997, 173 

2000), in which the so-called composite yield criterion is defined. The formulation is briefly recalled 174 

here for a 3D stress space, whereas the stress and strain tensors are typically represented as six-175 

components vectors owing the symmetry conditions, and given as follows: 176 

𝝈 = ൛𝜎௫, 𝜎௬, 𝜎௭, 𝜏௫௬, 𝜏௬௭, 𝜏௫௭ൟ
்
 177 

𝜺 = ൛𝜀௫ , 𝜀௬, 𝜀௭, 𝛾௫௬, 𝛾௬௭, 𝛾௫௭ൟ
்

 178 

The anisotropy of the material behavior is considered since different hardening /softening regimes can 179 

be introduced for different axes. The so-called composite yield surface from (Lourenço 1997) is adopted 180 

and, therefore, a total of three Rankine-type yield criterion are defined in tension and a Hill-type 181 

criterion in compression. 182 

Tension: a Rankine-type criterion 183 

An adequate formulation of the Rankine criterion reads as a single function governed by the first 184 

principal stress and one yield value 𝜎ത௧ that rules the hardening/softening of the material: 185 

𝑓ଵ =
𝜎௫ + 𝜎௬

2
+ ඨቀ

𝜎௫ − 𝜎௬

2
ቁ

ଶ

+ 𝜏௫௬
ଶ − 𝜎ത௧(𝜅௧) (5) 186 

where 𝜅௧ is the scalar that governs the amount of hardening/softening. Considering the three symmetric 187 

planes xy, yz and xz, designated as i=1,2 and 3 respectively, one can write Eq. (5) in a matrix form:   188 

𝑓௜ = ൫1
2ൗ 𝝃௜

்𝑷௧,௜𝝃𝒊൯
ଵ

ଶൗ
+ 1

2ൗ 𝝅௜
்𝝃𝒊 (6) 195 

Here, 𝝃𝒊 is the reduced stress vector given by 𝝃𝒊 = 𝝈 − 𝜼௜. The stress vector 𝝈 represents the six-189 

components of the stress field and reads as 𝝈 = ൛𝜎௫, 𝜎௬, 𝜎௭, 𝜏௫௬, 𝜏௬௭, 𝜏௫௭ൟ
்
; the back stress vector 𝜼௜ is 190 

given as 𝜼ଵ = ൛𝜎ത௧௫൫𝜅௧,ଵ൯, 𝜎ത௧௬൫𝜅௧,ଵ൯, 0,0,0,0ൟ
்
 for the xy-plane, as 𝜼ଶ = ൛0, 𝜎ത௧௬൫𝜅௧,ଶ൯, 𝜎ത௧௭൫𝜅௧,ଶ൯, 0,0,0ൟ

்
 191 

for the yz-plane, and 𝜼ଷ = ൛𝜎ത௧௫൫𝜅௧,ଷ൯, 0, 𝜎ത௧௭൫𝜅௧,ଷ൯, 0,0,0ൟ
்
 for the xz-plane. Likewise, the projection 192 

vector reads 𝝅𝟏 = {1,1,0,0,0,0}்,  𝝅𝟐 = {0,1,1,0,0,0}் and 𝝅𝟑 = {1,0,1,0,0,0}். The projection matrix 193 

𝑷௧,௜ is defined for each of the indexes 1,2,3 as: 194 
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𝑷௧,ଵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1

2ൗ − 1
2ൗ 0 0 0 0

1
2ൗ 0 0 0 0

0 0 0 0
2𝛼ଵ 0 0

𝑠𝑦𝑚 0 0

0⎦
⎥
⎥
⎥
⎥
⎥
⎤

 196 

𝑷௧,ଶ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
1

2ൗ − 1
2ൗ 0 0 0

1
2ൗ 0 0 0

0 0 0
𝑠𝑦𝑚 2𝛼ଶ 0

0⎦
⎥
⎥
⎥
⎥
⎥
⎤

(7) 197 

𝑷௧,ଷ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1

2ൗ 0 − 1
2ൗ 0 0 0

0 0 0 0 0
1

2ൗ 0 0 0

0 0 0
𝑠𝑦𝑚 0 0

2𝛼ଷ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 198 

It is important to recall that the yield stress values 𝜎ത௧௫൫𝜅௧,௜൯, 𝜎ത௧௬൫𝜅௧,௜൯, 𝜎ത௧௭൫𝜅௧,௜൯ are described by 199 

exponential softening rules: 200 

𝜎ത௧௫൫𝜅௧,௜൯ = 𝑓௧௫𝑒𝑥𝑝 ቆ−
ℎ𝑓௧௫

𝐺௙௧௫
𝜅௧,௜ቇ 201 

𝜎ത௧௬൫𝜅௧,௜൯ = 𝑓௧௬ exp ቆ−
ℎ𝑓௧௬

𝐺௙௧௬
𝜅௧,௜ቇ (8)  202 

𝜎ത௧௭൫𝜅௧,௜൯ = 𝑓௧௭𝑒𝑥𝑝 ቆ−
ℎ𝑓௧௭

𝐺௙௧௭
𝜅௧,௜ቇ 203 

where 𝑓௧௫ , 𝑓௧௬ , 𝑓௧௭ are the material uniaxial tensile strength values and 𝐺௙௧௫  , 𝐺௙௧௬ , 𝐺௙௧௭ the material 204 

tensile fracture energies according to the material axes; and ℎ is the equivalent length related to the 205 

finite element size according to (Bažant and Oh 1983) aiming the fracture energy regularization. A non-206 

associated plastic potential 𝑔௜ has been considered and reads as: 207 

𝑔௜ = ൫1
2ൗ 𝝃௜

்𝑷௚,௜𝝃𝒊൯
ଵ

ଶൗ
+ 1

2ൗ 𝝅௜
்𝝃𝒊 (9) 208 

where 𝑷௚,௜ is the projection matrix that represents the Rankine plastic flow, given by (7) for an 209 

𝛼ଵ, 𝛼ଶ, 𝛼ଷ = 1. The inelastic behavior is ruled by a strain-softening hypothesis, in which the scalar in 210 

rate form 𝜅̇௧,௜ is written in terms of the plastic multiplier rate 𝜆̇௧,௜, i.e. 𝜅̇௧,௜ = 𝜆̇௧,௜. 211 
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Compression: A Hill-type criterion 212 

A Hill-type criterion is used to characterize the yield condition of masonry in compression assuming a 213 

rotated centered ellipsoid shape. The formulation is considered in the 3D stress space for convenience 214 

and includes different compressive strength values along the different material axes. In a matrix form, 215 

the yield criterion can be written as: 216 

𝑓ସ = ൫1
2ൗ 𝝈்𝑷𝒄𝝈൯

ଵ
ଷൗ

− 𝝈ഥ௖(𝜅௖) (10) 219 

where 𝝈ഥ௖ is the yield value along the three material axes given by 𝝈ഥ௖(𝜅௖) = ඥ𝜎ത௖௫(𝜅௖)𝜎ത௖௬(𝜅௖)𝜎ത௖௭(𝜅௖)య . 217 

The projection matrix 𝑷𝒄 is computed through Eq. (11): 218 

𝑷௖ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡2

𝜎ത௖௬𝜎ത௖௭

𝜎ത௖௫
ଶ 𝛽ଵ 𝛽ଶ 0 0 0

2
𝜎ത௖௫𝜎ത௖௭

𝜎ത௖௬
ଶ 0 0 0 0

2
𝜎ത௖௫𝜎ത௖௬

𝜎ത௖௭
ଶ 0 0 0

2𝛾ଵ 0 0

𝑠𝑦𝑚 2𝛾ଶ 0

2𝛾ଷ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (11) 220 

The parameters 𝛽ଵ, 𝛽ଶ and 𝛾ଵ, 𝛾ଶ, 𝛾ଷ influence the shape of the yield criterion. The parameters 𝛽௜ 221 

controls the coupling between the normal stress values and should be obtained experimentally (P.B. 222 

