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Abstract

Due to the recent worries about the environment, the transport companies
are incentivazing to use Alternative Fuel Vehicles (AFVs) instead of the con-
ventional ones. However, due to the limited AFV driving range and since the
Alternative Fuel Stations (AFSs) are usually not widespread on the terri-
tory, the routes of the AFVs have to be properly planned in order to prevent
them from remaining without the sufficient fuel to reach the depot or the
closest station. The Green Vehicle Routing Problem (G-VRP) aims at de-
termining the AFVs routes, each one serving customers within a maximum
duration, minimizing the total travel distance and if necessary including
stops at AFSs. On the contrary of the G-VRP, the G-VRP with Capaci-
tated AFSs (G-VRP-CAFS) more realistically assumes that each AFS has a
limited number of fueling pumps and then prevents overlapping in refueling
operations. In this paper, a Greedy Randomized Adaptive Search Procedure
(GRASP), properly guided by some theoretical results, is designed to effi-
ciently solve also large-sized instances of the G-VRP-CAFS. Computational
results, carried out on both benchmark instances and large-sized instances,
show the effectiveness and the efficiency of the proposed GRASP.

Keywords: Routing, Metaheuristics, Greedy Randomized Adaptive Search
Procedure, Alternative Fuel Stations, Route Incompatibility

1. Introduction

According to a recent report published by the European Environment
Agency, about 25% of the total greenhouses gas emissions in Europe is due
to the transport sector (Agency (2020)). Therefore, cutting emissions due
to this sector plays a key role in order to reach one of the long-term goals
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of the European Union, i.e., having net-zero greenhouses gas emissions by
2050. Indeed, the European Union is currently incentivizing the Alternative
Fuel Vehicles (AFVs), instead of the traditional Internal Combustion Engine
Vehicles (ICEVs), that use alternative fuel like, for instance, biodisel, elec-
tricity, hydrogen. As a result, many companies operating in the Logistics
sector, are currently considering either replacing or integrating their fleet
with AFVs.

Compared to the ICEVs, the AFVs guarantee several advantages among
which less global harmful emissions (environmental sustainability) and lower
kilometer costs (economic sustainability). In addition, they can also reach
the so-called Limited Traffic Zones, typically forbidden to the ICEVs. As
a result, they guarantee both a widespread customers coverage especially
in last-mile Logistics and a more efficient door-to-door transport (social
sustainability). However, despite these benefits, the AFVs have usually a
limited driving range and therefore, they may require to refuel more than
once during a trip. In addition, the Alternative Fuel Stations (AFSs) are
currently not widespread on the territory and this implicitly requires to
properly plan the route of such vehicles in order to avoid that they may
remain without the sufficient fuel level to reach the closest station.

In fact, it is not surprising if a growing number of operations research
specialists are currently studying the problem of efficiently routing a fleet of
AFVs, i.e., the Green Vehicle Routing Problem (G-VRP). The G-VRP was
introduced by the seminal work of Erdoğan and Miller-Hooks (Erdoğan &
Miller-Hooks (2012)). Compared to the traditional Vehicle Routing Prob-
lems (VRPs), this problem takes into account also the need of the fleet to
refuel during the trips and then, it includes stops at the AFSs. The route of
each AFV of the fleet starts from a common depot and returns to it within a
maximum time duration. During its route, an AFV serves some customers,
each one with a specific service time, possibly stopping at stations to refuel.
The fuel consumption rate is assumed proportional to the travelled distance
and therefore, the driving range of each AFV can be easily deduced from its
tank capacity. Moreover, the refueling time at each station is assumed to be
constant. Therefore, the G-VRP aims at routing a set of AFVs to serve cus-
tomers geographically distributed with possible stops at AFSs, minimizing
the total travel distance.

Starting from Erdoğan & Miller-Hooks (2012), an increasing number of
scientific contributions have been presented in the literature, in which ei-
ther the original G-VRP or its variants have been addressed. In almost all
these contributions, each AFS is assumed to have an unlimited number of
fueling pumps and therefore, each AFV always fuels at a station without
waiting. However, this assumption does not hold in real-life applications
where each AFS has instead a limited number of fueling pumps. In fact,
Bruglieri, Mancini and Pisacane in 2019 introduced the G-VRP with Ca-
pacitated AFSs (G-VRP-CAFS), i.e., the G-VRP, in which the stations have
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a limited number of fueling pumps (Bruglieri et al. (2019b)). The same au-
thors also showed as the AFS capacity becomes a bottleneck in some partic-
ular situations in which several AFVs may overlap at the same AFS during
the refueling operations. Compared to Bruglieri et al. (2019b), in this pa-
per, we focus attention on the private scenario in which the AFSs are only
those owned by the company. The main contributions of this work are in
the following:

• designing a metaheuristic solution approach suitable to efficiently ad-
dress the G-VRP-CAFS allowing route duration infeasibility in the
starting solution and eliminating it along the search through a penalty
objective function;

• deriving some theoretical results on the compatibility among routes
for properly and efficiently driving the proposed solution approach;

• generating a more realistic set of benchmark instances for the G-VRP-
CAFS, i.e., instances with a significant number of customers to serve.

The rest of the paper is organized as follows. Section 2 presents an
overview of the main contributions in the literature. Section 3 describes
the problem addressed and the notation used. Section 4 provides some
theoretical results. Section 5 describes the solution approach. Section 6.1
details the instances generation procedure and Sections 6.2 and 6.3 discuss
the experimental results. Finally, Section 7 draws some conclusions and
outlines some future research directions worthy of investigation.

