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A Deep Learning Approach for Change Points
Detection in InSAR Time Series

Francesco Lattari, Alessio Rucci, and Matteo Matteucci

Abstract—Interferometric SAR (InSAR) algorithms exploit
synthetic aperture radar (SAR) images to estimate ground dis-
placements, which are updated at each new satellite acquisition,
over wide areas. The analysis of the resulting time series finds its
application, among others, in monitoring tasks regarding seismic
faults, subsidence, landslides, and urban structures, for which
an accurate and timely response is required. Typical analyses
consist of identifying among the numerous time series the ones
that exhibit an anomalous displacement, thus deserving to be
further investigated. In practice, this is realised by selecting the
time series which are characterised by trend changes w.r.t. the
historical behaviour. In this work, we propose a Deep Learning
approach for change point detection in InSAR time series.
The designed architecture combines Long Short-Term Memory
(LSTM) cells, to model the temporal correlation among samples
in the input time series, and Time-Gated LSTM (TGLSTM)
cells, to consider the sampling rate as additional information
during learning. We further propose a solution to the lack
of ground truth by developing a suitable pipeline for realistic
data simulation. The method has been developed and validated
through a large suite of experiments. Both quantitative and
qualitative analyses have been conducted to demonstrate the
detection capabilities of the learned model and how it is a
valid alternative to the statistical reference algorithm. We further
applied the developed method in a real continuous monitoring
project to analyse InSAR time series over the Tuscany region in
Italy, proving its effectiveness in the real domain.

Index Terms—InSAR; Deep Learning; LSTM.

I. INTRODUCTION

IN the last years, there has been a large increase in appli-
cations based on the analysis of remote sensing data. In

particular, advances in technology have led to a new era in
the field of Earth observation (EO). Satellites equipped with
Synthetic Aperture Radar (SAR) systems paved the way for
the research of advanced algorithms to exploit the information
contained in the data acquired from space. Among them,
interferometric SAR (InSAR) techniques [1], [2] exploit the
revisiting time of the sensors to perform a spatio-temporal
analysis of the Earth surface to measure, with millimeter
accuracy, ground deformations over time. The final output
of this analysis is a collection of time series representing
the ground displacements of measurement points (MPs), or
scatterers, on the surface during the observed period. In the
last decade, InSAR data increasingly acquired interest for
the numerous monitoring applications for which it represents
a very valuable source of information, e.g., landslides [3],
volcanic activities [4], seismic faults [5], and others.
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In this context, the European Space Agency (ESA) Sentinel-
1 mission turned out to be a game changer for the EO
community. Deployed in the framework of the EC Copernicus
Programme, this constellation of two twin platforms (A and
B) is capable of providing wide-scale, systematic, up-to-
date, and access-free satellite radar data over Europe, with
6-day revisiting time in both ascending and descending orbits.
Permanent scatterers interferometry (PSInSAR) [6], [7] and
its enhanced development SqueeSAR™ [8] exploit this huge
availability of SAR images to periodically measure the surface
deformation through the identification of coherent targets, i.e.,
permanent and distributed scatterers exhibiting good phase
stability over the whole time period of observation. Distributed
scatterers are also considered in other InSAR algorithms like
[9] and [10]. A typical analysis of a SAR interferogram
consists of identifying among the huge number of MPs the
ones exhibiting displacement time series characterised by a
trend change, which can be further investigated. This data
screening phase is extremely important to support the end-
users in the exploitation of frequently updated (every few
days) information layers. Nevertheless, the large volume of
InSAR data, which increases of hundreds of thousands, or
even millions, time series each update, remains an important
limitation to its operational use.

An answer to this problem was given in [11], in which
a computationally efficient method is introduced to estimate
kinematic parameters from interferometric data to monitor
the behaviour of points on Earth. This is done by applying
multiple hypotheses testing (MHT) to find the optimal model
describing the observations, given a library of physically
realistic deformation models. In [12] authors focus on the
application of polynomials, by introducing a statistical test
to rank polynomial approximations for MTInSAR time series,
thus finding the ones with the minimum number of parameters.
In [13] a model-free method is instead proposed to charac-
terise and select meaningful time series. A different statistical
approach is proposed by [14], in which the objective is instead
to detect in each time series all those points in correspondence
of which a trend change occurs. These points are defined as
change points, and the considered task is usually referred to
as change points detection or trend change detection [15],
[16]. Section II better describes the approach used in [14],
which is considered as the baseline in our work, since the
proposed method shares the same objective. In the specific,
we are interested in identifying three possible classes of
change points, depending on the kind of the associated trend
change. In correspondence of step change points, an abrupt
change w.r.t. the historical trend is observable, while keeping
a constant average displacement rate. In the case of velocity
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Fig. 1. Example of change points in InSAR time series. In the plot the
displacements time series. On the y axis the ground deformation expressed in
millimeters (mm), while on the x axis the days related to the corresponding
SAR image acquisitions. In the example two trend changes occurs in cor-
respondence of the two coloured points: the green one is related to a step
change point of +8.8 mm; the red one is related to a velocity change point
of −13.5 mm/year.

change points, the sequence undergoes a variation of the
average displacement rate, without any abrupt displacement.
Finally, the third class includes points where both step and
velocity changes occur. Figure 1 shows an example of velocity
and step change points.

The identification of change points is not a simple task
due to the noisy nature of InSAR time series, resulting from
residual errors produced during the estimation process. The
main sources of noise are changes in the acquisition geometry,
i.e., geometrical decorrelation, changes in the location of the
scatterers, i.e., temporal decorrelation, and phase artefacts
due to the atmospheric effects. Additional challenges come
from the presence of seasonalities in the time series, which
have to be estimated and removed from the original data
before applying any detection algorithm, and from the variable
lack of acquisitions, which produces non-uniformly sampled
sequences.

As discussed in Section Section II, statistical approaches
have been efficiently applied for detecting change points in
InSAR time series. However, they are based on multiple hyper-
parameters, which are properly tuned depending on the specific
application and the requirements of the final users. Our work
shares the same objective of providing a timely and automatic
tool of analysis, but we take advantage of deep learning (DL)
techniques to learn a change point detector, without the need to
define any set of possible displacement models. The capability
of neural networks of learning patterns from data, coupled
with increasingly powerful computing technologies, has made
the DL a winning approach in many fields of the computer
vision and, in the last years, we are witnessing a growth of
DL approaches also in numerous EO applications.

In this work we focused on Recurrent Neural Networks
(RNNs), which allow modelling the temporal correlation
among samples in sequential data by introducing the con-
cept of memory during the learning process. RNNs allow
extracting features from data based on the understanding of
the information contained in past observations. Indeed, these
architectures are well suited to solve problems in which a
time dependency among samples exists. This is the case, for
instance, of machine translation [17], speech recognition [18],
or sounds generation [19]. We demonstrate that RNNs are
also suitable for analysing InSAR data and, in particular,
that are a valuable approach to the specific task of detecting
change points. Other works tried to solve similar tasks in very
different domains such as anomaly detection in sensor signals

from mechanical devices [20], anomaly detection in multi-
modal sensory signals in robot-assisted feeding systems [21],
cyber-attacks identification in cyber-physical systems [22], or
anomaly detection in electrocardiogram (ECG) signals [23].
In the considered task, the goal is to identify all the trends in
InSAR data, which can be characterised by a huge variety of
dynamics.

In the proposed work, a recurrent classification network has
been developed and trained to discriminate between normal
points (class 0), i.e., internal to a trend, and change points
(class 1), which are points straddling two consecutive trends.
As described in Section III, the designed network combines
Long Short-Term Memory (LSTM) cells [24], [25], which
allow dealing with the vanishing gradients problem [26],
and Time-Gated LSTM (TGLSTM) cells [27], which are a
modified version of standard LSTM cells allowing to learn
from non-uniformly sampled time series, which is a charac-
teristic of InSAR data. Indeed, the time that elapses between
measurements in InSAR time series can be irregular due to the
lack of satellite acquisitions because of satellite manoeuvres,
conflicts with high priority requests, temporary failure in the
radar sensors, or in the downlink system.

