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On-board Orbit Determination for Deep-Space CubeSats

Eleonora Andreis ∗ and Vittorio Franzese †
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Politecnico di Milano, 20156, Milan, Italy

In this work, an orbit determination algorithm suitable for CubeSats onboard

implementation is developed, which simulates optical autonomous navigation accom-

plished by a stand-alone platform. An extended Kalman filter featuring line-of-sight

acquisitions of planets is selected as the state estimator, and its performances are

tested on a Raspberry Pi, whose characteristics are comparable to a miniaturized

onboard computer. An improvement of the solution accuracy is performed by cor-

recting the planetary light-time and aberration effects as well as by exploiting the

optimal beacons selection strategy to acquire the external observations. Moreover,

the numerical precision of the estimator is improved through the implementation

of factorization techniques and non-dimensionalization strategies. The results are

presented for a sample Earth–Mars transfer, where the time slot for the navigation

campaign involves 2 hours every 10 days. At final time, the probe position and velocity

are estimated with a 3f accuracy of 360 km and 0.04 m/s, respectively.

I. Introduction
A new era of space exploration is fast approaching. CubeSats, shoe-boxed spacecraft, have triggered

a revolution in the way satellites have been launched into space, owing to their low cost compared to

traditional spacecraft [1]. The exploitation of standardized dimensions and Commercial-Off-The-Shelf

(COTS) components have boosted their utilization by reducing the mission cost and development time [2].

Although most of the nanosatellites have been thus far launched into Low Earth Orbits (LEO), a number of

CubeSats applications in deep space is foreseen [3].

In 2018, two deep-space CubeSats were deployed by NASA inside the Mars Cube One (MarCO)

experiment [4] as part of the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport

(InSight) mission [5]. In November 2021, NASA is expected to launch thirteen 6U-sized CubeSats along
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with Artemis I mission, which will be operative after the trans-lunar injection burn∗. Other innovative

nanosats mission concept proposals have been funded by ESA, among them there are the Lunar Meteoroid

Impacts Observer (LUMIO) [6, 7], the Miniaturised Asteroid Remote Geophysical Observer (M-ARGO)

[3][8], Juventas [9] and Milani [10] as part of Hera mission [11].

The CubeSats impact on the number of interplanetarymissions will be tremendous, making it unsustainable

to pilot them from the ground. The current paradigm for deep-space navigation relies heavily on radiometric

tracking [12]. Radiometric navigation yields sub-meter and sub-centimeter per second accuracy in position

and velocity, respectively, but still requires ground stations and human-in-the-loop operations. Ground

control introduces critical delays and takes a large share of the space mission cost, so hampering the full

mission scalability. Moreover, the standard practice will restrict the number of controllable spacecraft since

ground facilities will saturate soon due to the rapid proliferation of deep-space assets [13]. At the current

development pace, human-in-the-loop navigation will soon become unsustainable. Miniaturized probes that

can perform guidance, navigation, and control operations without human instructions are key.

One of the first flight tests of an onboard autonomous navigation system (AutoNav) was performed within

the Deep-Space 1 (DS1) mission in 1998 using optical navigation [14–16]. The idea is to take images of

unresolved targets while in deep space, from which the inertial Line-Of-Sight (LoS) vectors are extracted

[17]. The LoS vectors are then input into an orbit determination (OD) algorithm, which reconstructs the

spacecraft state. In deep space, the onboard electro-optical sensor can extract information by observing

unresolved planets, asteroids, or both, depending on the camera performances. For DS1, bright asteroids

in the asteroid belt were exploited as beacons. Moreover, the tracked targets were selected on the ground

and uploaded to the probe. In [18, 19] it is demonstrated that a correlation exists between the geometrical

position of the beacons relative to the probe and the solution accuracy of a static OD algorithm. Besides, the

solution of the OD problem in deep space can be enhanced by correcting the error generated in the estimation

of the LoS directions caused by the light-time and light aberration effects. For this purpose, these two

corrections are implemented in an Extended Kalman Filter (EKF) simultaneously in [20], both downstream

of the state propagation. In [21] a strategy to correct for the relativistic effects is proposed, in which the stellar

aberration is exploited as navigation observable to estimate the probe velocity. Among CubeSats missions ,

the aforementioned M-ARGO aims to assess the feasibility of an autonomous navigation algorithm during

the interplanetary transfer toward the target asteroid [22]. In this context, the miniaturized NavCam will

acquire optical measurements from celestial bodies like planets, which will be processed onboard and fed to

an estimator to obtain the probe state [8]. When the deployment of the OD algorithm has to be performed

on a CubeSat processor, its numerical robustness and computational complexity have to be assessed. For

example, Song [23] solves the deep-space OD problem by applying the UD factorization to the EKF. In this
∗https://www.nasa.gov/artemis-1, last visited on March 2021
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way, the numerical stability and the computational efficiency of the filter are enhanced.

In this work, an autonomous optical-based OD algorithm deployable on a representative CubeSat

processor is presented. The estimation technique proposed here is intended for use during the cruise phase of

a interplanetary mission toward Mars in the framework of the EXTREMA project [24]. With the algorithm

proposed, the position should be estimated with errors on the order of 1000 km during the targeting, which is

about one order of magnitude below the orbit determination requirement by the project. .

The contribution to the state-of-art is threefold. First, the solution accuracy of the estimation is improved

thanks to the introduction of light effects corrections and to the exploitation of an optimal strategy to select

the best planets to observe. Second, the estimator numerical stability and computational performances are

enhanced through the implementation of factorization techniques and non-dimensionalization strategies.

Third, the navigation algorithm is deployed and tested on a platform comparable to a CubeSat processor as

experimental proof of the suitability of the selected OD algorithm. The optimal beacons selection strategy

derived in [8] is here applied to an on-board dynamic estimator. The implementation is embedded into the

filter by taking as input the estimated probe position instead of a reference trajectory. Moreover, the light-time

correction is performed following an innovative procedure: Differently from the one introduced in [20], the

epoch at which light is emitted by the beacons is retrieved online by solving a nonlinear equation after the

filter propagation steps. The beacons ephemerides can be so retrieved at the time of light emission, instead of

the onboard time, so correcting for the light-time effect.