2. Related Work

The G-VRP, belonging to the class of the VRPs Toth et al. (2015),
is currently attracting the interest of many operations research specialists
as shown in several recent surveys, e.g., Bektaş et al. (2016), Bektaş et al.
(2019), Asghari et al. (2020), Moghdani et al. (2020). Introduced in Erdoğan
& Miller-Hooks (2012), it is mathematically modelled through Mixed Inte-
ger Linear Programming (MILP) by cloning the stations in order to allow
multiple visit to the same station. The need of cloning the stations makes
this formulation not suitable to be used on real-life alike instances. For
this reason, a Clarke & Wright Savings algorithm, properly modified for the
G-VRP, is also proposed.

A first attempt to get rid of AFS clones is described in Koç & Karaoglan
(2016) where a three-index MILP model is proposed, through variables in-
dicating if an AFV stops at an AFS traveling from a node to another. The
authors propose both a Branch&Cut exact algorithm, combining several
valid inequalities and a Simulated Annealing (SA) based approach to obtain
upper bounds. Also in the MILP cloneless formulation proposed in Bruglieri
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et al. (2016), the stops at the AFSs are only implicitly considered. But, com-
pared to Koç & Karaoglan (2016), the number of variables is significantly
reduced by pre-computing a set of efficient AFSs for each pair of customers.
The problem of avoiding the AFS clones is addressed also in Bruglieri et al.
(2019c) where two MILP models are proposed. In the first one, between two
customers or between a customer and the depot, only one stop at an AFS
is allowed. On the contrary, in the second model, two consecutive stops at
the AFSs are also allowed. Both valid inequalities and dominance criteria
to a priori identify the AFSs that are more efficient to use in each route
are proposed. Finally, in Leggieri & Haouari (2017), a MILP formulation is
proposed together with a reduction procedure, shown to be competitive on
medium-sized instances.

An exact solution approach, based on the definition of a multigraph, is
proposed in Andelmin & Bartolini (2017). In particular, each node is a cus-
tomer whereas an arc between two nodes is a nondominated path that may
include also stops at the AFSs. The set of routes found on the multigraph is
the input of a set partitioning model strengthen through valid inequalities.
The authors optimally solve instances with up to 100 customers. A path-
based exact solution approach is proposed in Bruglieri et al. (2019a) where
the authors exploit both the limited driving range of the AFVs and the max-
imum route duration. In particular, a path represents an ordered sequence
of customers, visited from a starting node to an ending node without inter-
mediate stops at any AFS. The number of all exhaustively generated paths is
properly reduced by both feasibility and dominance conditions. The set of all
feasible non-dominated paths is finally given in input to a path-based model
for building the optimal solution. The proposed approach outperforms all
exact solution methods already existing on both small and medium-sized
instances. On large-sized instances, the set of feasible non-dominated paths
is instead heuristically generated.

Regarding meta-heuristics designed for the G-VRP, the one proposed
in Montoya et al. (2016) consists in two stages. In the first stage, a pool
of routes is generated through some randomized route-first cluster-second
heuristics and a properly designed AFSs insertion procedure. In the second
stage, this pool becomes input of a set partitioning formulation. A Genetic
Algorithm (GA) is instead proposed in da Costa et al. (2018), tested on real-
world instances including road speed and gradient data. Whereas, in Affi
et al. (2018), a Variable Neighborhood Search (VNS) is designed and shown
to be competitive on the large-sized benchmark instances. The multi-start
local search algorithm described in Andelmin & Bartolini (2019) uses the
multigraph reformulation proposed in Andelmin & Bartolini (2017). The
solutions iteratively built are improved by a local search and all these routes
are input of a set partitioning model. The final solution is further improved
through a local search.

Variants of the problem include, for instance, the G-VRP with Pickups
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and Deliveries (G-VRPPD). For example, in Madankumar & Rajendran
(2018), the problem is formulated for minimizing costs, considering pickup
and delivery operations, product and vehicle compatibility, vehicle capacity,
request-priorities and request-types, and start/completion time constraints.
A second model is also formulated considering different fuel prices at dif-
ferent AFSs, minimizing both routing and refueling costs. A G-VRPPD
is also addressed in Soysal et al. (2018). In particular, compared to the
models traditionally proposed for the one-to-one pickup and delivery prob-
lem, new aspects, e.g., fuel consumption, variable vehicle speed and road
categorization (i.e., urban, non-urban) are introduced. This problem is
modelled through MILP and solved on a case study from the Netherlands.
A bi-objective Fuel G-VRP with varying speed constraint is discussed in
Poonthalir & Nadarajan (2018). The problem, modelled through goal pro-
gramming for minimizing both route cost and fuel consumption, is solved
by Particle Swarm Optimization with greedy mutation operator and time
varying acceleration coefficient. In Zhang et al. (2018), the G-VRP with
vehicle capacity constraint is addressed and both a two-phase heuristic and
an Ant Colony based meta-heuristic are designed. In Xu et al. (2019), to-
gether with the vehicle capacity constraint, the G-VRP with time-varying
vehicle speed and soft time windows is modelled through multi-objective
Mixed Integer NonLinear Programming, solved through a non-dominated
sorting GA with adaptive and greedy strategies. In Hooshmand & MirHas-
sani (2019), it is assumed that the travel time and the fuel consumption
on each arc depend on the distance traveled and the time of the day at
which that arc is traversed. The problem is then modelled through MILP,
solved by a hybrid heuristic on large-sized instances. In Yu et al. (2019), a
Branch&Price algorithm is designed to solve the G-VRP with heterogeneous
fleet and time windows. For such a variant, a labeling based multi-vehicle
approximate dynamic programming algorithm is developed. A G-VRP with
Time Windows is studied in Yu et al. (2020) for which an Adaptive Large
Neighborhood Search (ALNS) is proposed.

