Foreign Exchange Trading:
A Risk-Averse Batch Reinforcement Learning Approach

Lorenzo Bisi* T
Pierre Liotet”

Luca Sabbioni*
lorenzo.bisi@polimi.it
Politecnico di Milano

ISI Foundation

ABSTRACT

Automated Trading Systems’ impact on financial markets is ever
growing, particularly on the intraday Foreign Exchange market.
Historically, the FX trading systems are based on advanced statisti-
cal methods and technical analysis able to extract trading signals
from financial data. In this work, we explore how to find a trading
strategy via Reinforcement Learning by means of a state-of-the-
art batch algorithm, Fitted Q-Iteration. Furthermore, we include
a Multi-Objective formulation of the problem to keep the risk of
noisy profits under control. We show that the algorithm is able to
detect favorable temporal patterns, which are used by the agent
to maximize the return. Finally, we show that as risk aversion in-
creases, the resulting policies become smoother, as the portfolio
positions are held for longer periods.
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1 INTRODUCTION

The Foreign Exchange (FX) market is the largest financial mar-
ket in the world, even larger than the stock market, with a daily
volume of $6.6 trillion, vs. $84 billion for equities worldwide, ac-
cording to the 2019 Triennial Central Bank Survey of FX and OTC
derivatives markets. Having such a large trading volume can bring
many advantages to traders. Market participants use FX to hedge
against international currency and interest rate risk, to speculate
on geopolitical events, and to diversify portfolios, among several
other reasons. Thanks to the fact that high-frequency data is easy
to obtain, together with the increase in computational power of
the machines, the development of new algorithms and machine
learning applications in this field is not surprising. One of the
most interesting applications to the trading problem is the creation
of autonomous systems able to outperform human traders, often
based on technical analysis or statistical tools aimed at detecting
particular patterns.

Reinforcement Learning [34] deals with the problem of an agent
having the goal of maximizing the (discounted) cumulative rewards,
obtained through actions performed in interaction with an envi-
ronment in a sequential decision-making process. Trading can be
framed as an application of RL techniques which, in recent years,
are achieving outstanding results in other fields [2, 31].

The ability to obtain a policy starting from a set of raw data
without having to rely on any economic or financial assumptions
makes RL a valid alternative to the approaches typically adopted
in the study of the financial time series. In this paper, we begin by
defining the trading activity as a Markov Decision Process, where
agents can choose to change positions every minute in a day; the
reward is represented as the profit generated by the adopted trad-
ing strategy. A non-trivial, but realistic property modeled in our
environment is the presence of transaction fees, which makes the
problem more difficult to solve. We carried out an analysis of the im-
portance of each feature, in order to adopt, in a second instant, one
of the state-of-the-art RL algorithm, Fitted Q Iteration (FQI) [15].

Financial traders need to always measure the risk related to the
positions held in their portfolios, leading to the concept of Risk
Aversion [24]. Hence, it is possible to consider different policies
associated with different risk aversions in the agents’ behaviors. In
this paper, we consider as a risk measure the reward volatility [4, 39],
which evaluates the uncertainty about the step-by-step rewards
obtained from the environment. Profit maximization along with
risk minimization create a multi-objective optimization problem
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which, in this paper, is tackled by means of Multi-Objective Fitted
Q-Iteration (MOFQI) [9], a generalization of FQI. We provide an
empirical evaluation of the aforementioned techniques on different
historical datasets using data from 2014 to 2019. We show that
policies have learned to follow some temporal patterns that repeat
over the days and become smoother as risk aversion increases.
This paper is organized as follows: in Section 2 we introduce
the Reinforcement Learning background and FQI algorithm, with
the inclusion of subsections dedicated to the definitions of the risk
measures adopted and Multi-Objective Reinforcement Learning. In
Section 3 we recall some works related to our problem, presented
and formulated in Section 4. The results of our numerical simula-
tions are presented in Section 5 and compared to baseline strategies.
Some final comments and considerations are shown in Section 6.