One of the main problems to face when dealing with SAR
data is the lack of ground truth [28], which makes it difficult
both training the model and validating the results. Indeed,
this is one of the challenges we tackled in the conducted
work, since the huge amount of InSAR time series makes
it impossible to perform any manual labelling. Accordingly,
we resorted to data simulation to generate both training and
validation data. This allows to obtain accurate targets, which
is advantageous not only for training, but also for having a
reliable evaluation of the results during tests. Furthermore,
simulation allows to enrich the training set with a huge variety
of scenarios, allowing for higher generalisation capabilities.
To fully take advantage of simulation, it is required that
the simulated data has to be as similar as possible to real
data. For this purpose, we conducted our research closely
with InSAR specialists from the industry, which supported us
during both the process of data generation and the validation
of the obtained results when dealing with real InSAR data, for
which specific knowledge and experience is required.

The rest of the article is organised as follows. In Section
II we give an overview of the baseline method considered as
the golden standard. In section III we present the proposed
method, by detailing the designed architecture. In Section IV
we describe the suite of experiments we built to train the
proposed network, by highlighting the data simulation (IV-A),
which is further detailed in Appendix, and the employed
training procedure (IV-B). In Section V we prove the validity
of the proposed method, both quantitatively and qualitatively,
by testing the learned model on a large amount of test data.
We demonstrate the capability of the proposed method to
identify the change points both in simulated time series, which
have been used to perform a quantitative analysis of the
performance, but also in real sequences, which have been
obtained by estimating displacement values from a stack of
SAR acquisitions over the Tuscany region (central Italy). Fur-
thermore, we report the application of the learned model over
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the Fernandina volcano area, at Galápagos Islands. Finally, we
derive our conclusions in Section VI.

II. REFERENCE SOLUTION FOR INSAR CHANGE POINT
DETECTION

In the following a description of the statistical algorithm we
considered as the baseline for our experiments is provided. The
method has been used in [14], where the authors apply a post-
processing on the displacement time series obtained through
the SqueeSAR™ algorithm to identify the change points.
The detection is performed based on bayesian change point
and variable selection algorithm [29]. Given a displacements
time series, the algorithm estimates the probability of each
possible sub-sequence to contain k change points, which is
done through a recursive approach. In particular, the marginal
probability density of the data is computed, which is

f(Yi:j) = f(Yi:j |Xi:j), (1)

for 1 ≤ i < j ≤ N , where Yi:j is a sub-sequence of the
data and X = [X1, X2, ..., Xm] is a sub-set of regressors of
the regression model. Then, starting from the end of the time
series, the probability of any prefix of data Y1:j to contain k
change points is computed recursively as:

P1(Y1:j) =
∑
v<j

f(Y1:v)f(Yv+1:j) (2)

Pk(Y1:j) =
∑
v<j

Pk−1(Y1:v)f(Yv+1:j) (3)

for j = 1, 2, ..., N . Finally, Bayes Rule is used to estimate
both the number and the location of the change points from
the posterior distribution. Given a prior distribution on the
number of change points P (K = k) and a prior distribution
on the locations of the change points P (c1, c2, ..., ck|K = k),
the number of change points is computed as

f(K = k|Y1:N ) =
Pk(Y1:N )P (c1, ..., ck|K = k)P (K = k)

f(Y1:N )
,

(4)
and the uncertainty of the location of a change is given
iteratively, being ck+1 = N the last data point, as

f(ck = v|ck+1) =
Pk−1(Y1:v)f(Yv+1:ck+1

)∑
v∈[k−1,ck+1]

Pk−1(Y1:v)f(Yv+1:ck+1
)
,

(5)
for k = K, k − 1, ..., 1.

One of the applications of this approach is in continuous
monitoring projects, where displacement time series, for both
ascending and descending geometries, are systematically anal-
ysed to detect changes in the last d days, e.g., 150 days. When
a candidate change point is identified, with the procedure
described so far, a breaking point Tb is defined and the average
deformation rates are computed for each sub-sequence, i.e.,
v1 in the time interval T0 − Tb and v2 in the time interval
Tb − Tn are computed. Finally, if |∆V | = v2 − v1 > τ the
point is selected as a change point, where τ is a manually
defined threshold which depends on the kind of deformation
changes we are interested in.

The algorithm is applied regularly every few days on
hundreds of thousands of time series. These numbers refer,

in general, to single sites, typically at a regional scale, e.g.,
thousands of square kilometres, but they become an order
of magnitude larger if we imagine to extend the analysis
at a national scale, or even more considering a worldwide
processing. The increasing volumes of measurement points
and the short time between subsequent updates make the
statistical analysis inefficient for near-real-time monitoring,
for which on-time deliveries are required by the end users.
Also, this kind of analysis requires manual operators to adapt
the algorithm hyper-parameters depending on the observed
site and on the requirements. The proposed approach allows
avoiding any manual setting of the model parameters, being
the model directly learned from data. In addition, coupled with
graphics processing units (GPUs), it allows to perform an high-
throughput data processing with a flexible scale-up. Indeed,
one of the objectives of the conducted research is to improve
the exploitation of InSAR data, paving the way to large-scale
applications of ground deformation analysis.

III. PROPOSED METHOD

Motivated by the performance reached by RNNs in many
tasks involving the analysis of sequential data, we propose
a deep recurrent neural network for the automatic detection
of change points in InSAR time series. The developed net-
work consists of multiple recurrent layers, which have been
stacked to encode the input time series at different levels of
abstractions. Each layer is realised through a recurrent unit,
or cell, which implements a sort of memory that is updated
at a certain time t based on the current input and the output
at time t− 1. Then, output values are produced based on the
memory content, thus conditioning the current understanding
of data on past observations.

Let R be the operation computed by a generic recurrent
cell, then we have

ht = R(xt, ht−1) (6)

where ht ∈ RNh denotes the cell output, or features, xt ∈ RNx

is the current input of the cell and ht−1 ∈ RNh represents
the information coming from previous time step t − 1 and
it is typically called hidden state. Considering a multi-layer
architecture and defining Rℓ as the ℓ-th recurrent layer, the
following holds

hℓ
t = Rℓ

t(h
ℓ−1
t , hℓ

t−1), ℓ > 1. (7)

Thus, for the ℓ-th layer the input at time t corresponds to the
output produced by the lower layer at the same time step. In
the considered task, the input xt of the first layer, i.e., ℓ = 1,
is a single sample from the input InSAR time series and thus
we have xt ∈ R.

In this work, the time elapsed between displacements,
which is measured in number of days, is further included
as additional information during learning. In particular, in
addition to the displacement value, the first recurrent layer
takes as input ∆tt ∈ N, which is the time interval between
the sample at time t and the previous one at time t− 1. Thus,
for the first layer, the recurrent operator becomes

h1
t = R1(xt,∆tt, h

1
t−1). (8)
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Fig. 2. Designed Neural Network. The recurrent network is composed by stacking a TGLSTM and L − 1 LSTMs. It takes the displacements x and the
sampling intervals between acquisitions ∆t as input and produces a set of features as output. Then the classifier, realised through a fully-connected neural
network, produces the final probability vector.

Recurrent operations are realised in this work through Long
Short-Term Memory (LSTM) [24], [25] cells. An LSTM is
composed by an internal cell state and a set of gates, which
allow to read and write to the cell state and whose parameters
are learned during training. At each time step t, an LSTM
cell decides, based on both the current input and the output
of the cell at time t− 1, which parts of the cell state have to
be erased through the forget gate, updates the cell state with
new candidate values through the input gate, and produces
output values through the output gate. The overall operations
are described by the following equations

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ⊙ tanh(Ct)

(9)

where ft is the output of the forget gate, it is the output of the
input gate, C̃t are the new candidate values for the cell state,
Ct and Ct−1 are the new and old cell states respectively, ot
is the output gate, and ht is the final output. Wf , Wi, WC ,
Wo, bf , bi, bC , and bo are the learnable parameters, while
σ and ⊙ are the sigmoid function and Hadamard product
respectively [24].