Some papers assume that the green fleet specifically consists of Electric
Vehicles (EVs). The Electric VRP with Time Windows (E-VRPTW), in-
troduced in Schneider et al. (2014), is more difficult than the G-VRP since
the recharging time depends on the actual battery level. The E-VRPTW
is formulated by MILP and a hybrid heuristic combining a VNS with a
Tabu Search is also proposed for solving large-sized instances. After that,
an increasing number of works address the E-VRPTW and its variants. For
example, in Felipe et al. (2014), the amount of energy recharged and the
technology used are both taken into account together with the route plan.
Constructive and local search heuristics are then designed and embedded
into a non deterministic SA. The E-VRPTW with partial recharges is in-
troduced in Bruglieri et al. (2015), assuming that an EV is not always fully
recharged at a station. This way, the battery level recharged each time
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becomes a decision variable. For this variant, a MILP formulation is pro-
posed, minimizing the total travel time, the total waiting time and the total
recharging time plus the number of the EVs used. Then, a VNS Branching
(VNSB) matheuristic is designed in order to solve also large-sized instances
in reasonable computational times. Whereas, considering partial recharges,
an ALNS is designed and described in Keskin & Çatay (2016). Four vari-
ants of the E-VRPTW are instead addressed in Desaulniers et al. (2016),
i.e., with either at most a single or multiple recharges per route, with either
full or partial recharges. For these variants, Branch&Price&Cut algorithms
are proposed. Recently, in Ceselli et al. (2021), an EVRP with multiple
recharge technologies is addressed and solved through a Branch&Cut&Price
algorithm. In particular, in the master problem, each column is a sequence
of customers visited between two stations. The proposed algorithm is suit-
able to solve instances with up to thirty customers, nine recharge stations,
five vehicles and three technologies. In Bruglieri et al. (2017), a VNSB is
used in a three-phase framework for addressing the E-VRPTW with par-
tial recharges. In particular, the number of EVs used is firstly optimized
and then, the total time spent by the EVs, i.e., travel, charging and wait-
ing times, is minimized. In the first two phases, MILP-based Programs are
used to generate feasible solutions, input of the VNSB. In Keskin & Çatay
(2018), the E-VRPTW with partial recharges is addressed considering a nor-
mal, a fast and a super-fast recharging configuration. The total recharging
cost while operating minimum number of vehicles is minimized. A MILP
model is then proposed and solved on small-sized instances. Whereas, the
large-sized instances are solved through an ALNS. EVs are instead used for
both pickup and delivery operations in Goeke (2019). The author designs
a metaheuristic to solve the problem and derives a policy determining the
energy to be recharged in the case in which time windows are present. In
Lu et al. (2020), the time-dependent EVRP is addressed in which together
with the routes plan, decisions on vehicle’s speed and departure time at each
arc of the routes have to be also taken for minimizing a cost function. This
problem is modelled through ILP and solved by an iterated VNS on more
realistic instances. Finally, in Montoya et al. (2017), nonlinear charging
functions are assumed in contrast with traditionally made assumption ac-
cording to which the battery-charge level is a linear function of the charging
time. For this variant, a hybrid metaheuristic is designed.

In Poonthalir & Nadarajan (2019), the G-VRP is addressed assuming
that, in some cases, the AFVs have to wait before being refuelled. For this
reason, each AFS is modelled as an M/M/1 queue. This new variant is then
solved through Chemical Reaction Optimization. In Keskin et al. (2019),
the E-VRPTW is addressed considering waiting times at stations and a time
horizon split into intervals with varying queueing times. An ALNS combined
with an exact method based on the solution of a MILP model is proposed.
The same authors in Keskin et al. (2020) formulate the problem as a two-
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stage model. In the first stage, expectations of queueing times are used to
detect routes by the ALNS. Whereas, in the second stage, these routes are
corrected via simulation.

To the best of our knowledge, only in Bruglieri et al. (2019b), the G-
VRP-CAFS is addressed without queuing at AFSs. In particular, two dif-
ferent scenarios are considered. In the private scenario, the AFSs are owned
by the transport company and therefore, stops at them are properly man-
aged without overlapping among the AFVs. In the public scenario, instead,
the AFSs are not owned by the transport company and a fueling pumps
reservation mechanism is considered in order to prevent AFVs’ queuing at
stations. As a consequence, time windows associated with AFSs availability
are introduced. For both the scenarios, arc-based MILP formulations are
proposed. Moreover, the path-based approach of Bruglieri et al. (2019a) is
also extended for this new variant. In particular, for efficiently solving the
path-based models, two cutting-plane exact approaches are also designed.
The exact solution approaches are nevertheless suitable to solve only middle-
sized instances.

In the present work, starting from the aforementioned assumptions hold-
ing in the private scenario, an efficient and effective metaheuristic method is
described in order to address also large-sized instances of the G-VRP-CAFS.

3. Problem Statement and Notation

In the following, we recall the problem statement, the notation and the
assumptions already introduced in Bruglieri et al. (2019b), as also summa-
rized in Table 1.

The G-VRP-CAFS is defined on a direct complete graph G = 〈N,A〉
where N = I ∪ F ∪ {0} denotes the set of nodes containing the set of
customers I to serve, the set of private AFSs F and the common depot 0.
Whereas, the set A contains all the arcs (i, j) such that i, j ∈ N and i 6= j.