Lourenço 1997), and the parameters 𝛾௜ are obtained as 𝛾ଵ =
൫𝑓௖௫𝑓௖௬൯

𝜏௨,௖
ଶ൘ , 𝛾ଶ =

൫𝑓௖௬𝑓௖௭൯
𝜏௨,௖

ଶ൘  and 𝛾ଷ =223 

(𝑓௖௫𝑓௖௭)
𝜏௨,௖

ଶ൘ . Here, 𝑓௖௫, 𝑓௖௬, 𝑓௖௭ are the uniaxial compressive strengths in the x-, y- and z- directions 224 

respectively and 𝜏௨,௖ the fictitious material pure shear strength in compression. The inelastic law of the 225 

material in the compressive regime comprehend a parabolic hardening followed by a 226 

parabolic/exponential softening, whereas different fracture energy values may be defined according to 227 

the material axes, i.e. 𝐺௙௖௫, 𝐺௙௖௬ and 𝐺௙௖௭. 228 

The anisotropic macro-model has been implemented in the advanced software DIANA (2017) (strain-229 

rate independent) and in ABAQUS (2013). In the latter, a FORTRAN user-subroutine VUMAT was 230 

developed, in which the material model and the procedure to update the stress vector and state variables 231 

has been provided. 232 
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3.3 A simplified multi-scale (FE2) homogenization-based model 233 

A simplified two-step numerical procedure has been recently introduced by the authors in (Silva, et al. 234 

2017a, 2017b). The aim has been the prediction of the static and dynamic mechanical response of 235 

periodic masonry structures, whereas both the masonry orthotropy and material nonlinear behavior can 236 

be represented under an attractive computational burden. The strategy makes use of a classical first-237 

order homogenization scheme and is formed by three steps: (i) the definition and solution of the meso-238 

scale problem; (ii) the implementation of the meso-to-macro transition; and (iii) the solution of the 239 

macro-scale problem.  240 

Meso-scale (FE-based mesoscopic model) 241 

A unit-cell homogenization approach is employed at a meso-scale. The strategy can be designated as 242 

an up-ward procedure, i.e. information regarding the mechanical characterization at a cell level is 243 

transferred into the macro-scale. Different numerical models can be employed at a meso-scale and, 244 

therefore, the accuracy of the strategy is highly dependent on the accuracy of the latter. It relies on a 245 

micro-modeling approach and involves solving a mechanical problem on a representative volume 246 

element (RVE) to derive average field variables. The authors have employed a Kirchhoff-Love (KP) 247 

and a Mindlin-Reissner (MP) plate FE models but it is possible to use a three-dimensional model (3D 248 

DNS), see (Silva et al. 2018) for further details. The units are elastic and the material nonlinearity is 249 

assumed to be lumped in the joints aiming at the decrease of the computational effort. This assumption 250 

seems to be specially adequate for strong block masonry structures (Sinha 1978; Herbert et al. 2014). 251 

Units are modeled as quadrilateral FEs and mortar joints through zero-thickness interface FEs. The 252 

multi-surface plasticity model presented in section 3.1 has been considered for the interface elements. 253 

The RVE needs to be statistically representative of the macro-scale level (Hill 1965) and sufficiently 254 

small to respect the principle of scales separation of first-order homogenization theory. Since a 255 

bespoken model for periodic masonries has been proposed (Silva et al. 2018), the recommendations by 256 

Anthoine (1995) are followed for the definition of the RVE within a running-bond and English-bond 257 

masonries. Accordingly, a rectangular pattern with more than one brick unit and within a rectangular 258 

basic cell is defined to represent the RVE of study, as seen in the next section. The RVE is herein 259 

denoted as Ω௠. The kinematical description of the homogenization-based models for the in-plane case 260 
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relies on the assumption that the macroscopic strain tensor E is obtained as the volume average of the 261 

mesoscopic strain field 𝜺𝒎 = 𝜀௠(𝑦) at each point over the associated RVE: 262 

𝜠 =
1

𝑉௠
න 𝜺𝒎

ఆ೘

𝑑𝑉 (12) 263 

where 𝑉௠ is the volume of the RVE. The mesoscopic strain field can be decomposed into a macro-scale 264 

and meso-scale contribution. The latter is referred to as an additive decomposition of the mesoscopic 265 

strain tensor 𝛿𝜺𝒎 = 𝛿𝜺𝒎(𝑦), and given as 𝛿𝜺𝒎 = 𝛿𝜠 + 𝛻  ௦𝑢௠, where δ𝚬 is the applied constant strain 266 

tensor over the RVE and ∇sum is the gradient of the fluctuation displacement field. Considering that 𝝈𝒎 267 

is the mesoscopic stress field, upon RVE equilibrium, the homogenized generalized stresses can be 268 

derived. The Hill-Mandell principle is based on an energetic equivalence between the macroscopic and 269 

mesoscopic work, as follows:  270 

𝜮: 𝛿𝜠 =
1

𝑉௠
න 𝝈𝒎: 𝛿𝜺𝒎

ఆ೘

𝑑𝛺 (13) 271 

in which 𝚺 is the macroscopic stress tensor. According to the assumed additive decomposition of the 272 

mesoscopic strain tensor, one may obtain the macro-homogeneity principle as:  273 

𝜮: 𝛿𝜠 =
1

𝑉௠
න 𝝈𝒎: 𝛿𝜠

ఆ೘

𝑑𝛺 +
1

𝑉௠
න 𝝈𝒎: 𝛻  ௦𝛿𝑢௠

ఆ೘

𝑑𝛺  (14) 274 

for any kinematical admissible 𝛿𝑢௠. Periodic boundary conditions are assumed to solve the boundary 275 

value problem. Such consideration is extensively found in homogenization procedures (Blanco et al. 276 

2016) also for the particular case of masonry structures (Cecchi and Sab 2002b; Milani et al. 2006a; 277 

Otero et al. 2015). The periodic boundary conditions lead to a kinematical field that enforces anti-278 

periodicity of the tractions to occur. Due to the periodicity of the displacement fluctuations on the 279 

boundaries, the Eq. (14) can be simplified and expressed as: 280 

𝚺: δ𝚬 =
1

𝑉௠
න 𝛔௠: δ𝚬

ஐ೘

𝑑Ω,    ∀δε (15) 281 
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Thus, the corollary of the Hill-Mandell principle is that the homogeneous macroscopic stress tensor 𝚺   282 

can be written as the volume average of the mesoscopic stress field 𝝈𝒎 = 𝝈𝒎(𝑦) over the RVE: 283 

𝚺 =
1

𝑉௠
න 𝛔௠

ஐ೘

𝑑Ω (16) 284 

The variational principle and the use of periodic boundary conditions allow concluding that the external 285 

surface tractions and body force field on the RVE are reactive terms over the imposed kinematical 286 

conditions. These kinematical boundary conditions are dependent on the deformation modes considered 287 

at the meso-mechanical level. Thus, the in-plane static equilibrium of the RVE is reached, for each 288 

kinematic constraint considered, without any external surface traction and body force terms. The 289 

variational principle holds when accounting for the out-of-plane quantities to assure the energy 290 

consistency between scales. The difference lies in the replacement of generalized stresses through 291 

moment and force terms. 292 

The homogenization technique is followed and, by solving the internal static RVE equilibrium using a 293 

classical FE-procedure, the homogenized 𝚺 and 𝚬 quantities are derived. Furthermore, the macro-stress 294 

couples are obtained by through-the-thickness integration of the homogeneous macro-stresses 295 

according to Eq. (17); wherein i,j refers to the index x or y (𝑀௫௫, 𝑀௫௬, 𝑀௬௬). The numerical integration 296 

is performed accounting only the mid-plane reference surface . The obtained homogenized moment-297 

curvature relations are defined per unit of length. 298 

𝑀௜௝ = න 𝝈௠,௜௜𝑧 𝑑𝑧

௭
ଶൗ

ି௭
ଶൗ

(17) 299 

Macro-scale (FE discrete model) 300 

Discrete FE-method based strategies, designated in the literature as rigid body spring models (RBSMs), 301 

represent masonry as the assembly of rigid blocks interconnected by discrete interfaces whereas the 302 

deformation is represented through normal and tangential springs. RBSMs are supported in the 303 

theoretical background of Kawai (1978) works. Yet, some differences exist between RBSMs and other 304 

discrete-based strategies, as the discrete (or distinct) element method (DEM) or the applied element 305 
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method (AEM). In fact, FE methods may not be so efficient for problems in which several discontinuous 306 

exists in the media leading to a situation where several distinct bodies exhibit large relative movements. 307 

In such problems, where the contact conditions vary during the analysis and large displacements are 308 

expected, using the DEM strategy for the masonry modeling seems the best choice, see (Cundall and 309 

