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Abstract— Active rear-wheel steering is an effective tech-
nology to improve the cornering performance of vehicles,
enhancing both handling and stability. In this study, a MPC-
based rear-wheel steering controller for sport driving conditions
is proposed. High performance is achieved by an accurate
choice of the linear time-varying (LTV) predictive model. All
the fundamental aspects of lateral dynamics, such as tire
force saturation, tire relaxation, aerodynamic downforce and
load transfer are taken into account. Simulation results on a
multi-body vehicle simulator and the details of the real-time
implementation complete the paper.

I. INTRODUCTION
In four-wheel steering vehicles, open-loop controllers can

be exploited to improve handling at low speed and stability
at high speed or to achieve a zero sideslip angle during
cornering maneuvers [1], [2]. To this aim, a speed-dependent
ratio between the front and rear steering angles is imposed,
with the front and rear wheels steering in the same direction
at high speed and in opposite directions at low speed.

Alternatively to four-wheel steering, rear-wheel steering
via feedback control can be used to further enhance perfor-
mance and safety. For instance, it is possible to modify the
damping of the yaw mode [3].

Sliding mode control [4] as well as other robust control
techniques [5], [6] have been used in this context, with
important results in terms of improvement of the vehicle
stability and cornering performance during aggressive ma-
neuvers. These works are united by the use of reference
models for the generation of the desired steady-state and
transient response of the vehicle.

In the field of lateral dynamics control, Model Predictive
Control (MPC) has gained a lot of popularity in recent
years, proving itself a successful control strategy. Indeed, the
improvement of the overall vehicle behaviour, considering
performance and safety at the same time, is possible thanks
to the formulation of the control problem as an optimization
problem. MPC has been successfully applied to the control of
active front-wheel steering [7], torque vectoring [8], [9], [10],
and various types of over-actuated architectures, including
combined four-wheel steering and torque vectoring [11].

In this paper, a MPC-based controller for active rear-
wheel steering is designed, focusing on the maximization
of performance in the context of sports cars. For this reason,
with respect to the existing literature on lateral dynamics
control via MPC, a serious effort is placed in the develop-
ment of a reliable predictive model when driving at the limits

All the authors are with the Department of Electronics, Informa-
tion and Bioengineering, Politecnico di Milano, Milan, Italy. Email to
name.surname@polimi.it.

of handling. Following the main line of research of [12],
[10], [7], [8], [11], a linear-time varying (LTV) predictive
model, obtained from the linearization of a nonlinear model
at every MPC iteration, is proposed. This approach allows
a sufficiently accurate description of the nonlinear vehicle
dynamics, while avoiding a non-convex MPC optimization
problem. Indeed, despite nonlinear MPC has been success-
fully applied in the context of lateral dynamics control [13],
the computational burden related to non-convex optimization
is still an obstacle for real time-implementation.

The novel contributions of this paper are (i) the proposal
of a MPC-based rear-wheel steering controller, specifically
designed for sport driving conditions, wheareas most of the
literature focuses on passenger vehicles (ii) the use of a
more accurate predictive model with respect to the literature,
including the effects of tire force saturation, tire relaxation,
aerodynamic downforce, load transfer, and actuators dy-
namics, which are relevant in the considered context, and
(iii) the real-time implementation of the controller, despite
the increased complexity of the underlying vehicle model,
thanks to the choices made in the MPC formulation and the
use of the state-of-the-art solver for quadratic programming
problems OSQP [14].

The remainder of this work is as follows. In Section II, the
simulation environment is presented. In Section III, a non-
linear vehicle model, which is the basis for the formulation
of the LTV predictive model, is described and validated. The
proposed rear-wheel steering controller is detailed in Section
IV and validated in Section V. The details of the real-time
implementation and some concluding remarks are given in
Section VI and in Section VII, respectively.

II. SIMULATION ENVIRONMENT

The rear-wheel steering controller proposed in this paper is
tested in a simulation environment based on the simulation
software VI-Grade CarRealTime. In particular, a model of
a sports car with the parameters summarized in Table I is
considered.