The number of AFVs available is an input data, indicated by m. More-
over, the maximum route duration as well as the maximum distance an
AFV can travel after a full refueling are denoted by Tmax and Dmax, re-
spectively. In addition, v, Q and r indicate the average vehicle speed, the
vehicle fuel capacity and the fuel consumption rate, respectively. This way,
the parameter Dmax can be easily deduced as Dmax = Q

r .
For each customer i ∈ I, a service time pi is given. Similarly, for each

AFS s ∈ F , a constant refueling time ps is known. Since all the AFVs
start from the depot fully refueled, a starting refueling time pstart is also
introduced to take into account the time spent for the initial refueling. For
each pair of nodes i, j ∈ N , a travel distance dij as well as a travel time tij
are known. Finally, for each AFS s, the number of fueling pumps ηs is also
given as input.
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Table 1: Nomenclature of the G-VRP-CAFS
Notation Meaning

F Set of AFSs
I Set of customers
N Set of nodes
A Set of arcs
m Number of available AFVs
0 Depot
v Average speed
Q Maximum fuel capacity
r Fuel consumption rate

Tmax Maximum route duration
Dmax Maximum driving range
pstart Starting refueling time
ps Refueling time at AFS s
pi Service time at customer i
dij Travel distance from node i to node j
tij Travel time from node i to node j
ηs Number of fueling pumps at AFS s

The G-VRP-CAFS consists in finding at most m routes, starting and
ending in the depot, such that all the customers are served and the maximum
route duration, the driving range after a refueling and the AFS capacity are
never exceeded. The objective is the minimization of the total traveled
distance.

4. Some Theoretical Results

A question that frequently must be addressed when the G-VRP-CAFS
is solved with a metaheuristic approach is whether two routes, refueling at
the same AFS, are compatible, i.e., they can be scheduled in such a way
that do not overlap when refueling.

To this purpose, for each route we can compute the earliest visit time of
each node and the maximum shifting that does not violate Tmax (i.e., the
difference between Tmax and the minimum route duration). The question is
solved by the following proposition, when the station capacity is 1.

Proposition 4.1. Two routes ω1 and ω2, refueling at the same AFS s with
capacity ηs = 1, are incompatible if and only if the following two conditions
simultaneously hold:

τ1 + ps − τ2 > σ2 (1)

τ2 + ps − τ1 > σ1 (2)
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where τ1 and τ2, are the earliest visit time of station s in the routes ω1 and
ω2, respectively, with τ1 ≤ τ2, and σ1, σ2 their maximum shifting.

Proof. (⇐) Suppose that the two inequalities are satisfied. From τ1 + ps −
τ2 > σ2 we deduce τ1 + ps > τ2 and therefore the earliest refueling starting
time of ω2 overlaps with the earliest refueling ending time of ω1. Moreover,
it is not possible to postpone the refueling starting time of ω2 when the
refueling of ω1 is finished since in this case ω2 should be postponed by
τ1+ps−τ2 that exceeds its maximum allowed shifting σ2 because of inequality
(1). On the other hand, if we postpone the refueling of ω1 starting it when
the refueling of ω2 is ended, then the shifting of ω1 would be τ2 + ps − τ1
violating its maximum allowed shifting σ1 due to inequality (2).

(⇒) Suppose that ω1 and ω2 are incompatible. If inequality (1) was not
satisfied then it would be possible to postpone the refueling starting time
of ω2 immediately after the refueling ending time of ω1 (given by τ1 + ps)
without exceeding its maximum allowed shifting since τ1 + ps − τ2 ≤ σ2. In
similar way, if inequality (2) was not satisfied then it would be possible to
postpone the refueling starting time of ω1 immediately after the refueling
ending time of ω2 (given by τ2 +ps) without exceeding its maximum allowed
shifting since τ2 + ps − τ1 ≤ σ1. Hence, both the conditions (1) and (2) are
necessary for the incompatibility.

According to Proposition 4.1, the compatibility of two routes sharing an
AFS with capacity 1 can be checked in polynomial time just verifying that
at least one between inequality (1) and (2) is violated. More in general, if
the routes are m, in order to establish if they are compatible or not, we
have to proceed as follows. First of all, we order the routes for increasing
earliest visit time of the shared station. If a route and the next one satisfy
the inequalities (1) and (2) then the two routes are incompatible and we
stop. Else if only one of the two inequalities is violated and the two routes
overlap while refueling then only one of the two routes, ω, can be postponed
in feasible way to avoid to overlap the other route while refueling. Then,
in this case, its refueling starting time τω and its shifting σω is updated, as
well as its position in the ordered list of the routes for increasing visit time
of the shared station. Else if both the inequalities (1) and (2) are violated
and the two routes overlap while refueling then the overlap can be avoided
in two feasible ways: either postponing the refueling starting time of the
first route or that one of the second route. If making one of the two choices
we arrive to an infeasibility (i.e. both (1) and (2) are satisfied), we have to
backtrack to check if, with the other choice, the infeasibility can be avoided.
If all the routes have been checked without detecting infeasibility, we stop
stating that the m routes are compatible.

We observe that Proposition 4.1 is also useful when a station has a
capacity greater than 1, e.g. 2, and the routes passing through this shared
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station are m > 2. Indeed, as soon as a pair of incompatible routes is found
(i.e., they satisfy (1) and (2)), then the two routes must necessarily refuel on
2 different pumps and then we must verify that none of the m−2 remaining
routes are incompatible simultaneously with both the route refueling at the
first pump and the one refueling at the second pump.

Hereafter, we call the procedure that allows checking if a given set of
m routes can be scheduled in such a way that the capacity of the shared
station is not violated Reschedule(r1, . . . , rm). Therefore, this procedure
returns false if the routes are incompatible, otherwise it adjusts the visit
time of the shared AFS in such a way that the AFVs do not overlap when
refueling in the shared AFS.

5. A Greedy Randomized Adaptive Search Procedure for the G-
VRP-CAFS

GRASP, introduced in Feo & Resende (1989), is a multi-start meta-
heuristic, and it has been widely applied to a large set of problems, includ-
ing facility location Ferone et al. (2017), scheduling González-Neira et al.
(2017), constrained shortest path Ferone et al. (2016), and vehicle routing
problems Nguyen et al. (2012); Haddadene et al. (2016). For an extensive
survey, the reader is referred to Festa & Resende (2002, 2009a,b).

