Chapter 43

Biomaterials, spinal cord injury, and rehabilitation: A new narrative

Elisa Lacroce, Giuseppe Perale, and Filippo Rossi

Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy; Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Lugano, Switzerland; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEMA</td>
<td>2-aminoethyl methacrylate</td>
</tr>
<tr>
<td>BBB</td>
<td>Basso, Beattie, Bresnahan score</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>BSCB</td>
<td>blood–spinal cord barrier</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronic acid</td>
</tr>
<tr>
<td>HP</td>
<td>hydroxyphenyl</td>
</tr>
<tr>
<td>MOEA</td>
<td>[2-(methacryloyloxy)ethoxy]acetic acid</td>
</tr>
<tr>
<td>MOETA+</td>
<td>[2-(methacryloyloxy)ethyl]trimethylammonium chloride</td>
</tr>
<tr>
<td>MSCs</td>
<td>mesenchymal stem cells</td>
</tr>
<tr>
<td>NFs</td>
<td>nanofibers</td>
</tr>
<tr>
<td>NPs</td>
<td>nanoparticles</td>
</tr>
<tr>
<td>NTs</td>
<td>nanotubes</td>
</tr>
<tr>
<td>NT-3</td>
<td>neurotrophin-3</td>
</tr>
<tr>
<td>NWs</td>
<td>nanowires</td>
</tr>
<tr>
<td>PCL</td>
<td>poly(e-caprolactone)</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>PEI</td>
<td>polyethyleneimine</td>
</tr>
<tr>
<td>PHEMA</td>
<td>poly(2-hydroxyethyl methacrylate)</td>
</tr>
<tr>
<td>PHEMA</td>
<td>poly(N-(2-hydroxypropyl)-methacrylamide)</td>
</tr>
<tr>
<td>PLA</td>
<td>poly(lactic acid)</td>
</tr>
<tr>
<td>PLGA</td>
<td>poly(lactic-co-glycolic acid)</td>
</tr>
<tr>
<td>RGD</td>
<td>Arg-Gly-Asp</td>
</tr>
<tr>
<td>SC</td>
<td>spinal cord</td>
</tr>
<tr>
<td>SCI</td>
<td>spinal cord injury</td>
</tr>
<tr>
<td>SC-ECM</td>
<td>spinal cord extracellular matrix</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>SIKVAV</td>
<td>ser-Ile-Lys-Val-Ala-Val</td>
</tr>
<tr>
<td>UB-ECM</td>
<td>urinary bladder extracellular matrix</td>
</tr>
<tr>
<td>UC-ECM</td>
<td>umbilical cord extracellular matrix</td>
</tr>
</tbody>
</table>

Introduction

Spinal cord injury (SCI) is a lesion of the spinal cord which leads to the permanent loss of sensory and motor functions below the injury site. The traumatic effect of SCI is due to the low regenerative capability of the tissue, which is in contrast
with the fast inflammatory response that occurs in the first minutes after the injury and starts the secondary injury in the following hours. The latter is characterized by demyelination and the formation of a glial scar tissue which represents a physical barrier to the growth of axons. Nowadays, there are no effective clinical treatments able to regenerate the nervous tissue and restore the motor functions, so new strategies are being developed by researchers in order to overcome these limitations. One strategy is represented by scaffolds able to provide a structure that mimics the extracellular matrix (ECM) and at the same time supports the cellular attachment, growth and differentiation. The scaffolds must be biocompatible, non-toxic and have mechanical and morphological properties suitable for the tissue regeneration. In addition, they can chemically bind or physically entrap one or more drugs and release them in a controlled manner. The materials used for scaffold development can be synthetic or natural. Examples of the most used chemically synthesized materials are aliphatic polyesters such as poly(lactide), polyglycolide, and polycaprolactone (Pires & Pego, 2015). Synthetic materials present the advantage of being able to be controlled and modified from the point of view of chemistry, mechanical and structural properties in order to mimic as much as possible the ECM. In contrast, natural scaffolds are more similar in composition to ECM because some of the molecules are already present in the ECM, such as e.g., collagen, fibronectin, and hyaluronic acid but they have some differences in composition depending on their origin and previous treatments. Other natural materials such as alginate, aagarose, and chitosan are widely used too. In addition, also the mechanical properties of the scaffold should be similar to the target biological tissue in order to avoid adverse effects. For the treatment the SCI, a stiff scaffold is not suitable because it is not able to support flexible movements of spinal cord without further lesioning other surrounding tissues. In addition, it was demonstrated that a stiff material promotes astrocyte growth (Georges, Miller, Meaney, Sawcyet, & Janmey, 2000) and causes glial cell activation which leads to inflammation response and formation of a fibrotic tissue. Hence, soft scaffold, such as hydrogel, better matches the mechanical properties of the nervous tissue. Hydrogels are suitable for this purpose not only because of their flexibility, but also because of their biodehensive and swelling properties, which confer the ability to stay localized in situ and to exchange metabolites with the surrounding tissue fluids. Other factors can influence the tissue regeneration, such as the pore sized distribution of the scaffold which has to guarantee the possibility for cells and fluids to enter inside the scaffold. The topography, the charge, the composition of the surface and the orientation of the fibers influence actin cytoskeleton and hence cell adhesion, spreading and differentiation.

In the case of nerve tissue regeneration, fibers arranged in a longitudinal way and pore size of 50 to 100 μm enhance nerve regeneration (Jurga et al., 2011; Yuan et al., 2014). Moreover, scaffold can be made of non-degradable or degradable materials. In the first case, the scaffold remains inside the body so the tissue can partially regenerate occupying the space between the fibers, whereas in the second case, it is necessary that the rate of degradation of the scaffold matches tissue regeneration speed.

Hydrogels and scaffolds

Synthetic-based hydrogels

Among synthetic non-biodegradable hydrogel used for SCI repair poly(N-(2-hydroxypropyl)-methacrylamide) (PHPMA) is very promising. The research group of Woerly et al. developed a hydrogel made of PHPMA, obtained by a radical polymerization of the monomer HPMA with the use of a divinyl cross-linking agent (Woerly et al., 1999), functionalyzed by a synthetic peptide which includes RGD sequence (Woerly, Pinet, De Robertis, Van Diep, & Bousmina, 2001). The implantation of the hydrogel into the neonatal and adult spinal cord reveals a good infiltration of cells and blood vessels and the following implantation of the hydrogel seeded with rat mesenchymal stem cells (MSCs) in rats results in better Basso, Beattie, Bresnahan (BBB) score than the control group without the implantation (Hejel et al., 2010). Another investigated polymer in nerve tissue regeneration is the biocompatible and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA). As previously said, the charge and the structure of the hydrogel can influence the behavior of cells and the ingrowth of the new tissue. A study by Hejel et al. (Hejel et al., 2010) was conducted to compare the different effects of the surface charge and structure of HPMA and HEMA hydrogels on tissue regeneration. Specifically, four different hydrogels were prepared and seeded with rat MSCs: one HPMA-RGD hydrogel by using heterophase separation (HPMA-HS-RGD), which resulted in a structure characterized by microparticles, two HPMA hydrogels by using a solid porogen, one functionalyzed by RGD peptide (HPMA-SP-RGD), and one without functionalization (HPMA-SP), which resulted in network structures, and the last hydrogel made by positively charged copolymers of HEMA with [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MOETA+). After successful in vitro studies, hydrogels were implanted into rat SCI hemisection model. The best results in terms of in vitro adhesiveness and in vivo survival of MSC was found in the positively charged HEMA-MOETA+ hydrogel, whereas the best results in terms of axonal ingrowth and vascularization was found in the HPMA-SP-RGD.
hydrogel demonstrating the higher efficacy of the network architecture respect to the globular ones. With respect to the influence of the RGD peptide, it increases the vascularization but has no effect the growth of axons.

Hydrogel functionalization with cell-adhesive peptides

The presence of cell-adhesive peptides on hydrogels, such as the laminin-derived peptide sequence SIKVAV [Ser-Ile-Lys-Val-Ala-Val] and fibronectin-derived peptide RGD [Arg-Gly-Asp], can enhance cell adhesion, migration on the scaffold, proliferation, and differentiation (Rossi & van Griensven, 2014). The research group of Kubinova et al. functionalized a copolymer-based hydrogel of HEMA and 2-aminoethyl methacrylate (AEMA) with the laminin-derived Ac-CGGASIKVAVS-OH peptide by disulfide bridges (Kubinová et al., 2010). The functionalization with SIKVAV and RGD (Macková et al., 2016) was made on the same type of hydrogel also through the maleimide-thiol coupling reaction. All the functionalized hydrogels guarantee the adhesion and proliferation of rat MSCs maintaining their multi-lineage potential. In addition, in vivo studies results shown a higher connective tissue and vascularization on fibronectin-modified HEMA hydrogel compared to the non-functionalized one (Hejčil et al., 2018). Other molecules such as serotonin can be used as neurotransmitter and can improve neuronal differentiation of implanted or endogenous neuronal progenitor precursors. Despite promising in vitro results, in vivo model studies on implanted PHEMA functionalized with serotonin showed a migration of seeded neural progenitor out from the polymer leading to a fail in proving a long-term effect on nerve tissue reconstruction (Růžička et al., 2013).

Porosity orientation

The orientation of fibers is important for tissue regeneration because it provides preferential lines along with the cells growth and proliferation. In addition, adequate porosity and mechanical properties have to support the movements of the organ and the regeneration of the new tissue. Hence, in the case of scaffolds for nervous tissue regeneration, the best one has to be characterized by parallel guiding channels and pores. The group of Kubinová et al. (2015) developed SIKVAV-modified PHEMA hydrogels with parallel oriented pores prepared by a salt-leaching method with ammonium oxalate needle-like crystals, and added 8%, 4%, and 0% (wt%) of \(2-(\text{methacryloyloxy})\text{ethoxy} \text{acetic acid (MOEAA)}\) obtaining three hydrogels with 57%–77% porosity, pore diameter of \(\sim 60 \text{ nm}\), and an elastic modulus of 6.7, 27.4, and 45.3 kPa along the pore axis and 2.9, 3.6, and 11 kPa in a perpendicular direction. After 2 months of implantation the results showed that the softest hydrogel collapses because of the thinness of walls causing a sparse axonal growth inside the hydrogel, whereas the stiffest hydrogel supported axonal ingrowth into the pore guides but cyst formed at the tissue-scaffold interface because of difference in mechanical properties between the two components. The best results in terms of axonal ingrowth, presence of blood vessels and Schwann cells are obtained using the hydrogel with the moderate elasticity modulus of 27.4 kPa along the pores. Unfortunately, the use of the moderate scaffold seeded with MSCs was not able to promote a sufficient axonal growth.

Indeed, the rate of axonal growth resulted very slow and after 6 months from the implantation only few axons were able to cross the hydrogel and infiltrate the caudal stump (Hejčil et al., 2018). Therefore, other factors are necessary in order to promote axonal regeneration. For example, the presence of MSCs overexpressing of an NT-3 receptor (Zeng et al., 2015) or brain-derived neutrophic factor (BDNF) (Gao et al., 2013) on the scaffold can be added in order to enhance axonal growth and recovery of motor functions.

Natural-based hydrogels

This type of hydrogels may be made by ECM derived components such as collagen or hyaluronic acid. Hyaluronic acid (HA) is a natural biocompatible polymer, biodegradable and non-toxic, but it is does not favor the attachment of cells. A possible overcoming solution is represented by the use the hydroxyphenyl derivative of HA which is able to covalently crosslink in situ, forming a hydrogel in presence of horseradish peroxidase enzyme and hydrogen peroxidase (Kučera et al., 2015). Moreover, the RGD peptide can be linked to the HA-PH derivative (Zaviskova et al., 2018) in order to favor the attachment of cells on (HP-HA) hydrogel. Human Wharton’s jelly derived mesenchymal stem cells (hWJ-MSCs) were encapsulated in the hydrogel, which then was injected in the sub-acute spinal cord hemisection. In situ crosslinking had no cytotoxic effect or negative effect on cells. HA-PH-RGD hydrogel was able to favor axonal ingrowth and the presence of hWJ-MSCs increases the effect. However, there were no improvements of motor function probably due to the low quantity of cells encapsulated inside the gel.
Extracellular matrix-based hydrogels

Another type of natural-based hydrogel is represented by decellularized ECM: it is suitable for tissue regeneration because of its biocompatibility, biomolecular and complex chemical composition which characterize it and distinguish it from other scaffolds. Decellularization is performed by different chemical, physical or enzymatic method and then the decellularized ECM is transformed in a liquid phase using pepsin solubilization at pH < 2 in order to be injected into the site of injury. The physiological temperature and pH favor its crosslinking in situ, leading to its original structure. The research group of Kubinova tried to use ECM-based hydrogels derived from CNS, such as porcine spinal cord (SC-ECM), and non-CNS derived, such as human umbilical cord tissue (UB-ECM) and porcine urinary bladder (UB-ECM). After implantation into injured spinal cord they stimulated nerve tissue regeneration and no differences on biological response were seen between the use of CNS and non-CNS–derived ECM (Kočí et al., 2017; Medberry et al., 2013). However, a critical problem was represented by the fast degradation rate of the scaffold, which was due to the infiltration of resident cells present in the site of lesion.

Therefore, inadequate structure was provided to the new tissue and a correct regeneration of the tissue was compromised. In order to decrease the rate of degradation it was necessary to increase the number of crosslinks. This can be done using crosslinking agents such as genipin, which is able to bridge free amino groups present in the ECM. Its use on the UC-ECM hydrogel did not increase in vivo inflammatory response (Výborný et al., 2019), moreover the lack of ethical problems and the allogenic source leads to consider promising the use of umbilical cord in neural tissue regeneration.

Nanomaterials

Nanotechnology and nanomedicine

Nanotechnology is the synthesis and characterization of nanosystems and their application in different fields, from the research to the industrial practice. When nanotechnology is applied in medicine and healthcare, it is called nanomedicine. Nanomedicine covers different medical fields such as prevention, diagnosis and treatment. It uses nanomaterials in the range of 10–1000 nm for interacting with biological systems at the molecular level. In addition, the resulting high surface area per unit volume favors a higher number of interactions with biological systems. Thanks to the binding with specific cellular receptors nanosystems can also deliver drugs and molecules in specific site without damaging the surrounding healthy tissue. Nanomedicine developed a lot of structures such as nanoparticles, nanotubes, nanorods, nanogels, quantum dots, etc., but the most used in SCI field are nanoparticles, nanogels, and nanotubes.

Properties of nanomaterials

The treatment of SCI with drugs administrated by oral, intravenous or intra-arterial ways is not effective due to the filtrating action of the blood–spinal cord barrier (BSCB) which prevents the passage of foreign and immunological substance from bloodstream to the SC parenchyma. Nanomaterials can be developed by top-down, bottom-up or hybrid methods. The first method consists in transforming a bulk material to a nanosized material, the second one consists in forming a nanomaterial starting from molecular arrangements and interactions whereas the last method is based on mixing the previous two. Nanocarriers have to correspond to specific size in order to favor their migration across the biological barrier of spinal cord and the target the desired tissue. Smaller particles are more suitable for this purpose and the possible presence of ligands on their surface can bind to receptor molecule of neural cells favoring the activation of specific cellular response. The drawback of using small particles is the limited control on modification in a batch-to-batch synthesis approach (Saraiva et al., 2016). Furthermore, the shape of the nanovectors influences their behavior inside biological environments and their cellular uptake too.

Specifically, in the case of nervous system, nanorods characterized by peptides are considered more able than nanoparticles in accumulating in specific vascular environment without activating immune clearance (Kolhar et al., 2013) or, for example, biconcave nanoparticles enhance the release of drug respect to spherical or tubular particles (Zuidema, Gilbert, & Osterhout, 2016). Finally, surface charge has a key role with respect to the final aim of particles. In general, positively charged nanoparticles are better internalized by cells (Xiao et al., 2011; Yue et al., 2011) but the modification with chemical groups or peptides can change the surface charge leading to a different aim such as to target a specific area or avoid activation of immune systems. As for the composition of hydrogels, also nanomaterials can be made by synthetic or natural materials. Natural nanomaterials are in general biocompatible, non-toxic and very similar in composition and chemical features with the biological environment allowing a weak immune response, but it is difficult to achieve a good
reproducibility during their development and production. On the other hand, synthetic nanomaterials guarantee a high reproducibility and possibility to modify their chemical, physical and morphological properties adapting them to the final purpose, but their immunogenicity is higher compared to the natural ones. Natural materials used for developing nanoparticles are collagen, lipids, albumin, fibrin, silicone, alginate, agarose, hyaluronic acid, chitosan, cellulose, heparin and chondroitin sulfate, whereas synthetic materials used are polyethylene glycol (PEG), polyethyleneimine (PEI), polyactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA), polyglycolic derivatives, poly(methacrylate), polyacrylates, polycyanacrylates, and poly(ε-caprolactone) (PCL). Fig. 1 represents a summary of natural and synthetic polymers.

Nanoparticles

Nanoparticles are colloidal systems made of polymer chains from which is possible to obtain nanospheres or nanocapsules (Fig. 2). Nanosphere are systems with a size of 100–200 nm composed of a solid matrix with physically or chemically entrapped drug (Liu, Xiao, & Allen, 2004). They can be covered at their surface with surfactants or hydrophilic polymers which avoid opsonization and subsequent internalization from immune cells. Nanocapsules are nanosystems composed by an external polymeric layer which surround a lipophilic core.

These systems are very useful in encapsulating hydrophobic drugs in the core of nanoparticle and releasing them in situ. Generally, they are made of PLA, PLGA or PCL surrounded by hydrophilic PEG in order to avoid the activation of immune system. Finally, polymersomes are nanocapsules made of an aqueous core able to encapsulate hydrophilic drugs. In this case the aqueous core is enclosed by amphiphilic copolymers which expose hydrophilic segments in the core and external surface, whereas hydrophobic segment in the middle.