The paper is structured as follows. In Sec. II the methodology is presented. Firstly, the problem geometry

is introduced in Sec. II.A, and the corrections of the light-time and light aberration effects are derived in

Secs. II.B and II.C. Then, the adoption of the optimal beacons selection strategy for the acquisition of

the external observations is shown in Sec. II.D. The EKF is so implemented in Sec. III: Moving from a

standard filtering scheme (Sec. III.D), alternative techniques are then implemented in Sec. III.E to solve

the numerical issues that can arise after the onboard deployment of the algorithm. In Sec. IV the results

of the implementation are illustrated. In particular, the performances of the five filtering approaches are

compared in terms of numerical stability and computational complexity in Sec. IV.B. The deployment of

the best alternative on a computational board comparable to a CubeSat miniaturized On-Board Computer is

eventually performed in Sec. IV.C.

II. Statement of the Problem

A. Problem Geometry

In deep space a spacecraft can estimate its position by acquiring optical information from the observations

of unresolved planets. The Line-of-Sight (LoS) to the planets, whose extraction from images is covered in
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literature [15, 25] , are used to feed the on-board navigation method, from which the probe state is estimated.

When two LoS directions associated to different planets are acquired simultaneously, the kinematic

celestial triangulation problem can be solved [20]. With reference to Fig. 1, let r be the spacecraft position.

Then,

r = r1 − d1 1̂1 = r2 − d2 1̂2 (1)

where r8 denotes the position of planet 8, d8 is the observer range to planet 8, and 1̂8 its direction. Considering

the two-planets observation scenario, the ranges d1, d2 are unknown; yet, 1̂1, 1̂2 are measured. The scalar

multiplication of Eq. (1) by 1̂1 and 1̂2 yields to a system of two equations which can be arranged in matrix

form as 
−1 1̂>1 1̂2

−1̂>2 1̂1 1

︸                ︷︷                ︸
G


d1

d2

︸︷︷︸
x

=


1̂>1 (r2 − r1)

1̂>2 (r2 − r1)

︸            ︷︷            ︸
b

(2)

described by the linear-algebra problem, Gx = b. The solution to Eq. (2) exists as long as Δ(G) ≠ 0, where

Δ is the determinant of G. Let W be the angle between the two planets as seen by the observer (Fig. 1), then

cos W = 1̂>1 1̂2 and thus Δ(G) = −1+cos2 W. When cos W = ±1, G is singular and the solution is undetermined.

This occurs when the probe and the planets are in conjunction or opposition [18]. For Δ(G) ≠ 0, the solution

to the problem is x = G−1b, which plugged into Eq. (1) provides the spacecraft inertial position. The method

presented so far solves for the spacecraft position at the same epoch of measurements acquisition. Dynamic

methods, e.g., Kalman filtering, are however more accurate and can estimate the full state vector, including the

spacecraft velocity. Before dealing with the Kalman filter formulation, however, the effects of the light-time

correction (Sec. II.B) and celestial aberration (Sec. II.C) are introduced, together with an optimal beacons

selection strategy (Sec. II.D).
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Fig. 1 Celestial triangulation geometry in the Sun-centered frame with characteristic angles; V:
Solar Aspect Angle (SAA); U: planet’s phase angle; W: angle between the directions of the two planets
as seen by the observer.
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Moreover, the following conservative assumptions are made to specialize the problem to the case of

interplanetary CubeSats. 1) Only one miniaturized imager (star tracker or navigation camera) is adopted

on board. 2) Because of the limited performances of the sensor, minor bodies are not always detected [19],

and therefore only the planets are used to get the 1̂8 measurements. 3) Only one planet at a time is tracked,

and a slew maneuver is needed to point to the second beacon; that is, differently from the standard celestial

triangulation in [20], planets measurements are acquired asynchronously. 4) Only a pair of planets is observed

in each acquisition window; this is to limit the time slot allocated to navigation.

B. Light-time Effect Correction

Due to the finite speed of light and to the enormous distance between the satellite and the beacon, the time

difference between the emission and the reception of the luminous signal is significant. The light received by

the imager at epoch C has been emitted by the observed planet at a previous epoch g, thus g < C. This effect,

called light-time, yields to a systematic error when neglected [26].

With reference to Fig. 2, the relative position vector of the beacon is better expressed as

1(C, g) = r8 (g) − r (C) (3)

where r8 (g) and r (C) are the positions of the 8-th planet and the spacecraft at epochs g and C, respectively.

Since the distance traveled by the light between the two epochs is d = 2(C − g), where 2 is the speed of light,

the beacon relative position vector can be rewritten as

1(C, g) = d 1̂ = 2(C − g) 1̂ (4)

From Fig. 2, note that d = | |r8 − r | |, which is also equal to 2(C − g). Enforcing this equality yields to the

following constraint functional

L = 2(C − g) − ||r8 (g) − r (C) | | = 0 (5)
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Fig. 2 Graphical representation of the light-time effect.
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Fig. 3 Graphical representation of the celestial aberration.

The correction of the light-time effect is performed right after the propagation steps of the Kalman filter by

solving Eq. (5) for g. By knowing the spacecraft time C, the estimated spacecraft position, and the observed

planet identifier, g is found through the application of Newton–Raphson’s method. The spacecraft time C is

adopted as initial guess. Once g is determined, it is exploited to retrieve the ephemerides of the observed

planet at the epoch of light emission r8 (g), so correcting for the light-time effect.

C. Celestial Aberration

The celestial aberration matters whenever the observer velocity to the target is not negligible, as in the

case of a probe moving in the Solar System. To account for this, a correction is performed every time a new

observation is acquired, and before the estimation is measurement-updated. The procedure followed for the

correction is the one described in [20].