Hart 1971; Lemos 2007). DEM is, however, based on explicit numerical procedures and its usage within 310 

a dynamic analysis of masonry structures can be prohibitive due to the involved computational 311 

processing times. Concerning the AEM, firstly proposed by (Meguro and Tagel-Din 2000), it has 312 

analogous features with the RBSMs. It represents masonry through the assembly of rigid elements 313 

interconnected by discrete interfaces that are also modeled through normal and shear non-linear springs. 314 

The main differences between AEM and RBSM lie on the fact that the former assumes recontact 315 

between neighboring discrete elements after the occurrence of collapse and that it tends to employ a 316 

micro-modeling approach to describe masonry (Guragain et al. 2006; Malomo et al. 2018). The latter 317 

can be a contentious issue when engineering larger structures. In converse, RBSMs allow to adopt 318 

coarser scales meshes within a macro-modeling approach for masonry and, therefore, increase the 319 

computational efficiency.  320 

Several RBSMs are found in the literature, as the one implemented by (Caliò et al. 2012) for the in-321 

plane study of masonry and extended to the out-of-plane application by (Pantò et al. 2017); and the 322 

work of (Casolo 1999) whereas the out-of-plane behavior of a masonry façade was investigated. The 323 

latter RBSM strategies are quite promising from a computational standpoint but demand the calibration 324 

of both the material and mechanical properties assigned to the nonlinear springs. Such a procedure can 325 

lead to loss of the physical meaning of the input parameters and may be arguable in cases where 326 

experimental evidence is lacking. Hence some authors coupled different RBSMs within two-scale 327 

strategies, wherein the material information of the springs is computed through homogenization 328 

strategies. For instance, Milani et al. (2006) implemented a limit analysis-based two-scale strategy in 329 

which an RBSM, represented through rigid triangular constant stress elements and rotational interface 330 

springs, is linked with a simple homogenization strategy for the study of URM panels. Similarly, Casolo 331 

and Milani (2010) and Casolo and Uva (2013) adopted, respectively, a homogenization-based RBSM 332 

using quadrilateral rigid elements and rotational interface springs for the nonlinear static and dynamic 333 
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analysis of masonry structures, respectively. The existing strategies typically focus on the out-of-plane 334 

behavior only and in the use of simplified analysis methods at a macro-scale, as limit-analysis, to 335 

improve the strategies robustness in the presence of material softening for quasi-static problems.  336 

In such a context, a discrete FE-method based procedure is proposed and implemented into the advanced 337 

finite element software ABAQUS (2013). It stems from the RBSM model presented in (Silva et al. 338 

2017a, 2017b) which is suitable only for the out-of-plane analysis of masonry structures. Thus, an 339 

improved and innovative RBSM is here addressed as it incorporates both the in- and out-of-plane 340 

behavior of masonry being also coupled with the presented novel homogenization strategy.  341 

The RBSM model is composed by the assemblage of discrete quadrilateral rigid plate elements 342 

interconnected, at its interfaces, through a set of rigid and deformable truss FEs, see Fig. 3 (equivalent 343 

to spring elements). The truss elements govern both the deformation and damage of the structure by 344 

being able to mimic the presence of the in- and out-of-plane failure modes considered in Fig. 3 and 345 

within a decoupled characterization. These can append the material information of the meso-scale 346 

homogenized step and thus represent the masonry texture via an equivalent continuum medium.  347 

 348 
Fig. 3 – Description of the basic in- and out-of-plane FE truss/beam systems of the discrete macro-unit 349 
cell. 350 
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The two-scale simplified procedure allows processing the meso to macro-scale transition only once and, 351 

therefore, achieve low computational times. The main advantages of the procedure are threefold: (1) 352 

several strategies with different complexities can be employed at a meso-scale; (2) the concrete damage 353 

plasticity (CDP) model implemented in ABAQUS can properly characterize the constitutive material 354 

model of the truss elements at a macro-scale, as it suitable to fully reproduce the homogenized response 355 

of the masonry RVE; and (3) the computational robustness in presence of material softening can be 356 

guaranteed for quasi-static problems by arc-length procedures available in ABAQUS software. 357 

Specifically, the model combines a stress-based plasticity with a strain-based scalar damage and can 358 

reproduce several macroscopic properties for tension and compression regimes, such as different yield 359 

strengths and so represent masonry orthotropy; different stiffness degradation values, and so represent 360 

the masonry full softening behavior; different recovery effect terms; and rate sensitivity, which can 361 

increase the peak strength value depending on the response strain rate. Moreover, it does consider the 362 

latter in the presence of interfaces dynamic and/or cyclic loading and is integrated using the backward 363 

Euler method. A general overview of the main features of CDP for the rate-independent model are 364 

presented next, being the reader referred to e.g. Lubliner et al. (1989) and Lee and Fenves (1998) for 365 

further details. 366 

Effective stresses govern the plastic part of these models (Grassl and Jirásek 2006) and the stress-strain 367 

relationship is ruled, as referred, by an isotropic damage scalar affecting the elastic stiffness of the 368 

material. The nominal stress tensor 𝝈 reads:  369 

𝝈 = (1 − 𝑑)𝑬𝟎
𝒆𝒍: ൫𝜺 − 𝜺୮୪൯ = 𝑬 ∶ ൫𝜺 − 𝜺୮୪൯ (18) 370 

where E0
 el  is the initial elastic stiffness of the material; d is the damage parameter, which defines the 371 

stiffness degradation (0 for an undamaged and 1 for a fully damaged material), and is designated as dt 372 

and dc for tension and compression regimes, respectively; ε is the total strain tensor; εpl is the plastic 373 

strain tensor, and E is the initial elastic stiffness of the material affected by the damage parameters (the 374 

degraded initial stiffness given by 𝑬 = (1 − d)𝑬𝟎
𝒆𝒍). 375 

A non-associated flow-rule is assumed for the plasticity model and given by: 376 

ε̇pl = λ̇
𝜕g୮

𝜕𝛔ഥ
൫𝛔ഥ, 𝜿𝒑൯ (19) 377 
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in which ε̇pl is the rate of the plastic strain, λ̇ is the rate of the plastic multiplier, g୮ is the plastic potential, 378 

𝝈ഥ is the effective stress tensor, and 𝜅௣ the hardening/softening variable. The rate of the 379 

hardening/softening variable 𝜿̇𝒑 is related to the rate of plastic strain given by an evolution law h, as 380 

seen in Eq. (20): 381 

𝜿̇𝒑 = 𝐡൫𝛔ഥ, 𝜿𝒑൯: 𝛆̇𝐩𝐥 (20) 382 

The CDP model uses a yield function based on the works of Lubliner et al. (1989) and Lee and Fenves 383 

(1998). The hardening parameter that controls the meridians shape of the yield shape is given by 𝐾௖ =384 

2/3, which leads to an approximation of the Mohr-Coulomb criterion. 385 

Hence, following the input requirements for the CDP model it is mandatory to obtain effective stress 386 

and strain curves for each angle of the interface and for each bending moment direction. In other words, 387 

the material orthotropy is reproduced at a structural level because the approach offers the possibility to 388 

reproduce different input stress-strain relationships according to the trusses plane. To what concerns the 389 

in-plane behavior, the stress quantities are directly derived from the mesoscopic homogenized values 390 

scaled according to the length of the macro-interfaces. For the out-of-plane behavior, the conversion 391 

from moment to stress values must be achieved following Eq.(21) and Eq.(22): 392 

 𝜎஻௘௡ௗ௜௡௚ ௧௥௨௦௦ =
ெ

(஺ಳ೐೙೏೔೙೒ ೟ೝೠೞೞ×௘)
 (21) 393 

 𝜎்௢௥௦௜௢௡௔௟ ௧௥௨௦௦ =
ெ

(஺೅೚ೝೞ೔೚ೌ೙೗ ೟ೝೠೞೞ×ு)
 (22) 394 

Here, M is the bending moment per unit of interface length, H the length of each quadrilateral panel (L 395 

is the influence length of each truss and is equal to half of the mesh size, i.e. H/2), t is the thickness of 396 

the wall, 𝐴஻௘௡ௗ௜௡௚ ௧௥௨௦௦ and 𝐴்௢௥௦௜௢௡௔௟ ௧௥௨௦௦ are the bending and torsional truss areas, respectively, and 397 

are given by 0.5×e×H where e (value of 10 mm) is the gap between the rigid plates, which ideally should 398 

be zero but in practice is assumed small enough to be able to place trusses between elements. 399 

