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Abstract 

In passive safety system analysis, it is important to provide the uncertainty quantification of the Thermal-

Hydraulic (T-H) code output (e.g., the amount of energy exchanged by the passive safety system during an 

accidental transient). This requires setting proper Probability Density Functions (PDFs) to represent the 

uncertainty of selected code inputs and the propagation of this uncertainty through the code. One way to 

obtain the PDF is by Inverse Uncertainty Quantification (IUQ) methods, which rely directly on experimental 

data and code simulation results. In this work, we present an innovative IUQ method based on: (i) Stacked 

Sparse Autoencoders (SSAEs) to reduce the problem dimensionality; and (ii) Kriging metamodels to lower 

the computational burden associated with the sampling of the uncertain input parameters posterior PDF 

by Markov Chain Monte Carlo (MCMC) (for which many model simulations are typically required). The 

novelty stands in the use of SSAEs for dimensionality reduction: this allows using directly the raw data 

available from experimental facilities or computer codes (typically characterized by small signal-to-noise 

ratios) without having to resort to filtering techniques, whose choice and setting are nontrivial and bias the 

results. The proposed approach is applied to the power exchanged by the Heat Exchanger (HX)  predicted 

by the RELAP5-3D model of the PERSEO facility, characterized by a small signal-to-noise ratio (SNR) value. 

Principal Component Analysis (PCA) and SSAE are compared to explain the application of these 

methodologies in the context of IUQ and highlight the main advantages and drawbacks while also showing 

the suitability to deal with non-filtered (raw) data.  

Keywords: Nuclear safety, Inverse uncertainty quantification, Bayesian inference, Kriging metamodeling, 

Autoencoders. 
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Acronyms 

ANN: Artificial Neural Network 

BCs: Boundary conditions 

BE: Best Estimate  

BEPU: Best Estimate Plus Uncertainty 

CV: Cross Validation 

DAE: Denosing Autoencoder  

DNN: Deep Neural Network 

DOE : Design Of Experiment 

EM: Expectation-Maximization 

ENEA: Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile 

HX: Heat Exchanger 

HXP: Heat Exchanger Pool 

ICs: Initial Conditions 

IUQ: Inverse Uncertainty Quantification 

KDE: Kernel Density Estimation 

LHS : Latin Hypercube Sampling 

LOOCV: Leave-One-Out Cross Validation 

MAP: Maximum A Posteriori 

MCMC: Markov Chain Monte Carlo 

MLE: Maximum Likelihood Estimation 

MSE: Mean Squared Error 

NPPs: Nuclear Power Plants 

OP: Overall Pool 

PCA: Principal Component Analysis 

PCs: Principal Component Vectors 

PDF: Probability Density Function 

PERSEO: in-Pool Energy Removal System for Emergency Operation 

PV: Pressure Vessel 

SAE: Sparse Autoencoder 

SSAE: Stacked Sparse Autoencoder 

SNR: Signal to Noise Ratio 

T-H: Thermal-Hydraulic 

TV: Triggering Valve 

VAE: Variational Autoencoder 

 

 

 

 



3 

 

List of symbols  

Symbols Dimension Description 

𝑑 1 × 1 Number of calibration parameters 

𝑞 1 × 1 Number of design variables 

𝑚 1 × 1 Number of design points 

𝑝 1 × 1 Model output dimension 

𝑁𝑒𝑥𝑝 1 × 1 Number of independent experimental measurements  

𝜽 𝑑 × 1 Calibration parameters vector 

𝒙 𝑞 × 1 Design variable vector 

𝒚𝑴(𝜽) 𝑝 × 1 RELAP5-3D computer model output for Test 7 pt.2 

𝒚𝑬 𝑝 × 1 Experimental data 

𝒚̌𝑬 𝑝 × 1 Reconstructed experimental data 

𝝐 𝑝 × 1 Measurement error 

𝑰𝝈𝒆𝒙𝒑
𝟐  𝑝 × 𝑝 Covariance matrix for the measurement error 

𝜮𝒆𝒙𝒑 𝑝∗ × 𝑝∗ Measurement error covariance matrix in the 𝑝∗-dimensional reduced space 

𝜮𝑴𝑴 𝑝 × 𝑝 Covariance matrix for the code uncertainty  

𝜮𝑲𝒓𝒊𝒈𝒊𝒏𝒈 𝑝∗ × 𝑝∗ Covariance matrix for the code uncertainty in the reduced space 

𝜣 𝑚 × 𝑑 Ensemble of 𝑚 design points 

𝒀 𝑝 × 𝑚 Ensemble of 𝑚 BE computer model outputs 

𝝁̅𝒀 𝑝 × 1 Column vector of the row means of 𝒀 

𝑝∗ 1 × 1 Dimension of the features subspace 

𝜱 𝑝∗ × 𝑝 Trasformation matrix (PCA) 

𝒛̂𝑴𝑴 𝑝∗ × 1 Kriging metamodel prediction in the features subspace 

𝒛𝑴𝑴 𝑝∗ × 1 Distribution of the Kriging metamodel prediction in the features subspace 

𝒛𝑬 𝑝∗ × 1 Experimental data projected in the feature subspace 

𝒁 𝑝∗ ×𝑚 Ensemble of 𝑚 RELAP5-3D simulation outputs transformed into the feature subspace 

𝑧𝑘  1 × 1 𝑘𝑡ℎ entry of a vector transformed into the feature subspace 

𝐿 1 × 1 Number of the SSAE hidden layers  

𝐾𝑙  1 × 1 Dimension of the 𝑙𝑡ℎ SSAE hidden layer  

𝒛(𝒍) 𝐾𝑙 × 1 Neurons output of the 𝑙𝑡ℎ hidden layer1 

𝝈(∙) − Sigmoid transfer function  

𝑾(𝒍) 𝐾𝑙 × 𝐾𝑙−1 Weight matrix of the 𝑙𝑡ℎ SSAE layer 

𝒃(𝒍) 𝐾𝑙 × 1 Bias vector of the 𝑙𝑡ℎ SSAE layer 

𝐸 1 × 1 SSAE cost function 

𝑅𝑒𝑟𝑟𝑜𝑟  1 × 1 Reconstruction error (adopted for both the SSAE and the PCA) 

𝑅𝑠𝑝𝑎𝑟𝑠𝑒 1 × 1 Sparsity regularization term 

𝛽 1 × 1 Coefficient for 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 

𝑅𝐿2 1 × 1 L2 regularization term 

𝜆 1 × 1 Coefficient for 𝑅𝐿2 

𝜌 1 × 1 Desired averaged neuron activation 

𝑁 1 × 1 Number of RELAP5-3D simulations adopted for the Forward Uncertainty Propagation 

 

 
1 When the subscript is within brackets, 𝒛(𝒍) indicates the 𝑙𝑡ℎ hidden layer output of the SSAE (i.e., a vectorial 

quantity); otherwise, 𝑧𝑘  indicates the 𝑘𝑡ℎ entry of a vector transformed into the 𝑝∗- dimensional feature subspace. 
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 Introduction 

Over the last decades, nuclear safety analysis frameworks based on Best Estimate Plus Uncertainty (BEPU) 

approaches for thermal-hydraulics transient calculations have gathered great interest [1,2]. These 

frameworks stand on Best Estimate (BE) Thermal-Hydraulic (T-H) codes to compute the safety margins of 

relevant parameters (e.g., fuel pellet maximum centerline temperature) during Nuclear Power Plants (NPPs) 

accidental scenarios [2]. The computation of the safety margins, taking into account the uncertainty of the 

calculation, requires identifying the main sources of uncertainty, selecting the most relevant uncertain input 

parameters and propagating the input uncertainties through the BE T-H code. One of the daunting issues 

related to this is quantifying the epistemic uncertainty that affects some of the input parameters, i.e., the 

uncertainty derived from lack of knowledge of the phenomena which these parameters describe [3–7]. 

Traditionally, probability constitutes the mathematical structure used to represent epistemic uncertainty 

and expert judgment is typically used to specify Probability Density Functions (PDFs), nominal values and 

upper and lower bounds of the parameters [2,8,9]. Such ad-hoc expert judgment can be aided by Inverse 

Uncertainty Quantification (IUQ), a powerful tool that determines the uncertainty of the parameters relying 

on available experimental data and code simulation results [10].  

Different approaches have been developed to carry out IUQ. Among them, Bayesian inference is considered 

the standard approach [11,12], wherein the computation of the posterior PDF is typically tackled through 

Markov Chain Monte Carlo (MCMC)  [13]. MCMC is a class of algorithms that allows posterior sampling by 

running numerous code simulations (up to hundreds of thousands). However, in the context of NPP safety 

analysis, BE computer models (e.g., RELAP, etc.) are computationally expensive for implementing MCMC 

sampling that becomes practically unfeasible with the current computational resources available. As an 

example, MCMC sampling with 105 iterations with a BE model that takes 1 hour per run would last more 

than 11 years. To tackle this computational issue, having as a target the prediction of specific phenomena 

and the related parameters, the BE computer model can be replaced by a computationally cheaper 

metamodel [14], which is an approximation of the input/output relationship modeled within the behavior 

of the original BE model [15,16]. For a comprehensive survey of inverse uncertainty quantification methods 

applied to nuclear system thermal-hydraulics problems, refer to [17]. Among the various metamodeling 

approaches [16], Kriging [18,19] has been successfully applied in various IUQ problems [14,20–24]. The 

benefit of Kriging is the uncertainty estimation each time a prediction is performed [19].  

When the BE model output is a time-dependent scalar quantity (i.e., a time series), at least four different 

approaches can be adopted to build a metamodel. The first one considers the time-dependent scalar output 

as a vectorial quantity and builds independent metamodels for each time instance; nevertheless, this 

approach may result in a significant loss of information, since the multiple outputs can be highly correlated 

[25]. Another method is to treat time as an additional input [14]; however, in this approach the number of 
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training points becomes dramatically high in very long time series. For example, if the BE model returns the 

output at 1000 time instances, with a Design Of Experiment (DOE) of 100 sample points for other inputs 

such as calibration parameters and design variables, the number of training patterns for the metamodel 

would be 1000 ∙ 100 = 100000. The third alternative approach is to use a multi-output emulator (e.g., a 

Kriging metamodel for predicting a 𝑝-dimensional vectorial quantity, where 𝑝 is the number of time 

instances) [25,26]; this approach outperforms emulators with time as an additional input [27] but, for very 

large 𝑝, even multi-output emulators may experience a reduction in the metamodeling efficiency [28]. The 

fourth alternative approach has been developed to address the abovementioned limitations for high-

dimensional time series and consists in performing a dimensionality reduction to retain a relatively small 

number of significant features to represent the entire output space. In fact, when the output data is 

redundant (e.g., the BE computer model responses for nearby time instances are strongly correlated) and 

its dimensionality 𝑝 is too large to be processed (e.g., through a single multi-output emulator), a reduced 

set of 𝑝∗ features containing the most relevant information of the original data can be used instead of the 

whole set of data and a separate metamodel can be built for each of the 𝑝∗ extracted features.  

Principal Component Analysis (PCA) is one of the most common approaches to carry out dimensionality 

reduction [29]. PCA performs a linear mapping from a high-dimensional space onto a lower-dimensional 

space, such that the mapped variables are uncorrelated and keep as much as possible of the original data 

set variance [30]. Higdon et al. [31] proposed PCA to carry out dimensionality reduction on time series 

outputs and Kriging metamodels to emulate such reduced outputs). PCA has been used in different Bayesian 

IUQ/calibration problems with high-dimensional outputs for constructing fast-running metamodels [20,31–

34]. However, linear dimensionality reduction techniques like PCA cannot deal with complex (real-world) 

non-linear data [29]. Furthermore, for the specific case of interest here, BE code results may be affected by 

higher noise (maybe due to numerics or correlation errors [35]) in comparison with the experimental data 

in relation to the power exchanged by the HX [47] and typically require pre-processing by the analyst (e.g., 

filtering of the available raw data) [35], which may add a bias. To overcome the limitations of PCA when 

dealing with time series with small signal-to-noise ratio values, in this work, we explore the use of 

Autoencoders (AEs) for dimensionality reduction. 

An AE is an Artificial Neural Network (ANN) designed to learn new features of the data by reconstructing 

the input itself [36]. It is composed of an encoder and a decoder network. The former maps the high-

dimensional input into a small number of features (i.e., into a lower-dimensional representation), whereas 

the latter recovers the high-dimensional inputs from the features. AEs are widely used to perform 

dimensionality reduction [37–39], machine health monitoring [36], and image processing [40]. Over the last 

years, several variants of AEs have been developed, such as sparse (SAEs), denoising (DAEs) and variational 

autoencoders (VAEs) [41–43]. Among them, SAEs, which strive to extract discriminative features avoiding 

overfitting, are widely used to identify the most relevant and comprehensive set of features for the specific 
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application [44]. Moreover, multiple pretrained AEs can be stacked to form a multiple-hidden-layer ANN, 

called Stacked Sparse Autoencoder (SSAE), improving the representational and modeling power [45]. 

