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Abstract: The spread of IoT and wearable devices is bringing out gesture 

interfaces as a solution for a more natural and immediate human-machine 

interaction. The "Seamless" project is an industrial research and development 

experience, aimed to build a virtual environment where data collected by IoT 

sensors can be navigated through a gesture interface and virtual reality tools. 

This paper presents the portion of the project concerning gesture analysis, 

focused on the problem of automatically understanding a set of hand gestures, 

in order to give commands through a wearable control device. The tackled issue 

is to build a real time gesture recognition system based on inertial data, that can 

easily adapt to different users and to an extensible set of gestures. This gesture 

data variability is addressed by means of a supervised Machine Learning 

approach, that allows adapting the system response to different gestures and to 

various ways of performing them by different people. A context-aware adapter 

allows interfacing the gesture recognition system to various applications. 

Keywords: Human-Machine Interaction, Inertial Measurement Unit, Gesture 

Recognition, Machine Learning, Neural Networks, Context Aware 

Architecture.  

1. Introduction 

This paper presents an industrial research and development experience dealing 

with gesture recognition as part of the “Seamless” Project, funded by Regione 

Lombardia (Italy) and partially by the H2020 WorkingAge EU Project1. 

The Project, conducted in cooperation between Politecnico di Milano - DEIB, Next 

Industries
2
 and Digisoft System Engineering (DSE)

3
, was aimed to build a virtual 

                                                           
1 This work was supported by the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No.826232, project WorkingAge (Smart Working 

environments for all Ages). 
2 https://www.nextind.eu 
3 https://www.gruppodse.it 



environment where a set of three-dimensional structural data can be navigated through 

virtual reality tools and a gesture interface. Structural data regarding constructions, 

e.g., bridges, buildings, risky frameworks, etc., were collected by IoT sensors, 

monitoring the vibrations and movements of the structures. 

In particular, recognition of movements was performed using a wearable device to 

give commands by drawing gestures in the air. The spread of IoT and wearable 

devices is bringing out gesture interfaces as a solution for Human-Machine 

Interaction (HCI) in a more natural and immediate way [1, 2]. 

The work presented here is framed in Seamless as follows. DSE developed a 

virtual environment where multiple subjects can interact collaboratively by 

connecting remotely through the web to a cooperative space of IoT “objects”.  This 

environment can be set up quickly in any room, even with no pre-setting or 

knowledge of the physical layout, by using a simple mobile equipment consisting of a 

set of IoT devices. It is controlled by a software application based on the Unreal 

Engine, which is interfaced with the Tactigon-Skin
TM

 provided by Next Industries, as 

a gesture control input device. The Tactigon-Skin is developed by Next Industries as 

an IoT device to be worn on the user's hand and is equipped with a 6-axis Inertial 

Measurement Unit (IMU).  

When analyzing the inertial data collected through Tactigon-Skin, we observed a 

remarkable data variability, attributable to the difference between gestures and for 

hand gestures are performed differently depending on people and circumstances. For 

instance, the gesture has different intensity of speed and acceleration (e.g., rapid 

acceleration and slow braking or vice versa), different duration amplitude (e.g., in 

relation to the length of the user's arm), trajectory or slight hand vibrations. The need 

to handle such data variability led us to adopt a supervised Machine Learning (ML) 

approach, which is described in the paper. 

The gesture recognition task focused on the problem of automatically recognizing 

a set of hand gestures, to enable users to send commands to applications through the 

Tactigon-Skin device. The analysis aims at building a real-time hand gesture 

recognition system, that can adapt to different users, able to recognize a set of 

gestures that can be defined and extended in different application environments. 

Under these premises, our goal was to develop a prototype software capable to 

perform gesture recognition under four constraints: 

 based on inertial data only, with no additional sensors, whereas most of the 

previous works rely on other types of sensors, especially vision-based [3, 4]; 

 in real-time, so that the recognized gesture prediction occurs within a 

predetermined time interval from the hand gesture conclusion, to allow for a 

smooth man-machine interaction; 

 user independent, so as not to require a specific user training activity for 

each new user, after the completion of the general training sessions; 

 with no explicit signals marking the gesture “start” and “end” (like pressing 

or releasing a button), in order to achieve a better user experience. 

During our experimentation, two different solutions were tested, that rely on 

different ML techniques: an approach based on the Dynamic Time Warping (DTW) 

technique and a classical neural network approach. 



The paper is organized as follows. In Section 2 we present relevant related works. 