Each GRASP iteration is characterized by two main phases: construc-
tion and local search. Starting with an empty solution, the construction
phase iteratively adds an element, one at a time, until a complete solution
is obtained. The elements that can be added to the solution make up the
Candidate List (CL). The elements are sorted according to some greedy
function, that measures the benefit of selecting each of them. Therefore, the
construction phase creates the Restricted Candidate List (RCL) selecting
the best elements of CL with respect to the greedy function. At the end,
an element is randomly selected from the RCL. The aim of the local search
is to improve the solution generated by the construction phase, returning a
locally optimal solution with respect to some neighborhood structure. The
pseudo-code of a generic GRASP for a minimization problem is reported in
Algorithm 1.

5.1. Construction phase

In our proposal, the construction phase iteratively adds a route at a time
until all customers are served or it is not possible to serve the remaining ones.
The pesudo-code of the construction phase is reported in Algorithm 2, where
⊕ denotes the concatenation operator.

At each iteration, a new route is initialized with the depot (line 4).
Therefore, the set of reachable locations is computed (line 6), and a location
is randomly selected and added to the route (lines 8–9). When the set of
reachable locations is empty, the route ends (lines 7 and 12). It is duly
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Algorithm 1: Pseudo-code of a generic GRASP.

Output: Best found solution sol∗.

1 sol∗ ← Nil;
2 cost(sol∗)← +∞;
3 while a stop criterion is not met do
4 Build a greedy randomized solution sol ;
5 sol← LocalSearch(sol) ;
6 if cost(sol) < cost(sol∗) then
7 sol∗ ← sol;

Algorithm 2: Pseudo-code of the construction phase.

Input: The set of not served customers UC;
Input: Non-symmetric distribution function D.
Output: Solution sol.

1 sol← ∅;
2 do
3 added← false;
4 r ← [0] ;
5 while true do
6 CL← getReachableLocations(UC, r) ;
7 if CL = ∅ then break ;
8 Randomly select i ∈ {1, . . . , |CL|} according to distribution

D ;
9 r ← r ⊕ [CLi] ;

10 UC ← UC \ {CLi};
11 added← true;

12 r ← r ⊕ [0] ;
13 if added then sol← sol ∪ {r};
14 while added;
15 Reschedule(sol)

11



to note that we used the biased-randomized selection proposed in Ferone
et al. (2019). Generally, the best elements of join the RCL and an element
is randomly selected among them with a uniform distribution. In this case,
we randomly select among all the elements according to a non-symmetric
distribution that is biased towards the most promising solution elements.

A crucial aspect of the construction phase is represented by the function
that returns the set of reachable locations, i.e., getReachableLocations.
Let dr and τr be the travel distance since the last refueling and the total
travel time of the partial route r, respectively. Moreover, let i the last node
of the partial route r, we define the following four sets.

• The set L1 of all the unserved customers that can be served returning
to the depot without violating the constraints on both the maximum
distance travelled without refueling Dmax and the maximum route
duration Tmax. Formally,

L1 =

{
c ∈ UC

∣∣∣∣ dr + dic + dc0 ≤ Dmax,
τr + tic + pc + tc0 ≤ Tmax.

}
• The set L2 of all the unserved customers that can be served coming

back to the depot after visiting a fueling station:

L2 =

{
c ∈ UC

∣∣∣∣ ∃s ∈ F :
dr + dic + dcs ≤ Dmax,
τr + tic + pc + tcs + ps + ts0 ≤ Tmax.

}
• The set L3 of fueling stations that can be used to serve a customer

respecting the constraints on both the maximum driving range and
the maximum route duration:

L3 =

 s ∈ F

∣∣∣∣∣∣ ∃c ∈ UC :
dr + dis ≤ Dmax,
dsc + dc0 ≤ Dmax,
τr + tis + ps + tsc + pc + tc0 ≤ Tmax.


• The set L4 of fueling stations that can be used to come back to the

depot:

L4 =

{
s ∈ F

∣∣∣∣ dr + dis ≤ Dmax,
τr + tis + ps + ts0 ≤ Tmax.

}
If the route r contains an AFS, the set of reachable locations L is equal
to L1. On the contrary, L is defined as L =

⋃4
i=1 Li. All the locations

l ∈ L are sorted in non-decreasing order with respect to the distance
dil, and the greedy criterion prefers the shortest ones.

Finally (line 14), the function Reschedule, introduced in Section 4, tries
to schedule the routes of the solution sol in such a way that they do no
overlap when refuel in the same AFS. If this is not possible, the overlap
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is the same avoided violating the maximum duration time Tmax of one of
the incompatible routes, choosing, for each pair of incompatible routes, the
route with the least violation of Tmax. The infeasibility on the duration time
is managed along the search procedure as explained in detail in Section 5.3.

5.2. Local search

Each GRASP iteration entails a local search as intensification phase.
Generally, given a neighborhood function N , this procedures looks for a
local optimum respect to N . Since during the years, several neighborhood
functions have been proposed for routing problems, we adapted some of
them to our problem.

In particular, as local search we used a Variable Neighborhood Descent
(VND) approach whose pseudo-code is reported in Algorithm 3. For each
h = 1, . . . , hmax, the h-th neighborhood of solution sol is explored obtaining
a solution sol′. If the cost of sol′ is lower than the current one, it replaces sol
and the procedure restarts from the first neighborhood structure, otherwise
it uses the next neighborhood structure.

The local search stops when all the neighborhoods have been explored
without improving the solution. Consequently, the final solution is a local
optimum with respect to all neighborhood functions.

Algorithm 3: Pseudo-code of the VND.