The VI-Grade CarRealTime model is complemented by
a custom model of the rear-wheel steering actuators, which
is realized in Simulink. In particular, the rear wheels are al-
lowed to steer a maximum of δ max

r = 1.95° in either direction,
with limitations on the maximum steering rate dependent
on the current vehicle speed. Additionally, a second-order
transfer function with a bandwidth of about 2Hz introduces
realistic lag and attenuation between the target wheel angle
requested to the actuator and the actual wheel angle imposed
by the actuator.



The controller is implemented in Simulink, exploiting the
interface with both MATLAB code and the open-source C
solver OSQP [14] for the solution of the MPC optimization
problem.

All the simulation results shown in this work are obtained
on a flat road with constant friction coefficient µ = 1,
corresponding to dry asphalt conditions.

III. NONLINEAR VEHICLE MODEL

The first step in the design of a MPC-based controller is
the formulation of a suitable model of the system. Since the
vehicle lateral dynamics is characterized by highly nonlinear
phenomena, especially because of the road-tire interaction,
a nonlinear vehicle model is proposed in the following.
The model describes the lateral dynamics only; indeed, the
vehicle’s longitudinal velocity vx is treated as a time-varying
parameter rather than as a state. Similarly, the longitudinal
load transfer is taken into account by considering the vertical
forces acting on the wheels as time-varying parameters. Start-
ing from this nonlinear model, in Section IV, a linear time-
varying (LTV) predictive model is obtained by linearization.

As schematically represented in Fig. 1, a single-track
vehicle model [15] is used, which is a standard solution in
the formulation of rear-wheel steering controllers [4], [5],
[6]. Under the assumption of small front and rear steering
angles (δ f and δr, respectively) and attitude angle β , the
following equations of motion can be derivedṙ = 1

Jz

(
aFy f −bFyr

)
β̇ = 1

Mvx

(
Fy f +Fyr

)
− r,

(1)

where r is the yaw rate and Fy f and Fyr are the front and rear
axle lateral forces, respectively. M, Jz, a and b are constant
parameters representing the mass, yaw moment of inertia
and front and rear axle distances from the center of gravity,
respectively.

TABLE I: Vehicle parameters.

Definition Parameter Value
Mass M 1930 kg

Yaw inertia Jz 3554 kgm2

Wheelbase L 2720 mm
Front axle distance to COG a 1461 mm
Rear axle distance to COG b 1259 mm

Front axle track d f 1668 mm
Rear axle track dr 1636 mm
Wheel radius Rw 350 mm
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Fig. 1: Single-track vehicle model.

An important element of novelty is introduced in the
model of the sideslip angles, which are the fundamental
quantities that determine the lateral tire forces. In the litera-
ture related to MPC-based lateral dynamics control [12], [7],
the lateral tire forces are expressed as an algebraic function
of the kinematic sideslip angles αkin

f and αkin
r , which can be

computed on the basis of simple geometrical considerations
[12]:

α
kin
f =−δ f +β +

a
vx

r, α
kin
r =−δr +β − b

vx
r. (2)

However, this approach does not consider the relaxation
dynamics of the tires [15], which has important effects on
the vehicle lateral dynamics. To overcome this issue, a first-
order dynamics between the kinematic sideslip angles and
the actual sideslip angles (α f and αr) is introduced [16],
[17]:

α̇ j =−
1

h j(vx)

(
α j−α

kin
j

)
, j = f ,r, (3)

where h f (vx) and hr(vx) determine the time constant of the
relaxation dynamics depending on the vehicle’s longitudinal
velocity. A possible parametrization of such functions is
given by

h j(vx) =
h̄ j

vx
, j = f ,r, (4)

where the parameters h̄ f and h̄r can be physically interpreted
as tire relaxation lengths [16].