There are different techniques used to synthetize nanoparticles:

- **Emulsion**: it consists in emulsifying an oil phase containing hydrophobic monomers with a water phase containing surfactants. The polymerization of hydrophobic monomers starts after the addition of oil-soluble initiators forming polymeric particles inside an aqueous phase. In order to avoid opsonization and aggregation between nanoparticles, surfactants bind to the surface of particles by a polycondensation reaction between the two monomers present in the oil and in the aqueous phase or by the presence of initiators. The drug can be encapsulated during the polymerization process or absorbed at the end of the polymerization.

- **Nanoprecipitation**: it consists in desolvation of polymers dissolved in the solvent solution after the addition of it to the non-solvent solution.

- **Solvent evaporation**: emulsifying agents dissolved in water phase are added to an organic phase containing drug and polymer dissolved. The formation of oil/water emulsions is followed by solvent evaporation by using temperature or low pressure obtaining the nanoparticles.

- **Salting out**: the organic solution containing the polymer is added to an aqueous phase containing an emulsifier and a high concentration of salts. Then, pure water is added to promote the diffusion of organic solvent into water phase forming nanoparticles.

- **Controlled gelification**: gel nanospheres can be formed by using sodium alginate and calcium chloride.

- **Desolvation**: this method can be used only on natural polymers which are dissolved in aqueous environment. The following drip of a desolvating agent, such as ethanol or acetone, containing active molecule and the addition of cross-linking molecules in polymeric solution allow to obtain nanoparticles.

- **Coacervation**: coacervates are formed by electrostatic interactions between cargo aqueous phase and polymer.

As regard to nanocapsules, they are formed by mixing an oil-containing lipophilic surfactants with an aqueous phase miscible with organic solvent containing polymeric chains and therapeutic molecules. Under stirring, oil droplets are forming in the aqueous phase and polymers interact with the two phases exposing the hydrophobic chain toward the oil component and the hydrophilic one toward the aqueous phase. A method recently developed is based on following addition of water to the system favoring the passage of solvent from the center of nanoparticles to the external phase. Finally, polymersomes are formed starting from a copolymers dissolved in an organic solvent. Then the solvent evaporates leading to the formation of a polymeric layer and water is added to rehydrate polymers.

The following sonication and extrusion of solution lead to the formation of polymersomes. In the case the therapeutic molecule is a protein, some steps such as the use of organic solvent or sonication can denature the protein leading to its inactivation. In this case, the addition of natural salts or alcohols can affect its 3D structure favoring aggregates with polymer chains. At last, the use of glutaraldehyde can stabilize the nanoparticles.
<table>
<thead>
<tr>
<th>NATURAL POLYMERS</th>
<th>SYNTHEtic POLYMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginate</td>
<td>PEG</td>
</tr>
<tr>
<td>Agarose</td>
<td>PEI</td>
</tr>
<tr>
<td>Hyaluronic acid</td>
<td>PLA</td>
</tr>
<tr>
<td>Chitosan</td>
<td>PLGA</td>
</tr>
<tr>
<td>Cellulose</td>
<td>Polyacrylate</td>
</tr>
<tr>
<td>Polycyanoacylate</td>
<td>Polymethacrylate</td>
</tr>
<tr>
<td>Heparin</td>
<td>Polycyanoacylate</td>
</tr>
<tr>
<td>Chondroitin sulfate</td>
<td>PCL</td>
</tr>
</tbody>
</table>

FIG. 1 Polymers for NPs. Chemical structure of natural and synthetic polymers used for developing NPs.
Functionalization of nanoparticles

Nanoparticle functionalization is needed in order to increase its half-life and favor its interaction with the targeted cells. In case of SCI it is important that nanoparticles are able to pass across the BSCB and reach the site of injury providing neuroprotective and/or neuro-regenerative effect. The functionalization can consist in addition of surfactants, biomolecule, dyes (for in vitro and in vivo tracking) and peptides by linking them to functional polymer groups such as hydroxyl, amine, carboxylic or alkyl groups. For example the presence of antioxidant enzyme superoxide dismutase on the surface of nanoparticles induces neuroprotective action (Varma et al., 2013) or the release of encapsulated fibroblast growth factor-2 inside PLGA nanoparticles reduces vasoconstriction in SCI during primary injury and favors angiogenesis (Kang, Baumann, Tator, & Shoichet, 2012). Reactions with functional groups such as the carboxyl group can link chitosan to a PEG grafting biotin able to attract monoclonal antibody OX26 leading to a decrement of neuronal cell death in injured spinal cord (Aktas et al., 2005). The functionalization can be performed also on cation polymers such as PEI or chitosan. The most common methods to functionalize amine groups are making a reaction with thiol or maleimide group forming a disulfide bond.

The effects of encapsulated neurotrophin

Neurotrophin is a protein that induces axonal regeneration and can be used as therapeutic molecule in case of SCI. The research group of Elliot Donaghue et al. was able to encapsulate neurotrophin-3 (NT-3) inside PLGA 220 nm nanoparticles through a double emulsion-solvent evaporation method, and then to entrap nanoparticles inside a hyaluronan/methyl cellulose matrix in order to have a more confined and controlled release of NT-3 (Elliott Donaghue, Tator, & Shoichet, 2015). In particular, the diffusion of NT-3 outside the matrix lasted 50 days in in vitro studies and 28 days in in vivo studies, leading to consider this system as a possible solution to limit the number of dosing. In addition, a higher locomotor recovery and axonal growth was seen in mouse model study after the treatment with PLGA NPS loaded with NT-3, compared to the controls.

Nanogels

Nanogels are innovative nanoparticles with hydrophilic properties and high colloidal stability. They are characterized by swelling behavior which gives them the unique ability to exchange ions and biological molecules with the surrounding environment maintaining an equilibrium of metabolites between the internal and external parts. In addition, their deformability allows an easy passage through biological barrier and this characteristic, together with the swelling behavior, allows considering nanogels soft materials because of their similar properties to hydrogels. Nanogels can be developed starting from monomers of low molecular weight or from polymeric precursors. In the first case, monomers polymerize thanks to a controlled living radical polymerization using an initiator molecule from which the polymerization starts and propagates forming the nanoparticle, whereas in the second case the process is characterized by an inter-polymer interactions. Particularly, functional groups of polymer precursors chemically interact each other forming covalent bonding between polymer chains. Another possible technique is based on physical interactions between polymer chains such as hydrogen bonding, electrostatic interactions, Van der Walls forces or hydrophilic/hydrophobic interactions. In this case, the final nanogel has a low stability and its structure can be easily compromised by temperature, pH or external forces. A new strategy that can be used to produce nanogels is represented by the non-wetting templates (PRINT) technology. It is a lithographic technique that uses non-wetting elastomeric templates inside which nanogels are formed allowing a high reproducibility. Another new approach is represented by molecular imprinting, although its use is very difficult in nanogel developing. It consists in a linkage of a chosen protein on a functional monomer in order to form a template molecule. Then the polymerization starts...
using cross-linking agent and the protein is detached. The remaining polymer will present a cavity complementary to the protein and it will be used for selective cell targeting during the treatment of SCI.

Functionalization of nanogels

The functionalization of nanogels with drug, peptides, proteins, enzymes, dyes, etc. can be performed using different types of reactions (Fig. 3): formation of amide bond from an ester bond, esterification, ring opening and Schiff base reactions,

![Chemical reactions and functionalization](image)

FIG. 3 Polymer functionalization. Different strategies of polymer functionalization.
thiol disulfide exchange and finally click chemistry which includes Michael type addition, copper-catalyzed and copper-free azide-alkyne cycloaddition, Diels–Alder reaction, thiol-ene reaction or oxime reaction. Depending on the type of chemical bond, the cargo can be released according to a change of temperature, pH, the presence of enzymes or other external stimuli able to break the bond. For example, redox-responsive NGs are able to accumulate in the target tissue and release the cargo only when redox stimulus is applied (Ghorbani & Hamishehkar, 2019).

In another study, the research group of Mauri et al. (2017) developed nanogels able to be internalized by microglia cells and release the therapeutic cargo only in the cytosol. In this case, the fast release in biological fluids that characterizes the hydrophilic drugs and the following rapid clearance from the body is avoided. The drug mimetic, rhodamine, was linked to PEG using the thiol chemistry forming a disulfide bond that can be broken in the cytosol by glutathione or cysteines, whereas the Cy5 dye was linked to the PEI by copper-catalyzed azide-alkyne cycloaddition. Finally, carbamate bonds formed the final nanogel. In vitro studies showed florescent signals inside the cytosol demonstrating the internalization of nanogels from microglia and the release of drug in the cytosol after 4 days. The functionalization can also be non-covalent if other interactions occur. This is the case of PEI functionalization in which electrostatic attraction between genes, peptide or growth factor and protonated amine on polymer chains is used to functionalize the nanogel.

Nanochannels, nanotubes, nanowires, and conduits

It is worth mentioning other nanostructures that are used in SCI repair: tubular particles such as nanotubes (NTs), nanowires (NWs), and nanofibers (NFs) can guide axonal regeneration and limit the local inflammation at the same time.

Nanotubes are cylinders with a diameter in the order of nanometers, made of graphene. These structures are similar to cytoskeletal elements in neurons, signaling proteins and ion channels, so their presence does not activate immune or inflammatory responses. Their flexibility, electrical conductivity, and durability allow their implantation in the spinal cord for a long time. In addition, they can be functionalized with active molecules, such as 4-hydroxynonenal which promotes neurons spatial orientation and interconnections (Mattson, Haddon, & Rao, 2000), neurotrophic factors which provide neuroprotective effect or chemical groups which confers superficial charge to stimulate axonal growth. In vivo studies about the injection of NTs during the secondary injury phase showed a reduction of injured site, an increment of neurofilament- positive fibers and a partial recovery of locomotor functions (Roman, Niedzielko, Haddon, Parpura, & Floyd, 2011).

Nanowires are structures similar in shape with that on nanotubes but in this case the length is much longer than the diameter. In addition, they are generally made with metals, semiconductors, insulators or polymers with electrical properties. They can be used for SCI repair in order to provide cell adhesion, proliferation, and electric stimulation as made by Bechara and coworkers (Bechara, Wadman, & Popat, 2011) with PCL NWs linked with polypyrrole, an electroconductive polymer.

Nanofibers (NFs) are the third most common nanosystems used for nerve regeneration. Their spatial orientation and diameter are able to positively influence cell behavior and differentiation. In particular, cell aggregation decreases and cell proliferation increases as the diameter of NFs decreases, whereas aligned NFs results in higher rate of neural stem cell differentiation than NFs oriented in random way (Xie et al., 2009; Yang, Xu, Kotaki, Wang, & Ramakrishna, 2004). Also in this case, NFs can be functionalized at their surface with specific chemical groups or molecules which confers surface charges, such as Rolipram in PLGA NFs (Zhu et al., 2010), able to improve axonal growth and reduce inflammatory response in the site of injury.

Conduits are cylindrical systems used to cover nerve gap and provide a guide for nerve regeneration. Promising conduits are made of PLGA-chitosan or PCL because of their effect in promoting remyelination of axons. Even if their use has positive effects on nerve repair, their implantation is invasive causing infections, inflammation and other permanent damages, making the risk/benefit balance unfavorable.

Case study: Agarose–carbomer-based hydrogels

Even if the polymers used for biomaterials preparation are biocompatible, this does not ensure they promote a correct cell viability: functional compounds are hence needed in order to provide an interaction between the cells and the polymeric scaffold. RGD peptide, for example, can be used for scaffold functionalization because of its ability to bind to the receptors present on the surface of cell membrane and activate a cell adhesion response. The research group of Perale and Rossi (Caron et al., 2016; Papa et al., 2018) proved the extremely promising results obtained with functionalized poly-acrylic acid (PAA) and polyethylene glycol (PEG) with RGD peptide by using a click chemistry strategy. In particular, PAA polymer was previously functionalized with an alkyne group (Fig. 4) (Mauri et al., 2018). Then, CuAAC click reaction between RGD azide and alkynic polymers was conducted at 50°C–60°C forming the triazole. Finally, the hydrogel was synthesized by microwave-assisted polycondensation between mixed RGD-functionalized polymers and agarose.
From SEM analysis of the final hydrogel, there were not differences in polymer network and porous structure compared to the non-functionalized one, and adequate mechanical and morphological properties result from physical and chemical characterization. The system is highly biocompatible, can remain localized in the lesion site, can maintain the stemness of the loaded cells (Fig. 5) in vitro and in vivo improving the locomotor performances of mice (Fig. 6).

Applications to other areas of neuroscience

SCI remains one of the most devastating conditions in neurological diseases. Most of the post traumatic degeneration of the tissue is caused by a multifactorial secondary injury including several interconnected processes. Relevant is the involvement of acute and chronic inflammation, represented mostly by inflammation that contributes to the cascade of harmful events during the secondary injury, in the end leading to spreading and chronicity of SCI. An unresolved inflammation is a pathological hallmark of many neuropathologies and microglial cells can play a relevant role in these scenarios.

The current view suggests that under normal physiological condition the acute inflammatory response is a transitory process, aiming at eliminating many potential toxic stimuli, which is followed by resolution of the inflammation and a return to homeostasis. Hence, an acute neuro-inflammatory response is considered generally beneficial to the CNS, since it tends to limits the damages and contributes to the repair of injured tissue. However, in many neuropathologies, an over-activation and an accumulation of microglial cells occurs, due to persistent insults or triggered by factors released in the damaged environment by dead cell. Indeed, a sustained release of pro-inflammatory mediators can propagate the inflammatory reaction, promoting microglia proliferation and further releasing pro-inflammatory factors that fed an uncontrolled response. Therefore, a prolonged and unresolved chronic inflammation due to over-activation of microglial cells can have neurotoxic consequences that could lead to the exacerbation of the pathology.
FIG. 5 mRNA analysis of hMSCs encapsulated within biomimetic scaffold. Graphs representing the expression of specific genes related to three differentiation lineages: alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osterix for osteogenic differentiation; aggrecan (ACAN) and collagen type X (COLLX) for chondrogenic differentiation and adipsin and fatty acid binding-protein 4 (FABP4) for adipogenic differentiation. hMSCs encapsulated within HG for 21 days are compared to the positive control represented by hMSCs loaded in HG and treated with specific differentiating media for 21 days. (Reprinted with permission from Caron, I., Rossi, F., Papa S., Aloe, R., Sculco, M., Mauri, E., Sacchetti, A., et al. (2016). A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials, 75(1), 135–147. doi:10.1016/j.biomaterials.2015.10.024, Elsevier.)

FIG. 6 HG ability to improve locomotor performance in SCI mice. In vitro HG ability to improve locomotor performance in SCI mice: (A) untreated SCI mice (INJ) or treated (HG) 1 DPI examined weekly starting 7 days post treatment, using the Basso Mouse Scale-BMS (score 0, complete paralysis, 9 complete mobility, referred to healthy mice). (C) Positioning of the hydrogel + cells in the SCI mouse model. (Reprinted with permission from Papa, S., Vismara, I., Mariani, A., Barilani, M., Rimondo, S., De Paola, M., et al. (2018). Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. Journal of Controlled Release, 278(10), 49–56. doi:10.1016/j.jconrel.2018.03.034, Elsevier.)
Several neurodegenerative CNS disorders, including traumatic brain injury, spinal cord injury, stroke, amyotrophic lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy and multiple sclerosis are associated with chronic neuro-inflammation and high levels of several cytokines. For these reasons, new therapeutic approaches able to modulate activated microglial cells are needed. In recent years, new evidences, from both in vitro and in vivo studies, suggest that nanoparticles can be selectively internalized by a specific phagocytic activity of macrophages, exploiting them as Trojan horses to selectively treat these cells. This delivery approach represents a promising strategy to develop tailored treatment during the inflammatory response.

Mini-dictionary of terms

Colloids: system composed by a disperse phase with a size range between 1 and 1000 nm dissolved in an incompatible continuous phase.

Drug delivery system: engineered materials able to load and deliver drugs with a controlled kinetics, maintaining the pharmacological activity during time.

Emulsion: thermodynamically unstable colloid constituted by two immiscible liquids.

Functionalization: chemical reaction between two reactive sites with consequent formation of covalent chemical bond.

Hydrogel: network of cross-linked hydrophilic polymeric chains able to absorb an extremely large amount of water (dispersion medium).

Nanogels: nanoparticle, usually in the tens to hundreds of nanometers in diameter, composed of a cross-linked hydrophilic polymer network composed of synthetic polymers or biopolymers chemically or physically cross-linked.

Nanomedicine: medical applications of nanomaterials that range from biological devices, to nanoelectronics biosensors, molecular nanotechnology such as biological machines.

Nanoparticles: particles of matter with size range between 1 and 100 nm (nm) in terms of diameter.

Polymer: substance constituted by very large molecules, or macromolecules, composed of many repeating subunits and that can be synthesized by step-growth or chain-growth mechanisms.

Tissue engineering: biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable factors to maintain, restore or replace different types of biological tissues.

Key facts of “Biomaterials, spinal cord injury, and rehabilitation: A new narrative”

- SCI is the most frequent disabling spinal injury, estimated 2.5 million people worldwide live with SCI
- SCI is a multifactorial where most of the medical problems are caused by cascade of events (secondary injury)
- A winning therapeutic strategy is represented by the possibility to work against different pathological mechanisms.
- Hydrogels, three-dimensional polymeric networks thanks to their water affinity to maintain cells viable and able to restore the damaged tissue.
- Nanoparticles, thanks to their ability to be cell selective, can carry and deliver drugs into specific cells working as Trojan horses.