Input: Solution sol
Output: Improved solution sol

1 improved← 1 ;
2 while improved = 1 do
3 h← 1 ;
4 improved← 0 ;
5 while h ≤ hmax do
6 sol′ ← Nh(sol);
7 if cost(sol′) < cost(sol) then
8 sol← sol′;
9 improved← 1;

10 h← 1 ;

11 else
12 h← h+ 1;

13 return sol ;

In the next sections, we analyze the neighborhoods used in the local
search. The implemented VND explores the neighborhoods in the order
here presented.
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5.2.1. Change station

The Figure 1 depicts the first move used in the VND. It consists in
changing the used fuel stations. All the routes in the solution are examined,
and for each visited AFS s, the procedure checks if there exists another
station s′ that can be used to improve the solution quality. In this case, the
route is modified inserting s′ at the place of s.

0

· · ·

i

· · ·

j
s

s′

−→

0

· · ·

i

· · ·

j
s

s′

Figure 1: Change station move.

5.2.2. Destroy route

The second neighborhood structure consists in destroying a route and
inserting its customers in the remaining routes. For each customer, the best
insertion position in terms of solution quality is found. During the local
search, the move is applied for each route, and the best found solution is
selected.

5.2.3. 2-Opt

2-Opt is a classical neighborhood structure for routing problems, and
the main idea behind it is to take a route that crosses over itself and reorder
it so that it does not. An example is given in Figure 2. For each route, all
possible pairs of arcs are examined, and if there exists at least one improving
swapping, the best one is performed.

5.2.4. Remove AFS

The move consists in removing an AFS from a route, if it improves the
solution. Therefore, we iterate over all routes and check if it is possible to
obtain a better solution removing the stop at the station. The procedure
removes all the stops that can be skipped.

5.2.5. Relocate

The neighborhood relocates a customer. The final position can belong
either to the same starting route or to another one. The procedure scans all
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Figure 2: 2-Opt neighborhood.

the customers and checks if there exists at least another position to serve
the customer that improves the solution. All the positions are inspected,
and the best one is selected.

5.3. Infeasibility management

The construction phase (Section 5.1) can lead to an infeasible solution.
Indeed, Algorithm 2 does not check that the capacity constraints at AFSs
are satisfied, and the scheduling of the refuels can yield routes exceeding
Tmax.

Therefore, the local search aims to either improve the cost of a feasi-
ble solution or restore its feasibility. This second purpose is accomplished
through a penalty function φ(sol) that maps each solution in [0, 1], where
a feasible solution sol has φ(sol) = 0. When comparing two solutions, all
the local searches perform a lexicographic comparison on the pair penalty,
routing cost. As a consequence, each feasible solution is better than all
infeasible solutions.

Let m̂ the number of used AFVs (i.e., the number of routes of the solu-
tion), T̂ the maximum duration of the routes, and d̂ the maximum trav-
elled distance by a vehicle without refueling or before and after a pos-
sible refueling. We define m̄ = max{m̂,m}, T̄ = max{Tmax, T̂}, and
d̄ = max{d̂, Dmax}, the penalty function φ is computed as

φ(sol) =
1

3
· m̄−m
d1.25me −m

+
1

3
· T̄ − Tmax

1.5Tmax − Tmax
+

1

3
· d̄−Dmax

1.5Dmax −Dmax
(3)

It is duly to note that all the solutions where at least one among m̂, T̂ and
d̂ exceeds d1.25me, 1.5Tmax and 1.5Dmax respectively, are discarded.

6. Computational Results

6.1. Problem Instances and parameters setting

Four sets of instances have been experimented, as detailed in the follow-
ing. The first three sets have been introduced in Bruglieri et al. (2019b),
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whereas the last set has been introduced for the first time in this paper to
have a larger number of customers. In all the sets of instances, the average
speed v has been set equal to 40 miles per hour and for each AFS s, its
capacity ηs is assumed to be equal to 1.

• EMH Set: 10 instances from the 40 proposed by Erdoğan & Miller-
Hooks (2012), considered challenging from the capacity point of view.
They have been in fact selected if in the optimal solution of the G-VRP
there are at least two AFVs visiting the same AFS. The original values
of the parameters have been kept, i.e., Tmax = 11 hours, pstart = 0.25
hours, ps = 0.25 hours ∀s ∈ F , pi = 0.5 hours ∀i ∈ I, Q = 60
gallons and r = 0.2 gallons/miles (leading to Dmax = 300 miles). The
number of customers varies from 6 to 20, the number of AFSs from 3
to 10 and the number of AFVs from 3 to 8. As observed in Bruglieri
et al. (2019b), since both the depot and the AFSs are embedded in the
customers area, refuels may happen at very different times along the
routes or do not happen at all. For this reason, they can be considered
slightly challenging for the G-VRP-CAFS.

• TRIANGLE Set: it is composed of 10 instances with 15 customers, 3
AFSs and 10 vehicles. Also in this case, the original parameters setting
is kept, i.e., Tmax = 11, pstart = 0, ps = 0.5 ∀s ∈ F , pi = 0.75 ∀i ∈ I,
Q = 50 and r = 0.2 (leading to Dmax = 250). As observed in Bruglieri
et al. (2019b), these instances are characterized by the fact that the
stations lay in the middle between the depot and the customers. For
this reason, each AFV needs to refuel, either at the beginning or at
the end of its route leading to a more challenging scheduling problem.
Therefore, these instances can be considered medium challenging.

• CENTRAL set: it is composed of 10 instances with 15 customers, only
one AFS, at the center of the customers area, and 15 vehicles. Again,
we maintain the original parameters setting and therefore, Tmax = 7,
pstart = 0, ps = 0.5 ∀s ∈ F , pi = 0.5 ∀i ∈ I, Q = 32 and r = 0.2
(leading to Dmax = 160). These instances have the depot far from
the customers and the travel time from the depot to the station is 2
hours, leading to a very small time available for refuels. Therefore,
the station capacity may be a bottleneck and then, these instances are
extremely challenging.