In order to use sampling intervals as additional informa-
tion, the first layer is realised through Time-Gated LSTMs
(TGLSTM) [27]. These units extend the LSTM cells with ad-
ditional time gates to learn a time-dependent scaling function
which modifies the response of forget, input and output gates.
In particular, the following additional gates are implemented

τft = σ(Wτf ·∆tt + bτf )

τ it = σ(Wτ i ·∆tt + bτ i)

τot = σ(Wτo ·∆tt + bτo)

(10)

where τft , τ it , and τot are the additional time gates which
modify the activations of the forget, input and output gates,
respectively, while Wτf ,Wτ i , Wτo , bτf , bτ i , and bτo are

the corresponding learnable parameters [27]. The remaining
operations are the same presented in Equation 9, with the
addition of the scaling factors for each gate. Thus, we have

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ⊙ τft ⊙ Ct−1 + it ⊙ τ it ⊙ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ⊙ τot ⊙ tanh(Ct)

(11)

Both TGLSTM and LSTMs are combined to build the final
deep recurrent neural network, which is outlined in Figure
2. The architecture is composed by stacking L recurrent
layers and a final classification layer implemented as a fully-
connected (FC) network which, given the features hL

t ∈ RNh

extracted by the last recurrent layer at time step t, provides
the probability pt of the t-th point in the InSAR time series
to be a change point. The first recurrent layer, i.e., l = 1,
is realised through a TGLSTM cell, while subsequent layers
are implemented through standard LSTM cells. Indeed, the
network learns how to produce an output in the first layer
based on both displacements and time intervals, and to hi-
erarchically encode this abstract representation further in the
following layers.

In the proposed architecture all the recurrent layers operate
in a bidirectional way, i.e., there are two cells for each
layer which analyse the input sequence forward and backward
through time and the outputs of the two cells are concatenated
to provide the final output. In this way the network is able
to perform a prediction at time t based on the information
coming both from past and future observations. Thus, for a
bidirectional recurrent cell Equation 6 becomes

ht = RBidirectional(xt, ht−1, ht+1)

= RFW (xt, ht−1)⊕RBW (xt, ht+1)

= hFW
t ⊕ hBW

t ,

(12)

where ⊕ is the concatenation operator and hFW
t and hBW

t

are the features extracted at time step t in the two time
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directions [30], [31]. Please notice that in order to simplify
the notation we denote with h both the hidden state of the
forward pass, i.e., ht−1, and the one of the backward pass, i.e.,
ht+1, but they corresponds to the hidden states of the forward
and backward cells, respectively. The same formulation holds
when adding the additional input ∆tt. Thus, Equation 8
becomes

ht = RBidirectional(xt,∆tt, ht−1, ht+1)

= RFW (xt,∆tt, ht−1)⊕RBW (xt,∆trevt , ht+1)

= hFW
t ⊕ hBW

t ,

(13)

where ∆trevt is the time interval between samples at time t
and t+ 1. Putting all together we have

h1
t = TGLSTMBidirectional(xt,∆tt, h

1
t−1, h

1
t+1)

hℓ
t = LSTM ℓ

Bidirectional(h
ℓ−1
t , hℓ

t−1, h
ℓ
t+1),

pt = FC(hL
t ) = σ(WFC · hL

t + bFC)

(14)

for 1 < ℓ ≤ L, where WFC and bFC are the parameters of the
fully-connected layer. The output pt ∈ [0, 1] is the probability
of input sample xt to be a change point, produced through
a sigmoid activation function σ. In the following sections
we describe the employed datasets, with particular emphasis
on the data simulation procedure, and the designed suite of
experiments, together with the obtained results.

IV. EXPERIMENTS SETUP

In this section we describe the dataset we used during the
conducted experiments, by giving an overview on the data
simulation pipeline, and the training of the proposed network.

A. Data Simulation

The design of an automatic pipeline for data simulation
has been an important stage of our work to overcome the
lack of ground truth for InSAR time series. We started by
generating a huge amount of time series with no trend changes,
which, for the sake of simplicity, we define as normal time
series. In particular, we collected the temporal baselines of
SAR acquisitions from a high number of real InSAR datasets.
Given the temporal baselines, we created noisy time series by
modelling the noise distribution based on two kinds of possible
targets which are point-wise scatterers (PSs) and distributed
scatterers (DSs). Under the Gaussian scattering assumption
based on the central limit theorem [2], SAR data vector can
be described by a zero-mean, multi-dimensional, complex
Gaussian p.d.f. Thus, for a complete statistical characterisation
of a DS it is sufficient to know the covariance (or correlation)
matrix. For a PS, which can be modelled as a strong dominant
scatterer affected by a circular Gaussian noise, for SNR,
the phase distribution can be approximated by a Gaussian
distribution as well [7]. In case of DS, we tried to include
the most common sources of decorrelation: temporal, seasonal,
geometrical and a random loss of decorrelation which could be
related to meteorological events. In Figure 3 we further report
the distribution of the temporal coherence used to generate
the simulated time series, which is based on the coherence
distribution of real datasets. In addition to the training dataset,

Fig. 3. Probability density function (PDF) of the temporal coherence used to
generate the simulated time series.

also test datasets, described when presenting the experiments,
are drawn from such a distribution. Finally, we added some
outliers to the time series, to make the network robust with
respect to them.

During training, normal time series go through a series
of random operations to obtain displacement sequences with
no or multiple trend changes. Details about the developed
simulation process are provided in Appendix. Given a normal
displacement sequence D, we first decide with probability ps
if the generated sequence must contain a seasonal component.
In such a case, a sinusoidal signal with random amplitude
and phase is added. Subsequently, with probability ptc the
simulation continues by adding trend changes to the sequence,
otherwise it stops and returns the normal, and eventually
seasonal, time series. If the trend changes must be generated,
the number of change points Ncp the time series will contain
is uniformly sampled in [1, Nmax]. Then, the position of the
change points within the sequence, i.e., Icp = [i1, . . . , iNcp ],
is randomly sampled with the only constraint that the distance
between two change points must be greater than or equal to a
minimum number cpdis of acquisitions.

At this point, we start cycling over the selected positions
Icp to generate the different trends. The first operation is to
decide the type of the change point, which can be one of
the three classes introduced in Section I, i.e., step change,
velocity change, or the combination of the two. Once the type
is chosen, the time series is divided into two sub-sequences,
i.e., Dl, containing all the points between the current change
point and the previous one, and Dr, containing all the points
between the current change point and the next one. Then, a
random step ∆S ∼ Pstep or velocity ∆V ∼ Pvel is added to
Dr depending on the type of change point, where Pstep and
Pvel are probability distributions.

The generated trend change might be negligible w.r.t. the
local variance of the input signal, i.e., the change is not visible
due to the noise, and this leads to wrong targets. To account
for this situation a validity test is performed for each candidate
point. The validity test consists in estimating the posterior
standard deviation given the step/velocity change point, which
is then compared with the sampled ∆S/∆V . If the value of the
change is not negligible w.r.t. the estimated standard deviation
the candidate change point is confirmed as target.

All the steps of the presented simulation process have been
carefully tuned to obtain realistic realisations. The final output
of the whole process is a collection of < Bt,D,Y > triplets,
where Bt is the sequence of temporal baselines, D is the
sequence of corresponding displacements. and Y is the target
vector, having the same length of Bt, which can assume two
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Fig. 4. Example of velocity change point in a noisy time series (first row).
The noise makes it difficult to establish the exact location of the change
point, which can be identified within the red region. In the second row the
corresponding target designed as a gaussian centered in the change point.

values: 1 at change point locations and 0 in the other positions.
In the following sub-section, we describe the training of the
designed architecture. To simplify the notation, and to be
coherent with the notation introduced to describe the proposed
method, we will refer to Bt, D, and Y vectors with t, x and
y variables, respectively.

B. Training

We started our investigation by considering a standard
setting for solving a supervised classification problem. In
particular, given a sample xt from the input displacement
sequence and denoting with ϕ the function realised through
the network, we have

pt = ϕ(xt, θ), (15)

where θ are the network parameters and pt ∈ [0, 1] is the
probability of the input sample to be a change point. Then,
parameters θ are learned to minimise the Binary Cross Entropy
(BCE) loss, which, for a single time series is given by

BCE(p, y) = − 1

T

T∑
t=1

yt ·log(pt)+(1−yt)·log(1−pt), (16)

where T is the total number of samples in the sequence and
y is the corresponding target.