2 BACKGROUND

2.1 Reinforcement Learning

A discrete-time Markov Decision Process (MDP) [28] is defined as
a tuple (S, A, P, R, v, 1), where S is the (continuous) state space,
which is the set of all observations that can be obtained from an
environment. A is the (continuous) action space, i.e. the set of all
possible actions that the agents can perform w.r.t. the environment.
P (-|s, a) is a Markovian transition model that assigns to each state-
action pair (s, @) the probability of reaching the next state s, R is
the distribution of rewards which can be seen as the (stochastic)
immediate gain obtained by the agent from the environment as a
consequence of the action chosen. This distribution is bounded by
hypothesis. y € [0, 1) is the discount factor, a parameter close to
the economic field, quantifying the benefits of having immediate
rewards, instead of delaying them in the future. Finally, y is the
initial state distribution. The policy of an agent is characterized by
7(+|s), which assigns to each state s the density distribution over
the action space A. Hence, the policies we are dealing with are
stationary (i.e. they do not depend on t) and Markovian, meaning
that the distribution does not depend on the past states. We define
the set of all Markovian, stationary policies as II, which can be
shown to contain always the optimal one [28].
Following a trajectory 7 := (so, o, $1, @1, S2, 2, ...) with horizon T,
the return is defined as the discounted cumulative reward encoun-
tered along the trajectory: G, = Ztho YR (st, ar). and the expected
return (or performance) J is defined as the expected value of G
w.r.t. the probability distribution of the trajectories following 7.
Sometimes, the (discounted) state-occupancy measure induced
by 7 will be used:

ur(s) = (1= [ p(s0) Y pals0 2 5)
t=0

t
where p,(so — s) is the probability of reaching state s in ¢ steps
from s following 7.

For each state s and action a, the action-value function is defined
as:

s,a) = 'R(ss, ar)|so = s,a0 = a 1
Qx(s.a) SMNP(M)[ZY (st,ar)ls0 = 5, a0 )

ars1~7(-[St41)
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which can be recursively defined by the following Bellman equation:
Or(s,a) =R(s,a) +y E [Qn(s', a')] .
s'~P(-|s,a)
a'~m(-|s')
For each state s, we define the state-value function of the stationary
policy 7(+|s) as:

T
Vi(s) = E [Z Y'R(s,ar)|so = s ()

arn(ls) | &
ser1~P (+[se.ar)

Fitted Q-Iteration is a value-based algorithm: this means that the
goal is to find the optimal value function, i.e.

Q%(s,a) = sup Qx(s,a) VY(s,a) e SXA (3)
mell

A policy 7 is greedy w.r.t. a Q-function if it plays only greedy actions,
ie. 7(-|s) = argmax,c # Q(s, a). An optimal policy 7* € Il is any
greedy policy w.r.t. Q*.

In order to retrieve the optimal value function, great importance is
given to the following definition:!

Definition 1. The Bellman optimality operator T* : B(S X A) —
B(S x A), applied on an action value function Q € B(S X A), is
such that:

(T*Q)(s,a) = R(s,a) +y max Q(s’,a )] (4)

s’ P( |s,a) [a 'eA

This Bellman operator is a y-contraction and optimal action-
value function is its fixed point. Therefore it is possible to apply
the Banach-Caccioppoli fixed point Theorem [1] to show that the
fixed point is unique and that limy_, ., (T*)¥Q = Q*.

2.2 Fitted Q Iteration

FQI [15] is a model-free, off-policy, and offline algorithm. It is de-
signed to learn a good approximation of the optimal action-value
function Q*(s, a) by exploiting the Bellman optimality operator.
Its innovative approach consists in the application of Supervised
Learning techniques as, for example, Extra Trees, widely used in
our work. The algorithm considers a full dataset F containing the
information collected from experience. In particular, each row rep-
resents an interaction with the environment composed of a 4-tuple,
containing current state and action performed, and the values re-
ceived from the environment, i.e., the reward and the next state.?
In brief:

F={(sfdfrk sk )lk=12..|F} (5)
In complex real problems the possible combinations of actions and
states is huge (or infinite in a continuous problem), hence the dataset
does not contain all possible outcomes; FQI tries to generalize over
the whole space S x A applying regression techniques over F.
Once the regressor is trained, it can estimate the value function.
Specifically, at each iteration of the algorithm, the horizon consid-
ered increases of one step; given QT\I—I (s,a) Y(s,a), the training
set TS = {(ik, Ok)}kzl,...,|F| is built, where each input is equivalent

to the state-action pair (i.e. ik = (sf, a]t‘)), and the target is the

Iwhere B(X) denotes the space of bounded measurable functions over X. The defini-
tion actually holds for any function in B8(S x A).
For simplicity, we here denote the observed reward with lower case r

R(sk,db).

k

++1 instead of
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result of Equation 4: ok = rfﬂ +ymaxgeq ON-1 (sfﬂ, a). In this

way, the regression algorithm adopted is trained on TS to learn
Qj (s, @). One might think that the algorithm obtains ever better
results as N — oo; however, when performing the estimation of
the optimality operator obtained with the regressor, an estimation
error is introduced. These errors are cumulated over the iterations;
hence, the performance of FQI may decrease with iterations. For
this reason, the first parameter analyzed in the model selection
explained in Section 5.2, is the number of iterations N.

2.3 Extra Trees

The regression algorithm adopted to perform the feature selection
are the extremely randomized trees (or Extra Trees) [18]. This
method is based on random forests [5], a combination of decision
tree predictors [6], which iteratively produce hyper-planes to split
the data space, until the points inside each set of the partition are
relatively homogeneous w.r.t. the target. In other words, at each
internal node, one attribute is selected to split training samples into
two subgroups, maximizing a measure of similarity of the targets
among data. If the number of elements belonging to each leaf (i.e.,
the cardinality of each subgroup) is below a certain threshold, called
min_split, the branching procedure ends.

A Random Forest regression algorithm is an ensemble of a large
number of Decision Trees with a random selection of features at
each split. The idea is to use many learners as much uncorrelated
as possible, which together can strongly reduce the variance of
the estimation. Extra Trees [18] is a variant that further exploits
the randomness of forests: when a random subset of features is
selected to perform a split, also the cut-points are chosen completely
randomly. Then, the split occurs using the best cut-point.

An important property of Extra Trees is that they produce an
estimate of the importance of the features in predicting the target.
Indeed Decision Tree methods perform splits by determining which
one will most effectively discriminate groups of data with similar
targets. Therefore, in Random Forests, the importance of a feature
is measured as the global improvement (in terms of Gini index,
information gain or mean squared error), hence the features can
be ranked in order to establish which are the most informative to
predict the target.

There are some hyperparameters that must be chosen to perform
regression with Extra Trees, such as the number of Trees, which
can be used to reduce the variance of the estimation, the number
of features considered for each split, affecting the robustness of the
predictions, and the minimum sample size min_split to perform
a split. As explained in Section 5.2, we will fix all hyperparame-
ters (following the suggestions in [18]) but the min_split, which is
the second term (the first being the number of iterations of FQI)
considered to perform model selection.

2.4 Multi-Objective

Learning to trade-off between different (possibly conflicting) goals
leads to consider Multi-Objective MDP (MOMDP) [30]. In this setup,
the reward R outputs a (bounded) probability distribution over R4,
where d is the number of objectives. This in turn implies that, unlike
standard RL, quantities such as the return or the value-function of
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a policy 7 are vectors in R%. As a consequence, it is not possible to
define quantities such as max,c 4 Q(s, a) in general.

A common approach is to reduce the problem to a single objective
framework by performing a weighted combination of the different
rewards. The weights A are chosen in the (d — 1)-dimensional
simplex A. It is unlikely for a policy to be optimal for every A € A
since some of the objectives may conflict. Hence the notion of
Pareto-optimality: a policy is Pareto-optimal if no other policy can
collect better returns on one of the objectives without degrading
any other.