Summary points

- SCI is a debilitating condition caused by damage to the spinal cord.
- More than 130,000 new spinal cord injuries are reported every year.
- Hydrogel can restore the tissue carrying cells within the damage site.
- Scaffold can drive axonal growth across their ordered pores.
- Nanoparticles can selectively deliver drugs within cells reducing secondary injury issues.

References

Chapter 44

Support in spinal cord injury: A focus on robotics

Angel Gil-Agudoa,b and Guillermo Asín-Prietob,c

aNeurorehabilitation and Biomechanics Unit (HNP-SESCAM), Associate Unit CSIC, Physical Medicine and Rehabilitation Department, National Hospital for Paraplegics, SESCAM, Toledo, Spain; bNeurorehabilitation and Biomechanics Unit (HNP-SESCAM), Associate Unit CSIC, Biomechanics and Technical Aids Department, National Hospital for Paraplegics, SESCAM, Toledo, Spain; cGogoa Mobility Robots, S.L., Abadín, Vizcaya, Spain

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>activity of daily living</td>
</tr>
<tr>
<td>AIS</td>
<td>ASIA impairment scale</td>
</tr>
<tr>
<td>ARTIC</td>
<td>advance robotic therapy integrated centers</td>
</tr>
<tr>
<td>ASEA</td>
<td>American Spinal Injury Association</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CPG</td>
<td>central pattern generator</td>
</tr>
<tr>
<td>FES</td>
<td>functional electrical stimulation</td>
</tr>
<tr>
<td>SCI</td>
<td>spinal cord injury</td>
</tr>
</tbody>
</table>

Introduction

The incorporation of robotics in the field of neurorehabilitation is taking place rapidly, both in research and in its clinical applications, and is presented as a very promising tool that is changing therapeutic paradigms. In the late 1980s and early 1990s, basic research findings constituted a major change in therapeutic intervention in neurorehabilitation. One of most relevant was that in experimental models with cats subjected to a spinal cord injury (SCI), the subsequent training of the locomotor function applied to them offered good results. In fact, it was shown that these cats with SCI walked effectively when placed on a treadmill with partial weight support (Barbeau & Rossignol, 1987). The suggested mechanism is the activation of the basic neuronal circuitries sufficient to generate efficient stepping patterns and independent standing. Indeed, the operations underlying the elaboration of motor patterns for walking and standing are essentially achieved by the neuronal networks embedded within the lumbosacral segments of the spinal cord (Grillner & Zangger, 1984). These findings led to the concept of spinal learning via activity-dependent plasticity. Following this concept, it was found that locomotor activity can be activated in patients with severe SCI via passive activation of the legs on a treadmill (Barbeau, Danakas, & Arsenault, 1993). Synchronous reciprocal movements of both legs, simulating normal walking are required to activate the locomotor centers in the spinal cord. The repetitive and simultaneous activation of certain sensory and motor pathways with task-specific training can select and reinforce those spinal circuits improving the ability to perform the practiced movement successfully. Thus, functional rehabilitation (i.e., walking) had to be intensive and task-oriented. Intensive and task-oriented are the two are the pillars of the motor learning neuroplasticity-based neurorehabilitation concepts that also justify the development of robotic therapy (Cai et al., 2006; Edgerton, Courtime, Gerasimenko, et al., 2008).

Although these interventions appear promising, in order to translate them into clinical practice in humans, a great effort is needed to standardize the assessments of the therapies applied (Curt, Schwab, & Dietz, 2004). Gait training using partial weight bearing systems on treadmills in patients who had suffered a stroke or SCI was extended in the early 1990s following motor learning principles. This therapy initially presented high costs in terms of personnel and effort, as it required the participation of at least two physiotherapists to mobilize the paralyzed lower extremities of the patient with the intention of reproducing the treadmill walking cycle (Dietz & Harkema, 2004). The great effort that this activity demanded from the physiotherapists limited the duration of the treatment sessions. This limitation led to the idea that a robotic device could
serve as an alternative to manual treatment and that such a device could cover the demands of functional training (Colombo, Joerg, Schreier, & Dietz, 2000). This led to the first robotic systems for walking training with weight suspension on treadmills.

These robotic assistive devices enable to start a functional and task-oriented training as soon as possible after the injury and allow an intensive application of adequate afferent feedback and a high number of repetitions of functional movements (Wirz & Rupp, 2012).

Furthermore, the outcome of rehabilitation is better if the patient is more motivated and involved in the treatment (Weber & Stein, 2018). All these without forgetting one of the most evident shortcomings of conventional systems, which is the need to incorporate sensors that provide objective variables of the patient’s condition or of the execution of the task, need to be trained. These issues are satisfactorily addressed by robotic devices. This therapy can be applied alone or in combination with other new technologies such as functional electrical stimulation (FES) or virtual reality.

Robotic therapy has experienced a huge boom in the last 15 years. In fact, different clinical guidelines approved its use as a complementary element to conventional therapy in the rehabilitation of patients with upper limb deficits after suffering a stroke (Department of Veterans Affairs et al., 2010). Robotic devices are appropriately adapted to the need to assist limb movements based on their ability to perform simple, repetitive tasks in a consistent manner that facilitates functional recovery and adaptive plasticity (Edgerton & Roy, 2009). There are two main categories: distal end effector devices and exoskeleton-type devices. Distal end effectors were the first to appear and are characterized by the fact that they use a single distal point of contact to guide the movement of the entire limb. In the upper extremity, it can make contact in the hand or forearm, facilitating the movements of the elbow and shoulder. They produce combined movements being difficult to isolate pure simple movements. The operation of exoskeletons is different. They are structures located in parallel to the different parts of the extremities with more than one point of interaction with the person. They provide direct control over each segment of the limb by incorporating individualized motors, also called actuators, which coincide with the anatomical axis of each joint. Thus, each actuator triggers the movement of each joint on which it is located. The design of exoskeletons seems to be more suitable than that of distal effector systems to achieve large joint paths (Krebs, Conroy, Bever, & Hogan, 2012).

In this chapter, we will focus on upper limb robots, stationary and ambulatory lower limb exoskeletons.

Upper limb robots

Cervical SCI can result in partial or complete tetraplegia. Each small improvement in motor control of the upper extremity can translate to significant ameliorations in function and increases independence for the individual. As mentioned above, this type of therapy offers new possibilities in the rehabilitation not only for the lower limbs but also for the upper limbs. The robotic devices allow the application of high-intensity sessions during longer periods of time, remaining invariant certain physical parameters such as speed, strength, or precision (Page, Hill, & White, 2013; Takahashi, Der-Yeghiaian, Le, Motiwala, & Cramer, 2008). There is evidence that suggests task-based therapy specifically designed to deal with lost abilities produce better results than resistance strengthening exercises (Teasell & Kaira, 2004). This task should be performed by the patient as far as possible. That’s why the devices should be equipped with a controller that provides the least assistance needed to accomplish the movement (assist as needed) and reproducible treatment protocols.

Some studies point out that by focusing the improvement of robotic therapy more on the proximal recovery of the upper limb (shoulder and elbow), it does not translate into improvement of the functional ability that depends on hand control. However, the best results seem to be found by adding the application of both types of therapies (Bayona, Bitensky, Salter, & Teasell, 2005). Despite the low number of studies, results from these studies suggest that robotic training protocols are feasible and well tolerated and have a positive impact on improving arm and hand functions in selected patients with cervical SCI, but the results must be interpreted with caution (Mehrholz, Platz, Kugler, & Pohl, 2009). In any case, studies with larger samples are needed, especially those that analyze the distal region of the upper limb, in order to have solid conclusions about the effectiveness of these devices.

Most of the current devices include a virtual reality module with visual or haptic feedback to improve sensory feedback, as well as patient motivation and engagement. They also have the capability to obtain movement kinematics that can provide precise information about movement quality that otherwise is not included in functional assessments (Esquenazi & Talaty, 2019).

Although there is a number of different robotic devices currently used for neurorehabilitation of the upper extremities following SCI (Fig. 1), we will now focus on the most commonly used:
MIT MANUS

It was designed to provide high-intensity and reproducible upper limb rehabilitation in adults and older children. This modular distal effector system consists of a series of proximal and distal components that can be used individually or together for upper extremity training. It comprises two modules and 5 degrees of freedom, two for elbow and forearm motion, and three for wrist motion and allows patients to perform reaching movements in horizontal plane. The robot can move, guide, or perturb the movement of a patient’s upper limb and record quantities, such as position, velocity, and force. The operating paradigm is the so-called “assist as needed.” Thanks to motion sensors, the mobility of the joint segments can always be monitored. The patient–robot interface consists of video games for elbow, shoulder, and wrist exercises that can be used to increase the quality of therapy sessions as well as keep the user engaged (Krebs, Hogan, Aisen, & Volpe, 1998). It has initially been used in the rehabilitation of the upper limb of stroke patients, proving effective in the sub-acute and chronic phases by reducing motor deficits, improving function and bringing about a lasting change (Bayón-Calatayud et al., 2014; Fasoli et al., 2004). The commercialized version of MIT-MANUS, INMOTION (Bionik Laboratories Corp., Toronto, Canada), has been used in patients with SCI to a limited extent although one study demonstrated that after a training protocol, significant improvements in quality of movement were found with no changes in upper extremity strength, pain, or spasticity (Cortés et al., 2013).

ReoGo

The ReoGo system (Motorika Medical, Caesarea, Israel) is a stationary fixed based end-effector arm rehabilitation robot, which facilitates the mobilization of the upper limb on a support that allows a wide range of movements in the 3 dimensions of space. The Reo-Go allows for movements at the shoulder, elbow, and wrist. It also uses a real-time visual feedback monitor to display games for the subject to perform. Although it has primarily been used for stroke patients, it has also been applied in SCI. Reo-Go was incorporated into an acute incomplete SCI patient therapy protocol. The subject demonstrated remarkable improvements in muscle strength, active range of motion and functional assessment (Siedziewski, Schaaf, & Mount, 2012).

Armeo

Armeo devices (Hocoma AG, Volketswil, Switzerland) were the first unilateral upper extremity exoskeletons marketed for upper limb rehabilitation. This range of devices includes the Armeo Power for the most affected patients, the Armeo Spring, the Armeo Spring for children and the Armeo Senso for those less affected.

The Armeo system is a well-documented device and is the only device shown to offer better functional results after stroke compared to traditional therapy. Two studies showed the utility of this device for upper limbs in SCI subjects focusing on the potential of these devices in performing upper limb assessment (Rudhe, Albisser, Starkey, Curt, & Bolliger, 2012; Zariffa et al., 2012). The Armeo Power is one of the most advanced active exoskeletons for upper extremity rehabilitation. It is based on the ARMin device, which consists of an exoskeleton covering the upper limb and allowing anthropometric adaptations. It provides support for the weight of the patient’s upper limb and features different modes of use, such as mobilization mode, 2D and 3D games and functional training of daily life activities. ARMin provides three actuated degrees of freedom for the shoulder and one for the elbow joint. It offers three different therapy modes: the movement therapy, the game therapy and the ADL (activity of daily living) training mode. Like the MIT-MANUS, Armeo...
Power uses an “assist as needed” mode of operation, allowing the clinician to adapt the difficulty of the task to the degree of recovery. There are studies that demonstrate its usefulness in patients with SCI (Rudhe et al., 2012). An earlier version is the Armeo Spring that manages to cover the shoulder and elbow, and also works the wrist flexo-extension and manual gripping. It is a passive exoskeleton (Fig. 2). It works through a system of springs that eliminate the weight of the body as an enabler instead of using motors to assist movement as the Armeo Power does. Both feature a monitor with motivational games to encourage repetitive movements. The software allows the clinician to select the task and its degree of difficulty by defining the required joint path and the rhythm of the selected game.

Other devices

There are other devices on the market such as the DIEGO (Tyromotion, Graz, Austria) which uses a wiring system to support and mobilize the limb, the Bi-Manu-Track (RehaStim, Germany) which facilitates the treatment of both upper limbs simultaneously. There are devices that focus on the individual mobility of each finger but allow practice in gripping by controlling the performance of each finger. This would be the case of AMADEO (Tyromotion, Graz, Austria), HAND-CARE 2 and RUTGERS-MASTER II (Rutgers University, USA), although the latter excludes the treatment of the fifth finger. It is not common but in some cases two robotic devices have been used in combination, such as the Armeo Power and the Amadeo, using the first for the shoulder, elbow, and carpal and the second for the shoulder, elbow, and carpal.

Stationary lower limb robots

Thoracic and lower SCIs can result in partial to complete paralysis of the lower extremities. Independent mobility for many can only be achieved at a wheelchair level, although walking oftentimes remains a priority (Dittuno, Patrick, Stineman, & Dittuno, 2008). Lower limb robots have emerged as potential upright mobility devices for those with lower limb paralysis. Locomotor training focuses on retraining the motor function via plastic change (Morawietz & Moffat, 2013; Nam et al., 2017), and the neurophysiological mechanism underlying the restoration of human restoration after SCI involve enhancing the afferent input to the spinal cord and activating CPG (central pattern generator) embedded within the lumbosacral spinal cord (Dietz, Wirz, & Curt, 1998). Plastic changes can be induced in both the spinal cord level and sensory motor cortex via intensive locomotor training, mainly in incomplete SCI subjects (Hubli & Dietz, 2013).

As it has been previously referred, to manually replicate a normal walking pattern with the patient in body weight-supported on a treadmill two or three therapists are needed to control and move lower limbs. This is a strenuous and exhausting task for therapist, so sophisticated automated electromechanical devices have been developed (Tefertiller, Pharo, Evans, & Winchester, 2011) that offers several advantages, including the ability to increase the intensity and total duration of training while maintaining a physiological gait pattern.
As in the case of the upper limbs, in the lower limb robots we also find, depending on their structure, distal effectors and exoskeletons (Table 1). Among lower limb robotic exoskeletons, we can distinguish the stationary and the ambulatory ones. In this section we will discuss the stationary ones, and the ambulatory will be analyzed in the following section.

End effector devices

End-effector-based systems work like conventional elliptical trainers: the subject’s feet are strapped to two footplates moving along a gait-like trajectory, as in an elliptical trainer, moving the entire lower limb. They work based on a constraint at the distal end of the kinetic chain that specifies the trajectory there and the proximal joints can simply move as the body geometry and articulations dictate. The footplates generate the stance and swing phases in most instances with symmetric motion. The main difference compared with exoskeletons with a treadmill is that the feet are always in contact with the moving platform, simulating the gait phases but not necessarily generating true swing and stance phases. The trajectories of the footplates, as well as the vertical and horizontal movements of the center of mass, are programmable. The end-effector design lends itself to gait retraining and star climbing (Hesse, Waldner, & Tomelleri, 2010). Examples of end-effector devices include Gait Trainer GT1 (Reha-Stim, Berlin, Germany), G-EO (Reha Technologies, Switzerland) and Lokohelp. In relation to SCI patients, 3-dimensional data were obtained with Lokomat and G-EO. Their kinematic data were compared when devices were used by SCI or traumatic brain injury patients. The results confirmed a more controlled and repetitive gait pattern when using Lokomat and the G-EO system provided a gait pattern that had more variability of motion for the hips and knees, with slightly reduced knee motion, and the gait pattern differed slightly from that observed during overground walking (Esquenazi & Talaty, 2019).

Stationary exoskeletons

Stationary exoskeletons have a device that surrounds the patient’s legs, which may be suspended from an overhead guide rail, supported by a metal frame on wheels, or the exoskeleton can even be directly supported by a mobile robot. They are usually connected directly to the ground through a rigid frame or bolted to a wall, enhancing and ensuring total safety. Stationary exoskeletons can have a large and powerful motors and controllers. They often involve walking on a treadmill. These devices are less complex in their engineering requirements and more stable and safer than ambulatory exoskeletons that allow overground walking due to the elimination of fall risk. They are less accommodating of individual gait variations, such as changes of speed or direction. This group of stationary exoskeletons includes the Lokomat, Walk-Trainer, LOPES or ReoAmbulator.

The Lokomat (Hocoma AG, Volketswil, Switzerland) is the most clinically implanted and studied robot on the market. The Lokomat is a bilaterally driven gait orthosis that is used in conjunction with a body support system (Colombo et al., 2000). It is essentially a robotic implementation of the treadmill walking training system with partial weight support and manual mobilization of the patient by physiotherapists. This system consists of a treadmill, a partial weight support system and a bilateral exoskeleton that provides action on the hips and knees with the ankle being passively supported by a spring to facilitate dorsiflexion of the swing phase of walking (Riener, 2012). The Lokomat moves the patient legs through the gait cycle mainly in the sagittal plane (Fig. 3). The device’s hip and knee are actuated by linear drives integrated into an exoskeleton structure. There is no actuator on the ankle and dorsal flexion during the swing phase is achieved passively by means of springs. The lower limb motion can be controlled with highly repeatable predefined hip and knee joint trajectories on the basis of a conventional position control strategy. The exoskeleton is fixed to the rigid frame of the body weight support system and the patient is fixed to the exoskeleton with straps around the waist, thighs and shanks.

The hip and knee joint trajectories can be manually adjusted to the individual patient by changing amplitude and offsets. Signals obtained from force sensors may be used to determine the interactions torques between the patient and the device,
which inform about the voluntary muscle effort produced by the patient (Riener, 2012). The device allows some anthropometrical adaptation to the lower limb segments size via telescopic bars so that the exoskeleton can be used by subjects with different shank and thigh lengths. The width of the hip exoskeleton may also be adjusted by changing the distance between the two lower limbs.

The body weight support system consists of a harness worn by the patient, ropes and pulleys and a counterweight used to partial unload the patient. A patient-cooperative control strategy has been developed that recognize the patient’s movement intention and motor ability by monitoring muscular efforts and adapt the robotic assistance to the patient’s contribution (Riener et al., 2005). It is recommended that the control and strategies should do the same as a human therapist assisting the patient’s movement only as much as needed and informing the patient how to optimize voluntary muscle efforts.