In this setting, the network is required to predict the exact
position of the change points to minimise the objective func-
tion. In a real scenario, however, we are uncertain of the exact
position where a trend change starts, and this is particularly
true in the case of very slow velocity trend changes. In general,
the uncertainty depends both on the entity of the change and
on the noise. The less the change is evident and the higher
the noise, the more is the uncertainty on the change point
temporal location. We account for this problem by implicitly
forcing the network to learn this kind of uncertainty in the
classification. To this purpose, we modified the sparse target
vectors y to be a composition of multiple gaussians. In the
specific, we define the target associated to each change point
as a gaussian centered on the time step corresponding to the
simulated change point (tCP ) and having variance proportional

to the velocity change ∆V measured in mm/year. Thus, for
each change point CP the following is defined

exp(− (t− µCP )
2

(2 · σ2
CP )

), (17)

where µCP = tCP , being tCP the temporal location of
the change point, and σ2

CP the estimated posterior variance
measured in days. Figure 4 shows an example of noisy time
series, with a slow velocity trend change, together with the
corresponding target. In this new setting model parameters
are optimised to solve a regression problem, by minimizing
the Mean Squared Error (MSE), that is

MSE(p, y) =
1

T

T∑
t=1

(pt − yt)
2. (18)

for a single time series.
One of the problems we faced during training was due to

class unbalancing. Indeed, the number of change points in the
dataset is very small, typically of two orders of magnitude,
compared to the number of samples in the time series (e.g.,
3-4 change points for a time series of 300 samples). This
caused the classification problem to be high unbalanced, which
is an unwanted property during training that makes learning
challenging. The solution we adopted is to re-weight the losses
to give higher weight to the error relative to the change points.
Thus, we obtain the weighted BCE (wBCE)

wBCE(p, y) = − 1

T

T∑
t=1

wc ·yt ·log(pt)+(1−yt) ·log(1−pt),

(19)
where wc = NN

NCP
, with NN and NCP the total number of

normal points and change points in the sequence, respectively.
The same strategy is applied to obtain the weighted MSE
(wMSE)

wMSE(p, y) =
1

T

T∑
t=1

wc · (pt − yt)
2, (20)

where wc is applied only to the loss values corresponding
to the change points in the target. As demonstrated by the
conducted experiments, presented later in the document, we
obtained our best results by solving for a regression problem
minimising the wMSE.

V. RESULTS

In this section we present the obtained results, by providing
the performance reached on the suite of tests we designed
to validate the learned network. We employed a minibatch
learning strategy using the Adam optimisation algorithm [32],
with batches of 128 time series and a learning rate of 0.001.
Early stopping has been employed in each experiment to
avoid overfitting during training. The F1 score is the metric
used for model selection and, as for the training, uncertainty
about the target change points is considered also during the
computation of the metrics by defining as a true positive
detection the prediction that falls within the uncertain target
region. Predictions are obtained by keeping the peaks in the
output probability distribution with values ≥ 0.5.
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TABLE I
SCORES OBTAINED ON TEST SET S1 BY DIFFERENT CONFIGURATIONS OF

THE BIDIRECTIONAL LSTM NETWORK (BIDILSTM) TRAINED BY
MINIMISING THE BCE. GRAY ROWS ARE THE ONES WITH HIGHER F1
SCORES. NETWORKS HAVE BEEN TRAINED ON UNIFORMLY SAMPLED

TIME SERIES.

Model # Recurrent
layers

Hidden state
size TP FP FN Precision Recall F1

BidiLSTM 3 50 12289 5536 365 0.6894 0.9712 0.8064
BidiLSTM 3 60 12259 5231 395 0.7009 0.9688 0.8134
BidiLSTM 3 70 12303 5791 351 0.6799 0.9723 0.8002
BidiLSTM 4 50 12288 4959 366 0.7125 0.9711 0.8219
BidiLSTM 4 60 12276 4488 378 0.7323 0.9701 0.8346
BidiLSTM 4 70 12275 4232 379 0.7436 0.97 0.8419

TABLE II
SCORES OBTAINED ON TEST SET S1 BY DIFFERENT CONFIGURATIONS OF

THE BIDIRECTIONAL LSTM NETWORK (BIDILSTM) TRAINED BY
MINIMISING THE MSE. NETWORKS HAVE BEEN TRAINED ON UNIFORMLY

SAMPLED TIME SERIES.

Model # Recurrent
layers

Hidden state
size TP FP FN Precision Recall F1

BidiLSTM 4 50 11962 803 692 0.9371 0.9453 0.9412
BidiLSTM 4 60 12007 930 647 0.9281 0.9489 0.9384
BidiLSTM 4 70 11948 879 706 0.9315 0.9442 0.9378

A. Results on Simulated Data

As already explained in Section IV, to overcome the lack
of ground truth for InSAR time series, we performed our
investigation by using simulated training data, which has been
carefully designed together with InSAR specialists. In the
following, the conducted experiments are reported, together
with the results obtained on different simulated test sets to
assess the detection accuracy of the trained model and its
generalisation capabilities.

1) Baseline Network Configuration: In order to find a good
baseline architecture for our investigation, we trained several
networks which differ for the number of stacked recurrent
layers, i.e., the depth of the encoding path, and for the size
of the hidden state of each recurrent cell. We started by
considering uniformly sampled time series, with a 11-days
sampling rate between acquisitions. The first architecture we
developed contains simple bidirectional LSTM cells, with no
time gates, and the networks have been trained by minimising
the weighted BCE loss defined in Equation 19. The training set
has been generated through the simulation pipeline described
in IV-A. Training time series contain up to 4 change points,
corresponding to a combination of step and velocity trend
changes. Step change points have a minimum displacement
of 3 mm, while velocity change points correspond to slopes
of minimum 5 mm/year. At this stage, we gave lower change
values an higher probability to be sampled, by forcing Pstep

and Pvel to be Rayleigh distributions with σ = 3 and σ = 5,
respectively. The test set we built for this group of experiments
is composed of 10000 anomalous time series, which we refer
to as S1 and includes both velocity and step change points.
The coherence of the time series in the test set follows the
same distribution used for generating the training data (see
Figure 3). The sampling rate of this test set is the one of the
original SAR acquisitions.

Most relevant results are shown in Table I. Variations of the
investigated network hyper-parameters do not affect markedly

(a)

(b)

Fig. 5. Examples of inferences on dataset S1, including step change points
(a) and velocity change point (b). In each figure: the original time series (1-
st row), the output of the network trained with discrete targets (2-nd row),
and the output of the network trained with continuous targets (3-th row).
Diamond symbols represent the detections performed by the trained networks,
coloured as the respective output plots. Transparent coloured regions are the
uncertainties related to the targets, which are red for velocity change points
and green for step change points. Values of highlighted targets are the entities
of the changes, expressed in mm for step change points and mm/year for
velocity change points.

the performance. On average, networks with 4 recurrent layers
have a higher F1 score. Therefore, the same configurations
have been considered in later experiments. Please notice that
one could have tested a large number of neurons or layers.
However, finding the best possible network configuration is
out of the scope of our work, which has been focused on
demonstrating the proposed method and its applicability.

2) Continuous Targets: Table II shows the performance
on test set S1 with the bidirectional LSTM network trained
using the MSE as loss function, defined in Equation 20. True
detections slightly decrease but it is possible to observe a
drastic drop of FPs, corresponding to an increment of the
precision of the learned model. The visual inspection of
the results confirmed the quantitative analysis (see Figure
5), outlining noisier predictions when training with discrete
targets. Training a regression model allowed to obtain output
distributions similar to what is expected by design, which
faithfully represent the uncertainty related to the trend changes.