In this work, we embed SSAEs for output dimensionality reduction into an IUQ Kriging-based approach, 

where the Kriging metamodel emulates each of the SSAE extracted features. Up to the authors knowledge, 

SSAEs (and, in general, non-linear dimensionality reduction techniques) have not yet been applied with 

Kriging metamodeling in a Bayesian IUQ problem. The rationale for using AEs is related to their capability 

to: (i) work with raw data without pre-processing; and (ii) deal with nonlinearities [37]. The proposed 

approach is applied within a Bayesian IUQ framework aimed at determining the input parameters’ PDFs of 

a RELAP5-3D model of the PERSEO facility [46], for which time series measurements are available. A SSAE is 

applied to reduce the problem dimensionality, and fast-running Kriging metamodels are implemented to 

emulate the RELAP5-3D behavior at a lower computational cost. PCA and SSAE are compared to provide 

some understanding on the application and the use of these methods for IUQ.  

The remainder of the paper is organized as follows. In Section 2 the formulation of the IUQ problem is 

presented. Section 3 illustrates the proposed approach. The case study regarding the PERSEO experimental 

facility and the RELAP5-3D model are introduced in Section 4. Section 5 displays the IUQ results for the 

proposed approach applied to the case study of Section 4 and provides a comparison between PCA and 

SSAE. Section 6 concludes the work. 

 The formulation of the IUQ problem 

Let 𝒚𝑬(𝒙) be a measured experimental quantity and 𝒚𝑴(𝒙, 𝜽) the corresponding quantity simulated 

through a computer model. Let 𝜽 = [𝜃1, 𝜃2, … , 𝜃𝑑]
𝑇 and 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑞]

𝑇
 and be the calibration 

parameters and the design variables, respectively [14]. Design variables are all the measurable inputs that 

define the conditions or scenarios under which the experiment is carried out (e.g., Boundary Conditions 

(BCs) and Initial Conditions (ICs)) [17,24], whereas calibration parameters are input to the computer model, 

but they are unknown or not measurable in the physical experiment [17,24]. 𝒙 are uniquely defined by the 

experiment and, therefore, known a priori [24]. The objective of the IUQ is to determine the PDF associated 

with 𝜽.  

The relationship between 𝒚𝑬(𝒙) and 𝒚𝑴(𝒙, 𝜽) can be described by the model updating equation [24]: 

𝒚𝑬(𝒙) = 𝒚𝑴(𝒙, 𝜽) + 𝜹(𝒙) + 𝝐 (1) 

where 𝜹(𝒙) and 𝝐 are the model discrepancy and the measurement error, respectively. 𝜹(𝒙) is due to 

approximations in 𝒚𝑴(𝒙, 𝜽), whereas 𝝐~𝑵(𝝁, 𝑰𝜎𝑒𝑥𝑝
2 ) is an additive measurement error usually assumed to 

be Gaussian-distributed. The specification of 𝜹(𝒙) requires complex considerations on the model and is 

ignored in the current work; thus, the model updating equation reduces to: 
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𝒚𝑬(𝒙) = 𝒚𝑴(𝒙, 𝜽) + 𝝐 (2) 

For a comprehensive discussion about model discrepancy, refer to [14,22,24]. 

 The Bayesian formulation of the inverse UQ problem  

IUQ aims at quantifying the posterior of the calibration parameters 𝜽, 𝑝(𝜽|𝒚𝑬) i.e., the distribution after 

the experimental data is observed. According to Bayes rule, this can be calculated as: 

𝑝(𝜽|𝒚𝑬) =
𝑝(𝒚𝑬|𝜽)𝑝(𝜽)

∫ 𝑝(𝒚𝑬|𝜽)𝑝(𝜽)𝑑𝜽
 

(3) 

where 𝑝(𝜽) is the prior PDF and 𝑝(𝒚𝑬|𝜽) is the likelihood function that describes the joint probability of 

the observed data 𝒚𝑬 as a function of the parameters 𝜽.  

Let 𝒚𝑬(𝒙) = [𝑦1
𝐸(𝒙),… , 𝑦𝑝

𝐸(𝒙)] and 𝒚𝑴(𝒙, 𝜽) = [𝑦1
𝑀(𝒙, 𝜽), … , 𝑦𝑝

𝑀(𝒙, 𝜽)] be 𝑝-dimensional vectors; 

assuming 𝝐 to be zero-mean Gaussian-distributed (i.e., 𝝐~𝑵(𝟎, 𝑰𝜎𝑒𝑥𝑝
2 )), the likelihood function can be 

derived from equation (2): 

𝑝(𝒚𝐸|𝜽) = ∏
1

(√2𝜋)
𝑝
√|𝑰𝜎𝑒𝑥𝑝

2 |

exp [−
1

2
[𝒚𝑬(𝒙𝒊) − 𝒚

𝑴(𝒙𝒊, 𝜽)]
𝑇 (𝑰𝜎𝑒𝑥𝑝

2 )
−1
 [𝒚𝑬(𝒙𝒊) − 𝒚

𝑴(𝒙𝒊, 𝜽)]]

𝑁𝑒𝑥𝑝

𝑖=1

 

 

(4) 

where 𝑁𝑒𝑥𝑝 is the number of experiments carried out and 𝑰𝜎𝑒𝑥𝑝
2  is the 𝑝 × 𝑝 covariance matrix of the 

measurement error. The integral in  Eq. (3) is typically analytically intractable; a Markov Chain Monte Carlo 

(MCMC) algorithm can be implemented to tackle this problem and the MCMC samples are then used to 

infer 𝑝(𝜽|𝒚𝑬). MCMC algorithms may require a significant number (e.g.,  many thousands) of iterations, 

each of which needs a code run to evaluate 𝒚𝑴(𝒙, 𝜽), which can be computationally demanding. Kriging 

metamodeling is a common choice to overcome this since, with the output estimates, also an estimation of 

the metamodel uncertainty is provided. Assuming that a Kriging metamodel is used to emulate 𝒚𝑴(𝒙, 𝜽), 

the posterior PDF becomes:  

𝑝(𝜽|𝒚𝑬) ∝ 𝑝(𝜽) ∙ ∏
1

(√2𝜋)
𝑝
√|𝜮|

exp [−
1

2
[𝒚𝑬(𝒙𝒊) − 𝒚̂(𝒙𝒊, 𝜽)]

𝑇 𝜮−1 [𝒚𝑬(𝒙𝒊) − 𝒚̂(𝒙𝒊, 𝜽)]]

𝑁𝑒𝑥𝑝

𝑖=1

 

 

(5) 

where 𝒚̂(𝒙, 𝜽) is the Kriging prediction, whereas the covariance matrix of the likelihood 𝜮 = 𝑰𝜎𝑒𝑥𝑝
2 + 𝜮𝑀𝑀 

is the sum of the measurement error covariance matrix 𝑰𝜎𝑒𝑥𝑝
2  and the metamodel uncertainty covariance 

matrix 𝜮𝑀𝑀.  
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 Proposed IUQ Approach 

To perform IUQ within a Bayesian framework, we propose an approach that comprises two main steps: 

1. Dimensionality reduction and Kriging metamodeling (Section 3.1); 

2. Bayesian inference (by MCMC sampling) (Section 3.2). 

 Dimensionality reduction and Kriging Metamodeling 

In the context of Bayesian IUQ, the objective of the present Section is to illustrate how to build a metamodel 

for emulating the time-dependent scalar quantity 𝑦𝑀(𝒙, 𝜽; 𝑡) computed by a BE code. Without loss of 

generality, let us assume that only a single experimental time series measurement is available for the 

Bayesian IUQ (i.e., 𝑁𝑒𝑥𝑝 = 1, as it is in the case study illustrated in Section 4); then, the dependence of the 

forward model 𝑦𝑀(𝒙, 𝜽; 𝑡) on 𝒙 is absorbed into the definition of 𝑦𝑀 = 𝑦𝑀(𝜽; 𝑡). If we assume that 

𝑦𝑀(𝜽; 𝑡) is ticked at 𝑝 different pre-defined time instances (i.e., [𝑦𝑀(𝜽; 𝑡1),… , 𝑦
𝑀(𝜽; 𝑡𝑝)]), the time-

dependent scalar output can be treated as multivariate (vectorial), i.e., 𝒚𝑴(𝜽) =

[𝑦𝑀(𝜽; 𝑡1),… , 𝑦
𝑀(𝜽; 𝑡𝑝)]. Let 𝜣 = [𝜽(1), … , 𝜽(𝑚)] be the DOEs and 𝒀 = [𝒚(1), … , 𝒚(𝑚)] the 𝑝 ×𝑚 matrix 

containing the relative 𝑚 𝑝-dimensional BE model responses. A way to handle this data is to transform the 

𝑝-dimensional output 𝒚 ∈ ℝ𝑝 into a reduced 𝑝∗-dimensional features space 𝑍 ⊂ ℝ𝑝
∗
 (with 𝑝∗ ≪ 𝑝) 

through a dimensionality reduction technique (e.g., PCA or SSAEs) and, then, build 𝑝∗ separate independent 

metamodels that emulate the 𝑝∗extracted features. Actually, it is also possible to build a 𝑝∗-dimensional 

multi-output surrogate model, either by Kriging or ANN, especially convenient with PCA since the 

transformed variables are uncorrelated. 

In this work, the 𝑚 BE model responses contained in 𝒀 are mapped onto 𝑍 ⊂ ℝ𝑝
∗
 and arranged in the 

𝑝∗ ×𝑚 features matrix 𝒁 = [𝒛(1), … , 𝒛(𝑚)]. Then, the 𝑚 input-output training patterns (i.e., 𝜣 =

[𝜽(1), … , 𝜽(𝑚)] and the corresponding 𝑚 transformed model responses [𝑧𝑗
(1), … , 𝑧𝑗

(𝑚)
] are used to train an 

independent metamodel for each feature 𝑗, with 𝑗 = 1,2,… , 𝑝∗). Figure 1 shows a schematic diagram of the 

metamodel approach adopted.  
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Among the different methods proposed to perform dimensionality reduction, we present a technique based 

on SSAEs that is eventually compared to PCA..  

3.1.1 Sparse Autoencoders 

An autoencoder (AE) is a type of Artificial Neural Network (ANN) that is designed to learn new low-

dimensional latent features of the data by trying to reconstruct the input data [36]. It is composed of an 

encoder network, that maps high-dimensional vector data into a lower-dimensional space of features and a 

decoder network that retrieves the original vector from the features [37] (Figure 2). 

 

 

 

Figure 1. Diagram of the metamodel methodology adopted for dimensionality reduction. 

Figure 2. Structure of a basic SAE 
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The encoder transforms a 𝑝-dimensional vector 𝒚 into its 𝐾1-dimensional hidden representation 𝒛(1) =

[𝑧(1),1, 𝑧(1),2, … 𝑧(1),𝐾1]: 

𝒛(1) = 𝑓(𝑾(1)𝒚 + 𝒃(1)) (6) 

where 𝑧(𝑙),𝑗 is the 𝑗𝑡ℎ neuron output of the 𝑙𝑡ℎ hidden layer (i.e., 1 in the case of basic SAE), 𝑓, 𝑾(1), 𝒃(1) 

are the encoder transfer function, the weight matrix and the bias vector, respectively. The decoder 

transforms the hidden representation back into 𝒚̌ (i.e., the reconstruction of 𝒚): 

𝒚̌ = 𝑔(𝑾(2)𝒛(1) + 𝒃(2)) (7) 

where 𝑔, 𝑾2, 𝒃2 are the decoder transfer function, the weight matrix and the bias vector, respectively.  

The SAE, which is a variation of the AE, imposes sparsity constraints on the hidden neurons to encourage 

the identification of discriminative features [36,44]. The determination of  𝑾(1), 𝒃(1), 𝑾(2), 𝒃2 is carried 

out through the minimization of the following cost function: 

𝐸 = 𝑅𝑒𝑟𝑟𝑜𝑟 + 𝛽𝑅𝑠𝑝𝑎𝑟𝑠𝑒 + 𝜆𝑅𝐿2 (8) 

where 𝑅𝑒𝑟𝑟𝑜𝑟, 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 and 𝑅𝐿2 are the mean squared error function, the sparsity regularizer and the 𝐿2 

regularizer, respectively, whereas 𝛽 and 𝜆 allow tuning the importance of 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 and 𝑅𝐿2 in the cost 

function. The reconstruction error 𝑅𝑒𝑟𝑟𝑜𝑟  allows quantifying the accuracy of the SAE in the reconstruction 

of the input vectors: 

𝑅𝑒𝑟𝑟𝑜𝑟 =
1

𝑚𝑡𝑟𝑎𝑖𝑛
∑ ‖𝒚(𝑖) − 𝒚̌(𝑖)‖

2

𝑚𝑡𝑟𝑎𝑖𝑛

𝑖=1

 
(9) 

where 𝑚𝑡𝑟𝑎𝑖𝑛 is the number of training patterns. 