The largest body of scientific is for Lokomat when used by individuals with SCI or stroke. However, there is no consensus of whether and how it affects outcomes in comparison with conventional therapies (Alcobendas-Maestro et al., 2012; Ucar, Parker, & Bugdayci, 2014; Westlake & Patten, 2009) although a recent review provide evidence that acute SCI patients treated with Lokomat showed significantly greater improvement in gait distance and functional level of mobility and independence, and chronic SCI patients a significantly greater improvement in speed and balance were observed than in the group with no intervention (Nam et al., 2017). The Advance Robotic Therapy Integrated Centers (ARTIC) network has recently been set up to collect a large amount of data in order to obtain results with statistical significance. The database includes almost 600 patients not only with SCI but with other neurological conditions with gait deficits who used the Lokomat as part of their rehabilitation (Van Hedel et al., 2018). Other devices, such as the ReoAmbulator (Motorika, New Jersey, USA) have very limited published reports with inconclusive results (Mantone, 2006). A report on LOPES (University of Twente, the Netherlands) showed improved walking ability, as well as gait quality, in subjects with incomplete SCI after an 8 weeks treatment program, with slower walking subjects showing greater benefits (Flerkotte et al., 2014).

Ambulatory exoskeletons

Ambulatory exoskeletons are used as a powerful tool in the clinical environment and promoting gait training. Both patients with complete and incomplete SCI can use these exoskeletons but with different aim. Patients with incomplete injuries present an improvement prognosis considering the exoskeletons as a rehabilitation tool. In those cases of complete SCI in which recovery is not foreseeable, its use is intended with the aim of permitting the patient to gain a standing up position, walking short distances and replacing the wheelchair as a means of movement in the community in the future.

They adapt to the lower limbs and have electric motors or other kind of powered actuators that mobilize the joints to produce an automatic overground gait. Furthermore, they offer different approaches on the intelligence of the system, from merely healthy normal gait pattern repetition to EMG-based actuation, passing through error augmentation (Marchal-Crespo & Reinkensmeyer, 2009). These robotic systems make it possible for subjects with SCI to perform the action of walking over ground without the need of partial weight support, harnesses, or the treadmill.
Probably the most popular of these robotic exoskeletons for ambulatory walking is the ReWalk (ReWalk Robotics, Inc., Marlborough, MA, USA). It is a lower limb exoskeleton with two active joints (knee and hip), intended to be used with patients with SCI from T4 to L5 and allowing standing up, sitting down, walking, climbing and descending stairs. There are two versions: for personal use and for rehabilitation. Both exoskeletons are composed of a metallic structure that is adjusted by means of tapes or straps, a pelvic support and motors at the hip and knee joints. The difference between both versions is that the exoskeleton for personal use is customized to the dimensions of the user, whereas, in the case of rehabilitation version, the hip and lateral components are replaceable. It offers several levels of assistance and starts ambulation thanks to a sensor that detects the forwards-leaning of the trunk as a signal to start walking.

The different modes of action (walking forward, going from sitting to standing, stopping, going from standing to sitting) are controlled by a control unit located on the patient’s wrist. The device has also a “manual” mode (only in sitting position), where the user can control each joint from its local control system (interface at each joint), useful mode for hazards such as spasticity.

Another lower limb exoskeleton is the Vanderbilt exoskeleton, marketed as Indego (Parker Hannifin Corp., Cleveland, OH, USA), with a modular design that facilitates its adaptation. This product is intended to be used with patients with SCI or stroke. As other commercial exoskeletons, the hip and knee are motorized. On the other hand, the knee joints consist of an electromechanical brake that blocks the motor in the event of a power failure, to avoid the fall of the patient. This exoskeleton allows gait at a speed of up to 0.8 km/h (with a battery life of up to an hour). The control of this product is based on postural information and is composed of three detachable elements facilitating the donning and doffing of the user. It can be used in patients with level of injury C7 to L5 in rehabilitation facilities.

Like the previous two, the Ekso (Ekso Bionics, Richmond, CA, USA) has actuators on the hips and knees and has a backpack that contains the batteries and controllers. Ekso Bionics mainly commercializes two lower limb exoskeletons: Hulc (Human Universal Load Carrier) and Ekso (eLEGS at the start). The first one is a hydraulic exoskeleton intended to be used for the transport and handling of loads, not a medical device, thus falling outside of the focus of this short review. Ekso, on the other hand, was introduced by the company to allow paraplegics to stand up and walk using crutches or a walker. This exoskeleton is made up of force and movement sensors, which collect information and transfer it to movement. The approximate weight of this product is 20 kg and it can reach a speed of 3.2 km/h with a battery life of up to 6 h. Its software allows the clinician to adjust the amount of assistance provided at each limb and. The control of the device is performed by the therapist accompanying the patient. Patients with level of injury from T4 to L5 can use this exoskeleton or even from C7 if AIS (ASIA Impairment Scale) D (Mekki, Delgado, Fry, Putrino, & Huang, 2018).

HAL (Hybrid Assistive Limb) developed by the Japanese company Cyberdine was initially developed to assist older adults with muscle weakness in walking (Kawamoto & Sankai, 2002) although it is also used for gait rehabilitation in patients with SCI. It consists of a modular design that provides uni-or bilateral actuation at the hip and/or knee joints. The system allows automatic and voluntary control thanks to the activation of certain muscles whose signal is collected by EMG electrodes.

Currently marketed HAL exoskeleton version is intended to be used for different applications, namely rehabilitation, work that requires force, rescue work and even entertainment. There are currently different versions but HAL-5 is full-body exoskeleton for paraplegic users. Both the hip and the knee function actively; however, the ankle is a passive joint. These four exoskeletons are approved by the FDA, ReWalk and Indego for use in clinical centers and in the community, while Ekso is only for clinical use with medical supervision.

Unlike already described exoskeletons, Hank (Gogoa Mobility Robots, Guipúzcoa, Spain) has six actuated joints including the two ankles to avoid the effect of foot drop during gait (Asín-Prieto, Intxaurburu Sarasua, Fernández Seco, & Fernández Isoird, 2020). It is based on Exo-H2 (Technaid S.L., Madrid, Spain) (Bortole et al., 2015), Hank is intended for patients with incomplete SCI. Its operating system is also based on the “assist as needed” mode and allows a certain deviation from the ideal gait pattern before applying the correcting force (Fig. 4). It presents an open control architecture to be able to make it compatible with other neural interfaces such as brain computer interfaces (BCI) or brain–machine interface systems, or other technologies that facilitate the recovery process such as functional electrical stimulation (FES). The control modes range from rigid trajectory tracking, to transparent mode, passing thru adjustable assistance per joint. The trajectory is tuned depending on the selected speed and can also be adjusted to user constraints. The device can also perform sit to stand and stand to sit actions.

The first exoskeleton marketed that has its own balance system is the REX (REX Bionics, New Zealand), freeing the patient from using crutches for use, as is the case with other devices. In this way, its use is preferably reserved to treat alterations in postural balance although it also allows walking. It is also the first device intended to be used without any help, as a substitute of the wheelchair, in a daily environment.

As is to be expected due to the novelty of its appearance, the experiences registered with exoskeletons that have been carried out so far present small samples that make it difficult to obtain significant results. Several studies on specific
Exoskeletons and feasibility have been conducted and they have found to be practical for use (Bach Baunsgaard et al., 2018; Benson, Hart, Tussler, & van Middentrop, 2016; Esquenazi, Talaty, Packel, & Saulino, 2012; Tefertiller et al., 2018). There are some studies that compare different exoskeleton systems as tools for rehabilitation in the chronic SCI population (Contreras-Vidal et al., 2016). The benefits that have been reported to date include strengthening the muscles, increasing speed and gait efficiency, as well as improvements in aspects of SCI such as spasticity, pain, cardiovascular and metabolism, in the control of intestinal rhythm, in osteoporosis and in quality of life (Winchester et al., 2005) and benefits also in the budget for the recovery (Pinto et al., 2020).

Applications to other areas of neuroscience

In this chapter we have presented the new features of robotic-based treatments from the point of view of neuroplasticity and their application in therapy. There is an increasing evidence to support the concept for reorganization and plasticity of the injured central nervous system (CNS). The potential for reorganization is particularly high after CNS injury but also possible at later stages. Reorganization in a functionally meaningful way seems to depend on motor activity as executed during rehabilitative training and followed by functional improvements. The science behind exercise in CNS disorders is supported by the therapy concept of increased dosage effect. Task oriented, high repetition movements based on the principles of motor learning can improve muscle strength, motor control, and movement coordination in patients with neurological impairments. All these findings are also applied not only after a SCI but also after brain damage (ictus, traumatic brain injury, cerebral palsy). Robots enhance the rehabilitation process and may improve therapeutic outcomes and have the potential to support clinical evaluation by allowing instrumented measurement of physiological and performance parameters, precisely control and measure the therapeutic interventions, implement novel forms of mechanical manipulation impossible for therapists to provide and supply different forms of feedback, thereby increasing patient’s motivating and improving outcomes.

Mini-dictionary of terms

Neuroplasticity: Ability of the Central Nervous System to make functional changes after injury and adapt to new situation.
Task-oriented training: Training focused on recovering a specific task such as walking.
Robotic device: Device that use robotic technology in rehabilitation programs.
Functional electrical stimulation (FES): Type of electrotherapy aimed at achieving a functional improvement (such as walking) and not the analytical stimulation of a muscle group without having a functional objective.
Virtual reality: It is an environment of scenes or objects of real appearance. The most common meaning refers to an environment generated by computer technology, which creates in the user the sensation of being immersed in it.
Distal end effector devices: Distal end effectors are characterized by the fact that they use a single distal point of contact to guide the movement of the entire limb.

Exoskeleton-type devices: They are structures located in parallel to the different parts of the extremities with more than one point of interaction with the person. They provide direct control over each segment of the limb by incorporating individual motors.

Actuators: This term is synonymous with motors.

Haptic: Haptic perception is based on the forces experienced during contact with the robotic device, this has allowed the creation of virtual haptic sensations with different qualities of perception.

Degrees of freedom: It refers to the number of planes in which a joint can be moved.

Assist as needed: This term refers to the robotic control strategy in which the actuators act to complete a certain joint path that the patient cannot perform.

Swing phase: This term refers to the gait cycle phase in which the foot is not in contact with the ground and allows the limb to move forward.

Stance phase: This term refers to the phase of the walking cycle in which the foot is in contact with the ground giving stability to the limb.

Key facts of functional recovery

- It is based on the concept of spinal learning via activity-dependent plasticity.
- The training effects of any motor task depend on the provision of sufficient and appropriate stimuli.
- Locomotor activity can be activated in patients with severe SCI via passive activation of the legs on a treadmill.
- Functional rehabilitation (i.e., walking) had to be intensive and task-oriented.
- Gait training using partial weight support systems on treadmills is based on the principles of functional recovery.
- Robotic therapy allows task-oriented treatments and intensive.

Summary points

- New technologies in neurorehabilitation represents a huge change in treatment protocols for spinal cord injuries
- The training effects depend on the provision of sufficient and appropriate stimuli
- Training must be task-oriented
- Training must be intensive
- Partial body weight support systems on treadmills is based on the principles of functional recovery
- Robotic therapy allows task-oriented and intensive treatment
- Robots offers objective data of patient performance
- There are robots for upper limb and lower limbs
- Robots be classified in distal end effector devices, stationary exoskeletons and ambulatory exoskeletons

References

Rehabilitation in spinal injury

Mantone, J. (2006). Getting a leg up? Rehab patients get an assist from devices such as Health South’s Auto Ambulator, but the robot’s clinical benefits are still in doubt. Modern Healthcare, 31(7), 58–60.

Section F

Resources
Chapter 45

Recommended resources and sites for the neuroscience of spinal cord injury

Rajkumar Rajendrama,b,c, Vinood B. Pateld, and Victor R. Preedye

aCollege of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; bDepartment of Medicine, King Abdullah Medical City, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; cStoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury, United Kingdom; dUniversity of Westminster, School of Life Sciences, Department of Biomedical Science, London, United Kingdom; eDiabetes and Nutritional Sciences Research Division, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom

List of Abbreviation

SCI Spinal cord injury

Introduction

Any insult to the spinal cord temporarily or permanently affecting its function can be defined as a spinal cord injury (SCI). Motor vehicle incidents are currently the most common reason for SCI (Chen, Tang, Vogel, & Devivo, 2013). Approximately, a third of all new SCI is attributable to this single preventable cause (Chen et al., 2013). This is particularly upsetting because, depending on the location (i.e., level) and severity of insult, SCI may significantly impair autonomic, sensory, and/or motor function. As such, SCI often afflicts young people and results in permanent, life-changing, and devastating disabilities.

The first documented reports of patients with SCI are contained in the Edwin Smith Papyrus which arises from around 2500 years BC (Hughes, 1988). Indeed, it is important to note that this seminal document states that SCI is “an ailment not to be treated” (Donovan, 2007; Hughes, 1988). Nearly 5000 years ago, most SCI was probably related to injuries sustained in combat (Donovan, 2007). In that setting, it was probably appropriate to triage the scarce resources available on the battlefield to those patients with injuries which would not prevent a return to active military service (Donovan, 2007). Yet, regrettably, in the 21st century, besides those few specialists in neurorehabilitation, many clinicians still approach SCI with a significant degree of therapeutic nihilism.

Until relatively recently, the limited clinical literature on SCI focused purely on the feasibility and appropriateness of surgical intervention (Donovan, 2007). This was in part because developments in the field of anesthesia facilitated surgery for SCI. Regardless, technological advances such as advanced orthotic devices (To, Kirsh, Kobetic, & Triolo, 2005) and powered wheelchairs (Algood, Cooper, Fitzgerald, Cooper, & Boninger, 2005) allow those who are managed conservatively (i.e., without surgery) to have a good quality of life.

Perhaps the most internationally renowned clinician for the rehabilitation of patients with SCI was Sir Ludwig Guttmann (Donovan, 2007). He is most widely recognized as the founder of the Stoke-Mandeville Games which subsequently became the Paralympics (Donovan, 2007). Yet his contribution to improving the outcomes of SCI is equally important. A neurosurgeon appointed to lead the SCI unit at Stoke-Mandeville Hospital, Buckinghamshire, England in 1944; he advocated a holistic approach to this cohort and highlighted the importance of their physicians focusing on rehabilitation rather than acting as single organ “ologists” (Donovan, 2007; Guttmann, 1976). The National Spinal Injuries Centre (NSIC) at Stoke-Mandeville Hospital became a role-model for the handful of centers which subsequently blossomed worldwide.

The NSIC continues to advocate for this complex cohort. It is important to prevent insidious neglect from the misconception that the outcomes of patients with SCI are poor. Indeed, a recent series of patients with SCI admitted to the intensive care unit at Stoke-Mandeville Hospital found that survival to hospital discharge is very good (78%; Adam, Rouse, Ali, & Rajendram, 2019). Thus, although, as yet, there is no cure for SCI, therapeutic nihilism is unwarranted.

The inability of victims of SCI to regain neurological function has been thought (for over 100 years) to be due to the failure of the neurons of the central nervous system to regenerate (Cajal, 1928). Thus, considerable resources have focused
on attempts to stimulate neuronal regeneration. As a consequence, novel tools for the study of SCI have recently become available. Our understanding of the neuroscience of SCI has advanced, although more slowly than desired. Importantly, the neurons of the central nervous system have been shown to have greater plasticity and greater capacity to regenerate than originally thought (Barnabe-Heider & Frisen, 2008).

Although the promise of being able to initiate neuronal regeneration looms elusively on the horizon, extensive further research is required for SCI to become an ailment that can be cured. Regardless, it even experienced scientists struggle to remain up to date. To assist colleagues who are interested in understanding more about the neuroscience of spinal cord injury, we have therefore produced tables containing up-to-date resources in this chapter. The experts who assisted with the compilation of these tables of resources are acknowledged below.

Resources

Tables 1–5 list the most up-to-date information on the regulatory bodies (Table 1), journals (Table 2), books (Table 3), professional societies (Table 4), research groups, and centers emerging technologies, platforms, and other resources (Table 5) that are relevant to an evidence-based approach to the neuroscience of spinal cord injury. Some organizations are listed in more than one table as they occasional fulfill more than one role.