In Section 3, we introduce our gesture recognition solution, illustrating the inertial 

data and the gesture recognition process. Section 4 describes the inertial data pre-

processing stage and Section 5 the neural network classifier. Section 6 focuses on the 

context aware adapter that connects the gesture recognition system to applications. 

2. Related Work 

In the field of gesture recognition, most systems are based on some additional sensor 

technology, merging the inertial data with another data source, like magnetometers, 

visual information from a camera, or infrared sensor data. 

Various challenges, such as interposition of obstacles, variations in lighting or 

complex background, make an accurate detection of hand gestures difficult in vision-

based approaches.  

A vision-based hand gesture recognition system is presented in [5]. Several 

researchers developed solutions based on depth cameras, as in [6], where an 

authentication system is proposed. In [7] a binocular vision system provides the depth 

information needed to build a three-dimensional map that allows to detect the gestures 

on a complex background. In [8] a reinforcement learning solution is described, based 

on two neural networks, trained to analyze video images to segment and classify 

surgical gestures. 

The use of neural networks is frequent among systems that use inertial data as well. 

In [9] gestures capturing and recognition is based on inertial and magnetic 

measurements units (IMMU) assembled on a fully cabled glove. The paper describes 

recognition methods based on Extreme Learning Machine, a kind of  feed-forward 

neural networks, both for static and dynamic gestures classification. 

A user-independent hand gesture recognition system is described in [10], based on 

an accelerometer-based pen device. Basic gestures are classified by a feed-forward 

neural network, while a segmentation algorithm is proposed to split complex gestures 

into several basic gestures, through a similarity matching procedure. In [11] a Wiener-

type recurrent neural network is used for handwriting trajectory reconstruction, based 

only on inertial data. Some classifiers are compared in [12] to recognize hand gestures 

from two different inertial data sets, using various ML methods, such as Extremely 

Randomized Trees, Gradient Boosting and Ridge Classifiers. 

For the analysis of inertial data, other researchers used ML techniques different 

from neural networks, such as the DTW algorithm, a technique that evaluates the 

distance between two sequences [13] through a non-linear distortion with respect to 

an independent variable, such as time.  

DTW is particularly suitable for the analysis of time series and actually is used in 

various fields of application, from Speech Recognition to the recognition of human 

activities.  

It was applied with good results in several inertial data studies, such as in [14], that 

presents a continuous hand gestures recognition technique, using a three-axis 

accelerometer and gyroscope. The solution is based on a gesture-coding algorithm, 



where gestures are recognized by comparing the gesture code against a gesture 

database, using the DTW algorithm. 

The previous stage of developing a gesture recognition solution within Seamless 

Project, under the constraints described in Section 1, was also based on DTW 

technique [15]. 

In the second stage of the project, explained in this paper, we tested a neural 

network architecture and we paid more attention to the application interfacing 

questions, which also involve aspects of context awareness. ML and context 

awareness are topics that often appear together in smart technologies applications [16] 

and context-aware solutions are emerging in different fields and areas, in particular in 

smart environments and IoT [17]. We are exploring the feature of people movements 

through gesture recognition, aimed to the development of innovative HCI methods, in 

the WorkingAge EU Project [18]. 

The concept that the same gesture may have different meanings depending on the 

context has been proposed in gesture recognition, starting from [19], that focuses on 

gesture recognition in the medical field. The aim is to reduce the gesture set and to 

improve recognition reliability and usability. In [20], context awareness is achieved 

through a finite state machine, applied to a gesture recognition system based on neural 

networks. 

3. Gesture Analysis Process 

3.1 The Gestures Set 

The T-Skin device contains an IMU chip, based on Micro Electro-Mechanical 

Systems (MEMS) technology, which collects inertial data, measuring three-axis 

acceleration and three-angular velocities with a 50 Hz frequency. 

Sensor data are collected on-line from the T-Skin device, trough Bluetooth 

transmission or through a serial interface. Inertial data can also be acquired off-line 

from data files recorded during the previous on-line sessions. Recorded sessions allow 

us to perform a fast system training without the need of a gestures live session and to 

compare different algorithms under the same conditions. 

During the experimentation we tested the recognition process on a set of 15 

gestures: the simple translations and rotations along each of the space axes (one-

dimensional motions) plus a few more complex gestures (two-dimensional motions), 

and a short hand movements that we call “grab”, that is performed without moving 

the wrist. 