A hidden layer’s neuron is considered “active” when its value is large (i.e., close to 1.0, in case of sigmoid 

transfer function) and “inactive” when its value is small (i.e., close to 0.0, in case of sigmoid transfer 

function). Let 𝜌̂𝑗  be the average output activation measure of the 𝑗𝑡ℎ hidden neuron on the training dataset 

(i.e., for 𝒚(𝑖) ∈ 𝒀, 𝑖 = 1,2, … ,𝑚𝑡𝑟𝑎𝑖𝑛): 

𝜌̂𝑗 =
1

𝑚𝑡𝑟𝑎𝑖𝑛
∑ 𝑧(1),𝑗

(𝑖)

𝑚𝑡𝑟𝑎𝑖𝑛

𝑖=1

 
(10) 

where 𝑧(1),𝑗
(𝑖)

 is the 𝑗𝑡ℎ neuron output of the 𝑖𝑡ℎ hidden representation 𝒛(1)
(𝑖)
= [𝑧(1),1

(𝑖)
, … , 𝑧(1),𝑗

(𝑖) , … , 𝑧(1),𝐾1
(𝑖)

], 

𝑗 = 1,… , 𝐾1,  𝑖 = 1,2, … ,𝑚𝑡𝑟𝑎𝑖𝑛. It has been shown that the extraction of discriminative features 𝒛(𝟏) is 

favored by requiring the sparsity of the AE [44], which imposes the neurons to be inactive most of the time 

(i.e., all the SAEs hidden neurons are characterized by a small value of 𝜌̂𝑗, e.g., 𝜌̂𝑗 = 𝜌 = 0.05). To this aim, 

the sparsity regularization term, 𝑅𝑠𝑝𝑎𝑟𝑠𝑒, is included  into the expression of 𝐸 to impose such a sparsity 

constraint. 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 penalizes 𝜌̂𝑗  deviating from 𝜌 through the Kullback-Leibler (KL) divergence measure: 
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𝑅𝑠𝑝𝑎𝑟𝑠𝑒 =∑𝐾𝐿(𝜌 ∥ 𝜌̂𝑗) = ∑[𝜌 log
𝜌

𝜌̂𝑗
+ (1 − 𝜌) log

1 − 𝜌

1 − 𝜌̂𝑗
]

𝐾1

𝑗=1

𝐾1

𝑗=1

 

 

(11) 

It is worth noting that 𝐾𝐿(𝜌 ∥ 𝜌̂𝑗) = 0 if 𝜌̂𝑗 = 𝜌, and it increases monotonically as 𝜌̂𝑗  diverges from 𝜌. 

During the training phase, the output value of the hidden neurons may be lowered by increasing the weight 

values 𝑾(1) making 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 to be small [41]. To prevent it from happening, the 𝑅𝐿2 term is added to the 

cost function: 

𝑅𝐿2 =
1

2
‖𝑾‖ 

(12) 

where 𝑾 is the SAE weight matrix. 

3.1.2 Stacked Sparse Autoencoders 

Training non-linear autoencoders with multiple hidden layers is a difficult task [37]. To tackle this problem, 

Hinton and Salakhutdinov [37] proposed the breakthrough approach adopted in this work, which consists 

of a pre-training phase and a fine-tuning phase. Let us consider an 𝐿-hidden-layer SAE (Figure 3): 

1. The pre-training regards a consecutive training of 𝐿 (basic) SAEs. Initially, the first basic SAE is 

trained using the input vectors 𝒚(𝑖) ∈ 𝒀; then, the corresponding extracted features 𝒛(1)
(𝑖)

 are used 

as training input vectors for the next basic SAE, which transforms 𝒛(1)
(𝑖)

 into 𝒛(2)
(𝑖)

 (Figure 3a). This step 

is carried out up to the last SAE training. 

2. Then, the SSAE is built by stacking all the basic SAE [47] (Figure 3b).  

3. In the fine-tuning phase, the SSAE obtained from the pre-training phase is fine-tuned using the 

backpropagation of error derivatives [48]. 

 

a) 

 

b) 
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Once the SSAE training is completed, its encoder is used to perform dimensionality reduction. The encoder 

transforms a generic time series 𝒚(𝑖) into 𝒛(𝑳)
(𝒊)

, that is a 𝐾𝐿-dimensional vector, where 𝐾𝐿 is the number of 

neurons of the innermost layer. 

3.1.3 SSAE performance assessment  

Given a set of DOE points 𝜣 = [𝜽(1), … , 𝜽(𝑚)], typically built by a Latin Hypercube Sampling (LHS) [49] 

according to the ranges of the prior distributions, 𝜣 are simulated through the BE model and the results 

collected into the 𝑝 ×𝑚 data matrix 𝒀 = [𝒚(1), … , 𝒚(𝑚)]. The 𝑚 simulated time series collected in 𝒀 are 

split into two groups: 𝒀𝑇𝑅𝐴𝐼𝑁 and 𝒀𝑇𝐸𝑆𝑇. The training set contains 𝑚𝑡𝑟𝑎𝑖𝑛 time series stored in the 

𝑝 ×𝑚𝑡𝑟𝑎𝑖𝑛 data matrix 𝒀𝑇𝑅𝐴𝐼𝑁, whereas the test set contains (𝑚 −𝑚𝑡𝑟𝑎𝑖𝑛) time series stored in the 

𝑝 × (𝑚 −𝑚𝑡𝑟𝑎𝑖𝑛) data matrix 𝒀𝑇𝐸𝑆𝑇. The training of the SSAE starts by defining its architecture (i.e., the 

number of hidden layers 𝐿 and the number of neurons per each layer, that is, 𝐾1, …𝐾𝐿) and setting the 

hyperparameters values (i.e., 𝜌, 𝛽, 𝜆); then, 𝐿 basic SAEs are trained, stacked and fine-tuned according to 

the procedure described in Section 3.1.2, and the fine-tuned SSAE is obtained. The SSAE capability in 

reconstructing time series that differ from the training one is tested on 𝒀𝑇𝐸𝑆𝑇 through the reconstruction 

error: 

𝑅𝑒𝑟𝑟𝑜𝑟 =
1

𝑚 −𝑚𝑡𝑟𝑎𝑖𝑛
∑ ‖𝒚𝑡𝑒𝑠𝑡

(𝑖) − 𝒚̌𝑡𝑒𝑠𝑡
(𝑖)‖

2
𝑚−𝑚𝑡𝑟𝑎𝑖𝑛

𝑖=1

 
 

(13) 

Once the SSAE training is completed, 𝐾𝐿 independent Kriging metamodels are built (one for each 

component of 𝒛(𝑳)) using the 𝑚 inputs 𝜣 = [𝜽(1), … , 𝜽(𝑚)] and the respective transformed time series 

𝒁(𝑳) = [𝒛(𝑳)
(1), … , 𝒛(𝑳)

(𝑚)
].  

Figure 3. Steps of the pre-training phase for an L-hidden-layer SAE: (a) training of L basic SAEs; (b) stacking of the 
basic SAEs.  
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On the other hand, in order to assess the predictive accuracy of each of the 𝑝∗ = 𝐾𝐿 Kriging metamodels, 

the normalized Leave One Out Cross Validation (LOOCV) error is computed as follows (refer to the Appendix 

for further details): 

𝜖𝐿𝑂𝑂𝐶𝑉,𝑗 =

1
𝑚∑ (𝑧𝑗

(𝑖) − 𝑧̂(−𝑖)
𝑀𝑀
(𝜽(𝑖)))

2
𝑚
𝑖=1

1
𝑚
∑ (𝑧𝑗

(𝑖) − 𝑧𝑗)
2

𝑚
𝑖=1

 

 

(14) 

where 𝑚 is the Kriging training dataset size, 𝑗 = 1… , 𝑝∗, 𝑧̂(−𝑖)
𝑀𝑀(𝜽(𝑖)) is the Kriging metamodel obtained 

using all the points of 𝜣, except 𝜽(𝑖), 𝑧𝑗 =
1

𝑚
∑ 𝑧𝑗

(𝑖)𝑚
𝑖=1 . It should be noticed that in (14), the LOOCV error 

(i.e., 
1

𝑚
∑ (𝑧𝑗

(𝑖)
− 𝑧̂(−𝑖)

𝑀𝑀(𝜽(𝑖)))
2

𝑚
𝑖=1 ) is normalized with respect to the training output sample variance (i.e., 

1

𝑚
∑ (𝑧𝑗

(𝑖)
− 𝑧𝑗)

2
𝑚
𝑖=1 ). 

The setting of the SSAE hyperparameters (i.e., 𝜌, 𝛽, 𝜆) is performed by trial-and-error, considering the values 

of 𝜖𝐿𝑂𝑂𝐶𝑉 for each metamodel and 𝑅𝑒𝑟𝑟𝑜𝑟. When a SSAE is trained, the corresponding 𝜖𝐿𝑂𝑂𝐶𝑉 errors are 

evaluated and, if acceptable, the SSAE is retained; otherwise, different hyperparameters are set and the 

entire procedure is repeated. There is no predefined threshold below which 𝑅𝑒𝑟𝑟𝑜𝑟  and 𝜖𝐿𝑂𝑂𝐶𝑉 are 

considered acceptable; further details about this last point are given in Section 5.  

 Bayesian inference (by MCMC sampling) 

In line with [33], also in this work, the IUQ is carried out in a reduced space: 𝒚𝑬 is mapped to the feature 

space (to obtain 𝒛𝐸).The distribution of 𝑝(𝜽), typically set on the basis of expert judgement when scarce 

information is available for 𝜽, is taken with as large as possible prior ranges, letting the data speak for 

themself. The posterior 𝑝(𝜽|𝒛𝑬) is proportional to 𝑝(𝜽) multiplied by the likelihood 𝑝(𝒛𝑬|𝜽): 

𝑝(𝜽|𝒛𝑬) ∝ 𝑝(𝜽)𝑝(𝒛𝑬|𝜽) (15) 

The challenging objective addressed in this Section is to formulate the likelihood 𝑝(𝒛𝑬|𝜽) in the case of 

non-linear dimensionality reduction of the output (e.g., by SSAE). In this work, we derive an expression for 

the likelihood 𝑝(𝒛𝑬|𝜽) by propagating 𝒚𝑬~𝑵(𝒚(𝜽), 𝑰𝜎𝑒𝑥𝑝
2 ) through the SSAE encoder by means of an 

Extended Kalman Filter (EKF) [50]. The expression of 𝑝(𝒛𝑬|𝜽), in the case of a single independent 

experimental measurement (i.e., 𝑁𝑒𝑥𝑝 = 1), results: 

𝑝(𝒛𝑬|𝜽) =
1

(√2𝜋)
𝑝∗
√|𝜮𝒆𝒙𝒑(𝜽) + 𝜮𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝜽) |

𝑒𝑥𝑝 [−
1

2
[𝒛𝐸 − 𝒛̂(𝑳)

𝑴𝑴(𝜽)]
𝑇
 (𝜮𝒆𝒙𝒑(𝜽) + 𝜮𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝜽)) 

−1 [𝒛𝐸− 𝒛̂(𝑳)
𝑴𝑴(𝜽)]] 

(16) 

where 𝒛̂(𝑳)
𝑴𝑴(𝜽) is the Kriging prediction in the reduced space; 𝜮𝒆𝒙𝒑(𝜽) is the experimental uncertainty 

covariance matrix in the 𝑝∗-dimensional reduced space; and 𝜮𝑲𝒓𝒊𝒈𝒊𝒏𝒈(𝜽) is the covariance matrix of the 
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Kriging prediction uncertainty, i.e., a 𝑝∗ × 𝑝∗ matrix having the mean squared errors of each feature 

prediction on the diagonal entries:  

𝜮𝑲𝒓𝒊𝒈𝒊𝒏𝒈 = [

𝜎𝑧1(𝜃)
2 0 0

0 ⋱ 0

0 0 𝜎𝑧𝑝∗(𝜃)
2

] 

 

(17) 

Details on the hypothesis adopted for the derivation of 𝑝(𝒛𝑬|𝜽) are given in the Appendix. Once the 

likelihood is formulated, a MCMC algorithm can be adopted to sample from 𝑝(𝜽|𝒛𝑬) and the samples are 

used to find the PDF.   