With reference to Fig. 3, let \obs be the angle between the observed LoS 1̂obs and the estimated unitary

velocity vector of the probe v̂; i.e.,

tan \obs =
| | 1̂obs × v̂ | |

1̂>obs v̂
(6)

Then, the aberration angle Y is computed as

tan Y =
(E/2) sin \obs

1 − (E/2) cos \obs
(7)

and the true LoS 1̂true is retrieved such that

1̂true =
1̂obs sin \true − v̂ sin Y

sin \obs
(8)

with \true = \obs + Y.

If the correction in Eq. (8) is neglected, the planet apparent position in the star tracker Field of View (FoV)
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will appear as shifted to the real one. In particular, this error has a consistent impact on the estimation of the

probe state in deep space [21]. Indeed, the estimation is more and more affected by the celestial aberration

and by the light-time effect when the probe velocity and distance to the observed object increase, respectively.

D. Optimal Planets Selection Strategy

When estimating the probe position, it is beneficial to track those planets that will yield the highest

accuracy possible in state determination. This is known as optimal beacons selection strategy. The approach

followed for the selection of the most suitable pair of navigation planets is the one in [18], which is here

implemented directly into the filter. It works by taking as input the estimated position of the spacecraft and the

planets ephemerides, and returns the optimal pair of planets to be tracked. At first, the planets observability

is assessed. Then, the pair of planets that yields the highest solution accuracy is selected.

1. Planets Observability

The Solar Aspect Angle (SAA) and the apparent magnitude are exploited to assess the visibility of a

planet throughout the CubeSat interplanetary transfer. Only the planets whose SAA and apparent magnitude

pass the threshold values imposed by the star tracker can be considered available for tracking.

The planet SAA (V in Fig. 1) is computed as

V = acos
(
−r>1
| |r | | | |1 | |

)
(9)

When V > Vmin, the beacon can be detected by the camera (provided sufficient beacon brightness), with Vmin

the threshold value imposed by the sensor specifications on the minimum SAA.

The apparent magnitude of a planet is the measure of its brightness viewed by an observer, which in this

case is the spacecraft, and depends on the beacon absolute magnitude and on its distance to the probe and to

the Sun. The values of the absolute magnitude " of the planets in the Solar System are reported in Table 1.

Note that the absolute magnitude " can be also expressed as a function of the planet diameter and geometric

albedo [27].

Table 1 Absolute magnitude of the planets of the Solar System [28]

Planet Mer. Ven. Ear. Mar. Jup. Sat. Ura. Nep.

M -0.613 -4.384 -3.99 -1.601 -9.395 -8.914 -7.110 -7

By knowing the absolute magnitude and the estimated position of the spacecraft, the apparent magnitude

< of the planets is computed. First, the phase angle (U in Fig. 1) is evaluated following the same approach of
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Eq. (9). Then, the phase integral @(U), whose value depends on the reflecting surface properties, is defined.

Since the planets can be approximated as ideal diffuse reflective spheres, the phase integral is [29]

@(U) = 2
3

(
(1 − U

180
) cosU + 1

c
sinU

)
(10)

and the apparent magnitude is found by applying the following equation

< = " + 5 log10

( | |1 | | | |rpl | |
32

0

)
− 2.5 log10 @(U) (11)

where 30 is the reference distance equal to 1 AU. The correction term −2.5 log10 @(U) can be approximated

employing more sophisticated models [28], which would enhance the apparent magnitude determination.

When < < <max the planet can be detected by the camera, with <max the threshold value set by the camera

specifications on the maximum apparent magnitude.

2. Optimal Planets Selection

The solution accuracy of Eq. (2) is different for each pair of observed planets, owing to the problem

geometry. Thus, to obtain the best navigation solution accuracy, the optimal pair of beacons needs to be

found among the ones available. The procedure followed is the one presented in [18], in which the optimal

pair of planets is selected by minimizing the figure of merit J . The latter represents the trace of the solution

error covariance matrix in Eq. (2) when considering perturbed line-of-sight directions. While the complete

derivation can be found in [18], its definition is reported hereinafter:

J = f2
str

1 + cos W2

sin W4 d>
(
(O3G3 − 1̂8 1̂

>
8 ) + (O3G3 − 1̂ 9 1̂

>
9 )

)
d (12)

where 1̂8 and 1̂ 9 are the unitary LoS vectors to the 8-th and 9-th planet, respectively, and fstr is the standard

deviation of the LoS angular error from the star tracker. Whereas, d and W are defined as (see Fig. 1 for the

latter)

d = r8 − r 9 W = acos
(
1̂8 1̂ 9

)
(13)

where d is divided by 1 AU to keep J non-dimensional.

Note that J depends on both the observation problem and on the measurements uncertainty fstr.

Assuming that fstr is the same for all the observations, since they are acquired with the same optical sensor,

the problem of obtaining the best solution accuracy in Eq. (2) is traced back to the selection of the observation

geometry that minimizes the figure of merit J , and so the solution uncertainty. In particular, J is inversely
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proportional to the fourth power of the sin W and proportional to the distances of the planets. Thus, the optical

beacons would be those planets close to the observer and whose W is mostly near to
c

2
. The reader can refer

to [18] for further details. A similar result can be found in [19] when the pseudo target strategy is adopted to

select the asteroids targets.

III. Kalman Filter Implementation
This section deals with the setup of a dynamic estimation filter embedding the LoS measurements of

planets in deep space. Sections III.A and III.B present the filter dynamics and measurement models, Sec. III.C

its initialization, and Secs. III.D and III.E report comparisons for filter enhancements.

A. Dynamics Model

The process state x is defined as

x(C) = [r (C), v(C), ((C)]> (14)

where r and v are the inertial probe position and velocity, respectively, and ( is a vector of Gauss–Markow

(GM) processes accounting for unmodeled terms: a 3-dimensional residual accelerations (R and the stochastic

component of the Solar Radiation Pressure (SRP) (SRP; that is, ( = [(R, (SRP]>.