3) TGLSTM: Table III shows the results obtained on dataset
S1 by including the sampling rate as additional information.
The architecture we trained in these experiments is composed
of 4 recurrent layers realised by combining a TGLSTM,
employed in the first layer, and LSTM cells, for the following



8

TABLE III
SCORES OBTAINED ON TEST SET S1 BY DIFFERENT CONFIGURATIONS OF
THE BIDIRECTIONAL TGLSTM NETWORK (BIDITGLSTM) TRAINED BY

MINIMISING THE MSE. NETWORKS HAVE BEEN TRAINED ON
NON-UNIFORMLY SAMPLED TIME SERIES.

Model # Recurrent
layers

Hidden state
size TP FP FN Precision Recall F1

GS - - 9716 3064 2938 0.7603 0.7678 0.7640
BidiTGLSTM 1 TGLSTM + 3 LSTM 50 12167 446 487 0.9646 0.9615 0.9631
BidiTGLSTM 1 TGLSTM + 3 LSTM 60 12164 379 490 0.9698 0.9613 0.9655
BidiTGLSTM 1 TGLSTM + 3 LSTM 70 12219 423 435 0.9665 0.9656 0.9661

UBidiTGLSTM 1 TGLSTM + 3 LSTM 70 11995 902 659 0.9301 0.9479 0.9389

TABLE IV
SCORES OBTAINED ON TEST SET S1 BY THE BIDIRECTIONAL TGLSTM

NETWORK (BIDITGLSTM) TRAINED 4 TIMES WITH DIFFERENT RANDOM
SEEDS. MEAN AND STANDARD DEVIATION ARE REPORTED FOR EACH

METRIC.

Model # Recurrent
layers

Hidden state
size Precision Recall F1

mean std mean std mean std
BidiTGLSTM 1 TGLSTM + 3 LSTM 50 0.9632 0.0017 0.9589 0.0020 0.9610 0.0015
BidiTGLSTM 1 TGLSTM + 3 LSTM 60 0.9642 0.0036 0.9605 0.0026 0.9623 0.0019
BidiTGLSTM 1 TGLSTM + 3 LSTM 70 0.9648 0.0022 0.9651 0.0011 0.9650 0.0011

ones, as already described in Section III. Performance is
noticeably improved with the introduction of the time-gated
architecture, which allows an increase of TPs, by keeping
low the number of wrong and missed detections. In the
first row, the performance of the reference golden standard
(GS), introduced in Section II, is also reported. The obtained
scores demonstrate that the proposed approach is suitable
for analysing non-uniformly sampled time series, allowing to
reach higher detection scores w.r.t. the reference statistical
method. Additionally, we report the results obtained with the
network using a uniform sampling rate (UBidiTGLSTM in
the table), which demonstrates to behave similarly to the one
without time gates. This result confirms that the network is
able to exploit the sampling rate information to improve the
detection. Figure 6 shows an example of inference on a time
series with non-uniform sampling rate. In the example, the
model trained with no time-gates (2-nd row) predicts a wrong
change point in the region with a variable sampling rate,
while the TGLSTM network (3-rd row) is more robust to such
variations.

For completeness, we conducted additional experiments in
which we run all the networks configurations with 4 different
random seeds to test the robustness of the training w.r.t.
the random initialisation of the weights. The results of such
investigation are reported in Table IV. Again, the results
confirm how the performance does not change drastically
among the investigated number of neurons. The BidiTGLSTM
network with 4 layers and a hidden state size of 70 units
has been considered in later experiments, since it obtained the
highest mean and lowest standard deviation in terms of F1
score.

4) Data Augmentation: In the following, we report the
tests that have been conducted to assess the generalisation
capabilities of the learned network and the role assumed by
several data augmentation strategies in the attempt to improve
them.

Random slopes and displacements. One of the aug-
mentation techniques that has been introduced to improve

Fig. 6. Example of inference on a time series (1-st row) belonging to dataset
S1 with the LSTM and TGLSTM networks, on the 2-nd and 3-rd rows
respectively.

TABLE V
SCORES OBTAINED ON TEST SET S2 BY THE BIDITGLSTM NETWORK

TRAINED WITH AND WITHOUT DATA AUGMENTATION.

Model Data augmentation TP FP FN Precision Recall F1
GS - 9670 2999 2984 0.7633 0.7642 0.7637

BidiTGLSTM None 7684 6166 4970 0.5548 0.6072 0.5798
BidiTGLSTM Random slopes and displacements 11480 822 1174 0.9332 0.9072 0.92

Fig. 7. Example of inferences on dataset S2, including a velocity change
point. In the figure: the original time series (1-st row), the output of the
network trained without data augmentation (2-nd row), and the output of the
network trained with augmented time series (3-th row).

the generalisation of the learned model consists in adding
random global displacement and slope to each time series
during training. Indeed, the network is encouraged to adapt to
different dynamics, thus learning a stronger concept of a trend
change. To show the performance reached by introducing this
kind of data augmentation we built an additional dataset S2
composed of 10000 time series which have been augmented
by adding an initial global displacement uniformly sampled in
the range [−20 mm, +20 mm] and a global slope uniformly
sampled in the range [−20 mm/year, +20 mm/year]. The
coherence of the time series in S2 follows the distribution
reported in Figure 3. In Table V a comparison of two networks
trained with and without data augmentation. It is possible to
notice a dramatic drop in the performance when applying the
model trained without data augmentation to augmented time
series. This outlined an overfitting of the learned model to
the training set, by demonstrating very poor capabilities to
recognise trend changes in time series with different dynamics.
Using data augmentation helped to better fit on new unseen
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TABLE VI
SCORES OBTAINED ON TEST SET S2 BY THE BIDITGLSTM NETWORK

TRAINED WITH AND WITHOUT DATA AUGMENTATION.

W Data augmentation TP FP FN Precision Recall F1

1 None 10707 709 1623 0.9379 0.8684 0.9018
Random deletions 11012 759 1318 0.9355 0.8931 0.9138

2 None 10027 719 2250 0.9331 0.8167 0.871
Random deletions 10683 818 1594 0.9289 0.8702 0.8986

3 None 9201 749 3043 0.9247 0.7515 0.8291
Random deletions 10344 788 1900 0.9292 0.8448 0.885

4 None 8522 841 3604 0.9102 0.7028 0.7931
Random deletions 9937 919 2189 0.9153 0.8195 0.8648

5 None 7915 899 4121 0.898 0.6576 0.7592
Random deletions 9527 997 2509 0.9053 0.7915 0.8446

6 None 7485 940 4453 0.8884 0.627 0.7352
Random deletions 9365 1010 2573 0.9027 0.7845 0.8394

data. Also for this dataset, we report the scores obtained by
the GS algorithm, which are lower both in terms of precision
and recall. Examples of inferences are shown in Figure 7.

Random deletion of samples. To increase the robustness of
the network when dealing with non-uniformly sampled data,
we augmented training time series by randomly removing
acquisitions, thus increasing the effect of the lack of data and
the variability of the sampling rate. To test the performance of
this kind of data augmentation we built increasing challenging
test sets, in which we enhanced the non-uniformity of the
sampling rate by removing windows of length W. Table VI
shows the comparison between the network trained with and
without the introduced data augmentation. The datasets used
for these tests are six versions of the same collection of 10000
time series, in which windows W of increasing length, from
1 to 6 points, have been randomly removed. It is possible to
observe that the detection capabilities of the original network
get worse as the severity of the lack of data increases, by
loosing about 0.16 on the F1 score on the most challenging
test set, i.e., W = 6. On the contrary, the network trained with
data augmentation is more robust by keeping high the number
of true detections with a slight increase of false positives. The
F1 score obtained on the most challenging test set is only about
0.07 points lower than the score obtained on the less difficult
one. Thus, at this point, we obtained a recurrent model able
to deal with a irregular sampled time series, which is a good
property in real applications.