 

In detail, the system was trained on the following hand motions: 

 Simple translations: Forward, Backward, Up, Down, Right, Left; 

 Simple rotations: Pitch Down, Pitch Up, Roll Right, Roll Left; 

 Complex gestures: Circle, Square, Slope Up, Slope Down. 

 Small gestures: Grab. 



These gestures were selected both for the clear inertial characterization and for 

their suitability to give intuitive commands in a three-dimensional spatial context. A 

gesture is typically performed with the T-skin device in about half a second for the 

shorter gestures, up to about one second for the more complex ones, with a short 

pause between gestures, of the order of a few tenths of a second. 

3.2 The Gesture Recognition 

Raw inertial data are first processed by a filtering stage with the purpose of reducing 

signal disturbances and perturbations. Then, data are analyzed to detect and separate 

the single gestures, using a segmentation algorithm based on thresholds, developed by 

the authors. Subsequently, the data set corresponding to each gesture is normalized in 

length and amplitude and forwarded to the classification stage. 

The classification is performed by a supervised ML system, previously trained 

through a series of labeled gestures recognition sessions. The recognized gesture is 

finally made available to the adapter module, that implements the interface with the 

surrounding Seamless virtual environment. 

The different steps of the described data analysis process were implemented in the 

gesture recognition prototype software developed during the project. The software 

was developed in Octave environment and partially in Python language. 

The logical structure of the implemented process is summarized in Figure 1. 

 

 

Fig. 1. The gesture recognition process  



4. Gesture Pre-processing 

4.1  Data Filtering 

Raw data acquired by the sensors are subject to various perturbations, namely the 

gravity acceleration, the drift due to loss of calibration or measurement inaccuracy 

and high frequency noise, produced by vibrations and sensor thermal noise. For this 

reason, the acquired signals are firstly processed through a correction and filtering 

step. 

The signal offsets due to gravity are removed by subtracting the projection of 

gravity along each axis from each acceleration sample.  

Then, simple low-pass and high-pass filters are applied to remove noise and fixed 

components. A low-pass Butterworth filter is applied to remove high-frequency noise 

and a mild high-pass filter is applied to remove drift effects. The effects of high 

frequency noise are also mitigated by the normalization step performed after the 

gesture segmentation. 

The drifting effects are limited by the short duration of a single gesture and by 

levelling the acceleration values to zero before computing each new gesture. 

4.2 Gesture Segmentation 

The goal of the segmentation stage is to cut in real-time the subset of data 

corresponding to a single gesture from a continuous inertial data flow. 

The current segmentation algorithm is able to detect the short pause that divides 

consecutive gestures, based on a non-linear combination of angular velocities and 

accelerations that is evaluated against a value threshold and a duration threshold. The 

thresholds were obtained experimentally, by comparing the effectiveness of different 

combinations on the inertial data recorded during mixed gestures sessions and with 

the help of visual charts generated from the same data. The segmentation algorithm so 

far developed, works well with wide and fast gestures, separated by a short movement 

pause, and shows a lower success rate on softer movements. 

An example of successful segmentation is shown in Figure 2. The figure shows the 

inertial data for two of the six sensor axes, provided in particular by one of the 

accelerometers and one of the gyroscopes.  

 



 

Fig. 2. Segmentation of two successive gestures: Up and Down.  

The data section shown as an example, includes two consecutive gestures (an upward 

translation followed by a downward translation) separated by a short pause. The 

inertial data shown are already filtered. Green dots mark the gesture start while red 

dots mark the gesture ending, as detected by our segmentation algorithm.  

Only data between the beginning and the end of each segment are considered 

significant as gestures and hence passed to the subsequent processing phases. Other 

values are considered as not belonging to a gesture and are hence excluded from 

further processing. 

 

4.3 Gesture Normalization 

After the detection of a data segment corresponding to a single gesture, the six inertial 

values are normalized in length and in amplitude. 

First, a length normalization is performed that uniforms the gesture data to a 

predefined standard number of samples, through an interpolation algorithm. After 

that, an amplitude normalization is performed by means of a custom algorithm that 

recalculates each value on all axes to ensure that the peak value is set to 100%. 

Figure 3 shows an example of gesture data normalization.  



 

Fig. 3. Gesture raw data and normalized data 

Figure 3 displays a simple translation gesture along one of the device axis, where first 

an acceleration and then a deceleration occur. On the left hand side, the values 

returned by one of the three accelerometers are depicted, while on the right side the 

resulting values after the application of the interpolation and normalization algorithms 

are reported. The first step dampens the small variations due to vibrations or small 

differences in the path and also the abscissa axis takes on the meaning of the virtual 

sample number. The second step scales the values along the ordinates to an arbitrarily 

fixed scale between -100 and 100. 