 Case Study 

 We show the application of the IUQ methodology to a TH RELAP5-3D model [51] developed by Politecnico 

di Torino [52] for the PERSEO test facility (sketched in Figure 4) [53]. For more details about the facility, 

please refer to [53,54].  

 

 

 

 

Among the nine tests of the PERSEO experimental campaign [53,54], experimental data from the second 

part of Test 7 are here used for IUQ. According to the classification of input parameters made in Section 2, 

the RELAP5-3D code contains different model input parameters that could be included in the IUQ process 

as calibration variables (i.e., 𝜽). However, in the present analysis, only some of them are considered: in fact, 

Figure 4. Scheme of the PERSEO facility [52] 
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the objective of the present study is to show how the IUQ could be performed by taking advantage of the 

adopted methodology instead of carrying out a complete uncertainty analysis. A uniform prior distribution 

is set for each parameter: 𝑝(𝜃) =
1

𝑈−𝐿
 for 𝜃 ∈ [𝐿, 𝑈] and 𝑝(𝜃) = 0 otherwise, where 𝑈 and 𝐿 are the upper 

and lower bounds, respectively (as reported in Table 1). It is worth mentioning that the values reported in 

Table 1 are rescaled factors (i.e., all the parameters have been normalized with respect to their prior 

nominal values). For more details about the description of the parameters and the selection of the prior 

ranges, please refer to [35]. 

 

 

 

 

 

 

 

 

The power exchanged by the HX is used as the experimental data to perform the IUQ, because it carries 

significant information regarding the transient; thus, it is one of the most representative output. Figure 

5compares the RELAP5-3D HX exchanged power computed for the nominal values of the prior distribution 

and the corresponding experimental data. 

Table 1. The  RELAP5-3D model input parameters selected for the IUQ. 

𝜃𝑖  Parameter (multiplication factor) Parameter Name Lower bound Upper bound 

𝜃1 Inner fouling factor Inner FF 0.5 1.5 

𝜃2 Outer fouling factor Outer FF 1.0 1.5 

𝜃3 Injector K factor K injector 0.5 1.5 

𝜃4 Sum of the steam line’s K factors  K sum steam 0.5 1.5 

𝜃5 Sum of condensate line’s K factors K sum condensate 0.5 1.5 

𝜃6 Diaphragm K factor K diaphragm 0.5 1.5 

𝜃7 Rockwool thermal conductivity K rockwool 1.0 1.5 

𝜃8 HXP first pipe flow area A effective 0.5 1.5 
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The dependence on 𝒙 of the forward model 𝒚𝑴(𝒙, 𝜽) is absorbed into the definition of 𝒚𝑴 = 𝒚𝑴(𝜽) that 

represents the RELAP5-3D model for the only experiment (i.e., Test 7 part 2) considered. Such a model 

predicts the vector 𝒚𝑴 = [𝑦𝑀(𝜽; 𝑡1),… , 𝑦
𝑀(𝜽; 𝑡𝑝)], whose entries 𝑦𝑀(𝜽; 𝑡) are the power exchanged 

during Test 7-Part 2 at times 𝑡. Each RELAP5-3D simulation employs an Intel Core i7-7500U processor and 

takes around 2 hours. Simulations are carried out at the Energy Department of Politecnico di Torino by 

faculty members.  

 Data description 

Let 𝑦𝐸 = [𝑦1
𝐸 , … , 𝑦𝑝

𝐸]
𝑇

 be the available experimental HX exchanged power time series measured during 

Test 7-Part 2. We adopt Latin Hypercube Sampling (LHS) to build the DOE 𝜣 = [𝜽(1), … , 𝜽(𝑚)], that contains 

𝑚 = 180 training inputs, in line with the distributions described in Table 1. The corresponding RELAP5-3D 

output realizations 𝒚(𝑖) are, then, stored into the 𝑝 ×𝑚 training output data matrix 𝒀 = [𝒚(1), … , 𝒚(𝑚)] 

with 𝑝 = 5723. Figure 6 shows that the ensemble of the 𝑚 = 180 RELAP5-3D output realizations (i.e., time 

series) contained in 𝒀 are affected by oscillations with a small signal-to-noise ratio. We apply the novel IUQ 

approach, based on SSAEs, on the dataset described here and compare the results with the standard 

approach based on PCA. 

Figure 5. HX exchanged power (Test 7-Part 2). The experimental measurement, in yellow solid line; the RELAP5-3D 
simulation for the nominal values, in blue dotted line.  
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In this work, the design variables vector 𝒙 (that defines the conditions under which the PERSEO experiment 

is carried out) is fixed since 𝑁𝑒𝑥𝑝 = 1; for this reason, the trends of the output training data reported in 

Figure 6 look very similar. If 𝑁𝑒𝑥𝑝 > 1, the trends of the training output could be very different; 

consequently, the number of features required to map the outputs in the reduced space may increase, 

whereas the Kriging performances, associated with each feature should be assessed case by case, but this 

is out of the scope of the present paper.  

 Results  

To analyze the effectiveness of the proposed SSAE approach, in this  Section we compare the SSAE results 

with those obtained by a standard PCA-based dimensionality reduction approach of literature [20,31–35]. 

In particular, Section 5.1 shows 1) how PCA is not capable of dealing with non-filtered (raw) data and 2) 

proposes some reflections on the main limitations involved by data filtering as a possible solution to deal 

with such raw data. Moreover, to assess the capability of the SSAE to deal with raw data, in Sections 5.2.1 

and 0 the SSAE is fed with non-filtered (raw) and filtered time series, respectively. Section 5.3 shows the 

results of the forward uncertainty propagation performed through both the metamodel and the RELAP5-

3D model.  

Figure 6. The ensemble of the 𝒎 = 𝟏𝟖𝟎 RELAP5-3D output realizations contained in 𝒀, characterized by a small 
signal-to-noise ratio.  
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 PCA-based dimensionality reduction 

Let 𝜣 = [𝜽(1), … , 𝜽(𝑚)] and 𝒀 = [𝒚(1), … , 𝒚(𝑚)] be the 𝑚 = 180 Design of experiment (DOE) points and 

the corresponding RELAP5-3D model outputs reported in Section 4.1, respectively. To perform the PCA, the 

𝑝 ×𝑚 data matrix 𝒀 is centered, obtaining 𝒀𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑; then, the Singular Value Decomposition (SVD) is 

carried out for 𝒀𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑. More detail about the PCA are provided in [35]. A number 𝑝∗ = 31 of PCs gives a 

cumulative percentage of variation explained at least to 95%. Then, 𝑝∗independent Kriging metamodels 

are built, one for each feature (i.e., for each PC), employing the 𝑚 input-output training patterns given by 

𝜣 = [𝜽(1), … , 𝜽(𝑚)] and 𝒁 = 𝛷(𝒀 − 𝝁̅𝒀) = [

𝑧1
(1)
 ⋯ 𝑧1

(𝑚)

⋮ ⋱ ⋮

𝑧𝑝∗
(1)

⋯ 𝑧𝑝∗
(𝑚)
], where 𝝁̅𝒀 =

1

𝑚
∑ 𝒚(𝑖)𝑚
𝑖=1  and 𝛷 is the PCA 

transformation matrix. Each Kriging metamodel is trained to map from Θ ⊂ ℝ𝑑 to 𝑧𝑗 ∈  ℝ (with 𝑗 =

1,… , 𝑝∗). To evaluate the capability of PCA of reconstructing the noisy transients, we transform back 𝒁 into 

the original space 

𝒀̌ = 𝝁̅𝒀 + 𝛷
𝑇 𝒁 (18) 

and compute the reconstruction error 𝑅𝑒𝑟𝑟𝑜𝑟  through Eq. (9). We find that 𝑅𝑒𝑟𝑟𝑜𝑟 = 2.2647 × 10
5𝑘𝑊. 

In the current research, Matérn 5/2 correlation kernel, constant trend function and CV hyperparameter 

estimation are adopted for each Kriging metamodel, as done in [35] where data filtering is applied on the 

same training dataset, before PCA. Refer to [35] for further details on Kriging metamodeling. In order to 

assess the predictive accuracy of each of the 𝑝∗ = 31 Kriging metamodels, the normalized Leave One Out 

Cross Validation (LOOCV) error 𝜖𝐿𝑂𝑂𝐶𝑉 is computed and reported in Figure 7: 𝜖𝐿𝑂𝑂𝐶𝑉 increases for PCs of 

higher-order, which means that the metamodel prediction capability decreases for higher-order PCs. Likely, 

the first PCs are those associated with the genuine signal variation (due to physical phenomena); on the 

contrary, PCs of higher-order relate to the higher noise in comparison with the experimental data of the HX 

exchanged power predicted by RELAP5-3D model that is significant for the case study proposed. 

Consequently, training a metamodel for the first PCs is easier since there is an underlying function (given 

by the physics of the phenomena) that links the inputs of 𝜣 and the transformed output of 𝒁.  

According to its definition, an 𝜖𝐿𝑂𝑂𝐶𝑉 close to 1.0 relates to scarce metamodel predictive capability; indeed, 

it implies that the LOOCV error of the 𝑗𝑡ℎ Kriging metamodel 

1

𝑚
∑(𝑧𝑗

(𝑖) − 𝑧̂(−𝑖)
𝑀𝑀
(𝜽(𝑖)))

2
𝑚

𝑖=1

 
(19) 

is of the same order of magnitude of the transformed output sample variance 𝑣𝑎𝑟[𝑧𝑗]: 
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𝑣𝑎𝑟[𝑧𝒋] =
1

𝑚
∑(𝑧𝑗

(𝑖) − 𝑧𝑗)
2

𝑚

𝑖=1

 
(20) 

Because of the scarce performances that characterize most of the Kriging metamodels (for many of them 

𝜖𝐿𝑂𝑂𝐶𝑉 ≅ 1.0 (Figure 7)), they cannot be used to replace the RELAP5-3D model in the IUQ process. This 

shows that in this context, PCA cannot cope with raw (non-filtered) data; thus, this analysis is not carried 

out. 

Given the limitations of the PCA to cope with raw data (i.e., 𝜖𝐿𝑂𝑂𝐶𝑉 close to 1.0 for most of the features), a 

possible solution is to filter the HX power exchanged predicted by RELAP5-3D (noisy) raw time series 

collected in 𝒀 before applying PCA and Kriging metamodels. Although this allows removing the part of 

output variability due to oscillations, data filtering gives rise to a nontrivial issue, i.e., choosing a proper 

filtering technique (that should consider the smallest timescale on which physical phenomena take place 

during the transient). Moreover, even though filtering (raw) data affected by numerical oscillations is 

common practice, (1) defending the choice of a particular filtering technique rather than another is 

nontrivial, and (2) the IUQ results may be affected by the selection of the specific filtering method adopted. 

In Ref. [35], we apply a moving median filter (i.e., the MATLAB function) on the columns of the same dataset 

𝒀 before performing PCA and Kriging metamodeling, and finding that a smaller number of PCs (i.e., 𝑝∗ = 4, 

rather than 31) is able to explain the same percentage of the variance of the dataset (i.e., 95%). These 

results are found in [35] and compared, in Section 5.2, to those obtained for the SSAE.  

 SSAE-based dimensionality reduction 

5.2.1 Non-filtered (raw) data  

In this Section, we take advantage of the SSAE properties to perform dimensionality reduction without 

applying data filtering. The SSAE architecture and the pre-training hyperparameters are set according to 

Table 2. The hyper-parameters 𝐾1, 𝐾2, 𝐾3 and 𝐿 are tuned following a trial-and-error approach based on the 

SSAE performances (i.e., 𝑅𝑒𝑟𝑟𝑜𝑟  and the 𝜖𝐿𝑂𝑂𝐶𝑉 for each feature) (given that 𝐿 = 3, 𝑝∗ = 𝐾3). More 

powerful tuning approaches (e.g., extensive grid search and evolutionary optimization) can be used, but at 

a much higher computational cost.  