5) Seasonality: Finally, we tested the robustness of the
proposed network when dealing with seasonal time series.
This has been done by building a test set composed of only
seasonal time series, which we call S3. The number of time
series contained in S3 is 10000. We conducted experiments
with different values for the probability of generating seasonal
time series during training, i.e., ps ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in
the simulation process described in Section IV-A. Amplitudes
of the seasonal signal have been sampled in the [3 mm, 40 mm]
range. The quantitative analysis confirms the need for a correct
balancing of seasonal data during training, as it is possible to
observe in Table VII. Noticeably, the capability of the network
to deal with seasonal time series increases as the probability
of introducing a seasonality during training reaches the correct
balancing value of 0.5, even if with a slight decrease of about
0.02 points on the precision due to an increase of the false

TABLE VII
SCORES OBTAINED ON TEST SET S3 BY THE BIDITGLSTM NETWORK. ps

IS THE PROBABILITY OF GENERATING SEASONAL TIME SERIES DURING
TRAINING.

Model ps TP FP FN Precision Recall F1
GS - 7914 3789 4746 0.6762 0.6251 0.6497

BidiTGLSTM 0.1 6282 2232 6378 0.7378 0.4962 0.5934
BidiTGLSTM 0.2 6413 2235 6247 0.7416 0.5066 0.6019
BidiTGLSTM 0.3 8559 2014 4101 0.8095 0.6761 0.7368
BidiTGLSTM 0.4 8252 1540 4408 0.8427 0.6518 0.7351
BidiTGLSTM 0.5 9292 1980 3368 0.8243 0.734 0.7765

detections, which is negligible compared to the increase of
about 1000 correctly predicted change points.

6) Analysis of Velocity Change Points: We integrate the
analysis of the network performance with additional tests,
which have been conducted to further investigate the behaviour
of the learned model in different scenarios and to obtain
useful statistical insights on larger test sets. In particular, this
section is provided to highlight how the correlation between
the noise and the entity of the trend change in a time series
impacts on the performance of the trained network in terms
of both correct detections, measured with the F1 score, and
detection uncertainty, i.e., the difference in days between the
detection performed by the network and the exact location
of the change point. Here we report the analysis performed
on velocity change points, which are the most challenging
to detect. To this purpose, we collected a dataset of 50000
time series, which vary for the entity of the trend change
∆V , measured in mm/year, and the standard deviation σTS .
In the conducted test we choose ∆V ∼ U(5, 100), which is
representative of real cases in InSAR data. Furthermore, We
defined the generated noise as a random variable, by scaling
the original time series from a random quantity such that the
standard deviation of the time series is σTS ∼ U(0.1, 8).

Figure 8 describes the results obtained on the 50000 time
series that involve velocity trend changes. The heatmaps in
the figure, whose points represent the test time series, show
how the performance of the learned model changes depending
on both the noise and entity of the change. Plots have three
dimensions, i.e., the slope difference ∆V on x axes and the
σTS on the y axes. The third dimension, which is the measure
of performance, is different in each plot and it is represented
through the use of colours. In the plots related to the F1
(Figure 8a-8b) brighter colours refer to higher F1 scores, while
darker colours refer to lower scores; in the plots related to
the |∆T | (Figure 8c-8d) colours from green to red refer to
values, from low to high, of the temporal uncertainty related
to the detections. The temporal uncertainty is defined as the
temporal absolute difference, measured in days, between the
day corresponding to the target change point (tCP ) and the day
corresponding to the detection (tD), i.e., |∆T | = |tCP − tD|.

By looking at the plot related to the F1 score on the left
(Figure 8a), it is possible to notice how the performance of the
network is strictly related to the entity of both the noise and the
trend change. In particular, detection scores get worse in the
case of very challenging time series, characterised by higher
levels of noise and very slow trend change. On the contrary,
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(a) (b)

(c) (d)

Fig. 8. Results of change point detection performed on 50000 test time series expressed as 3-dimensional plots, one for the F1 score and |∆(T )|, where
each point represent a time series. Plots are heatmaps, which illustrate the performance in relation to the noise σTS and the slope absolute difference |∆V |.
The third dimension, corresponding to the computed metrics, is realised through the use of colours. In the upper plots (a, b) brighter colours refer to higher
F1 scores, while darker colours refer to lower scores; in the lower plots (c, d) colours from green to red refer to values, from low to high, of the temporal
uncertainty related to the detections. Plots a and c refer to the result obtained with the original training, while plots b and d refer to the result obtained by
balancing the ∆V values in the training dataset.

as soon as the level of the noise decreases and the entity of
the change increases, i.e., in the bottom-left region in the plot,
performance improves. Nevertheless, contrary to expectations,
results get worse as we move towards the right part of the plot.
This unexpected performance has been due to the simulation
process, which, in the attempt to generate sequences as near
as possible to the real InSAR data distribution, assigned slow
velocity changes a higher probability of being generated (see
Section IV-A). The resulting unbalanced training prevented the
network from reaching expected scores in the case of faster
velocity changes. In Figure 8b we present the results, in terms
of F1 score, which have been improved by correctly balancing
the training through the uniform sampling of slope values.

For what concerns the temporal uncertainty related to the
performed detection, please consider first to the bottom plot
in Figure 8c, whose points refer only to time series for which
we have a correct detection, i.e., TP > 0. As expected,
predicting the exact location of the change point is difficult in
the time series characterised by high levels of noise and slow
trend changes (upper-left region), as testified by the higher
uncertainty. As we move towards easier sequences (bottom-
right region), the temporal uncertainty tends to zero. The same
plot is shown in Figure 8d after the balancing of the ∆V values
during training. The relation between the difficulty of the time

series and the temporal uncertainty remains unchanged, but it
is much more delineated given the higher number of correct
detections.

7) Performance on Continuous Monitoring: Nowadays,
Sentinel-1 sensors make it possible to obtain timely displace-
ment time series at regional, or even national, scale. One of the
operational use of this data is for monitoring ground deforma-
tion over wide areas [33]. In continuous monitoring, as soon as
a new acquisitions are available, the displacement time series
are updated and the change point detection algorithm is applied
to highlight anomalous trends affecting the area of interest. In
the following we demonstrate how the proposed method can
be successfully employed in continuous monitoring projects,
by performing both a quantitative analysis, on simulated time
series, and a qualitative one on real InSAR data, as reported
in the following Section V-B.

The metrics presented so far, such as the F1 scores and
the temporal uncertainty, are no longer enough to evaluate
the performance of the proposed approach when dealing with
this kind of task. Indeed, in continuous monitoring projects,
other than predicting the change points with accuracy, it
becomes important to be able to provide timely detections,
as soon as new acquisitions are available. Thus, we introduce
an additional metric, which quantifies the number of new
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(a)

(b)

Fig. 9. Two examples of analysis in a continuous monitoring perspective. For
each example, in the first row the time series. Coloured points represent the
N updates following the change point, from earlier one (green colour) to later
one (red colour). In the second row, N network outputs, obtained by feeding
the network with each sub-sequence starting from zero to the n-th update. To
facilitate the understanding, line colours in the second row are the same of
the corresponding updated point in the time series. The two sub-figures (a-b)
show different scenarios. In the upper plot (a) the slope difference related
to the trend change is higher (about 83 mm/year), while in the plot on the
bottom (b) the change is slower (about 22 mm/year).

updates needed to the network to raise a detection. Figure
9 shows two examples of analysis in a continuous monitoring
perspective. For each of the two example in the figure (a-b),
the original time series is depicted in the first row, while the
network activation is reported in the second row. It is possible
to observe how depending on the entity of the trend change,
and of the noise, we need different number of acquisitions
before having a strong activation of the network. The lower
the slope difference (∆V ) and the higher the noise (σTS), the
higher the number of updates needed to raise a detection.

To evaluate the performance in terms of the number of
required updates we built a new synthetic test set of 50000
time series of 80 samples each. In each time series a single
velocity change point, with different slope values, is placed
at the 50-th acquisition. Then, the network is evaluated by
computing the output after each of the 30 updates following
the change point. As soon as the network identifies a trend
change, the current number of updates is registered as the one
required to produce a relevant activation. This procedure has
been applied for each test sequence and the results have been
reported in Figure 10. Again, it is possible to observe how
the number of updates required to identify the trend change
depends on both the noise level and entity of the trend changes.