At last, the stress homogenized input curves may be properly calibrated (so-called regularization). An 400 

elastic calibration for the stress curves is conducted. The latter is guaranteed separately for both in-401 

plane and out-of-plane modes and, therefore, a decoupled behavior is derived. Briefly, by assuring the 402 

energy equivalence between the discrete mechanism and a homogeneous continuous plate element it 403 
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can be easily derived that, for both case studies, the Young’s moduli of axial, shear, bending and 404 

torsional truss elements is given as: 405 

𝐸௜௜
ூ௡ି௣௟௔௡௘ ௔௫௜௔௟ ௧௥௨௦௦

=
𝐸ത௜௜𝑒

4𝐿 + 2𝑒
  ;  𝐸௫௬

ூ௡ି௣௟௔௡௘ ௦௛௘௔௥ ௧௥௨௦௦
=

𝐺̅௫௬𝐻ଶ

4𝑒(2𝐿 + 𝑒)
(23) 406 

𝐸௜௜
஻௘௡ௗ௜௡௚ ௧௥௨௦௦

=
𝐸ത௜௜𝑡ସ𝐻

12(1 − 𝜈ଶ)(𝐻 + 𝑒)𝑒ଷ𝐻
  ;   𝐸்௢௥௦௜௢௡௔௟ ௧௥௨௦௦ =

2𝐺̅௫௬𝑡ସ

3𝐻ଶ𝑒(2𝐿 + 𝑒)
(24) 407 

where 𝐺̅௫௬ is the homogenized shear modulus given directly by the slope of the shear meso-scale 408 

homogenized curve; 𝐸ത௜௜ is the Young’s moduli of the masonry in the direction ii (i represents the 409 

cartesian axis x or y); and 𝜈 is the Poisson coefficient for the homogeneous media. After the calibration 410 

and aiming to fulfill the input requirements for the CDP model in ABAQUS, the information regarding 411 

the post-failure behavior may be introduced for each element that features material nonlinearity in terms 412 

of effective stress and inelastic strain 𝜀̃௖௞ values, i.e. the truss elements. Since truss elements define the 413 

material behavior of the macro-interfaces, the system will undergo only uniaxial loading conditions. 414 

Hence, for the case of uniaxial loading condition, the inelastic strain value must be obtained for each 415 

point of the post-peak homogenized curve according to Eq. (25): 416 

ε෤ୡ୩ = ε − ε୭
ୣ୪ (25) 417 

where 𝜀௢
௘௟ is the elastic strain corresponding to the undamaged material and 𝜀 is the total axial strain of 418 

the multi-linear stress envelope. If the damage parameter 𝑑 are introduced, the plasticity model is thus 419 

coupled with a damage description and is suitable for the cyclic behavior description of the material. 420 

Again, for the case of uniaxial loading condition and for a given truss element, the plastic strain values 421 

𝜀௣௟ are calculated for each point of the input curve through Eq. (26). Since the permanent plastic strains 422 

values 𝜀௣௟ can be just positive or null, the latter can constitute a good checkpoint to foresee if the damage 423 

parameters have been properly computed. 424 

𝜀௣௟ = 𝜀௖௥ −
𝑑

(1 − 𝑑)

𝜎௉

𝐸଴
௘௟  (26) 425 

In continuum FE-based frameworks, in which material nonlinearity and cracking are attributed to 426 

continuum elements (through, for instance, the proposed anisotropic macro-model or other models, as 427 

the smeared crack by (Rots et al. 1985)), the strain localization is a key issue and the regularization of 428 
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the FE material constitutive law is necessary to achieve mesh objectivity of the results. In related multi-429 

scale continuum, FE approaches, as (Petracca et al. 2016; Cervera and Chiumenti 2006) an alike 430 

procedure is implemented. This is typically based on the crack band theory by (Bažant and Oh 1983), 431 

whereas the definition of a characteristic length that addresses both scales is required to affect the 432 

fracture energy of the material constitutive model. 433 

For the present homogenization-based strategy, the mesh objectivity problem resorts only on the 434 

correction of the material homogenized data according to the discrete macro-mesh refinement rather 435 

than the strain localization issue at both scales. This is so because, at a meso-scale, both the material 436 

nonlinearity and cracking are placed on mortar joints that are modeled in a discontinuous (interface 437 

elements) way (Borst et al. 2006); and, at a macro-scale, an RBSM is adopted in which material 438 

softening and cracking is lumped on individual 2-node linear truss elements (one integration point), for 439 

which a characteristic length of 1 is generally given (ABAQUS 2013; DIANA 2017). 440 

Thus, the so-called regularization step is here performed aiming to correct the elastic stiffness and post-441 

peak fracture energies of the stress-strain curves that serve as input for the CDP model. The derived 442 

meso-scale homogenized curves (per interface unit length) are firstly scaled, according to the macro-443 

interface length H, and secondly affected by a regularization factor 𝑓௥ depending on if it represents an 444 

in-plane (normal and shear) or an out-of-plane (flexural and torsional) mode. 445 

Consider, for instance, that  Ε෨ = [𝜀ଵ 𝜀ଶ  ⋯ 𝜀௡ିଵ 𝜀௡] and Σ෨ = [σଵ σଶ  ⋯ σ௡ିଵ σ௡] are the n-446 

dimensional vectors which define, respectively, the  homogenized curve being regularized (n is the 447 

number of points of the curve). After scaling the stress values of Σ෨ according to the macro-scale mesh 448 

size, it is required to regularize the strain values of Ε෨. In this regard, the regularization factor 𝑓௥, is, for 449 

a given truss element set, defined as the relation between the elastic stiffness of the curve under 450 

study and the calibrated Young modulus obtained for each deformable truss through Eq.(23)-(24). The 451 

procedure to compute the reference elastic stiffness value is assumed to be performed for the designated 452 

point C; the point of the  homogenized curve that has a stress given as one-third of the peak value. 453 

Thus, 𝑓௥ is computed as 𝑓௥ = σ஼ (𝜀஼𝐸௖௔௟௜௕௥௔௧௘ௗ)⁄  where, 𝐸௖௔௟௜௕௥௔௧௘ௗ is the corrected Young modulus 454 

obtained for each truss type following Eq. (23) and Eq. (24).  455 
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In other words, the regularization terms can be simply written as  𝑓௥
௠௢ௗ௘ିூ = 𝐸ത௜௜,஼ 𝐸௜௜

௜௡ି௣௟௔௡௘ ௔௫௜௔௟ ௧௥௨௦௦
ൗ  456 

and 𝑓௥
௠௢ௗ௘ିூூ = 𝐺̅௫௬,஼ 𝐸௫௬

௜௡ି௣௟௔௡௘ ௦௛௘௔௥ ௧௥௨௦௦
ൗ  for the in-plane macro-trusses; and as 𝑓௥

௕௘௡ௗ௜௡௚
=457 

𝐸ത௜௜,஼ 𝐸௜௜
௕௘௡ௗ௜௡௚ ௧௥௨௦௦

ൗ  or 𝑓௥
௧௢௥௦௜௢௡ = 𝐺̅௫௬,஼ 𝐸௧௢௥௦௜௢௡௔௟ ௧௥௨௦௦⁄  for the out-of-plane macro-trusses. Such 458 

parameters 𝑓௥ affects all the strains of the homogeneous stress-strain curves of the corresponding 459 

trusses. By correcting the strain axis to calibrate the elastic stiffness value the operator affects, as well, 460 

the post-peak curve strains and so, in an implicit way, the fracture energy itself. It may be pointed out 461 

that, for the out-of-plane truss elements (both the torsion and bending elements), the scaling and the 462 

regularization steps are performed only after the conversion of homogenized moment values into stress 463 

quantities according to Eq.(21) and Eq.(22). 464 

3.4 Strain-rate dependency of the modeling strategies 465 

The use of static strength properties can lead to inaccurate results when evaluating the masonry behavior 466 

under fast dynamic actions since these properties exhibit an enhancement according to the strain rate 467 

level of the applied load. Research mainly centered on concrete-like materials can be found in the 468 

literature, where assumptions intrinsically related with material effects are reported to explain the 469 

phenomena, such as the lateral inertial confinement, end support friction and scale-effect (Hao et al. 470 