A different approach is to learn the Pareto frontier directly, as in
Multi-Objective FQI (MOFQI) [9]. The idea in MOFQI is to enlarge
the state by the weight vector A before applying FQI in order to
take it into account during the approximation of the action-value
function Q* (s, A, a). Ideally, if the learning is made over a significant
set of weights (1;)1<i<n, the policy will successfully generalize to
unseen values of A. As the state is enlarged, MOFQI requires more
training tuple examples to reach FQI-like performance on a single
objective. However, the reward being function of A, for each tuple in
the original training set, n tuples can be constructed for the MOFQI
without needing to interact with the environment. Furthermore, as
pointed out in [9], MOFQI can be computationally more efficient
than running multiple single-objective FQI when the number of
such objectives gets significant.

2.5 Risk Aversion

Another far-reaching branch in Reinforcement Learning for finance
is risk aversion. Traders are not only interested in returns but also in
keeping risk under control. Different risk measures are considered
in the literature, as summarized in Section 3. Usually, risk measures
are related to the distributions of returns (Variance, CVaR). We are,
however, interested in the distribution of rewards: for this reason,
we take into consideration the definition of reward volatility v2
in [4], which is defined as the variance of the reward under the
state-occupancy measure generated by :

2 I\’
Ve = s~]§y’” (‘R(s, a) — - y) ] . (6)
a~r(-ls)

Unlike other risk measures, this term accounts for uncertainties
in the short period: the more rewards are oscillating, the higher is
the volatility. This is due to the fact that FX prices are very noisy:
for this reason, we want to keep under control not only the final
return, but also the smoothness of the trajectories. The volatility
measure allows us to define the mean-volatility trade-off,

N =Jn = Vg, Y]
that can be maximized by means of a transformation of the reward:
Ry (s.0) = R(s,a) = A(R(s. @) = Jr)%. ®)

Hence, by varying the volatility aversion A, it is possible to obtain
different solutions. However, it should be noted that this reward is
policy-based, preventing the possibility to use off-policy algorithms,
such as FQI, to minimize the volatility. To comply with the off-policy
framework, we consider an exponential reward transformation
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which represents a first-order approximation of Rf‘r
—AR(s,a)
A

To make the connection to finance, ler can be seen as a Constant
Relative Risk-Aversion (CRRA) utility function of parameter A + 1.

1—e

ﬁfr (s,a) = 9

3 RELATED WORKS

In recent years, the financial trading world has been highly inter-
ested in Al applications, with a particular focus on Reinforcement
Learning [16, 29, 36]. One of the founding works in this direction
s [24], where the authors built one of the first Automated Trad-
ing Systems (ATS), using Recurrent RL. Starting from this, many
other authors proposed different systems, e.g. by using Genetic
Algorithms [20, 38] or adding adaptive control layers to govern
the investment policies [12]. In particular, the latter is dedicated to
FX Trading, as well as [19] and the more recent [14]. In all these
works, the goal is the optimization of the Sharpe Ratio, defined as
the ratio between the mean and standard deviation of the reward.
This is one of the several risk measures considered in a rich RL
literature dedicated to Risk Aversion. Another well-known mea-
sure is the return variance [33], with its related, nonlinear Bellman
equation [13, 27, 32], and the CVaR, which is a quantile of the re-
turn distribution [11, 25]. The only value-based approaches in this
setting are [35], using the variance of the returns, and [17] for the
Sharpe ratio. The distribution of rewards has been considered for
risk aversion only recently, for example in [39], where the authors
consider the variance of the per-step reward, closely related to the
reward volatility studied in [4].

Other financial works consider Q-learning for the maximization
of the return, as [3, 14, 21] or [22], in which the financial framework
as a multi-agent system. Other works address the problem of Opti-
mal Trade Execution, which consists of a different environment in
which the goal is to understand the optimal price and volume for a
trading request [26].

A completely different stream of literature is dedicated to Multi-
objective Sequential Decision Making [30], with a few works consid-
ering a value-based approach [8, 9, 37]. At the best of our knowledge,
there is no attempt of joint research including both Risk Aversion
and Multi-Objective RL, with the goal of building the Pareto Fron-
tier of different financial objectives.