The process is modeled using the following equation of motion

¤x(C) = f (x(C), C) + w (15)

where f is the vector field embedding the deterministic part, while w is the process white noise

f ≔



v

−`Sun
r

A3 + �R
%0'

2
0

2

�s
<s

r

A3

−b(R

−b(SRP


w =



03G1

(R + (SRP

wR

wSRP


(16)

The SRP is described using the cannonball model [30]: �R is the coefficient of reflection, %0 the solar power,

'0 the Sun radius, �s the cross section area of the probe, and <s its mass. Since the spacecraft is on an

interplanetary transfer, third-body perturbations can be neglected [8]. In the Langevin equations

¤(R = −b(R + wR ¤(SRP = −b(SRP + wSRP (17)
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the coefficient b defines the reciprocal of the correlation time, while wR and wSRP are the process noises of

the GM parameters with fR and fSRP standard deviations, respectively [31].

The Jacobian matrix L ≔ m f /mx is a 12 × 12 matrix defined as

L =



03G3 O3G3 03G3 03G3

−
(
`Sun + �R

%0'
2
0

2

�s
<s

)
OA2 + 3rr>

A5 03G3 03G3 03G3

03G3 03G3 −b O3G3 03G3

03G3 03G3 03G3 −b O3G3


(18)

The covariance matrix of the process noise w in Eq. (16) is

W = diag(03G3,W�,WR,WSRP) (19)

with WR = f
2
RO3G3, WSRP = f

2
SRPO3G3, and WA = (WR + WSRP)/(2b).

B. Measurement model

The relative direction of the navigation beacon as seen by the probe 1̂ is defined by two angles that

represent the planet location in the camera FoV: the Azimuth (�I) and the Elevation (�;). The measurement

model equation is so defined as

h =


�I

�;

 =

arctan

( d̂H
d̂G

)
arcsin( d̂I)

 (20)

where d̂G , d̂H and d̂I are the components of the LoS unit vector. These are found by applying the light-time

correction procedure described in Sec. II.B at the end of the propagation steps: first, the parameter g is found

by solving Eq. (5); then, g is exploited to determine the ephemerides of the observed planet. Finally, the

corrected planet LoS direction is retrieved by solving Eq. (3).

Additionally, at a given epoch C: , the observed vector yobs is a 2-dimensional vector, as only one planet at

a time is tracked. It is is modeled starting from h as

yobs = ȳobs + . = h(x: ) + �aber︸          ︷︷          ︸
ȳobs

+ 3fstrk︸︷︷︸
.

(21)

where ȳobs is the unperturbed observed vector and . the measurement white noise. More specifically, x: is

the probe state at C: , �aber the vector that introduces the celestial aberration error (see Sec. II.C), fstr the

standard deviation of the LoS angular error from the star tracker (considered equal for both the azimuth and
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the elevation), and k a white noise vector with values within [−1; 1]. The correction of the celestial aberration

is applied inside the filter, as shown in Sec. II.C. Once 1̂true is found, ytrue can be evaluated applying Eq. (20)

and employed to define the innovation term.

To implement the correction block (see Table 2), the Jacobian matrix N = mh/mx is needed. To simply

the notation, let 1̂ = 1̂8; then

N8 =



1

1 +
(
d̂H

d̂G

)2
d̂H

d̂2
Gd

−1

1 +
(
d̂H

d̂G

)2
1
d̂Gd

0 01G3 01G6

1√
1 − d̂2

I

d̂G d̂I

d

1√
1 − d̂2

I

d̂H d̂I

d

1√
1 − d̂2

I

−1 + d̂2
I

d
01G3 01G6


(22)

The measurement noise has zero mean and is uncorrelated to w. Its covariance matrix X is a 2 × 2 matrix

since it is referred to one beacon at a time. Its coefficients can be obtained by means of the standard deviation

error of the instrument used for the observations. The star tracker error is assumed to be common to all the

components of the matrix X, and the latter can be expressed such that

X = f2
strO (23)

C. Filter Initialization

The initialization of the filter is performed by sampling the initial state vector x0 with mean x̃0 and

covariance matrix V0. The latter is defined as follows

V0 = diag(f2
r O3G3, f

2
v O3G3, f

2
RO3G3, f

2
SRPO3G3) (24)

where fr and fv are the initial standard deviations of the position and velocity, respectively. The initial state

is then computed by applying the 3f standard deviation rule, i.e.,

x0 = x̃0 + 3
√
V0k (25)

where k is a random vector with values are within [−1; 1], and the square root operates on the elements of V0.

D. Standard Filtering Strategy

In the standard filtering strategy, the batch EKF filter is used for the measurement update [32], whereas

the state error covariance matrix V is employed to determine the state uncertainty. The implemented scheme

is reported in Table 2: x?: is the predicted state vector with error covariance matrix V?: , Q: the Kalman

gain, x2: the corrected state vector with error covariance matrix V2: and �: the state transition matrix.
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Table 2 Standard filtering strategy

System State Space ¤x = f (x(C), C) + w Eq. (16)

y: = h(x: ) + .: Eq. (20)

Propagation Block x?: = x2:−1 +
∫ C:
C:−1

f (x(C), C)dC x20 = � [x0] Eq. (25)

�: = �:−1 +
∫ C:
C:−1

L�dC �0 = O

Y: = Y:−1 +
∫ C:
C:−1

�W�>dC Y0 = W Eq. (19)

V?: = �:V2:�
>
:
+ Y: V20 = � [x0x

>
0 ] Eq. (24)

Correction Block Q: = V?:N
>
:
(N:V?:N

>
:
+ X: )−1

x2: = x?: + Q: [y: − h(x?: )]

V2: = (O − Q:N: )V?: (O − Q:N: )> + Q:X:Q>:

E. Alternative Filtering Techniques

Since the goal of this work consists of deploying the orbit determination algorithm on a CubeSat

representative platform, the numerical stability of the filter needs to be investigated to avoid the rise of

numerical issues after the implementation on hardware [31]. To tackle these problems, alternative formulations

of the standard filtering strategy are applied to both the time and the measurement update steps, which will

result in the implementation of four additional alternative filtering schemes. Differently from the standard

scheme, three of the new approaches exploit the sequential measurement update method. This one carries out

the correction of the estimation without matrix inversion by processing the measurements once at a time.