 

Architecture Hyperparameters (SAE pre-training) 

𝐿 3 𝜌 0.05 

𝐾1 200 𝛽 1 

𝐾2 20 𝜆 0.001 

𝐾3 8   

 

Table 2. SSAE architecture and hyperparameters (non-filtered data). 
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Unlike PCA, there is no rule of thumb to define 𝑝∗, i.e., 𝐾3, which is here set to 𝐾3 = 8. The 𝑚 = 180 

simulated time series collected in 𝒀 are split into two groups: 𝒀𝑇𝑅𝐴𝐼𝑁, that contains 𝑚𝑡𝑟𝑎𝑖𝑛 = 162 time 

series, and 𝒀𝑇𝐸𝑆𝑇 that contains 𝑚𝑡𝑒𝑠𝑡 = 𝑚 −𝑚𝑡𝑟𝑎𝑖𝑛 = 18 time series (i.e., 10% of the available data). 𝐿 =

3 basic SAEs are pre-trained using 𝒀𝑇𝑅𝐴𝐼𝑁, with the hyperparameter reported in Table 2; then, they are 

stacked and fine-tuned according to the procedure described in Section 3.1.2. The fine-tuned SSAE thereby 

obtained is tested on 𝒀𝑇𝐸𝑆𝑇 obtaining a reconstruction error equal to 𝑅𝑒𝑟𝑟𝑜𝑟 = 8.4935 × 10
5𝑘𝑊. A 

separate independent Kriging is built for each feature and 𝜖𝐿𝑂𝑂𝐶𝑉 is computed for each of them through 

(14). Therefore, 𝐾3 = 8 independent Kriging metamodels are built adopting the Matérn 5/2 correlation 

kernel, constant trend function and CV hyperparameter estimation. In this case, 𝑅𝑒𝑟𝑟𝑜𝑟  is computed on 

𝒀𝑇𝐸𝑆𝑇, whereas in the case of PCA 𝑅𝑒𝑟𝑟𝑜𝑟  is computed on 𝒀. We can notice that, even though 𝑅𝑒𝑟𝑟𝑜𝑟  is 

higher, it has the same order of magnitude of that obtained by PCA with filtered and raw data (Table 6). 

Figure 7 shows that the SSAE, without any user-experience-based data filtering approach, obtains 𝜖𝐿𝑂𝑂𝐶𝑉 

values that are comparable (i.e., between 0.040 and 0.260) to those of PCA applied to filtered data. 

Once the SSAE and the Kriging metamodels are trained, the algorithm recalled in Section 3.2 (and presented 

in the Appendix) is implemented to carry out Bayesian inference. The measurement error standard 

deviation 𝜎𝑒𝑥𝑝 is set to 500 𝑘𝑊 [54] and an adaptive Metropolis algorithm is employed to produce 8 parallel 

chains with 1 ∙ 105 iterations. It took nearly 16 hours to calculate the posterior using an Intel Core i7-7500U 

processor. According to [13], we post-process the samples by discarding, for each chain, the first half for 

burn-in to diminish the influence of the starting samples, as a conservative choice. The MCMC convergence 

is examined through the approach proposed in [13]. The KDE of the posterior marginals PDFs obtained 

through the SSAE with non-filtered data are displayed in Figure 8. Some summary statistics of the posterior 

distribution are reported in Table 3, whereas Table 4 shows the correlation among the calibration 

parameters. 

 

𝜃𝑖  Parameter Mean value Mode 5th percentile 95th percentile 

𝜃1 Inner FF 0.91 0.84 0.76 1.06 

𝜃2 Outer FF 1.25 1.22 1.04 1.46 

𝜃3 K injector 1.25 0.97 0.74 1.48 

𝜃4 K sum steam 1.13 1.49 0.64 1.47 

𝜃5 K sum condensate 0.91 0.61 0.53 1.42 

𝜃6 K diaphragm 1.03 1.35 0.57 1.46 

𝜃7 K rockwool 1.27 1.46 1.03 1.48 

𝜃8 A effective 0.80 0.84 0.57 0.98 

 

 

 

Table 3. Posterior summaries (SSAE with non-filtered data). 
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 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 

𝜃1 1,0000 - - - - - - - 

𝜃2 0,0758 1,0000 - - - - - - 

𝜃3 -0,0815 -0,4110 1,0000 - - - - - 

𝜃4 -0,1261 -0,0720 -0,1443 1,0000 - - - - 

𝜃5 0,0006 -0,0943 0,0772 -0,1062 1,0000 - - - 

𝜃6 -0,0723 -0,0788 -0,0279 0,0156 0,0249 1,0000 - - 

𝜃7 -0,0731 0,0623 -0,1287 -0,0523 -0,0490 -0,0092 1,0000 - 

𝜃8 0,2947 -0,4725 -0,0484 0,1701 -0,0192 0,0345 -0,0055 1,0000 

 

5.2.2 Filtered data 

For comparison purposes, we feed the SSAE with filtered data. The SSAE architecture is set according to the 

parameters reported in Table 5. Also in this case, a trial-and-error approach based on the SSAE 

performances (i.e., 𝑅𝑒𝑟𝑟𝑜𝑟  and the 𝜖𝐿𝑂𝑂𝐶𝑉 for each feature) is adopted.  

 

Architecture Hyperparameters (SAE pre-training) 

𝐿 2 𝜌 0.05 

𝐾1 50 𝛽 1 

𝐾2 5 𝜆 0.0001 

 

The same train-test split procedure of Section 5.2.1 is implemented on 𝒀, and a reconstruction error equal 

to 𝑅𝑒𝑟𝑟𝑜𝑟 = 7.9071 × 10
5𝑘𝑊 is obtained. 𝐾2 = 5 independent Kriging metamodels are built adopting the 

Matérn 5/2 correlation kernel, constant trend function and CV hyperparameter estimation. Table 6 and 

Figure 7 show, respectively, 𝑅𝑒𝑟𝑟𝑜𝑟  and 𝜖𝐿𝑂𝑂𝐶𝑉 of the Kriging metamodels compared in the cases of: (1) PCA 

with non-filtered raw data, (2) PCA with filtered data, (3) SSAE with non-filtered raw data and (4) SSAE with 

filtered data. 

Reconstruction error 𝑹𝒆𝒓𝒓𝒐𝒓 

PCA non-filtered data 2.2647 × 105𝑘𝑊 

PCA filtered data 2.1308 × 105𝑘𝑊 

SSAE non-filtered data (computed for 𝒀𝑻𝑬𝑺𝑻) 8.4935 × 105𝑘𝑊 

SSAE filtered data (computed for 𝒀𝑻𝑬𝑺𝑻) 7.9071 × 105𝑘𝑊 

Table 4. Correlation Matrix computed using the MCMC samples (SSAE with non-filtered data). 

Table 5. SSAE architecture and hyperparameters (filtered data).  

Table 6. 𝑹𝒆𝒓𝒓𝒐𝒓 in the case of: PCA with non-filtered data, (2) PCA with filtered data (3) SSAE with non-filtered data 
and (4) SSAE with filtered data.   
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Notice that performing data filtering on 𝒀 before applying PCA allows reducing: (1) the number of PCs 

required to have the same cumulative percentage of variation explained (i.e., 𝑝∗ = 4, instead of 31); and 

(2) the highest value of 𝜖𝐿𝑂𝑂𝐶𝑉 (that is reduced below 0.20). In contrast, data filtering, for the SSAE 

architecture and hyperparameter setting proposed in Table 5, does not bring a significant improvement, 

with respect to the case of SSAE with non-filtered data in terms of 𝑅𝑒𝑟𝑟𝑜𝑟  on test data and 𝜖𝐿𝑂𝑂𝐶𝑉. In our 

case study, output training data have similar trends (as illustrated in Figure 6). If, on the contrary, training 

time series would have been very different, the number of extracted features (i.e., the number of neurons 

in the hidden layer) required to get the same SSAE reconstruction error 𝑅𝑒𝑟𝑟𝑜𝑟  could be higher (i.e., the 

ANN complexity increases). In this case, since we build an independent Kriging metamodel for each 

extracted feature (as shown Figure 1), the number of Kriging increases and the efficiency of each metamodel 

should be re-assessed (since it can not be a prior predicted). More sophisticated approaches than the simple 

trial-and-error (e.g., evolutionary optimization techniques) can be implemented to find the set of SSAE’s 

hyperparameters that minimize both 𝑅𝑒𝑟𝑟𝑜𝑟  and 𝜖𝐿𝑂𝑂𝐶𝑉. However, this would be cumbersome considering 

that: (1) PCA is easier to implement and (2) at lower computational cost, it performs better in terms of 

𝑅𝑒𝑟𝑟𝑜𝑟  and 𝜖𝐿𝑂𝑂𝐶𝑉 with filtered data. Moreover, for PCA the 𝜮𝑒𝑥𝑝 matrix does not need to be computed at 

each MCMC iteration (unlike the SSAE case, as shown in the Appendix), and this significantly reduces the 

computational cost required by the algorithm. In fact, in the case of SSAE with filtered data, the adaptive 

Figure 7. 𝝐𝑳𝑶𝑶𝑪𝑽 in the case of PCA with non-filtered data, (2) PCA with filtered data (3) SSAE with non-filtered data 
and (4) SSAE with filtered data.    
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Metropolis algorithm takes almost 10.5 hours for 2 ∙ 105 iterations on an Intel Core i7-7500U and, 

considering that the MCMC algorithm developed for the PCA takes 2.5 hours for 105 iterations (on the 

same processor), the computational cost required by the MCMC algorithm in this case of SSAE is twice that 

required for PCA. Thus, we can conclude that using the SSAE is conveniently applied to raw data (as expected 

in real applications), avoiding filtering.  

From each chain, the first half of the samples are discarded for burn-in. A common practice adopted to 

reduce autocorrelation is thinning [13]. It consists in keeping every 𝑘𝑡ℎ sample from each sequence and 

discarding the rest: we kept every 2000𝑡ℎ (out of 5 ∙ 105), 4000𝑡ℎ (out of 1 ∙ 105) and 8000𝑡ℎ (out of 2 ∙

105) sample from each chain for PCA with filtered data, SSAE with raw data and SSAE with filtered data, 

respectively. The KDE of the posterior marginals PDFs obtained through the SSAE with non-filtered data are 

displayed in Figure 8. The  statistics of the posterior PDF  are summarized in Table 7. The marginal posterior 

distributions in Figure 8 cannot be used to draw samples, because the calibration parameters are not 

independent.  

 

 

 

 

 

 

 

 

𝜃𝑖  Parameter Mean value Mode 5th percentile 95th percentile 

𝜃1 Inner FF 1.03 1.18 0.75 1.26 

𝜃2 Outer FF 1.32 1.46 1.05 1.49 

𝜃3 K injector 1.17 1.24 0.63 1.47 

𝜃4 K sum steam 1.00 1.16 0.55 1.45 

𝜃5 K sum condensate 0.98 0.61 0.54 1.44 

𝜃6 K  diaphragm 1.01 1.08 0.55 1.45 

𝜃7 k rockwool 1.25 1.00 1.00 1.50 

𝜃8 A effective 0.98 1.14 0.63 1.20 

Table 7. Posterior summaries (SSAE with filtered data).  

Figure 8. Prior distributions and posteriors’ kernel density estimations obtained adopting three different output dimensionality 
reduction techniques (i.e., PCA with filtered data and SSAE with both filtered and non-filtered data) in the IUQ process. 
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 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 

𝜃1 1,0000 - - - - - - - 

𝜃2 0,3468 1,0000 - - - - - - 

𝜃3 -0,1763 -0,1013 1,0000 - - - - - 

𝜃4 -0,0319 0,0062 0,0441 1,0000 - - - - 

𝜃5 -0,0018 -0,0038 -0,0048 -0,0074 1,0000 - - - 

𝜃6 0,0384 0,1051 -0,0768 -0,0130 -0,0158 1,0000 - - 

𝜃7 0,0319 -0,0184 0,0331 -0,0270 0,0101 -0,0010 1,0000 - 

𝜃8 0,4391 0,2914 -0,3216 0,0207 0,0446 0,0317 -0,0491 1,0000 

 

In all the cases examined, the marginal posteriors of 𝜃4, 𝜃5, 𝜃6, 𝜃7 do not differ very much from their priors 

and are defined on the same supports of their priors, whereas for 𝜃1 and 𝜃8 a significant update can be 

seen with respect to the priors. This is in line with the results found in [35], where the sensitivity analysis, 

carried out through first-order Sobol’ indices [55], revealed that 𝜃4, 𝜃5, 𝜃6, 𝜃7 are less influential. In 

particular, for the PCA-based approach, the marginal posteriors of 𝜃1, 𝜃2, 𝜃3, 𝜃8 show a considerable 

modification regarding their priors and the posterior of 𝜃8 is peaked at the upper bound of the prior, 

whereas in both SSAE cases the marginal posterior of 𝜃2 is quite similar to the prior, and the posterior of 𝜃8 

is peaked near the prior mean value. 

As a general result, the posterior PDFs obtained through the SSAE, with filtered and raw data, are wider 

than those obtained through PCA. In this view, the PCA-based approach, providing sharper posterior PDFs 

(i.e., characterized by smaller variances), seems to allow reducing epistemic uncertainty about calibration 

parameters more than the SSAE-based approach. However, it is difficult to assess and comment on the 

consistency of such posterior PDFs; in this regard, Section 5.3 proposes the propagation of such uncertainty 

to check the consistency of the results to experimental data.  