4 PROBLEM FORMULATION

The complete dataset is made of €/$ exchange rate per minute from
Monday to Friday, with 1230 observations per day, considering a
time window from 00:00 to 20:30.3: 4 At each time ¢, we take into
account only the open price, denoted as p;. This dataset is used to
build an MDP as follows:

State. The state is composed of the last 60 open prices over the
last hour, normalized with respect to the first daily price. In order
to build a real Markov process, the current state must provide all
the necessary information so that it is independent from previous
states. Including past data into the current state is a known way

3Considering the Central European Standard Time - CET.
4The remaining time has been excluded for the lower trading volumes, to make the
approach more consistent and robust.
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to approximate Markovianity. The previous price alone gives too
little information, while the previous 60 minutes prices provides a
better approximation of the running dynamics. Furthermore, the
state also includes the current time and the portfolio position of the
previous step: in particular, the current time is in [0, 1], denoting
the fraction of time remaining until the end of the episode (a trading
day). Finally, the portfolio position x; in {—1, 0, 1} is the only feature
from the state which is related to the agent’s behavior and is not
retrieved from market data. As a consequence, as explained in
Section 5.1, it must be generated in order to train FQI models.

Action. The action consists of the portfolio position that the
agent wants to keep for the next minute; hence as the previous
portfolio position contained in the state s, the set of possible actions
A is {—1,0, 1}; corresponding respectively to short, neutral, or long
position. We make the unrealistic assumption of infinite liquidity,
which allows the trades selected by the agent to be immediately ef-
fective at the current market price. In a real scenario, however, there
might be operational delays, which can affect the performances.

Transition Probability. The transition probability P (s’[s, a) is
the probability of moving to state s” given current state-action pair.
The action affects only the portfolio feature, hence x;1+1 = a;; all the
other features are exogenous, hence their value is not affected by
the action. The current time transition as well as the already seen
prices have a deterministic transition, with only one new stochastic
addition from market data.

Reward. Given the features vector s; (which contains the cur-
rent position x;), the previous price p;, and the action taken a;, the
reward can be directly computed once the new price p; is known.
Indeed, it is modeled as follows:

re = ar(pr+1 — pr) — flar — x| (10)
Basically, the first member of the Equation is related to direct profit,
obtained from the price difference and the chosen portfolio position.
On the other hand, the second term consists of a fee f that the agent
has to pay when he changes her position. We consider for this
environment movements of 10°$, with fees equal to 2§. The budget
is considered as fixed, so the observed profits are not reinvested
nor the losses reduce the budget. The inclusion of fees related to
the actions chosen is common in Reinforcement Learning literature
for Financial Trading [19, 24].

Discount factor and episode length. Since the last 60 prices
are needed to build the state vector, the agent starts with neutral
position xo = 0. The MDP is considered as episodic, where each
episode consists of a trading day (at the end of the day the agent
closes her position), composed of 1230 steps, in which the rewards
are not progressively discounted, hence y = 1.

5 EXPERIMENTS

In this section, we describe how we applied FQI to the described
setting on real Forex data. The collected data ranged from 2014 to
2019. In order to be more robust, we chose to focus on a training
set composed of two consecutive years rather than on a single
year. Concretely, we considered the pairs: 2015-2016, 2016-2017,
2017-2018. In order to select the models that better generalize over
the following years, for each training dataset, we considered the
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Figure 1: Validation for different datasets: for each of them, lower bound (mean minus standard deviation) is shown and the
maximum of each curve is highlighted with a red circle. Different colors correspond to different min-split used. The chosen

model corresponds to the higher circle min-split.

The shown plots have been obtained, respectively, validating on years 2014 (Figure (a), with models trained on 2015-2016), 2015
(Figure (c), with models trained on 2016-2017), and 2016 (Figure (c), with models trained on 2017-2018)
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Figure 2: Test evaluation of the performance of two different agents. In the first two figures the agent is trained in 2015-16,
validated on 2014 and tested on 2017. In the last two figures, the agent trained in 2016-17, and validated on 2015 is tested on
2018. In Figures (a) and (c) the actions chosen by the agents in test are shown. Each row corresponds to a different business
day, and each column is specific for a trading minute (the first column is the first trading minute, for a total of 1230 steps).