Indicating by Fz f and Fzr the vertical loads acting on the
two axles, the lateral tire forces are modelled by means of a
simplified version of Pacejka’s Magic Formula [15]:

Fy j =− f j (Fz j)
C j

B jA j
sin(B j arctan(A jα j)), j = f ,r. (5)

In (5), the dependence of the lateral tire force on the sideslip
angle is determined by the parameters A j, B j and C j, i =
f ,r. Moreover, the tire characteristic curve is rescaled by
a factor dependent on the vertical load acting on the axle,
namely f f

(
Fz f
)

and fr (Fzr). This nonlinear relationship can
be modelled with a saturation function: f j (Fz j) = Fz j, Fz j < F̄z j

f j (Fz j) = F̄z j, Fz j ≥ F̄z j

j = f ,r, (6)

where F̄z f and F̄zr are thresholds above which an increase of
vertical load does not cause an increase of lateral tire force.
Conversely, below those thresholds, the lateral forces are
rescaled linearly with respect to the vertical load to describe
the effects of longitudinal load transfer and aerodynamic
downforce.

The nonlinear vehicle model is completed by the expres-
sion of the front wheels steering angle as a function of the
steering rack position xr and vehicle’s lateral acceleration
ay = vx

(
r+ β̇

)
:

δ f = kxrxr + kayay (7)

where kxr represents the nominal kinematic ratio between the
front wheels steering angle and the steering rack position,



while the second term models the variation of steering angle
due to the suspension kinematics during maneuvers with
significant lateral acceleration.

The resulting vehicle model is the following fourth-order
nonlinear model

ṙ = 1
Jz

(
aFy f

(
α f ,Fz f

)
−bFyr (αr,Fzr)

)
β̇ = 1

Mvx

(
Fy f
(
α f ,Fz f

)
+Fyr (αr,Fzr)

)
− r

α̇ f =− 1
h f (vx)

(
α f + kxrxr + kayvx

(
r+ β̇

)
−β − a

vx
r
)

α̇r =− 1
hr(vx)

(
αr +δr−β + b

vx
r
)

,
(8)

where r, β , α f and αr are the state variables, xr and δr
are the inputs, Fz f , Fzr and vx are time-varying parameters.
All the other parameters are selected to fit the VI-Grade
CarRealTime model. In particular, the parameters reported
in Table I are assumed to be known, while the remaining
ones are identified via simulation experiments.

Validation tests are performed by feeding the model with
the steering rack position xr and the rear steering angle δr
collected during appropriate VI-Grade CarRealTime simula-
tions and assuming exact knowledge of the time-varying pa-
rameters, namely the longitudinal velocity vx and the vertical
forces acting on the two axles Fz f and Fzr. For comparison,
the results obtained with a simplified second-order model,
similar to the one tipically used in the literature, are also
reported. Such a model is obtained from (8) by neglecting
both the tire relaxation dynamics (by setting α f = αkin

f and
αr = αkin

r ) and the effects of load transfer and aerodynamic
downforce (by setting the vertical forces Fz f and Fzr equal
to their steady-state value at 100 kmh−1). In the following,
this latter model will be indicated as “simplified”, while the
proposed vehicle model as “complete”.

The validation test shown in Fig. 2 consists in a frequency
sweep of the steering wheel angle from 0.5 Hz to 3.5 Hz at
a constant speed of 100 kmh−1. Even if the test is very dy-
namic and reaches high lateral accelerations, the simulation
of the complete vehicle model yields very accurate results.
Conversely, the simplified model shows a remarkably de-
creased ability to fit the VI-Grade CarRealTime simulation,
due to the neglection of the tire relaxation dynamics.

In Fig. 3, a slow ramp steer maneuver while braking
from 250 kmh−1 to 100 kmh−1 is shown. Once again, the
complete vehicle model is capable to reproduce the VI-Grade
CarRealTime simulation very closely. On the contrary, the
performance of the simplified model is significantly inferior,
since it does not account for the longitudinal load transfer
and the variation of the aerodynamic downforce.

IV. MODEL PREDICTIVE CONTROLLER DESIGN

The main purpose of this section is to describe the MPC
optimization problem, which is the core of the proposed
rear-wheel steering controller. To this aim, all the steps
for the initialization of the optimization problem, the
computation of the (linerized) predictive model and the

generation of a suitable yaw rate reference are described first.

Vehicle state estimation. As detailed in the following,
the MPC predictive model is obtained from the linearization
of the nonlinear vehicle model described in Section III. As
a consequence, the setup of the MPC optimization problem
requires the computation of appropriate initialization values
for the four states of the vehicle model.