• Large-sized CENTRAL set: it is composed of 10 instances with 25, 50
and 100 customers. All the parameters are set as in the CENTRAL
set. Also the layout is similar to that used in the CENTRAL set, i.e.,
the depot is far from the customers area and the travel time from the
depot to the AFS is 2 hours. Moreover, the customers are clustered in
clusters with at most 4 customers. These instances are generated with
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the following procedure. First of all, we compute the minimum number
m of vehicles needed to serve the customers considering the ceiling of
n divided by 4. We generate m random initial customers in a rectangle
with height and base equal to 20 and 60, respectively, centered at the
station. If n modulo 4 (i.e. the remainder of the division of n by
4) is 0, for each of the m initial customers we randomly generate 3
new customers so that they are no more far than a certain threshold
σ from the initial customer. Otherwise, for each of the first m − 1
initial customers we randomly generate 3 new customers so that they
are not more far than σ from the initial customer; for the m − th
initial customer we randomly generate (n modulo 4) -1 new customers
so that they are not more far than σ from the m − th customer. We
chose σ = 5 to guarantee that the total distance travelled to serve
the 4 customers associated with each route is lower than 20 miles, i.e.
can be covered within half an hour (since the speed is of 40 miles/h).
Indeed, this is the time that is left over considering Tmax = 7 hours, 4
hours are necessary to reach the customer area from the depot and to
go back to the depot, 2 hours are necessary to serve all the customers
(being pi = 0.5 ∀i ∈ I) and half an hour is necessary to refuel at the
AFS.

In what follows, we describe the tuning phase for the parameter related
to the construction of the initial solutions for the GRASP framework, that is
characterized by the parameter β of the Geometric Distribution that guides
Biased Randomization and belongs to the range [0, 1].

To determine its value, we construct a training set, by randomly select-
ing the 30% of the instances EMH, TRIANGLE and CENTRAL. Once the
set has been constructed, we performed an iterated racing procedure, imple-
mented in irace package López-Ibáñez et al. (2016), to automatically find
the best configuration of β. On the basis of the experiments carried out
by using the irace package, the best performance are obtained by setting
β = 0.23. Thus, this setting is used in the testing phase.

6.2. Results on benchmark instances

In this section, we compare the results found, on the first three sets
of benchmark instances, by the proposed GRASP with those of the CP-
Proactive, presented and showed to reach the best performances in Bruglieri
et al. (2019b).

The results are reported in Tables 2–4. Each table is organized as de-
scribed in the following. The first column reports the instance name whereas,
the second and the third column indicate, respectively, the Total Distance
(TD) and the total CPU Time (in seconds) of the CP-Proactive. The next
two columns report the Min Total Distance (Min TD), i.e., the total distance

17



obtained by the best solution found by the GRASP and the Avg Total Dis-
tance (Avg TD), i.e., the average total distance on all the five runs performed
by the GRASP. Finally, the last two columns indicate the Avg Time-to-best,
i.e., the average time within the GRASP method was suitable to find the
best solution and the percentage Gap between the average total distance
found by the GRASP method and the total distance of the CP-Proactive,
computed as in the following:

GAP (%) =
(AvgTD − TD)

TD
· 100 (4)

It is worth remarking that the total computational time given to the GRASP
on these instances was set equal to 1 minute.

Concerning the results comparison shown in Table 2, the Avg TD always
equals TD that means that all the solutions found by the GRASP on each
instances are always optimal. Indeed, only on one instance (i.e., S2 6i6s),
the Avg TD is slightly greater than TD (of about 4.82%). However, the best
solutions of the GRASP are found in an average CPU time that is by far
less than that of the CP-Proactive (of about 61.37%).

Moreover, the proposed approach closes to optimality all the Triangle
instances in an average CPU time that is again by far less than that required
by the CP-Proactive (of about 91.82%).

Finally, on the Central instances, our GRASP finds the same solution
of the CP-Proactive approach in the 60% of the cases, in an average CPU
time that is by far less than that required by the CP-Proactive (of about
98.63%). Indeed, the only instance for which the solution of the GRASP
has a significant percentage gap is Central4 that is also the case where the
CP-Proactive reaches the CPU time limit of 1 hour. This may be due to two
factors. Firstly, the instances of this set are extremely challenging concern-
ing the AFS capacity, as explained in their description. Secondly, Central4
is the instance that has both the maximum average distance customer–
depot, and the maximum average sum between distances customer–depot
and customer–AFS.

6.3. Results on large-sized instances

Regarding the large-sized instances, generated in this work, it was pro-
hibitive to solve them with the path-based approaches proposed in Bruglieri
et al. (2019b). Indeed, on the instances with 25 customers, almost 300 thou-
sands of pairs are generated on average, on the instances with 50 customers
more than 2 millions and on the instances with 100 customers even the phase
of generating all the feasible non-dominated paths failed since exceeding the
CPU time limit of 1 hour. Therefore, in the following, only the results found
by the proposed GRASP are presented. In this case, the total computational
time given to the GRASP is equal to 2 minutes.
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Table 2: Results on EMH instances

Instance
CP-Proactive GRASP

TD CPU Time Min TD Avg TD Avg Time-to-best GAP(%)