Figure (b) and (d) show the daily cumulative returns in the test year related to a 100K$ investment, compared with the baselines,
where rm-120-30 corresponds to the best active benchmark, with a mean reverting strategy with 120 steps, and 30 steps moving

averages.

years before and after the training set: the obtained policies were
validated in the former and tested in the latter. This unusual choice
was made to take into account the non-stationarity of FX market
values: long temporal distances can more easily lead to unseen
patterns, thus degrading the performance of the agents.

5.1 Dataset Generation

To assess the pertinence of the time window, a Feature Importance
procedure has been applied. Using Extra Trees as a predictor, the
state features have been used to fit the immediate reward. The
results showed the importance of the prices from the last hour
to predict the reward (while older prices have negligible impact).
From the original sequence of market quotations, the FQI training
set (Frgy) is built by composing a series of tuples defined in Equa-
tion (5), containing current state, action, reward, next state, with the
addition of a Boolean value indicating whether the state is a final
state: in our case, only the final quotation of each day is considered

a terminal state. As specified in Section 4, the state contains market
prices information, and a feature denoting the current portfolio
position x;. To allow the Extra Trees to properly learn the action-
value function QY (s, a), the training set must include a maximum
number of scenarios. We treat the market as an uncontrollable com-
ponent of the state, by assuming that the agents’ actions do not
modify the market, but only the current portfolio. Therefore, all
possible combinations of actions can be generated given a portfolio
state, for each of the available data points. Thus, since we only have
three possible actions (buy, hold, and sell), the collected market
dataset is repeated nine times to include all configurations.

The MOFQI training set (FpioFor) is built for a given range of
risk aversion coefficients A € A¢rqip. It is built from the same tuples

in Fpoy by adding the risk-aversion coefficient A to the state and

transforming each reward r to 7 according to Equation (9). As

a consequence, |FporQ1| = |Atrainl|[Fror| and the computational
time is drastically increased. To avoid this bottleneck, at the expense
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of the final performance, the choice has been made to uniformly
sample one value in Azqin for each tuple from the FQI dataset. In
this way MOFQI training set is built with the same size as the one
considered for FQL

5.2 Model Selection

To choose the best FQI model, we can tune both the hyperparame-
ters related to the regressor and the ones characterizing the general
algorithm. As already explained in Section 2.3, Extra Trees have
different main parameters: the minimum number of leaves, the min-
imum number of features to consider, the minimum number of data
points necessary for doing a split, and the number of trees. Based
on our experience and following what suggested in [18], given a
sufficient number of trees (we used 50 trees), it is only necessary
then to tune the minimum number of splits, without constraining
the features or the number of leaves, in order to regulate model
complexity. Typically, a high value for this variable corresponds to
build a simpler model, since we are forcing the trees to use a great
number of samples to choose the split, hence, excluding more com-
plicated patterns. A small split threshold allows for more complex
models, but it increases also the risk of overfitting the in-sample
data. As the algorithm produces new iterations, the optimized hori-
zon increases, allowing for longer-term planning, however, the
noise contained in the data also propagates, by repeating alternate
steps of projection on the approximation space and the Q-function
maximization. Therefore, we have also to deal with the trade-off be-
tween extending the optimization horizon and propagating errors
through iterations.

We trained each dataset using 3 min-splits, and, to check the ran-
domness of the initialization of the trees, we performed 5 different
runs for each of them. Since our objective is to find the model that
generalizes better over years, we validated the obtained models
on the year preceding the training set, in order to test the models
on the year following the training. The criterion for selecting the
models based on their performance on the validation set was as
follows: for each value of min-split, the best iteration for that min-
split was selected by choosing the one with the best mean value
of the cumulated return, subtracting also its standard deviation. In
this way, we try to favor iterations that behave consistently better
with different initializations. The latter values are used to select the
best min-split value. This procedure is illustrated in Figure 1.