TABLE 1 Regulatory bodies and relevant organizations.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Spinal Injury Association (ASIA)</td>
<td>https://asia-spinalinjury.org/</td>
</tr>
<tr>
<td>American Society for Surgery of the Hand (ASSH)</td>
<td>https://www.assh.org/hande/tetraplegia</td>
</tr>
<tr>
<td>Asociación de personas con lesión medular y otras discapacidades físicas (ASPAYM)</td>
<td>https://www.aspaym.org</td>
</tr>
<tr>
<td>Associação Brasileira de Fisioterapia Neurofuncional</td>
<td>https://abrafon.org.br/</td>
</tr>
<tr>
<td>Associazione Aspal Paratetraplegici Liguria</td>
<td>www.associazione-paratetraplegici-liguria.it</td>
</tr>
<tr>
<td>Associazione Gruppo Animazione Lesioni Midollari (GALM)</td>
<td>www.galm.it</td>
</tr>
<tr>
<td>Associazione Il Melograno Organizzazione di Volontariato</td>
<td>http://www.imelogranooodv.org/</td>
</tr>
<tr>
<td>Associazione Medullolesi Siciliana</td>
<td>http://www.ass-medullolesi.org/</td>
</tr>
<tr>
<td>Associazione Paraplegici di Roma e del Lazio</td>
<td>www.apromaelazio.it</td>
</tr>
<tr>
<td>Associazione Paraplegici Lombardia - Onlus</td>
<td>www.apl-onlus.it</td>
</tr>
<tr>
<td>Associazione Paraplegici Marche</td>
<td>https://www.apmarche.org/</td>
</tr>
<tr>
<td>Associazione Paraplegici Toscana</td>
<td>http://www.atbonlus.org</td>
</tr>
<tr>
<td>Associazione Paratetraplegici Nord Est</td>
<td>http://www.paratetraplegicinordest.it</td>
</tr>
<tr>
<td>Associazione Spina Bifida Italia</td>
<td>www.spinabifidaitalia.it</td>
</tr>
<tr>
<td>Associazione Tetra-Paraplegici Friuli Venezia Giulia Onlus</td>
<td>http://www.paraplegicifvg.it/</td>
</tr>
<tr>
<td>Associazione Voglia di Vivere</td>
<td>https://www.vdvpistoia.org/</td>
</tr>
<tr>
<td>Canadian Spinal Cord Injury Rehabilitation Association</td>
<td>https://cscira.ca/</td>
</tr>
<tr>
<td>Canadian Spinal Research Organization</td>
<td>https://www.csro.com/</td>
</tr>
<tr>
<td>Centre for the Rehabilitation of the Paralysed (CRP Bangladesh)</td>
<td>https://www.crp-bangladesh.org/</td>
</tr>
<tr>
<td>Christopher and Dana Reeve Foundation</td>
<td>https://www.christopherreeve.org/</td>
</tr>
<tr>
<td>Comitato Paralimpico Italiano</td>
<td>http://www.comitoparalimpico.it/</td>
</tr>
<tr>
<td>Craig H Neilsen Foundation</td>
<td>https://chnfoundation.org/</td>
</tr>
<tr>
<td>elearnSCI</td>
<td>http://www.elearnsci.org/</td>
</tr>
<tr>
<td>European Commission</td>
<td>https://ec.europa.eu/info/index_en</td>
</tr>
</tbody>
</table>
TABLE 1 Regulatory bodies and relevant organizations—cont’d

<table>
<thead>
<tr>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Network on Independent Living</td>
<td>www.enil.it</td>
</tr>
<tr>
<td>European Paralympic Committee</td>
<td>https://www.europaralympic.org/</td>
</tr>
<tr>
<td>European Spinal Cord Injury Federation</td>
<td>http://www.escif.org/</td>
</tr>
<tr>
<td>Federation of European Societies for Surgery of the Hand (FESSH)</td>
<td>https://fessh.com/</td>
</tr>
<tr>
<td>Federazione Associazioni Italiane Paraplegici</td>
<td>http://www.faiponline.it/drupal/</td>
</tr>
<tr>
<td>Fundación Lesiónado Medular</td>
<td>www.medular.org</td>
</tr>
<tr>
<td>International Spinal Cord Society</td>
<td>https://www.iscos.org.uk/</td>
</tr>
<tr>
<td>International Spinal Research Trust</td>
<td>https://spinal-research.org/</td>
</tr>
<tr>
<td>Japan Spinal Cord Foundation</td>
<td>http://www.jscf.org/</td>
</tr>
<tr>
<td>Life Rolls On</td>
<td>Literollson.org</td>
</tr>
<tr>
<td>Ministério da Saúde Ministry of Health of Brazil</td>
<td>https://www.gov.br/saude/pt-br</td>
</tr>
<tr>
<td>National Institute for Health and Care Excellence</td>
<td>https://www.nice.org.uk/guidance/ng41</td>
</tr>
<tr>
<td>Paralyzed Veterans of America</td>
<td>https://www.pva.org/</td>
</tr>
<tr>
<td>Reeve Foundation (also known as Christopher & Dana Reeve Foundation)</td>
<td>https://www.christophererreve.org/</td>
</tr>
<tr>
<td>Rick Hansen Foundation</td>
<td>https://www.rickhansen.com/</td>
</tr>
<tr>
<td>Sarah Network Rehabilitation Hospitals</td>
<td>www.sarah.br</td>
</tr>
<tr>
<td>Sheperd Center. Rehabilitation Hospital</td>
<td>https://www.shepherd.org/</td>
</tr>
<tr>
<td>Spinal Cord Injuries: Clinical Trials</td>
<td>https://stemcellsportal.com/clinical_trials_spinal_cord_injuries</td>
</tr>
<tr>
<td>Spinal Cord Injury Alberta</td>
<td>https://sci-ab.ca/</td>
</tr>
<tr>
<td>Spinal Cord Injury British Columbia</td>
<td>https://sci-bc.ca/</td>
</tr>
<tr>
<td>Spinal Cord Injury Research Program- Mayo Clinic</td>
<td>https://www.mayo.edu/research/centers-programs/spinal-cord-injury-research-program</td>
</tr>
<tr>
<td>Spinal injuries association</td>
<td>https://www.spinal.co.uk/</td>
</tr>
<tr>
<td>SpinalCord-ItalianLab</td>
<td>https://spinalcord-italianlab.it/</td>
</tr>
<tr>
<td>The International Spinal Cord Society</td>
<td>https://www.iscos.org.uk/</td>
</tr>
<tr>
<td>The National Spinal Cord Injury Foundation</td>
<td>www.spinalcord.org</td>
</tr>
<tr>
<td>Unite2light paralysis</td>
<td>https://u2fp.org</td>
</tr>
<tr>
<td>United Spinal Association</td>
<td>https://unitedspinal.org/</td>
</tr>
<tr>
<td>United States Food and Drug Administration (FDA)</td>
<td>https://www.fda.gov/home</td>
</tr>
<tr>
<td>World Health Organization</td>
<td>https://www.who.int</td>
</tr>
</tbody>
</table>

This table lists the regulatory bodies and organizations involved with the neuroscience of spinal cord injury and associated specialties or interests. The links were accurate at the time of going to press but may move or alter. In these cases, the use of the “Search” tabs should be explored at the parent address or site. See also Table 4.
The pathophysiology and management of spinal cord injuries are similar to traumatic injuries to the other components of the nervous system. These include the brain and the peripheral nervous system. Thus, the contents of this chapter are also relevant to the understanding of traumatic brain injuries and peripheral neuropathies.

TABLE 2 Relevant journals publishing original research and review articles related to the neuroscience of spinal cord injury.

<table>
<thead>
<tr>
<th>Journal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal Cord</td>
</tr>
<tr>
<td>Journal of Spinal Cord Medicine</td>
</tr>
<tr>
<td>World Neurosurgery</td>
</tr>
<tr>
<td>Journal of Neurotrauma</td>
</tr>
<tr>
<td>Neural Regeneration Research</td>
</tr>
<tr>
<td>Archives of Physical Medicine and Rehabilitation</td>
</tr>
<tr>
<td>Experimental Neurology</td>
</tr>
<tr>
<td>Scientific Reports</td>
</tr>
<tr>
<td>Spinal Cord Series and Cases</td>
</tr>
<tr>
<td>PLoS One</td>
</tr>
<tr>
<td>Topics in Spinal Cord Injury Rehabilitation</td>
</tr>
<tr>
<td>Journal of Neurotrauma</td>
</tr>
<tr>
<td>Spine</td>
</tr>
<tr>
<td>Neuroscience Letters</td>
</tr>
<tr>
<td>International Journal of Molecular Sciences</td>
</tr>
<tr>
<td>Journal of Neurosurgery Spine</td>
</tr>
<tr>
<td>Disability and Rehabilitation</td>
</tr>
<tr>
<td>European Spine Journal</td>
</tr>
<tr>
<td>Neurourology and Urodynamics</td>
</tr>
<tr>
<td>Journal of Neuroscience</td>
</tr>
<tr>
<td>Spine Journal</td>
</tr>
<tr>
<td>Molecular Neurobiology</td>
</tr>
<tr>
<td>Neuroscience</td>
</tr>
<tr>
<td>Frontiers in Neuroscience</td>
</tr>
<tr>
<td>Journal of Neuroinflammation</td>
</tr>
<tr>
<td>Frontiers in Neurology</td>
</tr>
<tr>
<td>Global Spine Journal</td>
</tr>
<tr>
<td>Frontiers in Cellular Neuroscience</td>
</tr>
<tr>
<td>American Journal of Physical Medicine and Rehabilitation</td>
</tr>
<tr>
<td>Medicine United States</td>
</tr>
</tbody>
</table>

Journals publishing original research and review articles related to the neuroscience of spinal cord injury. Included in this list are the top 30 journals which have published the most number of articles on spinal cord injury over the past 5 years. Data derived from Scopus.

Application to other areas of neuroscience

The pathophysiology and management of spinal cord injuries are similar to traumatic injuries to the other components of the nervous system. These include the brain and the peripheral nervous system. Thus, the contents of this chapter are also relevant to the understanding of traumatic brain injuries and peripheral neuropathies.
Table 3: Relevant books.

<table>
<thead>
<tr>
<th>Book title</th>
<th>Authors or editors</th>
<th>Publisher</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACD Reabilitação</td>
<td>Fernandes AC, Ramos ACR, Morais Filho MC, Ares MJJ</td>
<td>Manole</td>
<td>2014</td>
</tr>
<tr>
<td>Critical Care in Spinal Cord Injury</td>
<td>Fehlings M</td>
<td>Future Medicine LTD</td>
<td>2013</td>
</tr>
<tr>
<td>Delisa's Physical Medicine and Rehabilitation: Principles and Practice</td>
<td>Delisa JA</td>
<td>Lippincott Williams & Wilkins</td>
<td>2010</td>
</tr>
<tr>
<td>Diagnostic Imaging: Spine</td>
<td>Ross JS, Moore R</td>
<td>Elsevier</td>
<td>2020</td>
</tr>
<tr>
<td>Diseases of the Spinal Cord</td>
<td>Hattingen, E</td>
<td>Springer</td>
<td>2015</td>
</tr>
<tr>
<td>Hand Function A Practical Guide to Assessment</td>
<td>Duruiz MT</td>
<td>Springer</td>
<td>2019</td>
</tr>
<tr>
<td>Ischemic and Traumatic Brain and Spinal Cord Injuries Mechanisms and Potential Therapies</td>
<td>Farooqui A</td>
<td>Academic Press</td>
<td>2018</td>
</tr>
<tr>
<td>Lesión medular, Enfoque multidisciplinar</td>
<td>Esclarin de Ruz A</td>
<td>Panamericana</td>
<td>2020</td>
</tr>
<tr>
<td>Living with Spinal Cord Injury: A Wellness Approach</td>
<td>Cristian A</td>
<td>Demos Medical Publishing</td>
<td>2010</td>
</tr>
<tr>
<td>Management and Rehabilitation of Spinal Cord Injuries</td>
<td>Ko HY</td>
<td>Springer</td>
<td>2019</td>
</tr>
<tr>
<td>Manual de Medicina Física y Rehabilitación</td>
<td>Frontera WR, Silver JK, Rizzo T</td>
<td>Elsevier España</td>
<td>2020</td>
</tr>
<tr>
<td>Medicina e Reabilitação: Princípios e Práticas</td>
<td>Fernandes AC, Ramos ACR, Casilis MEP, Herbert SK</td>
<td>Artes Medicas</td>
<td>2013</td>
</tr>
<tr>
<td>Programa de Atualização em Fisioterapia Neurofuncional (PROFISIO)</td>
<td>Faria C, Leite H</td>
<td>Artmed</td>
<td>2021</td>
</tr>
<tr>
<td>Recovery of Motor Function Following Spinal Cord Injury</td>
<td>Fuller, H</td>
<td>IntechOpen</td>
<td>2016</td>
</tr>
<tr>
<td>Rehabilitation in Spinal Cord Injuries</td>
<td>Reznik J, Simmons J</td>
<td>Elsevier</td>
<td>2020</td>
</tr>
</tbody>
</table>

Continued
TABLE 3 Relevant books—cont’d

<table>
<thead>
<tr>
<th>Book title</th>
<th>Authors or editors</th>
<th>Publisher</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal Cord Injuries Management and Rehabilitation</td>
<td>Sisto SA, Druin E, Sliwinski MM</td>
<td>Elsevier</td>
<td>2008</td>
</tr>
<tr>
<td>Spinal cord injury</td>
<td>Holtz A, Levi R</td>
<td>Oxford University Press.</td>
<td>2010</td>
</tr>
<tr>
<td>Spinal Cord Medicine</td>
<td>Kirshblum S, Campagnolo DI</td>
<td>Lippincott Williams & Wilkins</td>
<td>2011</td>
</tr>
<tr>
<td>Spinal Cord Medicine, 3rd Edition</td>
<td>Kirshblum S, Vernon WL</td>
<td>Springer</td>
<td>2018</td>
</tr>
<tr>
<td>Spinal Trauma: Imaging, Diagnosis and Management</td>
<td>Schweartz ED, Flanders AE</td>
<td>Lippincott Williams & Wilkins</td>
<td>2006</td>
</tr>
<tr>
<td>The art of healthy living with physical impairments</td>
<td>Lagerstrom A-C, Wahnman K</td>
<td>Spinalis</td>
<td>2014</td>
</tr>
<tr>
<td>The Physiology of Exercise in Spinal Cord Injury</td>
<td>Taylor JA</td>
<td>Springer</td>
<td>2017</td>
</tr>
<tr>
<td>Therapeutic Strategies to Spinal Cord Injury</td>
<td>Jendelova P</td>
<td>MDPI</td>
<td>2018</td>
</tr>
<tr>
<td>Urologic management of the spinal cord injured patient</td>
<td>Elliott S, Gomez R</td>
<td>SIU Academy</td>
<td>2017</td>
</tr>
</tbody>
</table>

This table lists books on the neuroscience of spinal cord injury.

TABLE 4 Professional societies and other organizations.

<table>
<thead>
<tr>
<th>Society name</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academy of Spinal Cord Injury Professionals</td>
<td>https://www.academyscipro.org/</td>
</tr>
<tr>
<td>American Academy of Physical Medicine and Rehabilitation (AAPM&R)</td>
<td>https://www.aapmr.org/</td>
</tr>
<tr>
<td>American Congress of Rehabilitation Medicine (ACRM)</td>
<td>https://acr.org/</td>
</tr>
<tr>
<td>Asian Spinal Cord Network (ASCoN)</td>
<td>https://ascon.info/</td>
</tr>
<tr>
<td>Asociación Española de Enfermería especializada en Lesión Medular</td>
<td>www.aselme.com</td>
</tr>
<tr>
<td>Association of Academic Physiatrists (AAP)</td>
<td>https://www.physiatry.org/</td>
</tr>
<tr>
<td>Society name</td>
<td>Web address</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Australian and New Zealand Spinal Cord Society</td>
<td>https://anzscos.org/</td>
</tr>
<tr>
<td>Canadian Spinal Cord Injury Rehabilitation Association</td>
<td>https://cscira.ca/</td>
</tr>
<tr>
<td>Christopher & Dana Reeve Foundation</td>
<td>www.christopherreeve.org</td>
</tr>
<tr>
<td>European Spinal Cord Injury Federation (ESCI)</td>
<td>http://www.escif.org/</td>
</tr>
<tr>
<td>Federation of European Societies for Surgery of the Hand (FESSMH)</td>
<td>https://fessh.com/</td>
</tr>
<tr>
<td>Fehlings Lab Twitter</td>
<td>www.twitter.com/DrFehlings</td>
</tr>
<tr>
<td>Fehlings Lab Website</td>
<td>www.drfehlings.ca</td>
</tr>
<tr>
<td>International Continence Society</td>
<td>https://www.ics.org</td>
</tr>
<tr>
<td>International Neuro-Urology Society</td>
<td>https://www.neuro-uro.org</td>
</tr>
<tr>
<td>International Society of Physical Medicine and Rehabilitation (ISPRM)</td>
<td>https://www.isprm.org</td>
</tr>
<tr>
<td>Korean Spinal Cord Society</td>
<td>http://www.koskos.or.kr</td>
</tr>
<tr>
<td>National Organization For Rare Disorders (NORD)</td>
<td>https://rarediseases.org/organizations/national-spinal-cord-injury-association/</td>
</tr>
<tr>
<td>North American Spine Society</td>
<td>https://www.spine.org/</td>
</tr>
<tr>
<td>Praxis Spinal Cord Institute</td>
<td>www.praxisinstitute.org</td>
</tr>
<tr>
<td>Protection Center of Spinal Cord Disable of Iran</td>
<td>www.irannokhaa.ir (not viable at the time of going to press)</td>
</tr>
<tr>
<td>Sheperd Center, Rehabilitation Hospital</td>
<td>https://www.shepherd.org/</td>
</tr>
<tr>
<td>Shirley Ryan Hability Lab</td>
<td>https://www.sralab.org/conditions/spinal-cord-injury</td>
</tr>
<tr>
<td>Sociedad Española de Paraplejia</td>
<td>www.sociedaddeparaplejia.com</td>
</tr>
<tr>
<td>Società Italiana Chirurgia della Mano (SICM)</td>
<td>https://www.sicm.it/</td>
</tr>
<tr>
<td>Society for neuroscience</td>
<td>https://www.sfn.org</td>
</tr>
<tr>
<td>Spinal Cord Injury Canada</td>
<td>https://sci-can.ca/about-us</td>
</tr>
<tr>
<td>Spinal Cord Injury Ontario</td>
<td>https://sciontario.org/</td>
</tr>
<tr>
<td>Spinal Injuries Association</td>
<td>https://www.spinal.co.uk/</td>
</tr>
<tr>
<td>The Asian Spinal Cord Network</td>
<td>https://ascon.info/</td>
</tr>
<tr>
<td>The Canadian Spinal Research Organization (CSRO)/American Spinal Research Organization (ASRO)</td>
<td>https://www.csro.com/</td>
</tr>
<tr>
<td>The International Spinal Cord Society</td>
<td>https://www.iscos.org.uk</td>
</tr>
<tr>
<td>United Spinal Association</td>
<td>https://unitedspinal.org/</td>
</tr>
</tbody>
</table>