Fig. 10. Results of change point detection performed on 50000 test time series
expressed as 3-dimensional plots. Each point is a time series with a change
point at the 50-th sample. The number of updates required to raise a detection,
i.e., the metric used to evaluate the continuous monitoring performance, is
plotted in relation with the noise σTS and the absolute slope difference |∆V |.

In particular, for high noise levels and slow changes (upper-left
region) a higher number of updates are required to correctly
identify the change points, while few updates are needed in
the case of easier sequences (bottom-right region).

B. Real Data Evaluation

1) Tuscany, central Italy: The developed approach has been
tested in a real case study in the context of a continuous
monitoring project for monitoring the territory of the Tuscany
region (central Italy) using Sentinel-1 data on both ascending
and descending geometries. The output of the performed
change point detection has been provided to Università degli
Studi di Firenze (UniFI), the end-user of the project, which
gave us feedbacks during the developing of the approach.
InSAR time series have been obtained using the SqueeSARTM

algorithm, which allowed to collect about 1.5 million time
series, each one representing displacement values of a mea-
surement point in a period of about 5 years. The continuous
monitoring project aims at producing a map of the territory
with hotspots, which highlights measurement points associated
with trend changes, or, in general, an anomalous behaviour, in
the last 150 days.

After the change point detection is performed, a post-
processing procedure allows selecting the points considered
of interests for further investigation. Besides the temporal
restriction to the last 150 days, detections are confirmed as
change points if the value of the change (∆S/∆V ), which
is estimated for each detection, is relevant w.r.t. the noise
in the time series. This is done, as during the validity test
of the simulation process, by comparing the entity of the
change with the posterior standard deviation. In addition, each
candidate change point is confirmed only if it has at least
two neighbouring change points within a spatial radius of 250
meters. Furthermore, only changes of at least 10 mm and 10
mm/year, for step and velocity change points respectively, are
highlighted. In Figure 11 an example of detection performed
with the proposed approach on two real InSAR time series
from the Tuscany territory (cetral Italy). In both the examples,
detected change points are reported directly in the first row
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(a)

(b)

Fig. 11. Example of change point detection performed on two real InSAR time
series from the Tuscany continuous monitoring project. In both the examples,
the first row contains the original time series, where the highlighted period
refers to the last 150 days; the second row is the time series deprived of its
yearly seasonal component, estimated only for visualisation purposes, where
the orange line corresponds to the fitted trends around the last detected change
point; the third row is the output of the trained network. Detected change
points are reported directly in the first row only if the associated change
values are greater than 10 mm and 10 mm/year for step and velocity points
respectively.

Fig. 12. Example of change point detection performed on a real InSAR time
series from the Tuscany continuous monitoring project. In the last part of the
sequence the network recognises a coherent group of measurement as a small
local trend.

only if they meet the aforementioned requirements. It is
possible to observe how the learned model can be successfully
applied in the analysis of real data, being able to highlight the
relevant trend changes in the InSAR time series. Noticeably,
the proposed method can deal also with seasonal time series
without the need for a pre-processing step to estimate and

Fig. 13. Example of change point detection performed on a real InSAR
time series from the Tuscany continuous monitoring project. In the specific
example a change point is identified in the last 150 days (highlighted period)
by the proposed method while, for the specific time series, no trend changes
have been identified by the statistical approach in the 150 days. The noise
makes it difficult to predict the exact location of the change point, causing
the detection, of the statistical method in this particular case, to fall out of
the period of interest.

Fig. 14. Example of change point detection performed on a real InSAR
time series from the Tuscany continuous monitoring project. In the specific
example, the statistical approach raised a detection in the last 150 days while
the proposed one identified the change point few acquisitions earlier, resulting
in a missed detection in the context of the continuous monitoring task.

remove the seasonality, which is instead required by the
reference approach. The results have been compared also to
the ones obtained through the statistical analysis, reported in
Section II, state of the art in the field of the InSAR analysis,
to highlight the difference with the proposed data-driven one.
What emerged is that the deep learning approach generates a
higher number of detections in the last 150 days w.r.t. the
statistical one. This is partially due to its sensitiveness to
coherent groups of measurements which generates small local
trends in the time series. An example of this kind of situation
is reported in Figure 12. In other cases, instead, the exact
beginning of the trend change is difficult to be identified due
to the noise and this produces some differences in the final
detection between the two approaches. In Figure 13 a change
point is identified in the last 150 days (highlighted period) by
the proposed method while, for the specific time series, no
trend changes have been identified by the statistical one in the
150 days. As depicted in Figure 14, also the opposite situation
has been observed. Indeed, for the specific time series in the
example the statistical approach raised a detection in the last
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(a) (b)

(c) (d)

Fig. 15. (a) Network activation before July 2017; (b) Network activation
in July-November 2017; (c) Absolute velocity change difference |∆V | in
correspondence of the detected change points; (d) Absolute step change
difference |∆S| in correspondence of the detected change points.

(a) (b)

Fig. 16. Examples of InSAR time series from the caldera of Fernandina
volcano with negative (a) and (b) positive ∆S. The learned network is able
to correctly detect the change points in correspondence of the eruption.

150 days while the proposed one identified the change point
few acquisitions earlier, resulting in a missed detection in the
context of the continuous monitoring task.

2) Analysis on Fernandina Volcano Area at Galápagos
Islands: To further investigate the applicability of the proposed
method in a real scenario we report the results of the analysis
conducted on an additional area over the Fernandina volcano,
at Galápagos Islands. The area experienced several ground
deformations due to the known eruption occurred in September
2017 [34]. InSAR time series referring to the site in the
period between December 2014 and June 2018 have been
obtained through the Python open-source package MintPy,
which provides the Sentinel-1 data of the area as an example
dataset on the official repository1.

Figure 15 shows the activation of the network as a 2D map
in the period before the eruption (a) and in correspondence of
the eruption (b), which has been generated for visualisation
purposes by aggregating the output of the network in the
period July-November 2017. It is possible to observe how the

1https://github.com/insarlab/MintPy

(a)

(b) (c)

Fig. 17. (a) Detection error measured as the absolute difference |∆T | (days)
between the detection and the reference day of the eruption computed for the
velocity change points; (b) Example of early detection in which the network
produced a detection before the ground-truth date; (c) Example of delayed
detection in which the network produced a detection after the ground-truth
date.

TABLE VIII
SCORES OBTAINED ON 3 SUBSETS OF TIME SERIES EXTRACTED FROM THE

SITE AND COMPUTED BY CONSIDERING THE DATE OF THE ERUPTION AS
TARGET.

Subset TP Rate
|∆V | > 5 cm/year, |∆S| ≥ 6 cm 1
|∆V | > 5 cm/year, 4 ≤ |∆S| < 6 cm 0.89
|∆V | > 5 cm/year, 0 ≤ |∆S| < 4 cm 0.5783

network has been successfully activated during the event, pro-
ducing a high probability for the points near to the volcano to
be change points. The maps of the estimated absolute velocity
and step differences in correspondence of the detected change
points are reported Figures 15c and 15d, respectively. In Figure
16 we report two examples of InSAR time series extracted
from the dataset, together with the detected change points and
the estimated change values. We further report an analysis
on the uncertainty related to the detection, by considering
the time series exhibiting only a velocity change |∆V | > 5
cm. The date relative to the eruption has been considered as
ground truth for computing the absolute detection error |∆T |
measured in days (see Figure 17a), which depends on the
noise and on the entity of the velocity change, as discussed in
Section V-A6.

Finally, we give a quantitative evaluation of the results.
Considering again the date of the eruption as target, we
selected the set of time series with estimated velocity changes
|∆V | > 5 cm/year. We further divided this set into 3 subsets in
which we gradually reduce the contribution of the step change,
by obtaining less marked trend changes, and thus more difficult
to be identified. As shown in Table VIII, the performance
decreases as the visibility of the change decreases, since we
go from examples like the ones in Figure 16, in which the
change is clearly identifiable, to examples like the ones in
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Figure 17, in which the exact point of the change is difficult
to be determined.