 Forward Uncertainty Quantification: comparison of SSAE and PCA  

To compare and evaluate the relevance of the proposed approaches, we perform forward uncertainty 

propagation. In particular, (1) we feed the T-H model with the posterior samples obtained from the MCMC 

after the thinning and (2) we compare the ensemble of time series obtained to 𝒚𝑬; this allows comparing 

the posterior PDFs obtained applying both PCA and SSAE. Both the RELAP5-3D model and the Kriging 

metamodels are used to propagate the posteriors' uncertainty. The Kriging-based forward uncertainty 

Table 8. Correlation Matrix computed using the MCMC samples (SSAE with filtered data). 
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propagation is proposed in Section 5.3.1, whereas Section 5.3.3 shows the results obtained by propagating 

through the RELAP5-3D model.  

5.3.1 Kriging metamodels 

For each IUQ approach proposed, 100 posterior samples are simulated through the Kriging metamodels to 

obtain the predictions in the 𝑝∗-dimensional reduced space. Such predictions are, then, transformed into 

the 𝑝-dimensional space, adopting transformation matrix 𝛷 in the case of PCA and the SSAE decoders in 

the other case. In particular, Figure 9a, Figure 9b, Figure 9c compare the reconstructed experimental data 

𝒚̌𝑬 to the reconstructed Kriging outcomes of 100 posterior samples, the prior nominal value, the posterior 

mode and the posterior mean value. 

 

(a) 

 

(b) 
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(c) 

 

In each case, the simulated posterior samples envelop 𝒚̌𝑬. Moreover, in the case of PCA, the posterior's 

prediction ensemble (Figure 9a) shows smaller variance than that of the SSAE (Figure 9b and Figure 9c); this 

is in line with the narrower PDFs that characterize the posterior marginal KDE obtained applying PCA (Figure 

8). In general, the reconstructed Kriging predictions of the posterior samples obtained adopting PCA 

reproduce 𝒚̌𝑬 better than the reconstructed Kriging predictions of the posterior samples obtained adopting 

the SSAE with both filtered and raw data. Finally, we can notice that, when the SSAE is applied, data 

filtering does not bring a significant improvement in terms of agreement of the simulated posterior samples 

with 𝒚̌𝑬. It is worth mentioning that the low number of simulated posterior samples (i.e., 100)  is due to the 

fact that, as explained in Section 5.2.2, thinning has been performed on the MCMC samples to reduce 

autocorrelation, reducing the effective number of MCMC posterior samples to 1000 and 100, in PCA and 

SSAE cases, respectively.  

5.3.2 Safety margin calculation 

In BEPU methodologies, the results are expressed in terms of uncertainty ranges for the calculated Figure 

of Merit (FOM); this allows to compute safety margins with respect to safety threshold values. The current 

BEPU methods can be subdivided in [2]: (1) probabilistic approaches (e.g., CSAU, GRS and ASTRUM), (2) 

deterministic methods (e.g., AEAW and EDF-Framatome), and (3) methods based on the extrapolation of 

output uncertainty (e.g., UMAE). Following the GRS method [56], Wilk’s formula [57] can be used to 

Figure 9. Reconstructed Kriging outcomes of 𝟏𝟎𝟎 posterior samples, the prior nominal value, the posterior mode 
and the posterior mean value, compared with the reconstructed experimental data. The results obtained applying 

PCA with filtered data are reported in Figure 9a, whereas Figure 9b and Figure 9c report the results obtained 
applying the SSAE with non-filtered and filtered data, respectively. 
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compute the number of code runs 𝑁 that ensures the confidence level 𝛽 and the probability content 𝛾 [58], 

and this allows computing margins to a safety threshold values. According to the the Wilk’s formula, the  

one-sided confidence level is given by the following expression: 

1 − 𝛾𝑁 ≥ 𝛽 (21) 

This expression is valid for first-order Wilks’ formula, that is the case in which the highest (lowest) outcome 

is inside the upper (lower) 5% range with at least 95% confidence. 

Following [35], the HX exchanged energy over the mission time 𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 5736 𝑠 is selected as FOM for 

the current analysis:  

𝐸 = ∫ 𝑃(𝑡)𝑑𝑡
𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛

0

 
(22) 

For demonstration purposes, in the three cases analyzed (i.e., PCA with filtered data and SSAE with both 

filtered and non-filtered data), the failure criterion for 𝐸 is set to 0.9𝐸𝑛𝑜𝑚𝑖𝑛𝑎𝑙, i.e., the system fails if 𝐸 <

𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.9 ∫ 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡)𝑑𝑡 = 6.004 × 10
7𝑘𝐽

𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛
0

, where 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the HX exchanged power 

simulated through RELAP5-3D utilizing as input the prior nominal values. According to Wilks’ formula [57], 

for each case,  𝑁 = 59 RELAP5-3D simulations are carried out to calculate the one-sided statistical tolerance 

limit with 𝛽 = 95% confidence level and 𝛾 = 95% probability content (see Eq. (21)). Among the 𝑁 

simulated values of 𝐸, according to Wilks’s formula, the smallest one is contained by the lower 5% range 

with at least 95% confidence; thus, its margin is given by 𝑀 = 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 − 0.9𝐸𝑛𝑜𝑚𝑖𝑛𝑎𝑙. Table 9 reports the 

values of 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 and the respective margins 𝑀 (with respect to the threshold value 0.9𝐸𝑛𝑜𝑚𝑖𝑛𝑎𝑙); the latter 

values are also graphically reported, along with the 𝑁 = 59 computed values of 𝐸, in Figure 10a, Figure 10b 

and Figure 10c. It is important to remark that the safety margin analysis performed in this Section is 

presented only for demonstration reasons and regards only epistemic uncertainty. 

It can be noticed that the safety margins computed for the SSAE are lower than those obtained for the PCA 

with filtered data; this is a direct consequence of the larger variance that characterizes the posterior PDFs 

found through the SSAE-based approach of IUQ. In this regard, if aleatory uncertainty is also considered, 

the margin 𝑀 can even be lower; thus, for a realistic estimate of 𝑀 , it is recommended to properly 

characterize such aleatory uncertainty and repeat the safety margin calculation. 

 𝑬𝒍𝒐𝒘𝒆𝒔𝒕 𝑴 

PCA with filtered data 6.716 × 107 𝑘𝐽 7.120 × 106 𝑘𝐽 

SSAE with non-filtered data 6.366 × 107 𝑘𝐽 3.618 × 106 𝑘𝐽 

SSAE with filtered data 6.388 × 107 𝑘𝐽 3.844 × 106 𝑘𝐽 

Table 9. The lowest simulated values of HX exchanged energy and the respective margins with respect to the 
threshold value 𝟎. 𝟗𝑬𝒏𝒐𝒎𝒊𝒏𝒂𝒍. 
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(a) 
 

(b) 

 

(c) 

 

5.3.3 RELAP5-3D 

The good agreement observed for the PCA-based approach (applied to filtered data), between 𝒚̌𝑬 and the 

simulated posterior samples in the Kriging-based forward uncertainty propagation should be examined for 

the RELAP5-3D BE model. The 𝑁 = 59 available RELAP5-3D simulations, carried out to calculate the safety 

margins as in Section 5.3.2, are used to assess and compare the PCA and the SSAE from 1) a qualitative point 

of view and 2) a quantitative point of view, by computing the Signal to Noise Ratio. More precisely, Figure 

11a, Figure 11b and Figure 11c compare the Test 7-Part 2 experimental data with respect to the RELAP5-

Figure 10. Safety margins 𝑴 in the case of PCA with filtered data (Figure 10a), SSAE with non-filtered data (Figure 
10b) and SSAE with filtered data (Figure 10c). 
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3D predictions of the following input parameters: 𝑁 = 59 posterior samples, the prior nominal value, the 

posterior mode 𝜽𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓
𝒎𝒐𝒅𝒆  and posterior mean value 𝜽𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓

𝒎𝒆𝒂𝒏   (these two latter obtained from the 

thousands of MCMC samples after burn-in).  

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 11. RELAP5-3D outcomes of 𝑵 = 𝟓𝟗 posterior samples with respect to  
𝒚𝑬 and the RELAP5-3D outcomes of the prior nominal value, the posterior mode and posterior mean value. The 
results obtained applying PCA with filtered data are reported in Figure 11a, whereas Figure 11b and Figure 11c 

report the results obtained applying the SSAE with non-filtered and filtered data, respectively. 
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One can notice that, when PCA is applied to filtered data, the RELAP5-3D simulated posterior mode 

𝒚𝑀(𝜽𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓,𝑷𝑪𝑨
𝒎𝒐𝒅𝒆 ) and mean value 𝒚𝑀(𝜽𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓,𝑷𝑪𝑨

𝒎𝒆𝒂𝒏 ) (and, in general, all the 𝑁 = 59 simulated posterior 

samples) display a much wider noise with respect to the case in which the SSAE is applied to non-filtered 

data. Since the oscillations affecting the RELAP5-3D simulated HX power exchanged are higher in 

comparison with the experimental data, their signal-to-noise ratio can be considered a characteristic to 

evaluate their physical consistency: the lower the signal-to-noise ratio, the lower the physical consistency.  

In this regard, for the PCA and the SSAE with/without filter results shown in Figure 11, we compute the SNR 

(see Eq.(23)) of the 𝑁 = 59 RELAP5-3D output time series: we model the (unknown) noise-free output 

𝑝 × 𝑁 matrix 𝑺 with a moving median filter (with a 50 𝑠 sliding window to accommodate sudden power 

oscillations, i.e. ~1 𝑀𝑊) and we compute the 𝑝 × 𝑁 noise matrix 𝝃 by subtracting 𝑺 from the non-filtered 

output (i.e., 𝜉𝑖𝑗 = 𝑦𝑗
𝑅𝐸𝐿𝐴𝑃(𝜽𝑖) − 𝑆𝑖𝑗  with 𝑖 = 1,2, … ,𝑁 and 𝑗 = 1,2, …𝑝): 

𝑆𝑁𝑅 = 20 log10

(

 
√∑ ∑ |𝑆𝑖𝑗|

2𝑝
𝑗=1

𝑁
𝑖=1

√∑ ∑ |𝜉𝑖𝑗|
2𝑝

𝑗=1
𝑁
𝑖=1 )

  

 

(23) 

For PCA and SSAE with/without filtering, the SNR values are equal to: 𝑆𝑁𝑅𝑃𝐶𝐴 = 23.04 𝑑𝐵, 

𝑆𝑁𝑅𝑆𝑆𝐴𝐸,𝑛𝑜𝑖𝑠𝑦 = 31.12 𝑑𝐵 and 𝑆𝑁𝑅𝑆𝑆𝐴𝐸,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 26.15 𝑑𝐵. Concerning this last point, the SSAE-based 

approach applied to raw data outperforms the PCA-based approach. Moreover, comparing Figure 11b and 

Figure 11c, we can notice that data-filtering does not provide any benefits both in terms of posterior mode 

accuracy (in predicting 𝒚𝑬) and signal-to-noise ratio (characterizing the 𝑁 = 59 simulated posterior 

samples), when the SSAE-based approach is applied. A possible reason is that filtered data may bias 

autoencoders and Kriging training. This may impair the metamodel generalization capability when fed with 

noisy data. This finally suggests that filtering should be avoided in favour of the use of raw data, whose 

information carried is significative and can be capitalized by the autoencoder in SSAE-based IUQ 

approaches. 

 Conclusions  

In this work, we propose a novel IUQ approach for T-H model code input parameters in case of noisy (i.e., 

small signal-to-noise ratio) time-dependent outputs, that paves the way for a novel dimensionality 

reduction method capable of dealing with raw data in the context of Bayesian IUQ. The approach is 

developed within a Bayesian framework and adopts a SSAE-based dimensionality reduction technique to 

extract significant features from the simulated time series and involves implementing Kriging metamodels 

for the quick emulation of such features.  
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The effectiveness of the proposed approach has been firstly demonstrated considering (noisy) raw data 

simulated by a time-dependent RELAP5-3D model the PERSEO facility in relation to the power exchanged 

by the HX. The results show i) the capability of the adopted SSAE to reduce the input data dimensionality 

while preserving its most significant characteristics and ii) the ability of the proposed IUQ approach in 

dealing with (noisy) raw data. Moreover, the comparison of the proposed approach with a standard 

dimensionality reduction method (i.e., PCA), exhibit the inability of the latter in dealing with (noisy) raw 

data. This highlights the novel characteristic of the SSAE-based approach, which, in contrast to the standard 

dimensionality reduction methods, allows going through the IUQ without resorting to filtering techniques, 

which are based on expert judgment and can affect the IUQ results. Moreover, the PDFs obtained applying 

the SSAE-based approach to raw data, when propagated through the RELAP5-3D code, give power 

exchanged by the HX time series characterized by a higher signal-to-noise ratio than in the PCA-based 

approach. This can be considered an element to assess the physical consistency of the uncertainty 

propagated to the code output, which theoretically should not be affected by large noise/oscillations.  