This table lists some societies and organizations devoted to understanding the neuroscience of spinal cord injury. Please note, occasionally the location of the websites or web address changes. Not viable at the time of going to press indicates that the site has changed or is the process of being changed. See also Table 1.
<table>
<thead>
<tr>
<th>Organization or company or society name</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreditando</td>
<td>https://www.acreditando.com.br/</td>
</tr>
<tr>
<td>American Society for Surgery of the Hand (ASSH)</td>
<td>https://www.assh.org/hande/tetraplegia</td>
</tr>
<tr>
<td>American Spinal Injury Association (ASIA)-e Learning Center</td>
<td>https://asia-spinalinjury.org/learning/</td>
</tr>
<tr>
<td>Association for Assistance of Disabled Children (AACD)</td>
<td>https://aad.org.br/centro-de-reabilitacao</td>
</tr>
<tr>
<td>Avery biomedical devices</td>
<td>https://www.averybiomedical.com/spinal-cord-injury-treatments/</td>
</tr>
<tr>
<td>California Institute for Regenerative Medicine (CIRM)</td>
<td>https://www.cirm.ca.gov</td>
</tr>
<tr>
<td>Christopher & Dana Reeve Foundation</td>
<td>https://www.christopherreeve.org/</td>
</tr>
<tr>
<td>Clinical Trials. Gov</td>
<td>https://clinicaltrialsgov</td>
</tr>
<tr>
<td>Dalhousie University Faculty of Medicine Wheelchair Skills Program (WSP)</td>
<td>https://wheelchairskillprogram.ca/en/</td>
</tr>
<tr>
<td>Elearning-SCI</td>
<td>http://www.elearnsci.org</td>
</tr>
<tr>
<td>European Multicenter Study about Spinal Cord Injury (EMSCI)</td>
<td>https://www.emsci.org</td>
</tr>
<tr>
<td>Facing disability</td>
<td>https://facingdisability.com/resources/assistive-technology</td>
</tr>
<tr>
<td>Federation of European Societies for Surgery of the Hand (FESSH)</td>
<td>https://fessh.com/</td>
</tr>
<tr>
<td>inspire neurocare</td>
<td>https://www.inspireneurocare.co.uk/</td>
</tr>
<tr>
<td>Instituto de Medicina Física e Reabilitação (Rede Lucy Montoro)</td>
<td>https://www.redelucymontoro.org.br/site/programa-de-reabilitacao.html</td>
</tr>
<tr>
<td>Instituto Novo Ser</td>
<td>http://www.novoser.org.br/index.html</td>
</tr>
<tr>
<td>International Collaboration on Repair Discoveries (ICORD)</td>
<td>https://icord.org/</td>
</tr>
<tr>
<td>International Society of Spinal Cord Injury</td>
<td>www.iscos.org.uk</td>
</tr>
<tr>
<td>Kentucky Spinal Cord Injury Research Center</td>
<td>https://louisville.edu/kscirc</td>
</tr>
<tr>
<td>Kessler Foundation</td>
<td>https://kesslerfoundation.org/</td>
</tr>
<tr>
<td>Mayo Foundation for Medical Education and Research</td>
<td>https://www.mayo.edu/research/centers-programs/spinal-cord-injury-research-program</td>
</tr>
<tr>
<td>Miami Project to Cure Paralysis</td>
<td>https://www.themiamiproject.org/</td>
</tr>
<tr>
<td>Model System Knowledge Translation Center (MSKTC)</td>
<td>https://msktc.org/sci</td>
</tr>
<tr>
<td>Ontario Neurotrauma Foundation</td>
<td>https://spauldingrehab.org/</td>
</tr>
<tr>
<td>Praxis Spinal Cord Institute</td>
<td>https://praxisinstitute.org/</td>
</tr>
</tbody>
</table>
TABLE 5 Emerging techniques, platforms, and other sites of interest relevant to the neuroscience of spinal cord injury—cont’d

<table>
<thead>
<tr>
<th>Organization or company or society name</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProBed</td>
<td>https://www.pro-bed.com/blog/info/top-10-spinal-cord-research-organizations</td>
</tr>
<tr>
<td>Rede SARAH (Specialized assistance in rehabilitation)</td>
<td>https://www.sarah.be/especialidades/neurorreabilitacao-em-lesao-medular/</td>
</tr>
<tr>
<td>ReWalk</td>
<td>https://rewalk.com/</td>
</tr>
<tr>
<td>Shepherd Center</td>
<td>https://www.shepherd.org/resources-healthcare-professionals/research/spinal-cord-injury/current</td>
</tr>
<tr>
<td>Società Italiana Chirurgia Della Mano (SICM)</td>
<td>https://www.sicm.it/</td>
</tr>
<tr>
<td>Spinal Cord Injury and You (SCI-U)</td>
<td>http://sci-u.ca/</td>
</tr>
<tr>
<td>Spinal Cord Injury Trials Finder</td>
<td>https://scitrialsfinder.net</td>
</tr>
<tr>
<td>Spinal Cord Outcomes Partnership Endeavor</td>
<td>https://scope-sci.org/</td>
</tr>
<tr>
<td>Spinal Cord Research Centre</td>
<td>https://sccc.umanitoba.ca/wp/</td>
</tr>
<tr>
<td>Spinal Research</td>
<td>https://spinal-research.org/</td>
</tr>
<tr>
<td>Spinal Research Institute</td>
<td>https://www.thesri.org/spinal-cord-research-hub/</td>
</tr>
<tr>
<td>SpineUniverse</td>
<td>https://www.spineuniverse.com/</td>
</tr>
<tr>
<td>The American Trauma Society</td>
<td>https://www.amtrauma.org/</td>
</tr>
<tr>
<td>The Big Idea</td>
<td>https://reevebigidea.org/</td>
</tr>
<tr>
<td>Transforming Research and Clinical Knowledge in Spinal Cord Injury (TRACK-SCI)</td>
<td>https://spinalcordinjury.ucsf.edu</td>
</tr>
<tr>
<td>Unite 2 Fight Paralysis</td>
<td>https://u2fp.org/</td>
</tr>
</tbody>
</table>

This table lists some emerging technologies and platforms relevant to the neuroscience of spinal cord injury. Please note, occasionally the location of the websites or web address changes.

Mini-dictionary of terms

Orthotic device: A support/brace for the spine or limbs.

Neuronal plasticity: The ability of neural networks to adapt and/or change by reorganization and/or growth.

Neuronal regeneration: The repair/regrowth of neurons by the formation of new axons, synapses neurons, or glia.

Neurorehabilitation: The process which aims to restore function to patients who have sustained a neurological insult such as stroke or spinal cord injury.

Therapeutic nihilism: The perception that it is impossible to improve the outcome of a patient with a specific condition.

Key facts of spinal cord injury

- Any insult to the spinal cord temporarily or permanently affecting, its function can be defined as a spinal cord injury.
- Spinal cord injury often afflicts young people and results in permanent, life-changing, and devastating disabilities.
Following spinal cord injury, therapeutic nihilism is unwarranted as survival to discharge home is good and technological advances have greatly improved quality of life. Lack of functional recovery post spinal cord injury is thought to be due to failure of central neurons to regenerate. Despite great advances, vast amounts must still be learned about the neuroscience of spinal cord injury before this devastating condition can be cured.

Summary points

- Patients with spinal cord injury often survive to be discharged at home, and their quality of life has been improved by technological advances.
- Although there is currently no cure for spinal cord injury, prognostic pessimism is unwarranted.
- There is significant interest in stimulating neuronal regeneration to promote functional recovery after spinal cord injury.
- Recent advances have suggested that central neurons have greater plasticity than previously thought. This seed plants the hope that the ability to control neuronal regeneration is on the horizon.
- The expansion of the knowledge and understanding of the neuroscience of spinal cord injury has been slow but steady. It is becoming increasingly difficult for those interested in this field to remain up to date.

Acknowledgements (in alphabetical order)

We would like to thank the following authors for contributing to the development of this resource. We apologize if some suggested material was not included in this chapter or has been moved to different sections.

References

Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A
Abbreviated Duke Social Support Index (ADSSI), 495–497
Abdominal distension, 261
Abdominal massage, 263, 270
Abdominal pain, neurogenic bowel and, 261
Ability Network, 107, 109–110
Academy of Neurological Physical Therapy, 204
Acetaminophen, 44–45f
Acrylamide, 441–442
Action anticipation, 34–35f
Action discrimination, 34–35f
Action representation, 30
Activities-specific Balance Confidence (ABC)
Activities of daily living (ADL), 110, 173
Active support surfaces, 291
Active rehabilitation, 506
Active-assisted exercises, 532–533
Active rehabilitation, 506
Active support surfaces, 291f, 292–293, 296
Air fluidized, 292
Alternating air pressure, 292–293
Activities of daily living (ADL), 110, 173
Activities-specific Balance Confidence (ABC) Scale, 204, 207f, 208f
Activity-based therapies (ABTs), in community active-assisted exercises, 532–533
assessment and outcome measures, 533–534
conventional rehabilitation, 527, 528f
definition, 527–528
developmental postures, 531, 531f
dosage, 533
functional electrical stimulation, 530–531
gait training, 529–530, 529f
goals, 528
locomotor training (LT), 529–530, 529f
multimodal activity-based therapy, 528–529
neuromuscular electrical stimulation (NMES), 530–531
practical aspects of, 534
rehabilitation strategies, 525
strength and aerobic training, 531–532
vibration, 531
Activity, definition of, 526
Activity-dependent recovery model, 527–528
Activity limitations, 529, 533, 535
Activity of daily living (ADL) training mode, 565–566
Actuators, 564, 567–568, 571
Acute respiratory distress syndrome (ARDS), 132
Acute SCI, 79, 162–164, 397–398
cytokines in, 164
miRNAs in exosomes, 167, 167f
natural history of patients, 218, 218f
surgical management, 217, 219–220
urinary management during, 277, 279f
Addictive effect, 386
Adreno-associated virus (AAV), 414
Adenoviruses (AdVs), 413
Adipose MSCs, 400
Adjustable rotational beds, 293
Advanced Trauma Life Support (ATLS) principles, 8
Advance Robotic Therapy Integrated Centers (ARTIC) network, 568
Adverse effects, in phenol neurolysis, 341
Aerobic exercises, 388, 531–532, 532f
Agarose-carbomer-based hydrogels, 557–558, 558–559f
Age, falls and, 119
Aggrecan, 327–328
Air fluidized support surface, 293
Air-filled mattress, 291
Alpha-7 nicotinic acetylcholine receptor (α7nAChR), 447
Alpha-2 adrenergic agonist, 44–45f
Alpha-7 nicotinic acetylcholine receptor (α7nAChR), 447
Alternating air pressure support surfaces, 292–293
Alzheimer’s disease (AD), 331, 447
Ambulatory, 126
Ambulatory exoskeletons, 568–570
American Physical Therapy Association, 204
American Spinal Injury Association (ASIA), 317, 481
American Spinal Injury Association (ASIA) grading scale, 6–7
Amino acids, 438–439
Amitriptyline, 44, 44–45f
Amygdala, 42–43
Amyloid precursor protein (APP), 447
Amyotrophic lateral sclerosis (ALS), 405
Anal reflex, 270
Anatomic localization, 339
Angiogenesis, 400, 406
Animal-derived ESCs, 398–399
Animal models, 17
Anorectal biofeedback, 267
Anorectal distention, 231–232, 233f
Anorectal manometry, 261
Antagonist muscle, 113
Antegrade continence enema, 267
Anterior cord syndrome, 225
Anterior interosseous nerve (AIN) transfer, 306
Antibiotics
for respiratory infection, 140
for urinary tract infections, 138
Anticipatory postural control, 201–202f, 210
Anti-coagulant agents, 74, 74f
Anticoagulation, in venous thromboembolism, 74
after initial management, 75–77
duration of, 77–78
Antidepressants
for neurogenic bowel, 263
for neuropathic pain, 44, 44–45f
Antiepileptics, for neuropathic pain, 43–44
Antigravity muscle, 113
Anti-incontinence surgery, 282
Anti-inflammatory effects, 427–428, 428f
Anti-oxidant effects, 429, 429f
Antispasticity medications, 46
Aptixaban, 74, 75
Apoea hypopnea index (AHI), 148f, 149, 150f
Apoplexy, 397–398, 404–406, 438–439, 441
A proliferation-inducing ligand (APRIL), 165, 165f
Areal bone mineral density (BMD), 85
Areflexic bowel, 260
Areflexic neurogenic bowel, 266
Arm crank ergometer (ACE), 516, 516f
Arnecko devices, 565–566
Arnecko Power, 565–566
Arnecko Spring, 565–566, 566f
Arthrodexis, 301, 310
Artificial urinary sphincter (AUS), 282
ASIA Impairment Scale (AIS), 85

587
Asomatognosia, 28
Assist as needed, 565–566, 569, 571
Assistive technology, 504
Astrocyte expressing aquaporin-4 (AQP4), 439–441
Athletic performance, vitamin D and, 458
At-level neuropathic pain, 42f, 47
ATP synthesis, 360
Atrophy, 63
Augmentation cystoplasty (AC), 281
Autologous transplantation, 400–401, 406
Automaticity, 526
Autonomic dysfunction, 239
Autonomic dysreflexia (AD), 229–230, 232f, 239
Autonomic nervous system, 239–240
Autophagic flux, 382
Autophagy, exogenous melatonin effects, 376–377, 377f
Autopsy, 316
Axonal growth, 367
Axonal regeneration, 350
Axonal sprouting, 471
Axon membrane fusion, 314
Baclofen, 44
Bcl-2-associated X protein (Bax), 439
B-cell maturation antigen (BCMA), 165, 165
B-cell transplantation of, 467
B-cell activating factor (BAFF), 165, 165
B-cell maturation antigen (BCMA), 165, 165
Bcl-2-associated X protein (Bax), 349–441
Bed-making, 293–294, See also Support surfaces
Below-level neuropathic pain, 42f, 47
Benzodiazepine, 44
Bi-level PAP, 152
Bidirectional miRNAs, 165
Bidirectional sensory signaling, 29, 28
Biflucan, 327–328
Bi-level PAP, 152
Biodex dynamometer systems, 520
Biofilm, 138
Biological, Behavioral, Social & Economic, and Environmental (BBSE) Model, 119, 119
Biological disease-modifying anti-rheumatic drugs (bDMARDs), 140–141
Biomarkers, 163–165, 168, 193–194, 193f
exosomal, 167, 167f
inflammatory, 194
microRNAs, 165–167, 166f
as predictor for treatment, 168
Biomechanics, spine, 15–16
Biotinylated dextran amine (BDA), 352
Bisacodyl, for defecation, 264f, 265
Bisphosphonates, 87, 91
Bladder cancer, surveillance for, 281
Bladder compliance, 283
Bladder neck closure, 282
Bladder neck reconstruction (BNR), 282
Bladder neck sling (BNS), 282
Blood oxygen level-dependent (BOLD), 100
Blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI), 465
Bloodstream infection, 134, 142
Blood tests for bowel dysfunction, 261
for renal dysfunction, 276
Body composition, 266
Body illusions, 34, 34–35f
Body ownership, 28, 29f, 36
Body representation (BR), 28–30, 34–35f
Mental Body Rotation paradigm, 29
rehabilitation, effects of, 32–33
rubber-hand illusion, 28–29, 28f
Body schema, 34–35f, 36
Body-view enhancement effect, 29, 36
Body-weight exercises supported treadmill training (BWSTT), 88
Body weight support system, 568
Bodily experience, 331
Bone demineralization, 84
Bone health, 456
Bone marrow-derived MSCs, 400
Bone mass index (BMI), 85
Bone mineral density (BMD), 85, 86f
Bone morphogenetic protein (BMP), 348–349, 355
Bone-specific alkaline phosphatase, 85
Botulinum toxin, 46, 111, 337
for neurogenic bowel, 265
Bowen disease, 269
Bowel dysfunction. See Neurogenic bowel (NB)
Bowel program, 239, 266, 266f
spinal cord epidural stimulation, 238
Brachioradialis (BR), 305
Bradicardia (BR), 305
Braden Scale, 60
Brain atrophy, 99
Brain computer interface (BCI), 479, 569
Brain-derived neurotrophic factor (BDNF), 398–399, 417, 439–441, 443–447, 477
Brain functional connectivity, 100–101
Brain ischemia, 442–443
Brain-machine interface systems, 225
Bulbocavernous reflex, 270
Bulb-forming laxatives, 264–265f, 265
Burst injury, 18, 19f
Caffeine, 438–439
Calcitriol, 453
Calcium, 459
Calcium-binding proteins, 197
Canadian Rick Hansen Spinal Cord Injury Registry (CRHSCR), 222
Canadian Wheelchair Sports Association, 458
Canine trial, 317, 318f
Cannabinoids, for neuropathic pain, 44
Cannabis, for neuropathic pain, 43, 44–45f
Carbohydrate-Active enZymes Database (CAZY), 328–329, 331
Carbonic acid (H2CO3), 365
Carbon monoxide (CO), 365
Cardiometabolic comorbidities, 386–387
Cardiometabolic health, 388–392
Cardiorespiratory endurance testing, 515–518, 521
Cardiovascular autonomic regulation, 238
Cardiovascular disease, 389–390
Cardiovascular dysfunction, 231–232
Cardiovascular neumodulation, 238
Carpotomacarpal (CMC) joint, 305–307
Caspase-3, 439–441, 442f
Catalolism, 63
Catalse (CAT), 441–442
Catalytic efficiency, 330–331
Catch, 113
Catechins, 438–439, 447
Cathepsinization, 382
Caudal equina syndrome (CES), 225
Caudalized neural progenitor cells, transplantation of, 467–469, 468f
CD95/Fas/CD95L), 164
Cell-adhesive peptides, 551
Cell aggregation, 314
Cell fusion process, 314
Cell transplantation, 479, 480f
Central cord syndrome (CCS), 17, 23, 224–225, 224f
Central nervous system (CNS), 347–348, 368, 462, 471
disorders of, 353, 354f
Central pattern generators (CPGs), 315, 526, 566
Central sleep apnea (CSA), 148, 155
Cerebral ataxia, 113
Cervical SCI, 18, 19f
Cervical spine compression, 95, 103
Sleep-related breathing, 149, 149f
surgical decompression, 223
Cervical spine compression, 95, 103
Cervical spine flexion, 95
Cerebral atrophy and, 99
brain functional connectivity and, 100–101
causes, 96f
neural plasticity and, 99–100
white matter damage and, 101–102
Index