These processing steps allow bringing together data segments corresponding to 

short and long span gestures as well as faster and slower gestures, that otherwise show 

very different raw acceleration values. 

It should be observed that the standardization of the samples number, by merging 

adjacent samples, also causes a value smoothing that reduces the effect of noise and 

outliers. 

5. Gesture Classification 

The gesture recognition task was carried out as a problem of classification of the 

segmented input data.  



As described above, the gesture classification tasks are usually based on ML 

techniques. We also in our project make use of a ML approach, to manage the high 

variability in the input data.  

During our experimentation, two different solutions were tested, that rely on 

different Machine Learning techniques. In the first project phase, we experimented a 

DTW based approach, as described in [15]. The second ML approach tested in the 

project is based on a classical neural network architecture. We successfully 

experimented a simple feed-forward neural network, designed as follows.  

An output node is set for each gesture to be recognized, where the expected output 

value is converging to one for the actual gesture and converging towards zero for all 

other nodes. 

As for the features to feed the network with, we found it effective to provide the 

network with the temporal succession of the values of each dimensional axis, in a 

single step. After the normalization stage, the detected gesture is in fact represented 

by a fixed number of samples for each axis of the gyroscope and for each 

accelerometer, regardless of the actual duration of the gesture. These values are 

provided directly to the neural network input nodes.  

An input node is set for each subsequent data sample on each data dimension. The 

number of input nodes is therefore equal to six times the standardized gesture length: 

typically, we standardize the detected gestures to 50 samples and taking into account 

the three gyroscope axes and the three orthogonal accelerometers, we feed the 

network with 300 input nodes. 

This solution is outlined in Figure 4. 

 

Fig. 4. The neural network classifier used in the gesture recognition process.  

Each output node provides a value between 0 and 1 and the node with the highest 

value shows the gesture recognized by the classifier. 

On the output values we considered two classification confidence indexes, to rate 

the result provided by the neural network. 



The greatest value itself returned from the output nodes, provides a first confidence 

index. Then, by sorting the output values in descending order and taking into 

consideration the two greatest ones, we used the quotient between the second and the 

first value as a measure of uncertainty of the classification result proposed by the 

system. The second highest value represents the second most likely gesture according 

to the classification stage. 

Values greater than 0.1 show a slight uncertainty, values greater than 0.5 denote a 

strong uncertainty. When the classifier should assign the same value to the best two 

output nodes, we have the same probability that the gesture belongs to one class or 

another and the uncertainty is equal to 1. For practical use, we choose to consider the 

results with uncertainty index lower than 0.1 as validly recognized gestures. 

As for the management of the data variability depending on the type of gesture, in 

the current state of experimentation we find the gestures that resulted more difficult to 

recognize are the slow or small amplitude motions, like the “grab” gesture, which 

have a less clearly characterized pattern than others. Introducing this kind of motion 

in the gesture set, we observed that the classifier does not show a low successful 

recognition rate on that gesture, but rather the recognition rate gets worse on some 

other gestures, which are often confused with the new one. 

Concerning the data variability in dependence on the different ways of performing 

the same gesture, the system behaviour was tested by setting up different training 

sessions, conducted by a different number of users. 

We performed the training sessions starting from one system trainer up to five 

trainers. While adding more people to the classifier training sessions, the system 

reached a better performance rate with 3 trainers and showed a slight decay with 4 or 

5 subjects. A possible explanation is that the different way of performing the same 

gestures reduces the separation between the ensembles of data trajectories that define 

each gesture, though on this aspect we believe that further experimentation is 

necessary. 

The system was trained with a set of 15 gestures, as described in Section 3.1. Many 

real time test sessions were carried out in the company laboratory. The recognition 

software reached a performance ranging from 86% to 97% of correctly recognized 

gestures, depending from the single user and the gesture performing conditions.  

Each test session included a sequence of 10 to 40 different gestures. In the longest 

test sequences, users showed a decreasing accuracy in the hand movement execution, 

leading to a slight decline in the recognition success rate. 

The user independence of the recognition system was also successfully tested on 

random people at an exhibition fair, after a brief instruction about the gestures they 

could perform. 

6. Context-Aware Adapter 

After the recognition phase, an adapter module is placed which acts as a joint with the 

application interfaced, to enable a flexible association of learned gestures to an 

arbitrary target system. 