Concerning the vehicle’s yaw rate and attitude angle, the
initialization values ri

0 and β i
0 at the i-th MPC iteration are

set to
ri

0 = r̂(ti), β
i
0 = β̂ (ti), (9)

where r̂(ti) and β̂ (ti) are the current yaw rate and attitude
angle measurements provided by two ideal sensors and ti
is the time instant corresponding to the i-th MPC iteration.
Notice that the attitude angle would be estimated in a real-
world application.

Conversely, the initialization of the sideslip angles cannot
be directly obtained from measurements or estimations.
Thus, their value is computed online, compatibly with the
control-oriented tire relaxation model proposed above. Com-
bining (2), (3) and (7), it results that

α̇ f =− 1
h f (vx)

(
α f + kxrxr + kayay−β − a

vx
r
)

α̇r =− 1
hr(vx)

(
αr +δr−β + b

vx
r
)

.
(10)

Then, assuming that measurements of the current vehicle’s
longitudinal velocity, lateral acceleration, steering rack posi-
tion and rear wheels steering angle are available (indicated by
v̂x(ti), ây(ti), x̂r(ti) and δ̂r(ti), respectively), the initialization
value of the sideslip angles can be computed from a discrete
time version of (10), that is

α i
f 0 = u f

(
α

i−1
f 0 , r̂(ti), β̂ (ti), x̂r(ti), ây(ti), v̂x(ti)

)
α i

r0 = ur

(
α

i−1
r0 , r̂(ti), β̂ (ti), δ̂r(ti), v̂x(ti)

)
.

(11)

Non-controllable inputs and time-varying model pa-
rameters. In order to predict the evolution of the controlled
system over the prediction horizon, the MPC-based con-
troller requires to know the future values of all the non-
controllable inputs and time-varying parameters appearing in
the predictive model. Since this is not possible in practice,
an approximation of those signals is computed based on the
available information up to the current time.

In the case at hand, the only non-controllable input is the
steering rack position, whose value is imposed by the driver
acting on the steering wheel. A first-order extrapolation of
the signal is computed based on the current steering rack
speed ˆ̇xr(ti), which is assumed to remain approximately
constant for the duration of the prediction horizon:

xi
r(k) = x̂r(ti)+(kTp) ˆ̇xr(ti), k = 0, . . . ,Np−1, (12)

where the index k refers to the k-th step along the prediction
horizon, Np is the number of steps in the prediction horizon,
and Tp is the time step.



Fig. 2: Validation of the vehicle model: frequency sweep of steering wheel angle from 0.5 Hz to 3.5 Hz at 100 kmh−1.

Regarding the time-varying model parameters, the as-
sumption of constancy over the prediction horizon is made.
In particular, at every iteration of the control algorithm, the
longitudinal velocity of the vehicle is set to the measured
value at the current time ti, that is v̄i

x = v̂x(ti).
Similarly, the vertical forces acting on each axle are fixed

to the estimated value at time ti, indicated by F̂z f (ti) and
F̂zr(ti) for the front and rear axles, respectively:

F̄ i
z f = F̂z f (ti), F̄ i

zr = F̂zr(ti). (13)

In order to compute such values, the following model of
the vehicle’s longitudinal load transfer and aerodynamics is
used: F̂z f (ti) = b

L Mg− kaxâx(ti)+ kvx f v̂x(ti)2

F̂zr(ti) = a
L Mg+ kaxâx(ti)+ kvxr v̂x(ti)2,

(14)

where âx(ti) is the measured longitudinal acceleration and
g is the gravitational acceleration. According to the model
in (14), the longitudinal load transfer is proportional to the
longitudinal acceleration through the parameter kax, while
the aerodynamic downforce on the two axles is proportional
to the square of the vehicle speed through the parameters
kvx f and kvxr.

Vehicle model linearization. The use of a nonlinear
predictive model results in a non-convex MPC optimization
problem, to be solved at every time step. This solution,
although possible [13], implies a relevant computational
burden, which may prevent the real-time implementation of
the controller. To overcome this issue, the approach based
on successive online linearizations of the model around the
current operating point is usually preferred [7], [12]. In this
way, the nonlinear vehicle dynamics can be accounted for,
while significantly reducing the complexity of the optimiza-
tion problem.