This helps saving computational time and memory, and is a desirable formulation for embedded systems with

no matrix libraries [32]. Moreover, factorization methods are exploited for the solution time-update.

1. Method A

Method A employs Potter’s equation for processing the measurements, and the Householder algorithm

for the square root matrix time propagation [32]. The core procedure of Method A consists of the complete

replacement of the matrix V with its square-root matrix S, which is numerically more stable due to the

halving of the conditioning number. The decomposition of the matrix V is performed only once at the

beginning of the filtering procedure by applying the Cholesky factorization. Subsequently, the Householder’s

algorithm is employed inside the filter propagation block, whereas Potter’s equation manages the observation

in the correction part [32]. The flowchart of the Householder algorithm, which is adopted for the square-root

matrix time-update, is illustrated in Fig. 4.
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for 

 , 

,   update

Start: 

for 



for 



Finish  

end for

end for

end for

Fig. 4 Flowchart of the Householder algorithm

At first, the matrix G at C: needs to be defined such that

G(:) =


S>(:)2 �>

(:)√
Y>(:)

 (26)

where S2 is the square root matrix coming from the previous measurement update, while Y and� are defined

in Table 2. Note that from now on the superscript (:) will be omitted for easing the treatment.

By reminding that the parameter = represents the dimension of the state vector, the first for loop is

implemented. The two scalars f9 and V 9 are evaluated as follows:

f9 = sign(� 9 9 )

√√√ 2=∑
8= 9

�2
8 9

V 9 =
1

f9 (f9 + � 9 9 )
(27)

Then, the vector u and v are obtained by entering into the first and second for sub-loops, respectively, and by

applying:

D8 =



0 8 < 9

f9 + � 9 9 8 = 9

�8 9 8 > 9

E8 =



0 8 < 9

1 8 = 9

V 9u
>G(:, 8) 8 > 9

(28)

The matrix G is time-updated in the second for sub-loop as G(:+1) = G − uv>. Finally, the procedure ends
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with the definition of the a-priori square root matrix S? at the epoch C:+1 such that S (:+1)? = G(1 : =, :)>.

Once S (:+1)? is evaluated, the Potter’s square root measurement-update equation is employed for obtaining

the matrix S (:+1)2 . The flowchart of the procedure is reported in Fig. 5. Note that the superscript (: + 1) is

omitted to ease the discussion, and the parameter A represents the number of measurements at each epoch.

for 

 , , ,


, , 




Start:  , 






Finish
end for

Fig. 5 Flowchart of Potter’s measurement-update procedure

At first, the procedure is initialized: 1) S20 = S? and 2) x20 = x? . Then, at each cycle of the for loop, the

parameters are evaluated as follows:



78 = S>28−1N
>
8

08 =
1

7>
8
78 + '88

X8 =
1

1 +
√
08 + '88

Q8 = 08S28−178

x28 = x28−1 + Q8
(
y8 − ℎ(x28−1 )

)
S28 = S28−1 − X8Q87>8

(29)

where N8 is the 8-esimal row of N, '88 the variance of the 8-esimal measurement, Q8 the Kalman gain,

while S28 and x28 the square root matrix and the state vector, respectively, after the 8-esimal measurement is

processed.

2. Method B

Method B implements the UDU filtering scheme, in which the upper triangular matrix[ and the diagonal

matrix J are propagated. The UDU factorization is adopted to enhance the numerical precision of the

matrix V. Differently from the square root method, the UDU factorization needs to be performed at each

measurement update. The observations are then processed employing a sequential algorithm [32]. To
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propagate[ and J, firstly, the matrices] and Ĵ are defined as

] =

[
�(:+1)[ (:)2 O=G=

]
Ĵ =


J (:)2 0=G=

0=G= Y (:+1)

 (30)

where [ (:)2 and J (:)2 are retrieved from the previous measurement-update step. Then, the Gram-Schmidt

orthogonalization procedure represented in Fig. 6 is applied.

for i =n:-1:2

Start: 

for j =1:i-1 ,

Finish
end for

for 







for 







end for

Fig. 6 Flowchart of Method B time-update procedure

The first element of J (:+1)? is evaluated as � (:+1)?11 = w>1 Ĵw1, where w1 represents the first column of

]>. In a similar way, the other elements of J (:+1)? are defined. Then, by entering into the second embedded

for loop the elements of[? are found, and the vector w 9 is updated as

*
(:+1)
? 98

=
w>
9
Ĵw8

�
(:+1)
?88

w 9 = w 9 −* (:+1)? 98
w8 (31)

In this way [ (:+1)? and J (:+1)? are found. Taking as input the results of the time propagation, the

measurement update is sequentially performed as illustrated in Fig. 7 [32].
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for 



, § , § , § , 
,   


, , 




Start:  , 

,  ,  




Finish
end for

Fig. 7 Flowchart of the Method B measurement-update procedure

Let us omit the superscript (: + 1) over each element to ease the discussion. The procedure is initialized

as: 1) [20 = [?, 2)J20 = J ?, 3) V20 = V? = [?J ?[
>
? , and 4) x20 = x?. Then, at each cycle of the for

loop, the following parameters are evaluated as:



U8 = N8 V28−1 N>
8
+ '88

§8 = J28−1 −
1
U8
(J28−1[

>
28−1N

>
8
) (J28−1[

>
28−1N

>
8
)>

[§8J§8 = UDUfact(§8)

[28 = [28−1[§8

J28 = J§8

V28 = [28J28[
>
28

Q8 =
V28 N

>
8

'88

x28 = x28−1 + Q8
(
y8 − h(x28−1 )

)

(32)

where N8 is the 8-esimal row of N, '88 the variance of the 8-esimal measurement, [28 , J28 , V28 the

measurement-updated covariance matrices after the 8-esimal measurement is processed, and [§8 , J§8 the

matrices found by applying the UDU factorization to §.