C. Discussion
The conducted experiments demonstrate how the proposed

recurrent network is suitable for solving the considered task.
The results show that the complexity of the network does
not affect significantly the performance, while the use of
continuous target and of the TGLSTMs over LSTMs have
a positive impact on the detection capabilities. We discussed
about the importance of data augmentation during training,
as well as the correct balancing of the change values during
simulation. The noise level in the time series demonstrated to
be a determining factor in the detection process, in particular
in relation to the entity of the trend change. Obtained scores
reflect the distribution of training data, by showing a decrease
of performance when considering relatively high level of noise.

The developed network is able to generalise when consider-
ing real data. Nevertheless, there is still room for improvement.
As previously discussed, the learned model allows detecting
also the change points corresponding to local trends. However,
these could not be of interest for the final users because their
nature could be related to noise artefacts or processing errors.
Indeed, one of the limitations of the proposed approach is that
it does not identify the phenomena that generate the change
points. Thus, the detections provided by the network must
go through a post-processing step to select those that are
interesting for the specific monitoring project. For instance,
the proposed method is not robust to phase unwrapping errors,
which would be detected as trend changes. In this case
phase unwrapping errors should be corrected before using the
learned network. On the other side, specific post-processing
chain could be implemented to account for phase unwrapping
errors, by removing among the detected change points those
exhibiting a change in proximity of 2π.

Another limitation of the proposed approach is related to
the problem of the seasonality in the time series, which is
not fully resolved. Indeed, the network has been trained on
the assumption that the seasonality in the time series can be
approximated with sinusoidal signals with constant amplitudes
and periods. However, in real cases, the seasonality could not
be approximated with such a model and eventual under- or
overshoots can be detected as trend changes. A possible solu-
tion is to provide the network with the seasonal deformation
model w.r.t. which we want to be robust, e.g., the temperature
for thermal deformations in urban areas. Furthermore, given
that the proposed methodology is based on the approximation
of displacement data with linear displacement trends, in case
of non-linear displacement, with a constant acceleration for
example, the algorithm will approximate the displacement
with piecewise linear displacement trends leading to multiple
detections every time the local linearisation of the trend is
no more valid. Finally, the proposed approach works only
with single sequences. Results can be further improved in
future works by considering also the spatial correlation among
neighbouring points on the ground during the learning process.
A spatio-temporal network could be also trained to provide a
robust detection algorithm for phase unwrapping errors.

For completeness, we report also the computational time,
whose improvement was one of the objectives of our work.
The developed method takes about 15 minutes to process a
test set of about 630000 time series on a single GeForce GTX
1080 Ti NVIDIA’s GPU. The statistical approach instead, takes
about 3 hours and 15 minutes on a machine with 2 x Xeon
8-Core E5-2640v3 2.6 GHz 25MB.

VI. CONCLUSION

We presented a novel approach for change point detection
in InSAR time series based on Deep Learning, which is
proving to be a valid class of methodologies in the field of
Earth Observation. The proposed approach consists of a re-
current neural network, obtained by stacking Long Short-Term
Memory (LSTM) layers. We employed a Time-Gated LSTM
(TGLSTM) cell to include the sampling rate as additional input
information during learning. One of the issues faced in the
considered problem, as for many tasks involving SAR data, is
the lack of ground truth for training. We overcame this issue by
implementing an automatic pipeline to simulate InSAR data,
which has been carefully designed with the help of InSAR
specialists. Simulated time series have been employed for
training the proposed network and to evaluate its detection
capabilities. The results of our work have been presented in
detail by describing the large suite of experiments conducted
during the research. A quantitative analysis of the performance
has been performed on a large number of test time series to
prove the effectiveness of the learned model. Additionally, we
demonstrate how the proposed approach can be employed for
continuous monitoring purposes, by performing a quantitative
analysis in terms of the number of new SqueeSAR™ updates
needed to raise timely detections. Finally, we reported the
performance on real use cases, by showing how the learned
model demonstrated promising results in the real domain.
Furthermore, the limitations of the proposed methodology
have been discussed. We additionally reported the performance
in terms of required computational time, which is one order
of magnitude lower than the one of the reference statistical
algorithm. This makes the developed approach a good starting
point for future development to provide timely detections at
larger scales, e.g., at a national scale, that means analysing
millions of InSAR time series every update.
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APPENDIX

PROCEDURES FOR TIME SERIES SIMULATION

In the following, we provide the pseudocode of the sim-
ulation process used in the proposed work. Given a starting
collection of normal time series, the GenerateSimulatedTime-
Series (Algorithm 1) procedure is applied to produce simulated
trend changes.
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Algorithm 1 GenerateSimulatedTimeSeries
Require:

Dataset: dataset of N normal time series, each time series
is the (Bt,D) pair of temporal baselines and displacement
values
ps: probability of adding seasonality
ptc: probability of adding change points
cpdis: minimum number of acquisitions between consec-
utive change points
(Amin, Amax): range of amplitudes for the seasonal com-
ponent
Pstep: probability distribution for the step changes
Pvel: probability distribution for the velocity changes

Ensure: Datasetsim: dataset of simulated time series

1: Datasetsim ← {}
2: for n = 1 to N do
3: (Bt,D)← Dataset[n]

4: lents ← length of the sequence
5: add seasonality ← Bernoulli(ps)
6: if add seasonality then
7: A ∼ U(Amin, Amax)

8: ϕ ∼ U(−π,+π)

9: D← D+Asin(2πBt 1
365 + ϕ)

10: end if
11: add trend changes← Bernoulli(ptc)
12: if add trend changes then
13: Ncp ∼ U(1, Nmax)

14: Icp ← {}
15: for j = 1 to Ncp do
16: isampled ∼ U(1, lents)

17: if |isampled − i| ≥ cpdis, ∀i ∈ Icp then
18: Icp.insert(isampled)
19: else
20: j ← j − 1

21: end if
22: end for
23: D← AddTrendChanges(Bt,D, Icp, Ncp, Pstep, Pvel)

24: end if
25: Datasetsim.insert(D)
26: end for
27: return Datasetsim

The core function for generating trend changes is provided
by the AddTrendChanges procedure (Algorithm 2). Given,
the sampled locations Icp of the change points within the
sequence, a trend change is generated for each sampled
position in accordance with the types of the changes.

CheckStep and CheckVelocity represent the procedures em-
ployed to assess that the sampled trend change is valid, i.e., the

Algorithm 2 AddTrendChanges
Require:

(Bt,D): pair of temporal baselines and displacements
Icp: vector of change points indices
Ncp: total number of change points to be generated
Pstep: probability distribution for the step changes
Pvel: probability distribution for the velocity changes

Ensure: D: time series with trend changes

1: for j = 1 to Ncp do
2: Btr ← [Bt[Icp[j]], ...,Bt[Icp[j + 1]− 1]]

3: Dr ← [D[Icp[j]], ...,D[Icp[j + 1]− 1]]

4: Dl ← [D[Icp[j − 1]], ...,D[Icp[j]− 1]]

5: cptype ← random from [“step”, “vel”, “step+vel”]
6: is step valid← True

7: is vel valid← True

8: if cptype in [“step”, “step+vel”] then
9: ∆S ∼ Pstep

10: is step valid← CheckStep(Bt,D, Icp, i,∆S)

11: if is step valid then
12: inverted← Bernoulli(0.5)
13: if inverted then
14: ∆S ← −∆S

15: end if
16: Dr ← Dr +∆S

17: end if
18: end if
19: if cptype in [“vel”, “step+vel”] then
20: ∆V ∼ Pvel

21: is vel valid← CheckVelocity(Bt,D, Icp, i,∆V )

22: if is vel valid then
23: inverted← Bernoulli(0.5)
24: if inverted then
25: ∆V ← −∆V

26: end if
27: Dr ← Dr + (Btr −Btr[0]) ·∆V/365

28: end if
29: end if
30: if is step valid or is vel valid then
31: D← concat(Dl,Dr)

32: else
33: Icp.remove(j)
34: end if
35: end for
36: return D

values ∆S or ∆V are enough to make the change visible given
the noise. This is done by estimating the posterior standard
deviation given the change point and comparing the magnitude
of the change w.r.t. this estimate.
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