To linearize the vehicle model, it is sufficient to linearize
the expressions in (5) around the current sideslip angles α i

f 0
and α i

r0, after substituting the current vertical loads F̄ i
z f and

F̄ i
zr:

Fy f = F̄ i
y f −C̄i

f
(
α f −α

i
f 0
)
, Fyr = F̄ i

yr−C̄i
r
(
αr−α

i
r0
)

.
(15)

The resulting predictive model at the i-th MPC iteration
is the following fourth-order affine system:

ẋ = Aix+Bi
δr +Cixr +Di, x =

[
r β α f αr

]T ,
(16)

where

Ai =



0 0 −
aC̄i

f
Jz

bC̄i
r

Jz

−1 0 −
C̄i

f
Mv̄i

x
− C̄i

r
Mv̄i

x

a
h f (v̄i

x)v̄i
x

1
h f (v̄i

x)

kayC̄i
f−M

Mh f (v̄i
x)

kayC̄i
r

Mh f (v̄i
x)

− b
v̄i

xhr(v̄i
x)

1
hr(v̄i

x)
0 − 1

hr(v̄i
x)


, (17a)

Bi =
[
0 0 0 1

hr(v̄i
x)

]T
, (17b)

Ci =
[
0 0 − kxr

h f (v̄i
x)

0
]T

, (17c)

Di =



a
(

F̄ i
y f +C̄i

f α i
f 0

)
−b(F̄ i

yr+C̄i
rα i

r0)
Jz

F̄ i
y f +C̄i

f α i
f 0+F̄ i

yr+C̄i
rα i

r0
Mv̄i

x

−
kay

(
F̄ i

y f +C̄i
f α i

f 0+F̄ i
yr+C̄i

rα i
r0

)
Mh f (v̄i

x)

0


. (17d)

Rear-wheel steering actuator model. The predictive model
computed above is further extended to take into account the
dynamics of the rear-wheel steering actuators. A first-order
dynamics between the reference steering angle δ

re f
r and the

actual steering angle δr is introduced as follows
ẋ = Aix+Biδr +Cixr +Di

δ̇r =−ωact

(
δr−δ

re f
r

)
.

(18)

Notice that a low-order actuator model is used to avoid an
excessive increase of the dimension of the predictive model.
Concerning the initialization of the newly introduced state,
the current measured value is used, that is δ i

r0 = δ̂r(ti).



Yaw rate reference generation. A yaw rate signal de-
scribing the desired behaviour of the vehicle over the pre-
diction horizon is used as a reference for the MPC. The yaw
rate reference is computed as a function of the steering wheel
angle δsw imposed by the driver and the vehicle speed vx,
using a static map of the form

rdes = rdes(δsw,vx). (19)

In this way, it is possible to impose a desired understeering
behaviour to the controlled vehicle [8].

In particular, a sequence of samples {δ i
sw(k)}

Np
k=1

representing the expected steering wheel angle over the
prediction horizon is computed by linear extrapolation
(as in (12)) and, given the current vehicle speed v̄i

x, the
corresponding yaw rate sequence {ri

des(k)}
Np
k=1 is obtained.

Lastly, a low-pass filter is applied to this sequence, obtaining
the actual reference signal {ri

re f (k)}
Np
k=1. A certain number of

yaw rate reference samples from the previous MPC iterations
(ri−1

re f (1), ri−2
re f (1), etc.) are used for the initialization of the

filter, depending on its dynamical order. The filter is chosen
so as to reduce the yaw rate resonance of the vehicle and
to avoid possibly dangerous behaviour of the controlled
vehicle in response to high-frequency steering inputs.