This adapter is performing the function of a semantic layer, which gives the 

gestures a meaning that is relevant in the context of the specific interfaced 

application, translating gestures into actions that make sense for the application. This 

layer therefore allows giving the same gesture a different meaning according to the 

controlled application (e.g., the selection of an option in a graphic user interface or a 

command issued to a robot). 

A sort of vocabulary, or correspondence map, translates each gesture into an action 

performed on the application. This vocabulary is used to define and adapt the gesture-

based interface, based on the given usage context. 

We however noticed that even dealing with a single application, the set of available 

gestures is often too limited to control all the desired functions. We have two possible 

solutions to this problem: i) to provide a wider gestures set (e.g., the letters of an 

alphabet) or ii) to translate the same gesture in different ways according to the 

application workflow context. This second solution seems to preserve the naturalness 

of the gesture, which is a characteristic of gestural interfaces, without requiring the 

user to learn the associations of various meanings with a series of abstract symbols. 

The meaning generated by the semantic layer therefore depends both on the events 

generated by the user (gestures) and on the state of the application context, such as, 

for example, the presence or absence of an item, or the effects produced on the 

environment by previous gestures. 

In our system, this solution is implemented by introducing the definition of 

different “modes” for each application and associating a different vocabulary to each 

mode. In this way, a gesture produces a certain effect depending on the current mode. 

For each mode, a separate configuration is set up. A mode can model an application 

workflow stage or a context situation, so that the same gestures set can be used for 

different purposes based on the context.  

The solution operates like a finite state machine, where the transitions between 

modes can take place either through one action set in the vocabulary or based on the 

state of the interfaced application. 

 

 

Fig. 5. Interactions of the context-aware gesture semantics module.  



The semantic layer is implemented by an adapter module that controls the specific 

behaviour of a single application. As shown in Figure 5, this module is triggered by 

user gestures, taking into account the current context, to generate the actions that 

drive the application and possibly change the mode state. The current mode may 

affect the recognition process too, limiting the valid gestures to a reduced set of 

allowed options. 

The first version of our application adapter was configured to control a 3D 

modelling software, adding as actions to the vocabulary the mouse pointer 

movements, the mouse click and some keyboard shortcuts. For this purpose, the 

application adapter software directly controls the mouse and keyboard actions of a 

generic graphic user interface. In this scenario, the “Shift”, “Move” and “Edit” modes 

were defined, which respectively allow to move the pointer and create or select an 

object, to rotate or move an object and to modify an object by extruding its size along 

one axis. 

The system response can be adapted based on the application workflow state and 

on the current environment situation. The same gesture, for example a rightwards 

translation, can mean to “move the pointer”, or to “move the object”, or to “extrude 

the object”, depending on the situational awareness about the objects placed in this 

virtual space the user can interact with, and on the previous actions performed on 

them (e.g., selecting the object or activating a menu option). 

A reduction in the gestures set, by increasing the separation between the features 

space of each gesture, enhances the user independence and the recognition accuracy. 

7. Future Works 

Further planned developments include enhancing the ability to face gesture 

variability, in particular by improving the user independence and the recognition 

accuracy of smaller or slower movements. 

The user independence, or more generally, the ability to deal with the differences 

within each gesture class, will be tackled by introducing an automated clusterization 

stage, where the different ways of performing the same gesture can be grouped as if 

they were different gestures. The recognition rate of small and slow movements will 

be tackled by enriching the features provided to the neural network with more 

information about each segmented gesture, such as the gesture duration and peak 

values, that are currently lost during the normalization stage. 

Another aspect under development is the design of a configurable adapter module, 

to easy interface the gesture controller with different applications, without limiting the 

gesture recognition solution to the scope of the Seamless environment. A visual tool is 

now under study to allow customers to easily define the application adapter 

configuration, defining the different modes and associating for each mode the 

available gestures with the desired actions.  



8. Concluding Remarks 

The paper has presented a prototype about gesture recognition, relying on a ML 

approach, based on a neural network classifier. In particular, we have illustrated the 

processing steps and the obtained results.  

The adoption of a supervised ML technique has proved effective in handling the 

variability of different types of gesture patterns, performing a continuous data flow 

analysis in real time. The prototype tested the feasibility of a user-independent gesture 

recognition that is based only on inertial data. 

The design of a context-aware adapter allowed the gesture control system to adapt 

to different application contexts based on its configuration and provided the system 

the ability to switch between different operating modes, so as to issue a larger set of 

instructions with fewer gestures.  
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