2013; Y. Hao and Hao 2013; Le Nard and Bailly 2000). 471 

Experimentation is, in the field of fast dynamics, still at a higher level with respect to numerical 472 

modeling (Buchan and Chen 2007). Some laboratory tests have been performed to evaluate the response 473 

of the masonry under such extreme loads, see for (Pereira and Lourenço 2016b; Pereira et al. 2015; 474 

Pereira and Lourenço 2016a; Hao and Tarasov 2008; Dennis et al. 2002; Baylot et al. 2005). In converse, 475 

few numerical studies on the response of masonry under blast or impact actions are found in the 476 

literature; one may recall the contributions by (Wu et al. 2005; Zapata and Weggel 2008; Macorini and 477 

Izzuddin 2014; Burnett et al. 2007).  478 

The strain-rate dependency of the masonry can be represented through the use of visco-elastic models 479 

aiming at strain-rate regularization, as seen in (Sluys and De Borst 1992; Georgin and Reynouard 2003). 480 

This seems an adequate and numerically convenient strategy, especially if one notices that introducing, 481 

for instance, the well-known Duvaut and Lions (1976) model within an FE plasticity model is well 482 
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documented. Yet, the definition of a viscosity regularization parameter still lacks objectivity and 483 

requires extensive sensitivity studies for the case of masonry.  484 

In such a context, the presented inviscid advanced FE formulations have been formulated to account 485 

for this phenomenological feature of masonry by making use of dynamic increase factors (DIFs). The 486 

authors believe that these numerical models may strongly contribute to further advances on this complex 487 

topic. The DIFs directly affect the static material properties adopted and can be introduced in the 488 

strategies via: (i) a strain-rate law, typically a logarithmic curve, for each selected parameter; or (ii) a 489 

discrete DIF value, independent from the strain rate level, which is a priori assumed and adopted as 490 

constant. The former may yield more realistic values, but the latter is straightforward, simple and more 491 

aligned with normative proposals. These data can be deduced through experimental campaigns as seen 492 

in (Pereira and Lourenço 2016a) and (Hao and Tarasov 2008). 493 

According to the information at disposal, different DIF values are obtained for each mechanical 494 

parameter of masonry, which allows the expansion or contraction of the strength envelope thus 495 

depending on the load strain-rate; as schematically described in Fig. 4 for the case of the composite 496 

interface model. 497 

 498 

Fig. 4 – Schematic representation of the yield envelope for the composite interface model adopted 499 

affected by the DIFs. 500 
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4 Applications 501 

4.1 Engineering a meso-scale mechanical problem 502 

The majority of the existing research on periodic masonry deal with running-bond texture within the 503 

case of a single-wythe wall (Milani 2008; Zucchini and Lourenço 2002; Taliercio 2014; Pau and 504 

Trovalusci 2012; Reccia et al. 2018). Some features seem still somehow under-investigated, as: (i) the 505 

analysis of the effect of potential discontinuities in the masonry thickness, when two- or three-wythes 506 

of masonry are present; (ii) the effect of three-dimensional shear stresses; and (iii) the study of other 507 

periodic textures, as the English-bond. 508 

In this context, a study at a meso-scale is presented next. This is aimed to assess the mechanical effect 509 

of the mid-thickness vertical joint of English-bond masonry walls and the effect that three-dimensional 510 

shear stresses play. The conclusions are drawn in terms of moment-curvature curves. 511 

The selected case study concerns the English-bond masonry tested experimentally by Candeias et al. 512 

(2017). The problem is schematically described in Fig. 5a and three unit-cell models are accounted for. 513 

The first-unit cell model advents from a Kirchhoff-plate mesoscopic model in which the aforementioned 514 

homogenization scheme (see 3.3) is followed. The remaining two unit-cell models follow a direct 515 

numerical simulation (DNS models) or a micro-modeling approach (as referred in 3.1): the latter does 516 

not take into account the discontinuity along with the thickness, whereas the former considers it, 517 

meaning that it is explicitly modeled. The adopted material properties for units are 𝐸௨ = 11,000 𝑀𝑃𝑎; 518 

𝑣௨ =  0.25 and for mortar joints 𝐸௠ = 2,200 𝑀𝑃𝑎; 𝑣௠ =  0.20; and the inelastic mechanical parameters 519 

for mortar joint interfaces are given by: 𝑓௧ = 0.105 𝑀𝑃𝑎, 𝐺௙
ூ = 0.012 𝑁/𝑚𝑚, 𝑐 = 0.20 𝑀𝑃𝑎, 𝐺௙

ூூ =520 

0.05 𝑁/𝑚𝑚, 𝜙 = 30 degrees, 𝑓௖ = 2.84 𝑀𝑃𝑎; 𝐺௙
ூ௏ = 4.00 𝑁/𝑚𝑚. For all the cases, the material 521 

nonlinearity is lumped in the mortar joints by using interface FEs within the presented multi-surface 522 

plasticity model. Note that the linear elastic relation between the generalized stresses and strains of the 523 

interface FEs is given by the classical constitutive equation of Hooke’s law, 𝝈 = 𝑫𝜺. Considering a line 524 

FE interface (for the adopted plate theories Kirchhoff-Love (KP) and a Mindlin-Reissner (MP) models), 525 

the elastic stiffness matrix D is given as 𝑫 = 𝑑𝑖𝑎𝑔{𝑘௡, 𝑘௦}. The values of the normal (kn) and shear (ks) 526 

mortar joints stiffness terms can be easily computed through Eq. (27)-(28), if considered that the 527 
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masonry components are represented by a serial chain of springs, under a stack-bond, with uniform 528 

stress distributions in both the unit and mortar joints. Therefore, the obtained values for 𝑘௡ =529 

183 𝑁/𝑚𝑚; 𝑘௦ = 72.6 𝑁/𝑚𝑚, respectively. 530 

 531 

Fig. 5 – Meso-scale mechanical study of an English-bond masonry texture: (a) numerical models 532 

assumed for the RVE description; (b) results obtained in terms of moment vs. curvature curves using a 533 

KP model and two DNS 3D models: one that considers, and the other that excludes the existent vertical 534 

joint on the mid-thickness. Deformed configurations at peak and ultimate post-peak point are plotted 535 

for both models. 536 
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𝑘௡ =
𝐸௨𝐸௠

𝑡௠(𝐸௨ − 𝐸௠)
 (27) 537 

𝑘௦ =
𝐺௨𝐺௠

𝑡௠(𝐺௨ − 𝐺௠)
(28) 538 

Where 𝑡௠ = 15 𝑚𝑚 is the thickness of the mortar joints; 𝐺௨ and 𝐺௠ are the shear modulus of the unit 539 

and mortar, respectively. Fig. 5b shows the obtained results. It is noticed that the presence of the vertical 540 

discontinuity in the masonry thickness has a marginal effect on the RVE vertical bending behavior Myy. 541 

On the contrary, the model with the discontinuity manifests a lower capacity for both the horizontal Mxx 542 

and torsional Mxy moments with differences ranging the 33% and 17%, respectively. Additionally, if 543 

the KP model results are considered, an error of 52% is expected for the horizontal bending moment 544 

case. Such results prove the importance of addressing the mortar discontinuities and the three-545 

dimensional shear effects along the thickness of a masonry wall; especially in cases where the thickness 546 

value is significant, as seen in (Silva et al. 2018). Also, this highlights the care that needs to be taken 547 

when adopting a modeling strategy for a given case study. The total processing time (CPU time 548 

requirements using a laptop with an i7-4710MQ CPU) of the simulations was 81 seconds, 246 seconds 549 

and 249 seconds for the KP model, DNS model without discontinuity and DNS model with 550 

discontinuity, respectively.  551 

4.2 Engineering complex problems: meso/macro scales 552 

4.2.1 LNEC brick-house mock-up 553 

The selected case study outcomes from the experimental work performed in LNEC by Candeias et al. 554 