Designer receptor exclusively activated by designer drug (DREADD), 464
Desipramine, 44
Desolvation method, ... 118
risk assessments, 122–124, 123f
risk factors, 120, 120t
social and economic factors, 120
Steiner, 341, 343
Dysautonomia, 132
Dynamometers, 516
Dynamin-related protein 1 (DRP1) inhibitor, 202, 210
Dynamic stability, 202, 210
Dynamic spinal canal encroachment, 21, 23
Duloxetine, 44, 44
Dynamic energy X-ray absorptiometry (DEXA), 464
Drug delivery system, 560
Dorsal column injury, 464
Dorsal injury, 464
Dorsal root ganglion stimulation (DRGS), 464–47
Dorsal transsection, 355
Dorsalateral CST spouting, 464
Drug delivery system, 560
Dual-energy X-ray absorptiometry (DEXA), 84–85, 86f, 91
Dual-task, 126
Duloxetine, 44, 44–45t
Dynamic spinal canal encroachment, 21, 23
Dynamic stability, 202, 210
Dynamin-related protein 1 (DRP1) inhibitor, 363
Dynamometers, 516–517
Dynamometry, 522
Dysautonomia, 132
Dysesthesia, 341, 343
Dysphagia disorders, 139f, 142

E
Early surgical decompression (ESD), 217–218, 222
correct versus incomplete SCI, 222–223
neurological level, effects on, 223–224
Early threshold, surgery, 221
Early vs. late surgery post SCI, 220
Economic burden, 386
Economy of Action principle, 32
Edoxaban, 74, 75–77
Educational control (EC), 495–497, 496–497t
Ekso Bionics, 569
Elderly SCI, 275–276
Electrical stimulation (ES), 314–315, 322, 430–431, 479, 484
for neurogenic bowel, 263, 267
osteoporosis-related fractures, 88–89
in spasticity, 111
Electroencephalogram (EEG), 478
Electromyography (EMG), 338–339
Electronic health (eHealth), 541–542, 545
Electron resonance spectrometry, 375
Elzanumab (ABT-555), 348–349
Embryonic stem cells (ESC), 398–399
animal-derived, 398–399
human-derived, 399
limitations, 399
Emulsion, 553, 560
End-effector design, 567
End effector devices, 567
End effector devices, 567
Endocrine Society, 454
Endogenous anti-oxidants, 448
Endogenous melatonin, 378–380, 380f, 381t
Endothelial cells, 365–366
Epilepsia, 165, 165t
Exocarpin, 71, 74
Enteric nervous system (ENS), 259–260
Enterocystoplasty, 281
Entrenched plasticity, 317
Envelopment, 289
Environmental barriers, 502
Enzyme immobilization, 330
Enzyme-linked immunosorbent assay (ELISA), 478
Enzyme therapy, chondroitinase ABC I (cABC I) for, 330
Epidual space, 253f, 255
Epidual spinal stimulation. See Spinal cord epidural stimulation (scES)
Epigallocatechin-3-gallate (EGCG)
brain ischemia, 442–443
chemical structure of, 438f
half-life of, 438–439
in vitro neuroprotective effects, 441–442, 444t
in vivo neuroprotective effects, 439–441, 439–440t
intrahepatic administration of, 439–441, 443–448
nerve injury, 443–447
neurodegenerative diseases, 447
neuroprotective effects, 441–442, 445–447t, 447
overview, 438–439
EQ-3D, 184
EQ-SD, 181r, 184
Equalizer bench press equipment, 519, 519f
Ergocalciferol, 459
Ergosterol, 453
ESC. See Embryonic stem cells (ESC)
Estrogens, 482
EuroQol, 184
Excitotoxicity, 397–398, 406
Exercise(s), 478
active-assisted, 532–533
aerobic, 388, 531–532, 532f
benefits of, 387–388
and chronic pain, 43
equipment, 514
guidelines, 388–389
melatonin and, 378, 379f
for osteoporosis-related fractures, 87–88
participation, 389
for PwSCI, 514
spasticity and, 112
Exercise testing, 514–515
general considerations for, 515
importance of, 514
Exercise therapy, 527
Exogenous melatonin, in spinal cord injury (SCI), 374–377, 374f
autophagy, 376–377, 377f
inflammation, 376
oxidative stress, 375, 375f
Exoskeleton-type devices, 564, 571
Exosomal biomarkers, 167, 167t
Experimental autoimmune encephalomyelitis (EAE) model, 168, 353, 355
Explicit body ownership, 34–35t
Extensor carpi radialis longus (ECRL), 304
Extensor communis digitorum (ECD) tenodesis, 306
Extensor digitorum minimi (EDM), 307–308
Extrinsic polymis longus (EPL) tenodesis, 305–306, 308
Extensor proprius indici (EPI), 308
Extensor tenodesis, 306, 308
External anal sphincter (EAS), 259–260
Spinal cord epidural stimulation (scES)
Extracellular matrices (ECMs), 315–316, 325, 466, 549–550
Extracellular matrix-based hydrogels, 552
Extracellular signal-regulated kinases (ERKs), 430
Extracellular vesicles (EVs), 167
Extraphysiological space, 32, 34–35t, 36
Extraketaphyke functions, 457
Extrinsic spasticity, 108, 113
Ex vivo gene therapy, 465–466

F
Facet dislocations, 19–20
Failed back surgery syndrome (FBSS), 247, 255
Fall-related injuries, 122
Falls, 117, 126
behavioral risk factors, 119–120
biological risk factors, 119
circumstances, 119–120
consequences of, 120–122, 121t, 126
environmental risk factors, 120
frequency of, 117–118, 118t
intervention programs, 124, 125t
physical consequences, 120–121, 121t
psychosocial consequences, 121–122
recurrent, 118
risk assessments, 122–124, 123f
risk factors, 120, 120t
social and economic factors, 120
societal consequences, 121–122
traumatic spinal cord injuries and, 4–5
Falls Efficacy Scale-International (FES-I), 124
Family caregivers, 493
Fampridine, 265
Fatty acid synthase (FASN), 439–441
Fear of falling (FOF), 200
assessment, 124
definition, 121–122
Fecal Incontinence and Constipation Quality of Life (FICQOL), 181–182
Fecal Incontinence Quality of Life questionnaire, 261
Fecal Incontinence Quality of Life Scale (FQOLS), 181–182
Female Sexual Function Index (FSFI), 181–182

Functional electrical stimulation (FES), 88
Functional drug delivery, 330
Functional connectivity, brain, 100
Functional capacity, 515
Full walking capacity, 205, 206
Frequency volume chart (FVC), 276, 277
Fractures
fragility, 83, 91
morphology of, 11
osteoporosis-related (see Osteoporosis-related fractures)
Freedom-8A, 254
Freeman-GEMINI approach, 316, 322
Free radical scavenging, 438–439, 447
Free sural nerve transplantation (FSNT), 318
Frequency volume chart (FVC), 276, 277, 283
Fronto-parietal “mirror” network, 28, 30
Full walking capacity, 205, 206
Functional capacity, 515
Functional connectivity, brain, 100–101
Functional drug delivery, 330
Functional electrical stimulation (FES), 88–89, 479, 530–531, 530f, 564, 569–570
Functional Independence Measurement (FIM), 183
Functionalization, 560
Functional magnetic resonance imaging (fMRI), 99, 103, 478
cervical spondylotic myelopathy, 99–100
Functional mobility, 119

Functional Reach Test (FRT), 207f, 208
Functional reorganization. See Neural plasticity
Functional walking, 205, 206
Functioning, 186
Function in Sitting Test (FIST), 123–124, 123f
Fusogens, 314, 322

G
Gabapentin, for neuropathic pain, 43–44, 44–45t
Gait training, 126, 529–530, 529f
Game therapy, 565–566
Gastroparisiasis, 238–239
Gate control theory of pain, 247, 247f
Gelfication, 553
gemini mattresses, 291
Gemini hydrogelation, 315–316
GEMINI spinal cord fusion protocol, 322
clinical translation, 315–317
electrical stimulation, 314–315
fusogens, 314
human trial, 317–322
hypergelation, 315–316
overview, 311, 314–316
resection-apposition (Freeman-GEMINI approach), 316
for spinal cord injury, 322–323
spinal cord transplantation, 316–317
Gene therapy, 419
Geneva score, 72
Genitourinary dysfunction, 540
Genome-wide association, 328
Glioblastoma (GBM), 328, 331
gliosis, 425
Glycosaminoglycans (GAGs), 325
Glycerine, for defecation, 264
Glutathione (GSH), 374
Global Burden of Disease Study, 3
Gliosis, 425–426, 432
Global Burden of Disease Study, 3
Glutathione (GSH), 374
Glycerine, for defecation, 264, 265
Glycosaminoglycans (GAGs), 325, 326, 326f, 331
degradation of, 328–329
distribution and functions of, 326–327
Goal Attainment Scaling (GAS), 503–504
Golgi-Cox analysis, 378
Gonadotropin-releasing hormone (GnRH), 481
Go-2 system, 254
Graduated compression stocking (GCS), 72
Gray matter, 42–43
Gray matter (GM) atrophy, 99
Green tea polyphenols, 438–439
Growth differentiation factor 5 (GDF5), 348–349
Growth factors, 164, 165
Growth hormone (GH), 482

H
Half-life, 330–331
Hank exoskeleton, 569, 570f
Haptic feedback, 564, 571
Health, 186
Healthcare burden, 386, 391
Health care systems, 492
Health disparity, 387, 392
Health literacy, 507–508
Health-related quality of life (HRQOL), 175, 186
Heme oxygenase-1 (HO-1), 365, 432
Hemojuvelin, 347–348
Heparin, 74t
Heparinase, 328
Heparin/heparin sulfate (Hep/HS), 325
HERDOO2, 77
Herpes simplex virus (HSV), 414
Hesitum rule, 77, 78t
High-intensity interval training (HIIT), 391–392
able-bodied individuals, 389–390
health benefits of, 389–391
with spinal cord injury (SCI), 390
telehealth strategies, 390–391
High mobility group box 1 (HMGB1), 163–165
Horizontal stiffness, 290
Hospital Depression and Anxiety Scale, 183t
Human-derived ESCs, 399
Human trial, 317–322
Human Universal Load Carrier (Hulc), 569
Huntingtin gene (Htt), 469
Huntington’s disease, 405
Hyaluronic acid (HA), 325, 549–551
Hyaluronidases, 328
Hybrid Assistive Limb (HAL), 569
Hydrogels, 549–550, 560
ECM-based, 552
and scaffolds, 550–552
Hyaluronases (EC 3.2-1.-), 328
Hyaluronaphrose, 239
Hydrophobic-coated catheter (HCC), 283
25-Hydroxyvitamin D, 85, 453–454, 456f, 457
Hyperextension cervical trauma, 17, 17f
Hyperextension injury, 19, 19f
Hyperinflammatory syndrome, 132
Hyperreflexic bowel, 260
Hypertonia, 113
Hypertrophic ligamentum flavum, 17, 23
Hypolactobaciluminaemia, 62, 64
Hypotension
cardiovascular dysfunction and, 231–232
pressure injury and, 62
Hypothalamic-pituitary-adrenal axis, 142
dysregulation of, 134
Hypoventilation, 148
I
Ileocystoplasty, 281
Ileostomy, 267–269
iMHere mHealth App, 544–545, 544f
Imipramine, 44
Immersion, 289
Immunity, role of, 404–405
Immunodepression, 142
Immunohistochemical analysis, 376
Immunosuppression, spinal cord injury-induced, 132, 143
HPA axis dysregulation, 134

This book belongs to Filippo Rossi (filippo.rossi@polimi.it)

Copyright Elsevier 2022
Immunosuppression, spinal cord injury-induced
(Continued)
sympathetic nervous system dysregulation,
133–134, ... mitochondrial dysfunction
and, 362–366
definition, 360
endothelial cells, 365–366
inflammation, 367
592 Index

This book belongs to Filippo Rossi (filippo.rossi@polimi.it)

International Classification for Surgery of the
Intermittent self-catheterization (ISC), 135
Intermittent pneumatic compression devices
Intensive care unit (ICU) beds, 9, 10
Insulin-like growth factor 1 (IGF-1), 481, 484
Insulin-like growth factor (IGF), 194
Institutes of Medicine (IOM), 454
Inflammatory biomarkers, 194
Inferior vena cava filters (IVCF), 72, 77
Infection, in spinal cord-injured patients, 134,
Inertial measurement units (IMU), 205
Indwelling catheterization, 279, 280
Inducible nitric oxide synthase (iNOS), 376,
Induced-pluripotent stem cells (iPSCs), 401, 479
Indirect injury, 16, 23
International Index of Erectile Function (IIEF),
International Continence Society Urodynamic
International Classification of Functioning,
International Classification of Functioning
International Standards for Neurological
Classification of Spinal Cord Injury
(ISNCSI), 60–61
Inter-system scES, 237, 237/
Intramuscular delivery, 416
Intraneural delivery, 416
Intraparenchymal delivery, of viral vectors, 414,
Intra-spinal stimulation, 235–236/
Intrathecal administration, of EGCG, 439–441,
Intrathecal baclofen (ITB) pumps, 337, 344
Intrathecal delivery, of viral vectors, 416
Intrathecal medication, in spasticity, 111
Intravenous delivery, of viral vectors, 416
Intrinsic phasic spasticity, 108, 113
Intrinsic sphincter deficiency (ISD), 275,
Intrinsic tonic spasticity, 108
Ischemia, 63, 360, 369
Ischemia-reperfusion injury (IRI), 439–441
Ischemic necrosis, 397–398
Isokinetic testing equipment, 520f, 522

Janus kinase inhibitors (JAKi), 140–141

Keratan sulfate (K), 325

Laminecply, 220, 317–318
Lateral cutaneous nerve, of forearm, 340
Late threshold, urgency, 222
Lectican family proteoglycans, 327–328
Lentiviral vectors, 414
Lentivirus (LV), 414
Lesion site, 313
Life Satisfaction Questionnaire (LISAT), 181f,
Ligand–receptor interactions, RGMa, 348–349,
Linacotide, for neurogenic bowel, 265
Lipid peroxidation (LPO), 375
Lipids, 314
Lipopolysaccharide (LPS), 442
Locomotor recovery, 330–331
Locomotor training (LT), 529–530, 529f
Lokomat, 567, 568f
LOPES, 567
Louisville forced swim test, 439–441
Low-air-loss support surfaces, 291–292
Lower extremity targets, for phenol neurolysis,
340–341, 341f
Lower limb robots, 566–568, 567f
Lower limb ultrasonography, 73
Lower limb venography, 73
Lower motor neuron NB syndrome, 260
Lower urinary tract (LUT), 275
Lower urinary tract (LUT) dysfunction.
See Neurogenic lower urinary tract
dysfunction (NLUTD)
Low-molecular-weight heparin (LMWH), 71, 75
Lubiprostone, for neurogenic bowel, 265
Lumbosacral scES, 237
Lyses (EC 4.2.2–), 328

Maceration, 63
Macro- and micro-vasculature, 58f, 59
Macrophage inflammatory protein 1-alpha
(MIP-1α), 439–441
Macrophage migration inhibiting factor (MIF),
163–165
Macrophages, 398
Magnetic resonance imaging (MRI), 317
cervical spondylotic myelopathy, 96–97
complete SCI, 219f
traumatic spinal cord injuries, 7
Magnetic stimulation, in spasticity, 112
Malondialdehyde (MDA), 374, 429, 439–441
Mammalian target of rapamycin (mTOR), 467
Mandibular advancement splints (MAS), 152
Manganese (Mn), 364
Manual rectal evacuation (MRE), 263, 264, 266
Matching-to-sample experiments, 30
Matrix metalloproteinases (MMPs), 193t,
442–443
Mattress
air-filled, 291
foam, 290–291
gel, 291
Mean diffusivity (MD), 101
Mechanical load, 296
Mechanostat theory, 87
Megadose delivery, 431–432
Melatonin, 153, 153f, 482
clinical application of, 380
and exercise, 378, 379f
neurohormone, 374
Membrane modification, 314
Mental Body Rotation paradigm, 29, 36
Mesenchymal stem cells (MSCs), 400–401, 479,
550–551
adipose tissue-derived, 400
bone marrow-derived, 400
umbilical cord-derived, 400–401
Metabolic syndrome, 389–390, 534
Metacarpophalangeal joint, 306, 309
Metalloproteinases, in sub-acute stage, 164,
165f
Micro-climate, 290
Micro-connector system, 316
Microglia, 398, 406
MicroRNAs, 165–167, 166f, 169
Microtubule-associated protein 2 (MAP-2), 193f
Middle cerebral artery occlusion (MCAO), 355
Mild cognitive impairment (MCI), 498
Mini-Balance Evaluation Systems Test (mini-
BESTest), 204, 207f, 209
MIT MANUS, 565
Mitochondrial biogenesis (MB), 361–362, 362f,
369
astrocytes, 363–365, 365f
axonal growth, 367
body composition, 366
cell type-specific mitochondrial dysfunction
and, 362–366
definition, 360
dendothelial cells, 365–366
inflammation, 367
Index