In the MOFQI setting, leveraging the results from risk neutral
training, the best value of min-split has been used. In order to com-
pare and choose over the iterations of a given training, the criteria is
the antiutopia hypervolume 7, 40]. For each risk aversion coefficient
A € Atrain, the model optimizes a different objective, obtaining
a different volatility and average reward. The set of the resulting
values can be represented in a graph as in Figure 4c. Ideally, the
best model Pareto-dominates the other frontier approximations. To
compare Pareto optimality, we compute the overall worst empirical
volatility and mean reward, called antiutopia. We then compute
the hypervolume with respect to the antiutopia for each of the
iterations of the model. The selected best iteration is the one that
maximizes this hypervolume on the validation set.
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Table 1: Performance obtained testing the selected models
and averaging over different runs, with their related stan-
dard deviation. Best min-split (as fraction of dataset) and it-
eration selected from validation are reported.

Training‘Validation Test Min-split Iteration Mean + Std

2015-16 2014 2017 0.001 14 11218 + 1785
2016-17 2015 2018 0.003 18 646 + 2497
2017-18 2016 2019 0.0005 6 5219 + 1275

5.3 Results

In order to evaluate the selected models, we show the obtained
cumulative returns, comparing them with some baselines and pro-
viding some insights on the learned behaviors.

Comparison with benchmark strategies. Once selected the
best model according to the validation, we need to test it on unseen
data. Using the selected min-split and iteration, it is possible to
train a new model and use it on the new dataset. For simplicity,
we have used the same trained models, whose performance in test
are reported in Table 1. We consider a setting in which each action
corresponds to a fixed 100K$ investment; therefore, rewards are
rescaled accordingly. As can be seen, apart from 2016-2017, this
criterion allows us to choose model that generalizes well in the
following years.

Figures 2 and Figure 4 show the results for some of these models
on the following year (w.r.t. the training set). Cumulative returns are
compared with some benchmark strategies. The first, passive strate-
gies are the Buy&Hold and the Sell&Hold, consisting in keeping
a constant position, respectively long or short. The other strate-
gies considered are active and based on a moving average trend
analysis [10, 14]. In particular, the moving average is computed on
the previous market prices, using two different time windows. The
shorter time window can take into account the previous 5, 15 or 30
minutes, The longer one computes the average of the last 30, 60 or
120 prices. When the shorter moving average is greater than the
“long-term” average (relatively long, since it considers a 2 hours
window as maximum), then the Trend Following (tf) strategy holds
along position, and vice versa. On the contrary, the Mean Reverting
(mr) strategy chooses the opposite action. Among all the possible
combinations of time windows and tf/mr strategies, only the best
one is presented. Our approach presents, for the selected cases, a
steeper improvement in the cumulative rewards. Furthermore, the
average cumulative reward for 2015-2016 and 2017-2018 (see Table
1) outperforms the baselines at the end of the year.

Analysis of Temporal Patterns. In Figure 2 and Figure 4a ac-
tions chosen in different timesteps (columns) and days (rows) are
shown in different colors. It is evident from these plots that there
are some temporal patterns that are repeated every day: this is a
typical case of intraday seasonality, adopted also by human traders,
related to specific moments in the trading day. For example, the
agent seems more willing to start the day with a long position,
which is very often changed when the European market opens for
operations. Around step 720 the agent usually chooses to opt for a
long position, and this is due to the fact that American Markets are



Foreign Exchange Trading:
A Risk-Averse Batch Reinforcement Learning Approach

(b)

Day

2000

Cumulative Return ($)

-2000

[} 50 100 150 200 250

Day

ICAIF "20, October 15-16, 2020, New York, NY, USA

C d
i ©) ) (d)
3
i 800
50 i
2 i
£
2 2 mo
0 &
7 LI
O 10 =
150 £ -0
=
180
e E -400
Y a0
-1

0 50 100 150 00 250

Day

Figure 3: Test on year 2018 of two agents trained on 2016-17 (and validated in 2015) with different risk aversion coefficients.
Figure (a) and (b) correspond to an agent acting under a smaller risk aversion with respect to Figure (c) and (d). In Figure (a)
and (c) the actions are represented as in Figure 2. They have respectively a standard deviation of 0.57 and 0.09. Figure (b) and

(d) show the cumulative return.