MPC optimization problem. At every MPC iteration, the
optimal control sequence {δ re f

r (k)}Np−1
k=0 over the prediction

horizon is computed by solving the following optimization
problem, which can be rewritten as a quadratic programming
(QP) problem:

min
δ

re f
r (·)

Np

∑
k=1

(
r(k)− ri

re f (k)
)2 (20a)

s.t. ξ (k+1) = Adξ (k)+Bdδ
re f
r (k)+Cdxr(k)+Dd

k = 1, . . . , Np
(20b)

ξ (0) =
[
ri

0 β i
0 α i

f 0 α i
r0 δ i

r0
]T

(20c)

|δr(k)| ≤ δ
max
r k = 0, . . . , Np−1 (20d)

|δr(k)−δr(k−1)| ≤ ∆δr(v̄i
x) k = 0, . . . , Np−1,

(20e)

where the matrices Ad , Bd , Cd , Dd are obtained from the
time discretization of (18) using Euler’s method and ξ =[
r β α f αr δr

]T is the corresponding state vector.
Notice that the cost function (20a) includes a single

objective for the controlled vehicle, that is to track the yaw
rate reference over the prediction horizon.

The constraints (20b) and (20c) impose the dynamics of
the controlled vehicle, relating the sequence of the control
inputs to the predicted evolution of the controlled system,
starting from the currently estimated state.

Lastly, the constraints (20d) and (20e) account for the
limitations of the rear-wheel steering actuators in terms of
both maximum steering angle and maximum steering rate,
i.e. the ones described in Section II.

Once the MPC optimization problem is solved, according
to the standard receiding horizon approach, only the first

Fig. 3: Validation of the vehicle model: slow ramp steer
maneuver while braking from 250 kmh−1 to 100 kmh−1.

sample δ
re f
f (0) of the optimal control sequence is applied to

the system. Then, an updated optimization problem is solved
again at the next MPC iteration.

Concerning the choice of the MPC parameters, such as
the length of the prediction horizon Np and the time step
Tp, it is observed that a reasonable comprimise between
computational load and performance is achieved by setting
Tp = 0.01s and Np = 15, which is in line with the results
of other MPC-based lateral dynamics controllers in the
literature [7], [8].

V. ANALYSIS AND VALIDATION

Simulations are performed to evaluate the performance of
the proposed rear-wheel steering controller. In particular, a
number of different handling maneuvers, including combined
cornering and traction/braking, are analyzed. A few simula-
tion results are reported in the following.

In Fig. 4 a step-steer maneuver at the constant speed of
150 kmh−1 is shown. It is possible to see that the MPC-based
controller is able to track the yaw rate reference (computed
by collecting the first samples of the reference signals of
every MPC iteration) very closely. Moreover, notice that the
ratio between the peak and the steady-state value of the yaw
rate is significantly reduced with respect to the uncontrolled
vehicle.

In Fig. 5 a slow ramp steer maneuver while braking
from 250 kmh−1 to 100 kmh−1 is reported. Once again, the
MPC controlled vehicle follows the yaw rate reference very
well. While the uncontrolled vehicle is driven very close to
instability, the MPC controlled vehicle shows a very limited
attitude angle and no oscillations of the yaw rate.

VI. REAL-TIME IMPLEMENTATION

As already pointed out, the MPC optimization problem in
(20) can be easily rewritten as a QP problem, for which very
efficient open-source solvers are available. Among them,



Fig. 4: MPC performance in a step-steer maneuver at
150 kmh−1.
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Fig. 5: MPC performance in a slow ramp steer maneuver
while braking from 250 kmh−1 to 100 kmh−1.

OSQP is particularly well-suited for use on embedded low-
power hardware [14], [18], as it allows to generate fast and
reliable C code for this kind of problems.

This option is exploited in this work to implement the
proposed control algorithm on the dSpace MicroAutobox II
hardware and assess the feasibility of a real-time implemen-
tation. On the considered hardware, the average computa-
tional time required by the controller is about 1.5 ms, which
is satisfactory since the controller time step is Tp = 0.01s.

VII. CONCLUSIONS

A MPC-based rear-wheel steering controller is presented
in this paper and validated in a realistic simulation envi-

ronment. Thanks to the modelling choices, excellent perfor-
mance is achieved in the tracking of a yaw rate reference,
even in very dynamic maneuvers. The feasibility of a real
time implementation on low-power hardware is also demon-
strated.

Based on these promising results, future work will be
devoted to the experimental validation of the controller on a
real-world setup.
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