Recurrent urinary tract infection, 135, 142
Reeve Foundation’s Neurorecovery Network (NRN), 528
Reflex neurogenic bowel, 266
Regenerative sprouting, 471
Regulatory bodies, 578, 578-579
Rehabilitation, 564, 569
active, 506
chronic disease management, 539–540
definition, 9–10
electronic health (eHealth) technology, 541–542, 545
mobile-health (mHealth) apps, 541–542, 546
osteoporosis-related fractures, 87–90
secondary conditions, 540, 540f, 545
self-management interventions, 540–541, 545
with spinal cord stimulation, 248
testing equipment, 520
transitional rehabilitation (TR) program, 503–504, 503f
traumatic spinal cord injuries, 9–11
vocational, 507
Remote delivery, 414, 416, 419
RoboAmbulator, 567
RoboGio system, 565
Repetitive training, 526–527
Repetitive guidance molecule-a (RGMa)
axon guidance molecule, 348f
central nervous system (CNS), 347–348, 353, 354f
characteristics of, 348–349
clinical studies, 352–353
definition, 347, 348f
downstream signaling of, 348–349, 349f
inhibition of, 355
ligand–receptor interactions, 348–349, 349f
primates, 352, 352f
receptor mechanism for, 347
rods, 350–351, 350f
in spinal cord injury, 350–352, 351f
Resection-apposition, 316
Respiratory disturbance index (RDI), 149f
Respiratory infections. See Pulmonary infections
Resting-state functional MR imaging (RS-fMRI), 100, 103
Resting-state networks (RSNs), 100
Restless leg syndrome (RLS), 154–155
Restoreadvanced Surescan MRI stimulator, 251
RestoreSensore Surescan stimulator, 251, 252f
RestoreUltra SureScan, 251
Retinotectal projection, 347, 355
Retrograde transport, 416
Reusable catheter, 284, 284f
Rewiring hindlimb CST, 465
RGMa. See Repulsive guidance molecule-a (RGMa)
RhoA activation, 349, 355
Rho guanine nucleotide exchange factor (Rho GEF), 349
Rivaroxaban, 74f, 75
Road traffic injuries (RTI), 5
Robotic exoskeleton, 88
Robotics
ambulatory exoskeletons, 568–570
Armeo devices, 565–566
device, 570
end effector devices, 567
lower limb robots, 566–568, 567f
MIT MANUS, 565
ReoGo system, 565
stationary exoskeletons, 567–568
upper limb robots, 564–566, 565f
Roller-based systems, 516–517, 517f
Rostral ventromedial medulla (RVM), 239–240
applications, 233, 238–239
in bowel program, 238
Rubber-hand illusion, 28–29, 28f, 36
S
S100A9, 165, 165f
Sacral anterior root stimulation (SARS), 267, 269f, 282
Sacral neuromodulation, 233–237, 267
Sacral neuromodulation (SNM), 282
Sacral NLUTD, 275
Salting out, 553
Salt-leaching method, 551
Sample size, 389
Self-tailoring, 541
Salt-leaching method, 551
Sample size, 389–391
Snth1 gene, 464
Snth2 gene, 464
Satisfaction with life survey (SWLS), 179–181, 183–184
S100b protein, 191, 193f
cerebral SCI and, 149, 149f
diagnosis of, 113
in cervical SCI, 149, 149f
in spinal origin, 113
clinically important, 149–151, 150f
clinical management, 152–153
prevalence of, 148f, 149
Smarthphone technology, 539
Smoking, pressure injury and, 62
Sodium phosphate, for defecation, 264
Soluble CD95 ligand (sCD95L), 194
Solvent evaporation, 553
Somaticaparaphrenia-like sensation, 30
Somatosensory evoked potentials (SEP), 317–318
Space representation, 32, 34–35r
rehabilitation, effects of, 32–33
Spasms, 108, 113
Spasticity, 107, 114, 186, 337, 343, 540, 545
cerebral vs. spinal origin, 113
diagnosis of, 113–114
functional assessment, 109–110, 110–110r
incident, 107
management protocol for, 112–113
manifestations of, 108
modalities of treatment, 110
outcome measures, 112
pathophysiology, 107–108
prevalence, 107
Spinal Cord Assessment Tool Spastic reflexes (SCATS), 108, 109r
in spinal cord injury, 338f, 338r
subjective evaluation, 10r
tone measurement, 108
treatment, 110, 114
treatment failure, 112
ultrasound, 110
Spatio-temporal delivery, 419
Spinal Cord Assessment Tool Spastic reflexes (SCATS), 108, 109r
Spinal cord epidural stimulation (scES), 570–570
applications, 233, 238–239
in bowel program, 238
Shear force, 56–57, 63
Shires-GEMINI approach, 316–317, 322
Shockwaves, 111
Short form 12 (SF-12), 176–178r
Short Form 36 (SF-36), 176–178r, 182–183, 185
Short form 6-disability (SF-6D), 176–178r
Short form 36 veterans/SCI (SF-36 V), 176–178r, 182–183
SH-SY5Y cell line, 441
Sickness Impact Profile, 176–178r, 183r
Signal transducer and activator of transcriptions (STAT), 427–428
Silicon catheters, 284, 284f
Single-stranded DNA (ssDNA) viruses, 414
6-Min arm test (6-MAT), 517–518, 518f
6-Min push test (6MPT), 518
6-Minute walking test (6-MWT), 123, 123f
Skin changes, 58–59, 58r
Sleep, 155
disorders of, 147
periodic leg movements of, 154
Sleep-disordered breathing (SDB), 148–149, 148f, 155
cervical SCI and, 149, 149f
clinical impacts, 149–151, 150f
clinical management, 152–153
prevalence of, 148f, 149
Smartphone technology, 539
Smoking, pressure injury and, 62
Sodium phosphate, for defecation, 264
Soluble CD95 ligand (sCD95L), 194
Solvent evaporation, 553
Somatosensory evoked potentials (SEP), 317–318
Space representation, 32, 34–35r
rehabilitation, effects of, 32–33
Spasms, 108, 113
Spasticity, 107, 114, 186, 337, 343, 540, 545
cerebral vs. spinal origin, 113
diagnosis of, 113–114
functional assessment, 109–110, 110–110r
incidence, 107
management protocol for, 112–113
manifestations of, 108
modalities of treatment, 110
outcome measures, 112
pathophysiology, 107–108
prevalence, 107
Spinal Cord Assessment Tool Spastic reflexes (SCATS), 108, 109r
in spinal cord injury, 338f, 338r
subjective evaluation, 10r
tone measurement, 108
treatment, 110, 114
treatment failure, 112
ultrasound, 110
Spatio-temporal delivery, 419
Spinal Cord Assessment Tool Spastic reflexes (SCATS), 108, 109r
Spinal cord epidural stimulation (scES), 239–240
applications, 233, 238–239
in bowel program, 238
Copyright Elsevier 2022
cardiovascular, 238
lumbosacral, 237
motor and autonomic function restoration, 234f
pre-clinical and clinical studies, 235–236f
Spinal Cord Independence Measurement III (SCIM-III), 122–123, 123f, 183f
Spinal cord injury (SCI), 91, 147, 162, 322, 391, 439–441
cardiometabolic comorbidities, 386–387
chondroitinase ABC1 (cABC1) and, 329–330
chronic, 402–404f
clinical trials, 402–404
exercise benefits, 387–388
exercise guidelines, 388–389
exercise participation, 387–388
healthcare and economic burden, 386
high-density interval training in, 390
immunity, role of, 404–405
incidence and prevalence, 385
immunity, role of, 404–405
medical issues after, 259–260
multiple family group treatment for, 494
pathophysiology, 162
risk factors, 386, 387f
severity of, 218
stem cell, 399, 405f
treatments for, 397
Spinal Cord Injury-Fall Concerns Scale (SCI-FCs), 124
Spinal Cord Injury Independence Measure (SCIIM), 533
Spinal Cord Injury Spasticity Evaluation Tool (SCI-SET), 109, 109f, 181–182, 185
Spinal Cord Injury Without Radiographic Abnormality (SCIWORA), 16
Spinal Cord Lesion-related Coping Strategies Questionnaire (SCL-CSQ), 183f
Spinal Cord neural progenitor cells (SC-NPCs), 430
Spinal cord stimulation (SCS), 47, 233, 255
application of, 255
principles of, 247–248
rehabilitation with, 248, 248f
significance of, 253
Spinal cord stimulators, 248–251, 252f, 255
surgical implantation, 248, 253–254, 253f
Spinal cord transplantation, 316–317
Spinal shock, 113, 162
Spinal stiffness, 113
Spinal Trauma Study Group, 18–19
Spine-shortening vertebral osteotomy technique, 316
Sports-related injuries, 6
Sprint interval training (SIT), 389–390
Stable spine, injury in, 16–17, 17f, 22–23
Stage phases, 567, 571
Standing and Walking Assessment Tool (SWAT), 204–207, 206
Standing capacity, 205, 206f
STACSID, 223
Static stability, 201, 210
Static strength testing, 518–519
Stationary exoskeletons, 567–568
Stem cells, 398, 430
Stem cell therapy, 430–431
Stem cell transplantation, 397, 402–405
Stimulant laxatives, 264–265f, 265
Stool softeners laxatives, 264–265f
Strengthen exercise, 388
Strength training, 531–532, 533f
Stroke, 107
Subacute SCI, 162–164, 397–398
Subcortical cervical spine injuries, 18–20, 20f
Submaximal field tests, 517–518
Substance abuse, pressure injury and, 62
Substantia nigra (SN), 353
Sun protection factor (SPF), 453
Supraspinal pathways, 48
Supra-pubic catheterization, 279
Suprapubic catheter (SPC), 135
Superoxide dismutase (SOD), 374, 441–442
Support surfaces, 287, 287f, 296
Supramarginal gyr (SMG), 100
Supra-pubic catheterization, 279
Supra-sacral NLUTD, 275
Supraspinal pathways, 48
Surgery
antero/posterior approaches, 219, 219f
central cord syndrome, 224, 224f
early threshold, 221
instrumentation devices, 220, 221f
late threshold, 222
for neurogenic bowel, 267–269
for neurogenic lower urinary tract dysfunction, 281–282
procedures, 219–220, 220f
in spasticity, 112
ultra-early threshold, 221
Surgical decompression (SD), 226
Surgical decompression and segment fixation (SDFS), 217, 220f
Temporal Occlusion Paradigm, 30
Transcutaneous electrical stimulation (TENS), 22, 22f
Tendon, 301, 310
Tendon-vibration illusion, 31, 34
Tendon transfer, 301, 310
Tendon–vibration illusion, 31, 34–35f
Tenodesis, 301, 310
Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining method, 439–441
Tetanic, 327–328
Tetramethylpyrazine (TMP), 366
Tetraplegia, 225, 378–380, 382, 385–386, 391f
definition, 309
nerve and tendon transfers in, 301, 302–303f
sleep-disordered breathing in, 148–149, 148f
Tetraplegics, 29, 29f
Tjflp2 gene, 464
Therapeutic hypothermia, 430–431
Therapeutic neuromodulation, 46
Therapeutic nihilism, 577, 585
Therapeutic walking capacity, 205, 206f
36-Item Short Form Survey, 261
Thoracic spine injuries, 20, 21f
Thoracic/thoracolumbar SCI, 218–219
surgical decompression, 223
Thoracolumbar spine injuries, 21–22, 22f
Thyrotropin-releasing hormone (TRH), 482
Time-dependent injury, 304f
Timed Up and Go (TUG), 122–123, 123f
Time-independent injury, 304f
Time in therapeutic range (TTR), 74–75
Tissue engineering, 560
Tizanidine, 111
Tone measurement, 382
Tonus, 113
Tramadol, 44
Transabdominal ultrasonography, 277f, 280
Transanal irrigation (TAI), 267, 268f, 270
Transcranial direct current stimulation (tDCS), 46–48
Transcutaneous electrical stimulation (TENS), 535
Transcutaneous stimulation, 235–236f, 239
Transfer Assessment Instrument (TAI), 124–124, 123f
Transforming growth factor beta (TGF-β), 194f, 427–428
Transitional rehabilitation (TR) program, 503–504, 503f
Translation/rotation injury, 18
Transport, 504–505
Transurethral intra-detrusor injection, of
BoNT-A, 281
Transurethral sphincterotomy, 278–279, 282
Traumatic brain injury (TBI), 197, 353
multiple family group treatment for, 494
100b and, 192, 196
survivors, 498
Traumatic spinal cord injuries (TSCIs), 3, 15,
425–426, 545
computational models for, 22
diagnosis, 6–7, 7f
epidemiology, 3–4, 4f
etiology of, 4
gender distribution of, 4, 5f
global incidence, 3, 11
level and severity, 6, 7f
pathogenesis of, 15–16
pathophysiology, 245, 246f
post-acute medical care and rehabilitation, 9–11
prehospital and acute management, 8
regional distribution, 6, 7f
in stable spine, 16–17, 17f,
22 traumatic brain injury and, 11
therapeutic potential of, 480
treatment strategies, 8
traumatic brain injury and, 11
Vagal nerve stimulation, 238
Validity, 186
Vascular endothelial growth factor (VEGF),
398–399, 439–441
Venlafaxine, 44, 44–45f
Venography, 73
Venous thromboembolism (VTE), 69, 79
anti-coagulant therapy, 74–75, 74f
CT pulmonary angiography, 73–74
D-dimer test, 72
diagnosis, 72–74, 73f
epidemiology, 69–71, 70f
incidence, 70
lower limb ultrasonography, 73
lower limb venography, 73
outpatient management, 77
prophylaxis, 71–72
screening, 71
treatment, 74–78, 74f
Ventral CST sprouting, 464
Versican, 327–328
Vertebral fracture, 196
Verticality, 201, 210
Vesico-urethral reflex, 230–231, 239
Vibration, 531
Vibration, for osteoporosis-related fractures, 89
Video-urodynamic study (VUDS), 274f, 275,
277t, 283
Vienna prediction model, 77
Violence-related injuries, 6
Viral vector gene therapy, 411–414, 413f, 419
aden-associated virus (AAV), 414
adenoviruses (AdVs), 413
chondroitin sulfate proteoglycans (CSPGs),
417–418, 418f
herpes simplex virus (HSV), 414
intramuscular and intraneural delivery, 416
intraparenchymal delivery, 416
intrathecal delivery, 416
intravenous delivery, 416
lentivirus (LV), 414
neuropathic pain, 417
poliovirus, 414
routes of administration, 414–416, 415f
for therapeutic delivery, 417–418
Virtreal reality, 564, 570
Visceral pain, 42f, 47
Vitamers, 453, 459
Vitamin D, 459
active individuals with SCI, 457–458
athletic performance in athletes with SCI, 458
bone health, 456
deficiency, 453–454, 457–458
dietary sources of, 454f
extraskeletal functions, 457
fat-soluble vitamin, 454
function and physiology, 456–457
metabolism, 455f
muscle function, 457
neurological function, 457
osteoforosis-related fractures, 87
recommendations, 453–455, 456f
seasonal variations in, 453–454
and spinal cord injury, 459
supplementation, 454, 458
Vitamin D receptors (VDR), 454, 457
Vitamin K antagonists, 75
Vocational rehabilitation (VR), 507–508
Voiding, 278–279
Voltage-sensitive dye (VSD), 465
VO2peak testing, PwSCI, 515–517
VTE. See Venous thromboembolism (VTE)

W
Walking Index for SCI (WISCH-II), 109, 123,
123f
Walking Index for Spinal Cord Injuries
(WISCI), 533
Walk-Trainr, 567
Warfarin, 74f
Weight bearing activities, 531
Wells’ criteria, 72
Western blot analysis, 376–377
Wexner Continence Grading Scale, 261
Wheat germ agglutinin (WGA), 352
Wheelchair-based systems, 516
Wheelchair-based systems, 516
Wheelchair-based systems, 517
Wheelchair ergonomic, 516–517
Wheelchair Skills Test, 123–124, 123f
Wheelchair Use Confidence Scale v.3, 207–209
Wheelchair Users Shoulder Pain Index
(WUSPI), 181–182f
WheelCon, 208f
WheelMill System (WMS), 517
Wheelchair-based systems, 516–517
Wheelchair-based systems, 517
Wheelchair Skills Test, 123–124, 123f
Wheelchair Use Confidence Scale v.3, 207–209
Wheelchair Users Shoulder Pain Index
(WUSPI), 181–182f
WheelCon, 208f
WheelMill System (WMS), 517
White matter damage, 101–102
Whole-body vibration (WBV), 531, 532f
Wolf’s law, 87
World Health Organization, 454, 527
World Health Organization Global Action Plan,
540
World Health Organization quality of life
(WHOQOL-BREF), 179–181t, 184

Z
Zancalli’s “lasso procedure”, 306
Zoledronic acid, 87
DIAGNOSIS AND TREATMENT OF SPINAL CORD INJURY
THE NEUROSCIENCE OF SPINAL CORD INJURY

EDITED BY
RAJKUMAR RAJENDRAM, VICTOR R. PREEDY, AND COLIN R. MARTIN

Diagnosis and Treatment of Spinal Cord Injury will enhance readers’ understanding of the complexities of the diagnosis and management of spinal cord injuries. Featuring chapters on drug delivery, exercise, and rehabilitation, this volume discusses in detail the impact of the clinical features, diagnosis, management, and long-term prognosis of spinal cord injuries on the lives of those affected. The book has applicability for neuroscientists, neurologists, clinicians, and anyone working to better understand spinal cord injuries.

Key Features:

• Covers both the diagnosis and treatment of spinal cord injury

• Adopts a multidisciplinary approach

• Contains chapter key facts, dictionary, and summary points to aid understanding

• Features chapters on quality of life and pain

• Includes chapters on imaging, biomarkers, and stem cell and gene therapy for the treatment of spinal cord injury

• Discusses different approaches to rehabilitation