3. Method C

A different approach that may improve the numerical stability of the estimator is achieved through the

non-dimensionalization of the model equations. Indeed, by virtue of the Buckingham theorem, the validity of

the physics laws does not depend on a particular unit system [33]. In Method C the standard filtering strategy

is employed with non-dimensional model equations. As first step, the dimensional analysis of the variables

that enter into the estimator needs to be performed. The dimensions of the components of the state vector are

described only through two fundamental physical quantities: the length and the time. Thus, only a position Ā
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and an epoch C̄ parameter are needed to non-dimensionalized the whole filtering procedure.

The dimensionless state vector x̄ and the equation of motion f̄ are defined as

x̄ =



r̄

v̄

(̄R

(̄SRP


=



r/Ā

v/(Ā C̄−1)

(R/(Ā C̄−2)

(SRP/(Ā C̄−2)


f̄ =



v̄

C̄2

Ā3

(
− `Sun + �R

%0'
2
0

2

�s
<s

) r̄

| | r̄ | |3

−C̄b(̄R

−C̄b(̄SRP


(33)

and the same argument is applied for evaluating the dimensionless Jacobian matrices L̄ and N̄, and the

covariance matrices W̄, X̄ and V̄0.

4. Method D

Method D is simply the non-dimensional version of Method A.

Table 3 reports the algorithms used for the implementation of the aforementioned techniques.

Table 3 Features of the alternative filtering technique

Method Measurement update Time update

A Potter’s equation (Sequential) Householder algorithm (Propagation of S)

B Sequential scheme Propagation of[ and J

C Non-dimensional standard (batch) scheme Non-dimensional propagation of V

D Non-dimensional Potter’s equation Non-dimensional Householder algorithm

IV. Results

A. Test Case Definition

In the study case, a CubeSat performs an interplanetary transfer toward Mars, during which it estimates

its position and velocity by tracking the visible planets. At C0, the probe nominal position and velocity are

defined by the vectors r̃0 and ṽ0, whose components are in Table 4 (J2000 ecliptic reference frame). Fig. 8

shows the nominal probe trajectory.
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Table 4 Probe state at t0 = 9832 [mjd2000]

Position [km] Velocity [km/s]

G 4.3936 × 107 -29.9208

H 1.4582 × 108 12.1815

I 1.4841 × 106 0.4364

Fig. 8 Probe’s trajectory (dashed line), departure and arrival planets (solid lines) during the opera-
tional window.

Starting from C0, the estimation procedure begins. The probe tracks the first planet of the selected couple

for one hour with a measurement frequency of 0.01 Hz, then it performs a slew maneuver of twenty minutes

during which the state is only propagated (and thus not corrected). Then, the observations relative to the

second planet are gathered for another hour, and, finally, the state is propagated for ten days. Therefore, only

two hours every ten days are reserved for orbit determination purposes. The entire operational window is

composed of 25 navigation legs of 10 days 2 hours and 20 minutes each, where the aforementioned navigation

cycle is repeated recursively. The navigation cycle is outlined in Fig. 9.

Note that only the optimal pair of planets is tracked for each navigation leg. Indeed, when a limited time

window is reserved for navigation and more than two planets are tracked, the filter performances worsen.

This occurs because 1) the optimal couple that yields the smallest uncertainty region is tracked for short time,

so preventing a proper estimation correction, 2) the uncertainty region created by another non-optimal couple
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First Planet Tracking Slew Maneuver

Second Planet Tracking State Propagation

                              
                     

20 min
60 min

60 min

10 days

Fig. 9 Outline of the navigation cycle

is greater than the optimal one, hence tracking the third planet will not improve the estimation compared to

the optimal one. Additionally, the higher is the number of observed planets, the higher will be the number of

slew maneuvers required to point them, and thus the longer will be the time not allocated to the correction of

the estimation.

1. Planets Observability

It is assumed that the imaging instrument can observe planets characterized by relative magnitude lower

than 6 with SAA greater than 35 deg. This comes from typical performances of star trackers for CubeSats†.

Planets not complying with these thresholds are not accounted for in the specific navigation campaign.

Fig. 10 shows the profile of the planets SAA and apparent magnitude over the operational window. It can be

noticed that Mercury is always not available due to its vicinity to the Sun (SAA < 35 deg for the considered

deep-space orbit), whereas Uranus and Neptune are never seen because of their faint luminosity (< > 6).

2. Optimal Planets Selection

Once the observability of the planets is assessed, the optimal planets selection strategy is performed. The

procedure consists of finding the pair of planets among the ones available that minimizes the figure of merit

J in Eq. (12). The strategy is embedded in the estimator, and it is implemented at the beginning of each

navigation leg. Indeed, since the planets observation lasts only two hours, it is reasonable to assume that the

selected pair of planets preserves its optimality throughout each navigation window. The optimal planets are

reported in Fig. 11, where the black dots represent the values of J and W for the selected optimal couple at

the beginning of each navigation leg.
†https://www.cubesatshop.com/, last visited on June 2021
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SAA threshold

Magnitude threshold

Fig. 10 Planets Solar Aspect Angle (SAA) and apparent magnitude (<) over the CubeSat trajectory.
The dashed lines represent the assumed thresholds.

3. Planets Resolvability

To verify the suitability of the celestial triangulation as navigation technique in deep space, the planets

resolvability is analyzed. To this aim, the Object-to-Pixel Ratio (OPR) of each planet is evaluated. The

OPR can be seen as a qualitative factor that represents an initial knowledge about the dimension in pixel

that a planet would have on the imager without considering defocusing and noises of the camera and the

environment.