Also, the proposed approach has been applied to a filtered data set, still related with the RELAP5-3D model 

of the PERSEO facility. It can be concluded that performing data filtering before applying the SSAE does not 

bring any benefits in terms of metamodel accuracy and consistency of the propagated results with respect 

to experimental data. This is in line with the fact that SSAEs, being able to perform denoising, should not be 

affected by the noise. The comparison with the PCA-based approach (applied to filtered data) shows that i) 

PCA allows reducing epistemic uncertainty more than the SSAE-based approach since the former provides 

sharper posterior PDFs (i.e., characterized by minor variance) and ii) the MCMC sampling is computationally 

more expensive for SSAE than for PCA.  

Future research lies on the possibility of exploring: 1) more powerful tuning approaches to optimize the 

SSAE architecture (e.g., extensive grid search and evolutionary optimization); 2) new approaches of 

uncertainty propagation through DNNs (e.g., the Monte Carlo sampling, the entire-DNN unscented 

transform and the piecewise exponential approximation of the transfer function) taking, also, into account 

their computational cost; 3) new approaches, such as  multivariate Kriging metamodels [26], to take into 

account dependencies among the output components. In fact, another limitation that should be further 

investigated is the effect of building a distinct independent metamodel for each feature extracted, i.e., 

assuming the features to be independent. 

Appendix 

The challenging objective of this Section is to formulate the likelihood 𝑝(𝒛𝑬|𝜽) in the case of non-linear 

dimensionality reduction of the output (e.g., SSAE). This problem can be tackled by propagating the 

uncertainty of 𝒚𝑬~𝑵(𝒚(𝜽), 𝑰𝜎𝑒𝑥𝑝
2 ) through the SSAE’s decoder. Monte Carlo (MC) sampling and the 
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Unscented Transform [59] have been employed in past works to propagate the uncertainty through Deep 

Neural Networks; that is, given a multivariate distribution of the input layer (e.g., 𝒚𝑬~𝑵(𝒚(𝜽), 𝑰𝜎𝑒𝑥𝑝
2 ), the 

mean vector 𝒛(𝐿) and the covariance matrix 𝜮(𝐿) of the output layer 𝐿 are estimated [59,60]; however, these 

methods (particularly the MC sampling) can be computationally expensive [59,61]. Following the approach 

proposed in [61], in this work, we use Extended Kalman Filtering (EKF) [50] to propagate 

𝒚𝑬~𝑵(𝒚(𝜽), 𝑰𝜎𝑒𝑥𝑝
2 ) through the SSAE encoder in order to derive an expression for the likelihood 𝑝(𝒛𝑬|𝜽). 

EKF is an algorithm that is used to estimate the state of non-linear discrete-time dynamic systems when the 

system state cannot be directly measured. In the EKF, the system’s state at time-step 𝑙 is treated as an 

uncertain quantity characterized by a mean vector 𝒛(𝑙) and a covariance matrix 𝜮(𝑙). The EKF algorithm 

consists of two steps: the prediction step and the update step. In the prediction step the system’s state 𝒛(𝑙) 

is predicted along with its error covariance 𝜮(𝒍) starting from (1) the process noise, (2) the control input and 

(3) the previous step’s state. In the updating step, the prior estimates computed in the prediction step are 

updated (through indirect measurement of the system state) to find the posterior estimate of the state and 

and its error covariance. For further details about Kalman filtering refer to [50]. 

 

 

 

In the context of EKF applied for the uncertainty propagation in Deep Neural Networks, the concept of 

“system” does not refer to any real physical system; in fact, we treat the layers of the SSAE encoders as the 

states of a fictitious unforced (i.e., without a control input) system at different time-steps (i.e., the input 

layer of the SSAE 𝒛(0) represents the system state at time 𝑙 = 0, the second layer 𝒛(1) represents the 

systems state at time 𝑙 = 1 et cetera). Moreover, only the prediction step of the EKF algorithm is applied 

Figure 12. Example of DNN where 𝑳 = 𝟑. 
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since there is no real physical system that allows measurements (used in the update step). Let us assume 

that the SSAE encoder is composed of 𝐿 + 1 layers and that 𝒛(𝑙) and 𝜮(𝑙) are, respectively, the vector 

representing the state estimate (i.e., the mean value) and the covariance matrix of the layer 𝑙, such that: 

𝛴(𝑙),𝑗,𝑘 = 𝑐𝑜𝑣(𝑧(𝑙),𝑗 , 𝑧(𝑙),𝑘) (C.1) 

 

The system evolves from the state (read: layer) 𝑙 − 1 to the state 𝑙 through a non-linear transformation: 

𝒛(𝑙) = 𝜎(𝑾(𝑙)𝒛(𝑙−1)  + 𝒃(𝑙)) (C.2) 

where 𝜎(∙) =
𝑒(∙)

𝑒(∙)+1
 is the sigmoid transfer function of the SSAE, 𝑾(𝑙) is the SSAE weight matrix between 

layer 𝑙 − 1 and layer 𝑙, 𝒃(𝑙) is the bias vector for layer 𝑙. Using the equation of the EKF’s prediction step, we 

can find the state estimate 𝒛(𝑙) and the covariance matrix 𝜮(𝑙) for each layer: 

𝒛(𝑙) = 𝜎(𝑾(𝑙)𝒛(𝑙−1)  + 𝒃(𝑙)) (C.3) 

𝜮(𝑙) = 𝑭(𝒍)𝜮(𝑙−1)𝑭(𝒍) + 𝑸(𝒍) (C.4) 

where  𝑭𝒍 = ∇𝒛(𝑙−1)𝒛𝒍 is the Jacobian matrix and  𝑸𝒍 is the process noise covariance matrix that takes into 

account the inherent error introduced by the dimensionality reduction itself (i.e., the error related to the 

fact that the SSAE is not a perfect model). In this work, under the hypothesis that the SSAE is a perfect 

model, 𝑸𝒍 is neglected. If a sigmoid transfer function is adopted, It can be shown that: 

𝐹(𝑙),𝑗,𝑘 = 𝜎(∑𝑊(𝑙),𝑗,𝑟

𝑟

∙ 𝑧(𝑙−1),𝑟 + 𝒃(𝑙),𝑗)(1 − 𝜎 (∑𝑊(𝑙),𝑗,𝑟
𝑟

∙ 𝑧(𝑙−1),𝑟 + 𝑏(𝑙),𝑗)) ∙ 𝑊(𝑙),𝑗,𝑘 

 

(C.5) 

where 𝐹(𝑙),𝑗,𝑘 and 𝑊(𝑙),𝑗,𝑘 represent, respectively, the element at the 𝑗𝑡ℎ row and 𝑘𝑡ℎ column of the 𝑭(𝑙) 

and 𝑾(𝑙) matrices; 𝒛(𝑙−1),𝑟 is the 𝑟𝑡ℎ entry of 𝒛(𝑙−1). Iteratively applying equations (C.3) and (C.4), one can 

propagate 𝒚𝑬~𝑵(𝒚(𝜽), 𝑰𝜎𝑒𝑥𝑝
2 ) through the SSAE encoder in order to derive the distribution of 𝒛𝑬 that has  

mean value 𝒛(𝐿) and the covariance matrix 𝜮(𝐿). It should be noted that, since the sigmoid function is non-

linear, the Jacobian matrices 𝑭(𝑙), and, in turn 𝜮(𝐿), both depend on the input vector 𝒛(0) ≡ 𝒚(𝜽) that is a 

priori unknown since the Kriging metamodels predict directly 𝒛̂(𝑳)
𝑴𝑴(𝜽). To address this problem, we 

reconstruct 𝒛̂(𝑳)
𝑴𝑴(𝜽) (through the SSAE decoder) obtaining 𝒚̌𝐾(𝜽) that is eventually used to derive 𝜮(𝐿) 

through the procedure shown above. This procedure, unlike in the case of PCA, is repeated for each iteration 

of the MCMC algorithm because 𝜮(𝐿) depends on 𝜽. It is unlikely to assume that 𝑝(𝒛𝑬|𝜽) is exactly 

multivariate Gaussian because of the non-linear transformations introduced by the sigmoid transfer 

function; however, it still can be approximated by Gaussian distribution: 

𝑝(𝒛𝑬|𝜽) = 𝑵(𝒛𝑬|𝒛(𝐿), 𝜮(𝐿)) (C.6) 
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Considering the observation reported above; for each iteration of the MCMC sampling, we propose the 

following algorithm to determine and compute the analytical expression of the likelihood: 

1. Compute the Kriging prediction 𝒛̂(𝑳)
𝑴𝑴(𝜽) in the 𝑝∗-dimensional features space;  

2. reconstruct the Kriging prediction through the SSAE decoder in order to obtain 𝒚̌𝐾(𝜽); 

3. impose 𝒛(0) = 𝒚̌
𝐾(𝜽) and 𝜮(0) = 𝑰𝜎𝑒𝑥𝑝

2 , then compute 𝜮(𝐿) applying the EKF; 

4. assume the likelihood 𝑝(𝒛𝑬|𝜽) to be Gaussian distributed: 

𝒛𝑬~𝑁(𝒛𝑬|𝒛(𝑳)
𝑴𝑴(𝜽), 𝜮(𝐿)(𝜽)) = 𝒛(𝑳)

𝑴𝑴(𝜽) + 𝑁(𝟎 , 𝜮(𝐿)(𝜽)) (C.7) 

        according to the Kriging theory: 

𝒛(𝑳)
𝑴𝑴(𝜽)~𝑁(𝒛̂(𝑳)

𝑴𝑴(𝜽), 𝜮𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝜽)) = 𝒛̂(𝑳)
𝑴𝑴(𝜽)+ 𝑁(𝟎 , 𝜮𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝜽)) (C.8) 

where 𝜮𝑲𝒓𝒊𝒈𝒊𝒏𝒈 is the covariance matrix associated with the Kriging prediction uncertainty, that 

is a 𝑝∗ × 𝑝∗ matrix having the mean square errors of each feature prediction as diagonal entries: 

𝜮𝑲𝒓𝒊𝒈𝒊𝒏𝒈 = [

𝜎𝑧1(𝜃)
2 0 0

0 ⋱ 0

0 0 𝜎𝑧𝑝∗(𝜃)
2

] 

 

(C.9) 

 

5. finally, substitute equation (C.8) into (C.7) and assume that 𝑁(𝟎 , 𝜮(𝐿)) and 𝑁(𝟎 , 𝜮𝐾𝑟𝑖𝑔𝑖𝑛𝑔) are 

statistically independent, then 𝑝(𝒛𝑬|𝜽) can be written as: 

𝑝(𝒛𝑬|𝜽∗) = 𝑁( 𝒛̂(𝑳)
𝑴𝑴(𝜽), 𝜮(𝐿)(𝜽) + 𝜮𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝜽)) (C.10) 

 

Since in this work 𝑁𝑒𝑥𝑝 = 1, considering equation (C.10), the posterior PDF reduces to: 

𝑝(𝜽|𝒛𝑬) ∝ 𝑝(𝜽)
1

(√2𝜋)
𝑝
√|𝜮|

𝑒𝑥𝑝 [−
1

2
[𝒛𝐸 − 𝒛̂(𝑳)

𝑴𝑴(𝜽)]
𝑇
 𝜮−1 [𝒛𝐸 − 𝒛̂(𝑳)

𝑴𝑴(𝜽)]] 
(C.11) 

where 𝜮 = 𝜮(𝐿)(𝜽) + 𝜮𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝜽). Note that 𝜮(𝐿)(𝜽), in the expression (15) of Section 3.2, coincides with 

𝜮𝑒𝑥𝑝(𝜽). 

References 

[1] D’Auria F, Bousbia-salah A, Petruzzi A, del Nevo A. State of the Art in Using Best Estimate Calculation 
Tools in Nuclear Technology. Nucl Eng Technol 2006;38:11–32. 

[2] Iaea. Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation; Safety Reports 
Series 52 2008:1–211. 

[3] Ferson S, Ginzburg LR. Different methods are needed to propagate ignorance and variability. Reliab 



35 

 

Eng Syst Saf 1996;54:133–44. https://doi.org/10.1016/S0951-8320(96)00071-3. 

[4] Durga Rao K, Kushwaha HS, Verma AK, Srividya A. Quantification of epistemic and aleatory 
uncertainties in level-1 probabilistic safety assessment studies. Reliab Eng Syst Saf 2007;92:947–56. 
https://doi.org/10.1016/j.ress.2006.07.002. 