(2017), which was developed to foster a blind test prediction by different invited authors on the dynamic 555 

behavior of a masonry structure. The studied brick structure is composed of three walls in a U-shaped 556 

plan arrangement. The main façade (East plan) presents a gable wall and is linked with two transversal 557 

walls which act as abutments (North and South plans). These were constructed with clay brickwork in 558 

an English-bond arrangement of 235 mm of thickness (slenderness ratio about 1:10). The geometrical 559 

features are seen in Fig. 6a. The brick mock-up was tested up to collapse in a shaking table under a 560 

unidirectional seismic loading. The seismic input was applied in a perpendicular direction (E-W) to the 561 

main façade and derives from the N64E strong ground motion component associated with the February 562 
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21 of 2011 earthquake occurred in Christchurch, New Zealand. After the filtering and cropping, the 563 

latter time signal served as a reference for the seismic input generation and is composed of eight 564 

accelerograms. These have been obtained from a scaling process, starting from one up to three. The 565 

input signal considered in the dynamic analysis is displayed in Fig. 6b. 566 

 567 
Fig. 6 – Case study: (a) the geometry of the case study; (b) the experimental input seismic signal; (c) 568 

case study and the numerical models considered for the dynamic analysis.  569 

Two (out of three) of the presented numerical approaches are used for this analysis as depicted in Fig. 570 

6c. In particular, the macroscopic model and the simplified two-scale model. Again, the former 571 
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represents masonry as an isotropic material and has been defined here to follow a total strain rotating 572 

crack constitutive material model, whereas an exponential and parabolic law is adopted, respectively, 573 

for the tensile and compressive behaviors. An approximated mesh size of 100 up to 150 mm was defined 574 

using 3D finite elements, and such fine discretization intends to by-pass numerical problems faced 575 

during the performed computations. For the latter, a direct numerical simulation (DNS 3D mode with 576 

discontinuity) has been assumed at a meso-scale to derive the homogenized quantities, wherein the 577 

vertical mortar discontinuity is present in the thickness direction. At a macro-scale, a mesh size of 200 578 

mm is adopted. 579 

The calibration of the elastic brickwork stiffnesses (𝐸௫௫, 𝐸௫௬ and 𝐸௬௬) has been reached by accounting 580 

with the modal identification data available. For the strength properties, as the tensile strength, cohesion, 581 

and compressive strength, the values from (Candeias et al. 2017) have been used. The parameters that 582 

control the material curves beyond the peak, namely the fracture energies, refer to typical masonry 583 

literature values and no experimental reference is known.  584 

Dynamic analysis has been performed by subjecting the structure to the defined seismic input. Since 585 

the structure has collapsed for the last accelerogram (acc 8), the comparison is achieved for the 586 

accelerogram seven (acc 7) as shown in Fig. 7. The results give good indications on the ability of the 587 

presented two-step approach in the dynamic behavior prediction of the English-bond structure, as a 588 

good agreement has been found with the experimental time-history displacements. Even if slight 589 

differences are visible for the peak displacements, the two-scale model also accurately reproduces the 590 

residual displacement. 591 



27 

 592 

Fig. 7 – The obtained time-history displacements for the last analyzed accelerogram (acc 7). 593 

On the other hand, the macroscopic model seems to overestimate the structure capacity. The response 594 

is far for being alike with the behavior reproduced by the latter procedure, despite sharing both the same 595 

material and mechanical input. The non-consideration of the existent vertical discontinuity seems to be 596 

of utmost importance. In fact, the latter is paramount as it decreases significantly the bending and 597 

torsional capacities. Furthermore, the macroscopic approach makes use of a hysteretic behavior with 598 

secant unloading-reloading branches, a feature that leads to the underestimation of the energy 599 

absorption and is incapable to record permanent plastic deformations. 600 

Additionally, Fig. 8 reports the observed experimental and numerical damage maps. From the two-scale 601 

and macroscopic models, a vertical crack in the gable wall (due to horizontal bending) is observed. In 602 

the former, it is registered, as well, the onset of cracking due to torsional movements in the east plan 603 

opening towards the corners. Both strategies captured moderate damage in the east-north corner, even 604 

if this is not clear from the experimental observations. Some in-plane damage around the north piers is 605 

also registered. In general, a reasonable agreement has been found for such a complex study. The total 606 
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processing time (CPU time requirements using a laptop with an i7-4710MQ CPU) of the simulations 607 

was 76 minutes and 720 min for the two-scale (DNS 3D) model and the FE macro-model, respectively. 608 

 609 

Fig. 8 – Observed damage: (a) after the experimental series of seven accelerograms (from acc 1 to acc 610 

7); (b) for the macroscopic model at the instant t = 160 seconds; and (c) for the two-scale model at the 611 

instant t = 160 seconds. 612 

4.2.2 Sheffield university parapet wall 613 

Experimental data available from the research reported by Gilbert et al. (2002a) is used to assess the 614 

ability of the presented numerical strategies in the prediction of the dynamic behavior of masonry when 615 

subjected to a low-velocity impact load. The numerical strategies presented in section 3 are addressed, 616 

see Fig. 9a,b,c. Note that a finer mesh refinement has been assumed for all the strategies.  617 

The selected parapets are designated as C6 and C7 and are replicates. Their assemblage was executed 618 

with strong concrete blocks and weak mortar. The parapet walls and brick dimensions, as well as the 619 

boundary conditions assumed, are reported in Fig. 9a. Aiming to model a vehicle-like impact at both 620 

mid-height and length of the walls, a triangular time-history load distribution, in which the peak value 621 

is equal to 110 kN, has been applied. The deformation of the studied parapets has been recorded in a 622 

node located 580 mm above the base and deviated 250 mm from the center. 623 
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 624 

Fig. 9 – Sheffield university parapet Wall : (a) geometry of the running bond masonry parapets C6 and 625 

C7 tested by Gilbert et al. (2002a); and the numerical models presented by the authors that are used in 626 

this analysis, (b) the strain-rate FE macroscopic model (macro-model approach); (c) the strain-rate FE 627 

mesoscopic model (micro-modeling approach); and (d) the strain-rate two-scale homogenized-based 628 

model. 629 

The static material properties and the rate-dependency issue is addressed for all the formulations; for 630 

the macroscopic model in (Rafsanjani et al. 2015a), for the mesoscopic model in (Rafsanjani et al. 631 

2015b), and for the two-scale model in (Silva et al. 2017a). To guarantee the consistency and 632 

representativeness of the comparison, the models used the same analytical expressions for the DIFs. In 633 

particular, the laws made available by Hao and Tarasov (2008), who studied the experimental dynamic 634 

behavior of a series of brick and mortar specimens under uniaxial compressive tests through a tri-axial 635 

static-dynamic apparatus. As information regarding the strain-rate effects on tensile and shear masonry 636 

properties is lacking, the DIF regression equations for the tensile and shear material parameters (as the 637 
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tensile ultimate strength 𝜎௧଴_௠௢௥௧௔௥, mode-I fracture energy 𝐺௙
ூ, cohesion c and mode-II fracture energy 638 

𝐺௙
ூூ) are assigned to be equal to the compressive ones. 639 

The obtained results are analyzed in terms of displacement magnitude with respect to time. The 640 

comparison is achieved through the experimental results (Gilbert et al. 2002) and complemented with 641 

a mesoscopic strain-rate independent model by Burnett et al. (2007a). Fig. 10 shows that the curve from 642 

(Burnett et al. 2007) leads to excessive displacements (and under stiff response). This author presented 643 

a simplified FE mesoscopic model (micro-modeling approach) that represents mortar joints with 644 

interface elements. This strategy is strain-rate independent, ergo their accuracy is highly dependent on 645 

the static material properties adopted. The use of static strength properties instead of dynamic ones may 646 

mislead the results, i.e. an underestimation of the collapse load may occur.  647 

 648 

Fig. 10 – Time history of the out-of-plane displacement obtained for the control node of the parapets 649 
C6 and C7 and deformed shapes observed with the proposed model for the time instants 0.5ms, 1.41ms, 650 
25ms, and 300 ms. 651 

Conversely, the presented numerical models are reasonably accurate in predicting the peak 652 

displacement, with a relative error of around 10%. Regarding the post-peak behavior, it is noticeable 653 

that the structure displacement restitution of the two-scale model is practically inexistent. Yet, similarly 654 

to the experimental results, the latter is not entirely reproduced by the other three numerical models 655 

under comparison, presenting both an out-of-plane displacement that slightly decreases in post-peak 656 

after the time instant of 180 mm. This is possibly due to the irreversible displacements computed 657 