The Object to Pixel Ratio (OPR) is defined as

OPR = 2 arctan
(
'p

d

)
#px

�$+
(34)

where 'p is the planet mean radius and #px the number of camera pixels. The OPR of the exploited planets

is computed considering the sensor FOV equal to 20 deg and #px of 1024. When OPR < 1, planets apparent

dimensions are lower than a pixel: they are not resolved, but sub-pixel accuracy in the LoS measurement can

be reached by defocusing the light on the imager [17]. As Fig. 12 shows, Earth and Mars are resolved in the

first and last part of the transfer orbit, respectively. Also in these circumstances, to increase the centroid

precision, light defocusing is applied.

B. Performances

The characteristics of the star tracker considers 3fstr equal to 15 arcsec. This comes as a contribution due

to attitude determination (9 arcseconds [25]), planet centroiding error (3.5 arcseconds), and a small margin
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Fig. 11 J and W trends over the operational window for the combinations of available planets. The
optimal selection is represented with black dots.

due to unmodelled effects such as thermoelastic deformations of the spacecraft (2.5 arcseconds). The initial

standard deviations of the state are reported in Table 5.

Table 5 Accuracy of the state components at C0

fr [km] fv [km/s] fSRP [km/B2] fR [km/B2]

104 10−1 10−12 10−12

Note that the values are selected following a conservative approach, taking into account that in deep

space the initial position and velocity are usually known with an accuracy better than 10000 km and 0.1 km/s,

respectively. In addition, a study is performed to evaluate the threshold value of the position initial standard

deviation over which the orbit determination algorithm is not able to select the optimal targets. This value

results to be fA = 107 km. Similar results can be found in [25], where LoS error statistics as a function of

the initial probe position standard deviation are shown. Also in this case, when fA ≥ 107 km, the image

processing algorithm is not able to point the target planet and extract its LoS.

1. Method Selection

The performances of the five alternative filtering schemes described in Sec. III are compared to select

the procedure that is most appropriate to be deployed on miniaturized hardware. The drivers that lead the

trade-off are 1) the computational time (CPU time) and 2) the maximum value of the conditioning number
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Unresolved threshold

Fig. 12 Planets Object to Pixel Ratio. The triangular and the circular markers highlight the OPR
values of the first and second acquired planets, respectively.

of the state error covariance matrix (max K). The former is employed as measure of the computational

complexity of the algorithm, whereas the latter indicates the filter numerical stability. The five alternatives

have been tested on 100 samples each on an Intel(R) Core(TM) i7-10700 CPU@2.90 GHz; Table 6 reports

average values of the simulations. The parameters employed for the non-dimensionalization are Ā = 144 km

and C̄ = 142 s.

Table 6 Comparison of the alternative filtering procedures

Method Standard A B C D

CPU time [s] 6.35 6.54 6.92 5.41 5.56

Max K [-] 1033 1016 1032 1025 1012

To carry out the trade-off, marks from 1 to 5 are employed, where 1 represents the poorest alternative

while 5 the best one. The criteria matrix is so developed:
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Table 7 Criteria matrix

Method Standard A B C D

CPU time 3 2 1 5 4

Max K 1 4 2 3 5

Total Score 4 6 3 8 9

Method D has the highest score, and it is so selected as the most suited filtering scheme to be deployed

on a miniaturized computer. Indeed, thanks to the application of the square-root factorization and the

non-dimensionalization strategy, Method D is the most stable over the five alternatives, and the second less

complex.

It is important to underline that the solution accuracy reached in the estimation of the state is identical in

all methods. Indeed, the alternative filtering approaches enhance only the numerical precision of the standard

filtering strategy, and do not affect its physical accuracy.

2. Estimation Accuracy

Figure 13 and 14 show the error profile during the estimation of the position and the velocity by adopting

Method D fed by the optimal beacon selection strategy. The samples error profile is displayed with blue solid

lines, whereas the orange solid lines and the dashed ones define the 3f covariance bounds of the samples and

the filter, respectively . At the end of the operation window, the 3f error of the probe position and velocity is

lower than 360 km and 0.04 m/s. Since both the planets and the spacecraft lie almost on the ecliptic plane, the

G and H components represent the in-plane error, whereas I is the out-of-plane one. The area of the in-plane

uncertainty region (see Sec. IV.D.1 for a graphical representation) highly depends on the problem geometry.

Whereas, the out-of-plane solution accuracy is related to the radius of the cones at the intersection, which is

associated to the planet relative distance from the probe with respect to their relative positions.
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Fig. 13 Estimated errors for each position component with related 3f bounds. For clarity sake, only
20 out of 100 Monte Carlo sample histories are reported.

Fig. 14 Estimated errors for each velocity component with related 3f bounds. For clarity sake, only
20 out of 100 Monte Carlo sample histories are reported.

If the beacons are not optimally selected, only one combination of planets, i.e., Mars–Jupiter, can be used

for the navigation thanks to the availability of these beacons throughout the operational window. Fig. 15

compares the estimator performances when the optimal planets selection strategy is adopted against the case

in which only the couple Mars–Jupiter is tracked. In general, the filter that uses the optimal selection has

always the lowest 3f covariance bound values, so demonstrating the improvement in the estimation.
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Fig. 15 Comparison between Method D performances obtained when the optimal planets selection
strategy is adopted (solid line) and when only the pair Mars–Jupiter is tracked (dashed line).

C. Processor-In-the-Loop Simulation

A Raspberry Pi, whose computational power and size are comparable to a COTS CubeSat on-board

computer, is employed to test the estimator performances in a Processor-In-the-Loop (PIL) simulation. The

main specifics of the hardware used are given in the Table 8.

Table 8 Raspberry Pi technical specification ‡

Model Processor RAM OS

Raspberry Pi 4 model B ARM v8 2GB Raspberry Pi OS (Linux)

The deployment of Method D on the Raspberry Pi has been performed by exploiting the Matlab Support

Package for Raspberry Pi Hardware § andMatlab Coder ¶. At first, these apps generate automatically an

equivalent C++ code starting from a .m file by creating a connection between Matlab and the platform.