[5] Winkler RL. Uncertainty in probabilistic risk assessment. Reliab Eng Syst Saf 1996;54:127–32. 
https://doi.org/10.1016/S0951-8320(96)00070-1. 

[6] Apostolakis G. A commentary on model uncertainty 1994. 

[7] Ferson S, Joslyn CA, Helton JC, Oberkampf WL, Sentz K. Summary from the epistemic uncertainty 
workshop: Consensus amid diversity. Reliab Eng Syst Saf 2004;85:355–69. 
https://doi.org/10.1016/j.ress.2004.03.023. 

[8] Pourgol-Mohammad M. Thermal-hydraulics system codes uncertainty assessment: A review of the 
methodologies. Ann Nucl Energy 2009;36:1774–86. 
https://doi.org/10.1016/j.anucene.2009.08.018. 

[9] Helton JC, Johnson JD. Quantification of margins and uncertainties: Alternative representations of 
epistemic uncertainty. Reliab Eng Syst Saf 2011;96:1034–52. 
https://doi.org/10.1016/j.ress.2011.02.013. 

[10] Shrestha R, Kozlowski T. Inverse uncertainty quantification of input model parameters for thermal-
hydraulics simulations using expectation–maximization under Bayesian framework. J Appl Stat 
2016;43:1011–26. https://doi.org/10.1080/02664763.2015.1089220. 

[11] Katafygiotis LS, Beck JL. Updating Models and Their Uncertainties. II: Model Identifiability. J Eng Mech 
1998;124:463–7. https://doi.org/10.1061/(asce)0733-9399(1998)124:4(463). 

[12] Katafygiotis BLS, Beck JL. Updating models and their uncertainties. II: Model identifiability. J Eng 
Mech 1998;124:463–7. 

[13] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis 3rd ed. vol. 
1542. 2015. https://doi.org/10.1017/CBO9781107415324.004. 

[14] Kennedy MC, O’Hagan A. Bayesian calibration of computer models. J R Stat Soc Ser B (Statistical 
Methodol 2001;63:425–64. https://doi.org/10.1111/1467-9868.00294. 

[15] Haftka T, Shyy W, Tucker PK. Surrogate-based Analysis and Optimization. 2020. 

[16] Wang GG, Shan S. Review of metamodeling techniques in support of engineering design 
optimization. J Mech Des Trans ASME 2007;129:370–80. https://doi.org/10.1115/1.2429697. 

[17] Wu X, Xie Z, Alsafadi F, Kozlowski T. A comprehensive survey of inverse uncertainty quantification of 
physical model parameters in nuclear system thermal–hydraulics codes. Nucl Eng Des 2021;384. 
https://doi.org/10.1016/j.nucengdes.2021.111460. 

[18] Rasmussen CE, Williams CKI. Gaussian processes for machine learning. 2006. vol. 38. 2006. 

[19] Lataniotis C, Wicaksono D, Marelli S, Sudret B. UQLab User Manual: Kriging (Gaussian Process 
Modeling) Report # UQLab-V1.3-105. Chair Risk, Saf Uncertain Quantif ETH Zurich, Switz 2019:1–18. 

[20] Wilkinson RD. Bayesian Calibration of Expensive Multivariate Computer Experiments. Large-Scale 
Inverse Probl Quantif Uncertain 2010:195–215. https://doi.org/10.1002/9780470685853.ch10. 

[21] Wang C, Wu X, Kozlowski T. Gaussian Process–Based Inverse Uncertainty Quantification for TRACE 



36 

 

Physical Model Parameters Using Steady-State PSBT Benchmark. Nucl Sci Eng 2019;193:100–14. 
https://doi.org/10.1080/00295639.2018.1499279. 

[22] Arendt PD, Apley DW, Chen W. Quantification of model uncertainty: Calibration, model discrepancy, 
and identifiability. J Mech Des Trans ASME 2012;134:1–12. https://doi.org/10.1115/1.4007390. 

[23] Wu X, Kozlowski T, Meidani H, Shirvan K. Inverse uncertainty quantification using the modular 
Bayesian approach based on Gaussian Process, Part 2: Application to TRACE. Nucl Eng Des 
2018;335:417–31. https://doi.org/10.1016/j.nucengdes.2018.06.003. 

[24] Wu X, Kozlowski T, Meidani H, Shirvan K. Inverse uncertainty quantification using the modular 
Bayesian approach based on Gaussian process, Part 1: Theory. Nucl Eng Des 2018;335:339–55. 
https://doi.org/10.1016/j.nucengdes.2018.06.004. 

[25] Fricker TE, Oakley JE, Urban NM. Multivariate gaussian process emulators with nonseparable 
covariance structures. Technometrics 2013;55:47–56. 
https://doi.org/10.1080/00401706.2012.715835. 

[26] Kleijnen JPC, Mehdad E. Multivariate versus univariate Kriging metamodels for multi-response 
simulation models. Eur J Oper Res 2014;236:573–82. https://doi.org/10.1016/j.ejor.2014.02.001. 

[27] Conti S, O’Hagan A. Bayesian emulation of complex multi-output and dynamic computer models. J 
Stat Plan Inference 2010;140:640–51. https://doi.org/10.1016/j.jspi.2009.08.006. 

[28] Mohammadi H, Challenor P, Goodfellow M. Emulating dynamic non-linear simulators using Gaussian 
processes. Comput Stat Data Anal 2019;139:178–96. https://doi.org/10.1016/j.csda.2019.05.006. 

[29] Van Der Maaten LJP, Postma EO, Van Den Herik HJ. Dimensionality Reduction: A Comparative 
Review. J Mach Learn Res 2009;10:1–41. https://doi.org/10.1080/13506280444000102. 

[30] Jolliffe IT. Principal Component Analysis. 2nd ed. Springer-Verlag New York; 2002. 

[31] Higdon D, Gattiker J, Williams B, Rightley M. Computer model calibration using high-dimensional 
output. J Am Stat Assoc 2008;103:570–83. https://doi.org/10.1198/016214507000000888. 

[32] Higdon D, Geelhood K, Williams B, Unal C. Calibration of tuning parameters in the FRAPCON model. 
Ann Nucl Energy 2013;52:95–102. https://doi.org/10.1016/j.anucene.2012.06.018. 

[33] Wu X, Kozlowski T, Meidani H. Kriging-based inverse uncertainty quantification of nuclear fuel 
performance code BISON fission gas release model using time series measurement data. Reliab Eng 
Syst Saf 2018;169:422–36. https://doi.org/10.1016/j.ress.2017.09.029. 

[34] Nagel JB, Rieckermann J, Sudret B. Principal component analysis and sparse polynomial chaos 
expansions for global sensitivity analysis and model calibration: Application to urban drainage 
simulation. Reliab Eng Syst Saf 2020;195:106737. https://doi.org/10.1016/j.ress.2019.106737. 

[35] Roma G, Di Maio F, Bersano A, Pedroni N, Bertani C, Mascari F, et al. A Bayesian framework of inverse 
uncertainty quantification with principal component analysis and Kriging for the reliability analysis 
of passive safety systems. Nucl Eng Des 2021;379:111230. 
https://doi.org/10.1016/j.nucengdes.2021.111230. 

[36] Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX. Deep learning and its applications to machine health 
monitoring. Mech Syst Signal Process 2019;115:213–37. 
https://doi.org/10.1016/j.ymssp.2018.05.050. 

[37] Holden AJ, Robbins DJ, Stewart WJ, Smith DR, Schultz S, Wegener M, et al. Reducing the 



37 

 

Dimensionality of Data with Neural Networks 2006;313:504–7. 

[38] Wang Y, Yao H, Zhao S. Auto-encoder based dimensionality reduction. Neurocomputing 
2016;184:232–42. https://doi.org/10.1016/j.neucom.2015.08.104. 

[39] Monisha R, Mrinalini R, Britto MN, Ramakrishnan R, Rajinikanth V. Smart Intelligent Computing and 
Applications. vol. 104. 2019. https://doi.org/10.1007/978-981-13-1921-1. 

[40] Mao X-J, Shen C, Yang Y-B. Image Restoration Using Convolutional Auto-encoders with Symmetric 
Skip Connections 2016:1–17. 

[41] Olshausen BA, Fieldt DJ. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1 ? 
Coding V1 Gabor-wavelet Natural images. Vis Res 1997;37:3311–25. 

[42] Vincent P, Larochelle H. Extracting and Composing Robust Features with Denoising.pdf 2008:1096–
103. 

[43] Kingma DP, Welling M. Auto-encoding variational bayes. 2nd Int Conf Learn Represent ICLR 2014 - 
Conf Track Proc 2014:1–14. 

[44] Ng A. Sparse autoencoder, CS294A Lecture notes, 2011, p. 1–19. 

[45] Utgoff PE, Stracuzzi DJ. Many-layered learning. Proc - 2nd Int Conf Dev Learn ICDL 2002 2002:141–
6. https://doi.org/10.1109/DEVLRN.2002.1011824. 

[46] Bandini G, Meloni P, Polidori M, Lombardo C. Validation of CATHARE V2.5 thermal-hydraulic code 
against full-scale PERSEO tests for decay heat removal in LWRs. Nucl Eng Des 2011;241:4662–71. 
https://doi.org/10.1016/j.nucengdes.2011.02.034. 

[47] Yang Z, Baraldi P, Zio E. Automatic Extraction of a Health Indicator from Vibrational Data by Sparse 
Autoencoders. Proc - 2018 3rd Int Conf Syst Reliab Safety, ICSRS 2018 2019:328–32. 
https://doi.org/10.1109/ICSRS.2018.8688720. 

[48] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 
1986;323:533–6. https://doi.org/10.1038/323533a0. 

[49] McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input 
variables in the analysis of output from a computer code. Technometrics 2000;42:55–61. 
https://doi.org/10.1080/00401706.2000.10485979. 

[50] Welch G, Bishop G. An Introduction to the Kalman Filter. In Pract 2006;7:1–16. 
https://doi.org/10.1.1.117.6808. 

[51] Idaho National Laboratory. RELAP5-3D Code Manual Volume I: Code Structure, System Models and 
Solution Methods, 2015 2015. 

[52] Bersano A, Bertani C, Falcone N, de Salve M, Mascari F, Meloni P. Qualification of RELAP5-3D code 
against the in-pool passive energy removal system PERSEO data. 30th Eur Saf Reliab Conf ESREL 2020 
15th Probabilistic Saf Assess Manag Conf PSAM 2020 2020:1150–7. 

[53] Mascari F, Lombardo C, De Salve M, Bertani C, Bersano A, Falcone N, et al. Description of PERSEO 
Test n. 7 for International Open Benchmark Excercise, ADPFISS-LP1-126 2019. 

[54] Ferri R, Achilli A, Cattadori G, Bianchi F, Meloni P. Design, experiments and Relap5 code calculations 
for the perseo facility. Nucl Eng Des 2005;235:1201–14. 
https://doi.org/10.1016/j.nucengdes.2005.02.011. 



38 

 

[55] Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis 
of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 
2010;181:259–70. https://doi.org/10.1016/j.cpc.2009.09.018. 

[56] Glaeser H. GRS method for uncertainty and sensitivity evaluation of code results and applications. 
Sci Technol Nucl Install 2008;2008. https://doi.org/10.1155/2008/798901. 

[57] Zio E, Di Maio F, Tong J. Safety margins confidence estimation for a passive residual heat removal 
system. Reliab Eng Syst Saf 2010;95:828–36. https://doi.org/10.1016/j.ress.2010.03.006. 

[58] Di Maio F, Rai A, Zio E. A dynamic probabilistic safety margin characterization approach in support 
of Integrated Deterministic and Probabilistic Safety Analysis. Reliab Eng Syst Saf 2016;145:9–18. 
https://doi.org/10.1016/j.ress.2015.08.016. 

[59] Abdelaziz AH, Watanabe S, Hershey JR, Kolossa D, Abdelaziz AH, Watanabe S, et al. Uncertainty 
propagation through deep neural networks To cite this version : Others 2015. 

[60] Hadjahmadi AH, Homayounpour MM. Uncertainty propagation through neural network bottleneck 
features. ICEE 2015 - Proc 23rd Iran Conf Electr Eng 2015;10:567–75. 
https://doi.org/10.1109/IranianCEE.2015.7146280. 

[61] Titensky JS, Jananthan H, Kepner J. Uncertainty Propagation in Deep Neural Networks Using 
Extended Kalman Filtering. 2018 IEEE MIT Undergrad Res Technol Conf URTC 2018 2018. 
https://doi.org/10.1109/URTC45901.2018.9244804. 

 