(permanent plastic strains) within the cyclic behavior of the CDP model. The response is still 658 

remarkable. The total processing time (CPU time requirements using a laptop with an i7-4710MQ CPU) 659 
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of the simulations is 0.2 hours (12 minutes) for the two-scale (DNS 3D) model, 2.5 hours for the FE 660 

macro-model, and 23 hours for the FE micro-model. 661 

4.3 Engineering super large/complex problems: macro-scale 662 

4.3.1 Cathedral of the Blessed Sacrament 663 

The Cathedral of the Blessed Sacrament is located in Christchurch city (New Zealand). The building is 664 

based on Roman-style and was built using Oamaru limestone. The geometrical features are briefly 665 

addressed in Fig. 11a,b. The building suffered a strengthening intervention in 2004, in which the 666 

structural safety level was assumed to be adequate. Yet, a sequence of four main seismic events over a 667 

period of nine months, between 4 September 2010 and 13 June 2011, caused progressive damage and 668 

local collapses of the two bell towers. Recognizing the symbolism and type of loss associated with this 669 

Basilica, a numerical study has been conducted to evaluate potential retrofitting strategies that could 670 

mitigate the extensive damage found and avoid the collapse of the bell towers. Two strengthening 671 

proposals to be implemented in the Cathedral, considering the strengthening intervention of 2004, have 672 

been analyzed. The goal is to guarantee the ultimate limit state (ULS), that is, to prevent the collapse of 673 

structural elements for the highest mean horizontal PGA recorded in the 2010 and 2011 earthquakes. 674 

Thus, the value assigned as performance reference for the structural assessment is given by 0.43 g and 675 

is defined by the February 2011 seismic event (it corresponds to a period of return around 400 years for 676 

new buildings design according to (NZS1170 2004)). 677 

 678 
Fig. 11 – Geometry of Basilica of the Blessed Sacramento: (a) west elevation; (b) plan. 679 

An FE numerical model was prepared using the presented continuum FE-based anisotropic model 680 

(macro-modeling) implemented in the software DIANA (2017). A total-strain fixed crack model was 681 

adopted to represent the physical nonlinear behavior. For such a large structure, aiming at reducing the 682 
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structural global number of degrees of freedom of the Basilica’s numerical model, beam, shell and solid 683 

finite elements were used. The final FE mesh of the Basilica’s model is presented in Fig. 11c and 684 

corresponds to a total number of 178,719 degrees of freedom. The material and mechanical properties 685 

have been based on information provided by the NZ authorities and from literature, see (Silva et al. 686 

2018) for more details. 687 

The seismic performance of the Cathedral was evaluated through a pushover analysis. This is a time-688 

invariant analysis (static) and is more convenient than a nonlinear dynamic analysis with time 689 

integration as it is computational more attractive. A uniform pattern was adopted for the applied 690 

horizontal loads meaning that the distribution of applied forces is proportional to the mass distribution 691 

of the structure.  692 

For the first strengthening proposal, a set of 12-meters long stainless-steel tie rods was applied to the 693 

structure at the level of the floors being anchored in the slabs. The aim has been the improvement of 694 

the connection between orthogonal walls, allowing a better force distribution into the nave walls and 695 

preventing the out-of-plane collapse of the bell towers. The second strengthening proposal kept the 696 

three tie rods of the first proposal at the main façade but includes ring beams at the bell towers instead 697 

of the stainless-steel tie rods. Such addition aimed to improve the connection between structural 698 

elements, namely the bell towers and nave walls. Furthermore, it intends to allow better confinement 699 

for the bell towers in order to facilitate a better force distribution and prevent out-of-plane collapse. 700 

The efficiency of the strengthening proposals was evaluated based on the pushover analyses for the 701 

longitudinal direction –X only (the out-of-plane mechanism of the bell towers and main façade were 702 

found in (Silva et al. 2018) to have the lowest load capacity). The capacity curves depicted in Fig. 12 703 

shows a clear improvement in the load and inelastic displacement capacity of the structure, for which 704 

at least a maximum horizontal load of about 0.57 g was obtained (strengthening proposal 2). The first 705 

strengthening proposal allows at least a maximum horizontal load equal to 0.49 g. It is noted that the 706 

maximum horizontal load applied to the non-strengthened model is equal to 0.35 g. 707 
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 708 

Fig. 12 – Obtained capacity curves with and without the strengthening proposals.  709 

The damage assessment was evaluated based on the maximum principal tensile strain, which is a good 710 

qualitative indicator of cracking. The structural strengthening undertaken in 2004 played a decisive role 711 

in the avoidance of further damage, but this strengthening was insufficient to prevent local failure 712 

mechanisms. The crack pattern of the non-strengthened model shows that the Basilica suffered severe 713 

damage in both bell towers and in the vicinity walls for a horizontal load of 0.35 g (Fig. 13a). Extensive 714 

cracking due to in-plane shear failure is observed. Fig. 13b,c show that the results are in accordance 715 

with the intended one, as insignificant damage being observed at the bell tower walls. Hence, the 716 

strengthening measures distribute the loads to the nave walls and nave slabs, causing more damage to 717 

these elements, namely some cracks on the first floor of the nave. 718 

 719 

Fig. 13 – Comparison of principal tensile strains for the horizontal load equal to 0.35 g: (a) non-720 
strengthened model; (b) strengthened model 1; (c) strengthened model 2. 721 

Finally, the seismic performance of the structure accounting with the strengthening proposals was also 722 

evaluated for a horizontal load equal to 0.43 g (PGA of the February 2010 earthquake). Fig. 14 presents 723 
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the principal tensile strains, from which it can be observed that the model with the first strengthening 724 

scheme suffers more damage than the one with the second strengthening scheme. Thus, the first 725 

strengthening proposal is an effective solution as it creates new load paths and delays failure. However, 726 

it does not provide enough strengthening for the two-bell towers in order to change its condition as the 727 

most vulnerable elements of the structure. The second strengthening proposal, which includes stainless 728 

steel rings, presents the best seismic performance guaranteeing a safety level for the bell towers of at 729 

least 40% of the full code requirements (Silva et al. 2018). 730 

 731 
Fig. 14 – Comparison of principal tensile strains for the horizontal load equal to 0.43 g: (a) strengthened 732 

model 1; (b) strengthened model 2. 733 

The structural strengthening undertaken in 2004 played a decisive role in the avoidance of further 734 

damage, but it was insufficient to prevent local failure mechanisms. The numerical results indicate that 735 

the structure is unsafe for an earthquake such as the one experienced in February 2011, in which the 736 

collapse of the bell towers and significant damage would be expected. The model allowed the 737 

identification of two possible strengthening solutions that could change the outcome of similar seismic 738 

events to be addressed. The total processing time (CPU time requirements using a laptop with an i7-739 

4710MQ CPU) of the simulations is around 14 hours for the non-strengthened numerical model 740 

accounting with the full structure. 741 

4.3.2 Al-Askari Holy Shrine: blast load 742 

The Islamic cultural heritage site of Al-Askari holy shrine is situated in Samarra (Iraq) and its geometry 743 

is shown in Fig. 15a. The Al-Askari shrine suffered a terrorist attack in February 2006. A large quantity 744 

of explosive charge (200 kg TNT) has been placed at the top of the dome by taking advantage of the 745 

existing scaffold due to the ongoing conservation works (Pandey et al. 2006). The blast load destroyed 746 
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the dome and the resulting debris damaged the buildings’ roof. The majority of the dome’s structure 747 

collapsed inside the mosque according to (Baylot and Bevins 2007). Also, significant damage has been 748 

reported in both the East and West façades (Fig. 15b). 749 

 750 

Fig. 15 – Islamic cultural heritage site of Al-Askari holy shrine: (a) geometry; (b) local where the blast 751 
detonation took place, i.e. placed at the top of the dome; and (c) FE mesh adopted for the continuum 752 
macroscopic model.  753 

The continuous anisotropic FE macro-model with strain-rate dependency, presented in section 3.2, has 754 

been used in this study. The main goal is the demonstration of the capability that the proposed advanced 755 

numerical tool (meaning the plasticity model) offers in the analysis of full masonry structures under 756 

blast load. In this regard, a numerical model featuring the structure of the mosque has been developed 757 

in ABAQUS (2013). The supports have been defined as fixed and only solid FEs have been used; i.e. 758 

8-noded linear bricks (reduced integration, hourglass control) and 4-node linear tetrahedron. The final 759 

model has a total of 112,623 degrees of freedom and the FE mesh is represented in Fig. 15c. 760 

The material anisotropy has been considered following adequate literature information, see (Rafsanjani 761 

2015). To account with the strain-rate dependency of the masonry composite yield surface, the required 762 