Then, the coder deploys the algorithm as an executable file on the Raspberry Pi, on which it is run as a

standalone application. The inputs of the deployed estimator such as the initial perturbed state and the output

vector y: are simply loaded on the hardware and processed by the filter.
†https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/, Last Visited on Jan. 2021
‡https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/, Last Visited on Jan. 2021
§https://it.mathworks.com/help/supportpkg/raspberrypiio/, Last Visited on January 2021
¶https://it.mathworks.com/products/matlab-coder.html, Last Visited on January 2021
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Fig. 16 Testing of the algorithm performances on a Raspberry-Pi.

The average CPU time required to run the filter over the operational window for 20 simulations is 3.96

s , whereas the solution accuracy reached in the estimation is equivalent to the one in Section IV.B.2 and

summarized in Table 9.

Table 9 Solution accuracy at the end of the operational window with PIL simulation

32 position error [km] 32 velocity error [m/s]

360 0.039

D. Filter Performances on Different Test Cases

The orbit determination algorithm is tested over two different test cases: A. Toward an outer planet and B.

Toward an inner planet. The navigation procedure adopted is the one represented in Fig. 9. The features of

the optical sensor and the filter settings are equal to the aforementioned ones if not differently specified.

1. Navigation Toward an Outer Planet

The spacecraft is covering an interplanetary trajectory toward Saturn. At C0 = 28.38 mjd2000, the

probe state is described by the Cassini’s position and velocity vectors r̃0 = [283.36667.86 − 8.85] · 106 km

ṽ0 = [−3.11, 11.84,−0.10] km/s ‖, respectively. The state of Cassini at C0 is propagated for 300 days with

the dynamic model described in Eq. (15). In this configuration only the planets Saturn-Jupiter are visible,

thus they are always selected despite their optimality. The nominal probe trajectory and the result of the

optimal planets selection is shown in Fig. 17.
‖https://ssd.jpl.nasa.gov/horizons/, Last visited on 17th November 2021
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(a) Probe’s (solid line) and planets’ trajectories (dashed lines) during the operational
window.

(b) J and W trends over the operational window for the only combination of available
planets.

Fig. 17 Trajectory and planets selection for Cassini mission

The filter estimates the position and the velocity with a 3f accuracy of 8226 km and 0.44 m/s, respectively.

This worsening of the filter performances mainly happens due to the vast distance between the probe and the

observed planets. Let us take as reference Sec. IV.D.1.

27



The uncertainty region generated by the initial position uncertainty w and measurement error f is a 3D

cone that scales linearly with the relative distance between the probe and the observed object. The intersection

region of two uncertainty cones, which represents the state uncertainty, will increase as well, worsening the

accuracy of the navigation solution. This is also proved by the J values in Fig. 17b, which are one order

greater in average with respect to the case shown in Fig. 11.
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(a) Estimated errors for each position component with related 3f bounds. For clarity sake, only 20 out of 100
Monte Carlo sample histories are reported.

(b) Estimated errors for each velocity component with related 3f bounds. For clarity sake, only 20 out of 100
Monte Carlo sample histories are reported.

Fig. 18 Filter performances for the Cassini mission

2. Navigation Toward an Inner Planet

The spacecraft is covering an interplanetary transfer toward Venus. At C0 = 9121 mjd2000, the probe state

is described by position and velocity vectors r̃0 = [0.024, 1.48, 0.02] · 108 km ṽ0 = [−27.49, 0.44, 1.46]

km/s, respectively. The probe state at C0 is propagated for 140 days. The nominal probe trajectory and the

result of the optimal planets selection is shown in Fig. 19.
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(a) Probe’s trajectory (solid line) and departure and arrival planets’ trajectories (dashed
lines) during the operational window.

(b) J and W trends over the operational window for the combinations of available planets.
The optimal selection is represented with black dots.

Fig. 19 Trajectory and planets selection for the Venus transfer

The filter estimates the position and the velocity with a 3f accuracy of 700 km and 0.2 m/s, respectively.

The position and velocity error profiles are shown in Fig. 20. The results obtained are similar to the

Earth–Mars transfer’s ones. This was expected by noticing that the J values associated to the selected pair

of planets are of the same order of the one obtained for the Earth–Mars transfer.
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(a) Estimated errors for each position component with related 3f bounds. For clarity sake,
only 20 out of 100 Monte Carlo sample histories are reported.

(b) Estimated errors for each velocity component with related 3f bounds. For clarity sake,
only 20 out of 100 Monte Carlo sample histories are reported.

Fig. 20 Filter performances for the Venus transfer

V. Conclusions
This work has investigated the autonomous optical-based OD problem applied to a representative CubeSat

processor. An enhancement of the solution accuracy and the estimator numerical stability has been performed

thanks to the application of different strategies. The solution accuracy has been improved by selecting the

best couples of planets for each navigation leg. Besides, the error resulting from the presence of the light-time

effect has been corrected by evaluating the parameter g after the propagation steps and by retrieving the

planet ephemerides at the epoch of light emission. Whereas, the correction of the light aberration effects has

been developed every time a new observation is acquired, and before the estimation is measurement-updated.

Finally, the EKF performances of different filtering methods have been studied to prevent the rise of numerical

issues after the deployment on the hardware. Among the five schemes, the Method D has been selected as the

most suited alternative to be exploited for CubeSats application, and it has been deployed on the Raspberry Pi

to verify its appropriateness. The filter estimated the probe position and velocity with 3f bounds of the order
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of 360 km and 0.04 m/s, respectively. The suitability of the Method D for CubeSats is so verified.

In this work, the planets LoS direction was only simulated and not extracted from generated sky-field

images. Indeed, the next step concerns the development of a robust pipeline for planets LoS extraction

and its integration with the presented optical-based orbit determination algorithm. The first results in this

direction can be found in [25]. The navigation algorithm will be eventually tested and validated through a

hardware-in-the-loop simulation. More details about the navigation experiment that will be carried on within

the EXTREMA project are reported in [24].
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