(b)

— FaQl
Buy&Hold
Sell&Hold
— 1f-120-30
m-120-5

12500

10000

5000

Day

2500

Cumulative Return ($)

-2500

&

o
10
11
12
1
14
15
16
17
18
19
20
21
22
23
2
25

0 50 100 150 200 250

Day

1el (c)
Lo d [ X )
13 : .’ii
o,
Zu b
E L]
o1 '.-
S .
10
T SE
509 Pyl O
o
08 o8 o"
-
-
071 g

25 30 35 40 45 50 55 60
Reward Mean te-d
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In Figure (c) the Approximated Pareto Frontier obtained from training on 2016-2017 is showed. The dataset was generated with
4 A values, while 50 different values have been obtained using the learned Q-function. The 4 original coefficients are marked

by red cross.

opening. Finally, the opening of Asian markets (around step 1080)
can be detected by looking only at the actions in Figure 2a, and
not in 2c or 4a. This might mean that its influence on €/$ is milder.
This behavior is intriguing, since these patterns were automatically
learned, without any “expert” providing previous information. In
any case, other, more complex patterns are leveraged by the agent
and need further studies, such as the fact that the models obtained
at later iterations have a more complex behavior.

Effect of Risk-Aversion. MOFQI has been trained with a set of
4 different risk-aversion coefficients, tuned manually to produce di-
versified risk management strategies. In our setting, it corresponds
to values of lambda ranging from 10 to 500. The algorithm is then
tested on 50 new value of lambda in the same range. Figure 4 shows
the Pareto frontier for these new values on the training set. The
results clearly highlight the mean-volatility trade-off. Remarkably,
the more risk-averse the agent, the closer it is to the optimal Pareto

frontier. A possible explanation is that learning in a highly risk-
averse environment is easier as portfolio positions are held longer,
resulting in a simplified optimization problem. This last statement
is supported by Figure 3 which represents the actions and cumu-
lative return in test for two opposite risk profiles. Unsurprisingly,
the most risk-averse agent mostly adopts the flat action.

6 CONCLUSIONS

The implementation of Efficient High-frequency Automated Trad-
ing Systems is one of the most interesting challenges for Artificial
Intelligence in the financial field, especially in the Forex Exchange
Market, where prices are heavily affected by random noise. The
particular structure of the problem allowed us to exploit a semi-
generative configuration, in which we were able to produce all
the possible outcomes of the controllable part of the system since
they can be deterministically computed. This has allowed us to
have a dataset that was rich enough to apply FQI to the FX trading
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context. The results, obtained on three different temporal frame-
works, show that this algorithm allows developing artificial traders
able to develop effective strategies. This is due to the fact that the
regression performed by the Extra Trees tries to detect interesting
patterns that can be exploited to optimize the return; some simple
ones, as the opening/closing time for world markets, are automati-
cally learned; some other may be more complicated, similar to the
technical analysis adopted by human traders. These results show
that this kind of technique can be useful also for human traders to
discover novel patterns that can be exploited to find novel trading
opportunities. An interesting addition to our approach was the
generalization to a Multi-Objective setting, where the agent faces a
trade-off between maximizing the return and the task of keeping
the uncertainty under control, measured as the volatility of the
collected rewards. At the best of our knowledge, this is the first
attempt of considering Risk Aversion in Reinforcement Learning as
a Multi-Objective MDP. We showed that the algorithm was able to
learn a complete spectrum of trade-offs between risk and expected
performance, generalizing the training carried out on a few risk-
aversion values. Many future developments are possible, both from
an algorithmic and application point of view. The approach could
be extended to the online setting, e.g., by using DQN [23] instead
of FQIL. Another possible research line regards the development of
an exact FQI version for the Mean-Volatility objective. Finally, from
the application point of view, the problem could be generalized
to consider multi-currency portfolios and more realistic scenarios,
e.g., taking explicitly into account operational delays.
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