DIF laws from the study by (Pereira and Lourenço 2016a) have been used. In order to keep the problem 763 

with a pure Lagrange formulation, the blast load has been applied as pressure load profiles applied in 764 

different zones of the building to assure the representativeness of its distribution. A total of eight zones 765 

with different stand-off distances have been modeled. The results of the dynamic analysis are shown 766 

next in terms of contour plots for two instant times t. 767 

For a time instant equal to 𝑡 = 25 𝑚𝑠, i.e. immediately after the occurrence of the explosion (that occurs 768 

for a 𝑡 = 20 𝑚𝑠), the maximum principal plastic strain is given in Fig. 16a. Significant values are 769 

localized in the dome, whereas the incremental deformed shape of Fig. 16b shows displacements in the 770 
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order of 17 cm. The level of loading seems high enough for this structure hence severe non-linearity for 771 

the masonry behavior and consequently, intense crack formation is reported. Note that the plasticity 772 

model does not have incorporated a damage model, yet the plastic strains could be a good qualitative 773 

indicator of damage.  774 

The onset of significant damage is visible in the top of the dome but instantly includes its bottom part 775 

around the openings. Due to the inertial forces, the dome continues to move during the unloading phase 776 

and other parts of the structure, as the roof, minarets, and side facades, are affected. This is addressed 777 

in Fig. 16c, where the maximum principal strain obtained is plotted for 𝑡 = 70 𝑚𝑠, i.e. after the 778 

occurrence of the blast and the most significant over-pressures profiles. It is clear now that the damage 779 

is more spread in the latter elements, as supported by the incremental deformed shape of Fig. 16d. 780 

 781 

Fig. 16 – Results obtained for the Islamic cultural heritage site of Al-Askari after the numerical analysis 782 
of a blast load: (a) maximum principal plastic strain after the blast load (t=25ms); (b) incremental 783 
deformed shape (SI unit, m) after the blast load (t=25ms); (c) maximum principal plastic strain after the 784 
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most significant over-pressure profiles (t=70ms); incremental deformed shape (SI unit, m) after the 785 
most significant over-pressure profiles (t=70ms). 786 

The qualitative evaluation of the damage is presented in detail in (Rafsanjani 2015). It has been 787 

concluded that the damage pattern found certainly leads to the collapse of the dome and to extensive 788 

degradation of both the East and West façades. The addressed conclusions go hand in hand with the 789 

reported real behavior, ergo proving the adequacy of the advanced strain-rate FE macroscopic model. 790 

One may note, however, that the application of the blast load can be a cumbersome task, as 791 

demonstrated by other studies (Baylot and Bevins 2007). The total processing time (CPU time 792 

requirements using a laptop with an i7-4710MQ CPU) of the simulation is 101 hours. 793 

5 Final remarks 794 

FE-based numerical strategies have nowadays a primary role in the mechanical behavior analysis of 795 

masonry structures. Its usefulness is barely questioned, as these are used daily by both the academic 796 

and professional communities to solve problems within manageable timelines that otherwise would 797 

defy treatment (Linz 1988). Since computational modeling relies on the physical insight of materials, 798 

further developments are continuously needed aiming to decrease the related epistemic and modeling 799 

uncertainties. 800 

In such a context, the present paper addressed the importance of computational strategies for the 801 

numerical analysis of masonry structures. Three advanced FE-based models have been proposed and 802 

include an FE micro-model, an FE macro-model, and a novel simplified FE2 multi-scale model. These 803 

models can reproduce the masonry orthotropy, full softening behavior, and loading strain-rate 804 

dependency. 805 

The proposed strategies have been used for the engineering of small to large, super-large and complex 806 

problems with a focus on the well-known out-of-plane vulnerability of unreinforced masonry structures. 807 

The evaluated case studies are the following ones: (i) meso-scale static characterization of the out-of-808 

plane behavior for an English-bond masonry wall; (ii) seismic analysis of the LNEC brick house 809 

prototype and the Cathedral of the Blessed Sacrament; (iii) impact load analysis of the Sheffield 810 

university parapet wall; and (iv) the blast load analysis of the Al-askary Holy Shrine. 811 
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The small-scale problem included the characterization of the out-of-plane homogenized behavior of an 812 

English-bond masonry bond at a meso-scale. The results proved that the mid-thickness vertical joint of 813 

an English-bond masonry wall leads to the reduction of its out-of-plane capacity. A reduction of 33% 814 

and 17% was found for the horizontal bending and torsional moment peak values, respectively, between 815 

a three-dimensional numerical model with and without the discontinuity. This effect has been also 816 

witnessed for the large-scale study of the LNEC brick house mockup. Here, a good agreement between 817 

the experimental dynamic response and the one predicted by the simplified multi-scale strategy was 818 

found. The FE macro-modeling strategy is, however, unable to capture the lessening of the masonry 819 

bending strength and hence to properly predict the structure’s behavior when subjected to a seismic 820 

load; expected as it assumes an isotropic behavior for the homogeneous equivalent material. 821 

Concerning the complex problem of the Sheffield university parapet wall subjected to an impact load, 822 

a good resemble was achieved for all the proposed strategies. A maximum relative error of 10% was 823 

found for the out-of-plane displacement of the control node. This error is, however, only achievable 824 

since the three proposed models account with the strain-rate dependency of the masonry by dynamic 825 

increase factors (DIFs). It has been shown that static material and mechanical properties do not offer 826 

adequate insight into the masonry response for fast dynamic problems. 827 

For the super-large and complex problems, as the Cathedral of Blessed Sacrament and the Al-askari 828 

Holy Shrine case studies, the use of an FE macro-model seemed to be the most convenient one as it 829 

allows a most straightforward modeling stage. Regarding the former, the numerical model allowed to 830 

predict the proneness to collapse of the two bell towers of the Cathedral when subjected to the 831 

Christchurch seismic events of 2010 and 2011; but, as well, to compare the efficiency of two-retrofitted 832 

interventions. Regarding the latter, the FE macro-model allowed to predict well the collapse of the main 833 

dome and capture the severe damage found in both the East and West façades of the Mosque when 834 

subjected to a blast load. Although an FE macro-modeling approach is very practical, some attention is 835 

recommended when a more detailed description of the response, damage onset, and propagation is 836 

desired for a given structural element, as concluded by the obtained smeared damage in the latter 837 

problems. In such cases, down-scaling through a micro-modeling or a multi-scale approach could be a 838 

proper alternative. 839 
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From the conducted analyses it is noteworthy to address that the modeling strategies adopted for the 840 

mechanical study of periodic masonry are mainly dependent on the dimensions of the structure under 841 

investigation. For meso-scale problems (order of centimeter), a purely micro-modeling approach seems 842 

preferable. Yet, for large or super-large problems (order of meters), as the study of the dynamic behavior 843 

of a structural wall or building, the use of a macro-modeling or simplified multi-scale approach is 844 

generally followed. In such cases, the potential of a simplified multi-scale model and the inadequacy of 845 

an FE micro-model is especially clear for the Sheffield university parapet wall case study. From a 846 

computational standpoint, the former is 115 times faster than the FE-micro model and 12.5 times faster 847 

than a continuous FE macro-model.  848 

Through a logical extension, a simplified multi-scale approach can significantly decrease the CPU times 849 

obtained when using an FE macro-model in the study of super large and complex problems. For 850 

instance, the CPU time of 14 hours and 101 hours obtained using an FE macro model for the Al-the 851 

Cathedral of the Blessed Sacrament and the Al-Askari Holy Shrine Mosque case studies, respectively. 852 

Even though, it is important to address that the modeling step of such structures using the proposed 853 

multi-scale model, through a discrete-based strategy, can be also cumbersome. Hence, the decision of 854 

the best strategy should account with the trade-off between the required time for the numerical model 855 

preparation and the numerical analysis.  856 

Lastly, the authors stress that the presented FE computational strategies have been implemented in 857 

powerful advanced FE software’s, as DIANA (2017) and ABAQUS (2013). The latter software is 858 

already able to handle parallel computing and thus decrease the required running processing times of 859 

the analysis (more evident in large-scale/complex problems). This is an important feature, as it has been 860 

seen that the engineering solutions are largely conditioned by the required computational cost associated 861 

with the modeling approach followed. Perhaps in a near future, when more powerful computers are of 862 

common use (as quantum computers), the engineering of a given problem through a full continuous 863 

micro-modeling approach from the meso- to a structural-scale will be, even if contentious from the 864 

number of input parameters that demand, feasible from a CPU time standpoint. 865 
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