20c3sC5 2156.01 1.45 2156.01 2156.01 0.23 0.00
20c3sC6 2758.17 0.3 2758.17 2758.17 0.22 0.00
20c3sC7 1393.99 0.49 1393.99 1393.99 0.02 0.00
20c3sC8 3139.72 0.65 3139.72 3139.72 0.88 0.00
20c3sC10 2583.42 6.82 2583.42 2583.42 0.10 0.00
20c3sU1 1797.49 13.42 1797.49 1797.49 0.75 0.00
S2 2i6s 1633.1 65.58 1633.10 1633.10 3.46 0.00
S2 6i6s 2431.33 2.31 2431.33 2548.50 29.61 4.82
S2 8i6s 2158.35 0.81 2158.35 2158.35 0.18 0.00
S2 10i6s 1585.46 1.95 1585.46 1585.46 0.53 0.00

Average 2227.95 10.20 2227.95 2240.97 3.94 0.58

Table 3: Results on Triangle instances

Instance
CP-Proactive GRASP

TD CPU Time Min TD Avg TD Avg Time-to-best GAP(%)

Triangle1 1871.61 1.04 1871.61 1871.61 1.63 0.00
Triangle2 2191.73 4.09 2191.73 2191.73 0.52 0.00
Triangle3 1872.12 4.56 1872.12 1872.12 0.59 0.00
Triangle4 1869.07 4.52 1869.07 1869.07 0.05 0.00
Triangle5 1852.73 11.02 1852.73 1852.73 0.19 0.00
Triangle6 1865.49 5.25 1865.49 1865.49 0.33 0.00
Triangle7 1898.00 3.10 1898.00 1898.00 1.11 0.00
Triangle8 2197.49 13.76 2197.49 2197.49 0.20 0.00
Triangle9 1862.50 6.30 1862.50 1862.50 0.07 0.00
Triangle10 1864.73 5.04 1864.73 1864.73 0.07 0.00

Average 1934.55 5.87 1934.55 1934.55 0.48 0.00

Table 4: Results on Central instances

Instance
CP-Proactive GRASP

TD CPU Time Min TD Avg TD Avg Time-to-best GAP(%)

Central1 953.94 130.61 953.94 953.94 44.72 0.00
Central2 948.69 441.91 959.88 959.88 10.19 1.18
Central3 943.12 3600.00 958.94 959.37 15.78 1.72
Central4 967.96 3600.00 1099.24 1110.27 23.59 14.70
Central5 714.55 2.98 714.55 714.55 0.05 0.00
Central6 844.43 1348.23 844.43 844.43 0.17 0.00
Central7 862.68 148.07 862.68 862.68 22.11 0.00
Central8 712.83 4.60 712.83 712.83 0.33 0.00
Central9 855.43 22.10 855.43 855.43 0.11 0.00
Central10 901.19 453.02 905.59 906.29 16.23 0.57

Average 870.48 975.15 886.75 887.97 13.33 2.01
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In particular, each of the next three tables (Tables 5–7) reports, for
each instance, on all the solutions found, the Minimum Travel Distance
(MinTD), the Average Total Distance (AvgTD), the Average Time-to-best
(in seconds) and finally, the average number of AFVs used and of refuelings
required.

On the instances with 25 customers, the solutions found by the GRASP
differ from the best ones of about 0.19%, on average. The average number
of EVs used is equal to 6.30, each of them refueling once except in one case
(instance Central25 9 where there is one EV not refueling).

On the instances with 50 customers, the solutions found are far from the
best ones on average of about 0.87% using 12.94 EVs, each of them refueling
at most once.

Finally, on the instances with 100 customers,the solutions found are far
from the best ones on average of about 0.53% using about 25 EVs, each of
them refueling almost always once.

Table 5: Results on Central instances with 25 customers

Instance
GRASP

Min TD Avg TD Avg Time-to-best AFVs used Refuelings

Central25 1 1129.85 1135.88 73.56 6.00 6.00
Central25 2 1113.97 1115.14 70.92 6.00 6.00
Central25 3 1321.82 1323.10 62.62 7.00 7.00
Central25 4 1122.73 1123.73 80.97 6.00 6.00
Central25 5 1110.36 1116.28 87.55 6.00 6.00
Central25 6 1090.04 1090.39 44.18 6.00 6.00
Central25 7 1105.04 1106.89 37.15 6.00 6.00
Central25 8 1141.23 1144.17 47.77 6.00 6.00
Central25 9 1281.57 1281.98 42.65 7.00 6.80
Central25 10 1311.67 1313.26 82.07 7.00 7.00

Average 1172.83 1175.08 62.94 6.30 6.28

On all the tested instances we verified the effectiveness of the different
moves considering the average percentage improvement provided by each
kind of move. The most effective move is the Destroy route with an aver-
age improvement of 3.74%. The second more effective move is the Relocate
move with an average improvement of 0.30%, followed by the 2 − Opt and
RemoveAFS moves with an average improvement of 0.25% and 0.11%, re-
spectively.

7. Conclusions and Future Work

In this paper, we proposed a Greedy Randomized Adaptive Search Pro-
cedure (GRASP) for the Green Vehicle Routing Problem with Capacitated

20



Table 6: Results on Central instances with 50 customers

Instance
GRASP

Min TD Avg TD Avg Time-to-best AFVs used Refuelings

Central50 1 2520.33 2533.43 78.06 13.00 13.00
Central50 2 2435.78 2448.75 71.69 13.00 12.80
Central50 3 2425.64 2447.54 58.90 13.00 13.00
Central50 4 2271.14 2330.86 71.00 12.40 12.00
Central50 5 2467.29 2482.22 61.25 13.00 13.00
Central50 6 2422.87 2457.04 62.84 13.00 12.60
Central50 7 2405.19 2435.18 73.27 13.00 12.00
Central50 8 2487.32 2487.32 44.37 13.00 13.00
Central50 9 2450.04 2458.80 49.76 13.00 13.00
Central50 10 2473.63 2489.88 73.41 13.00 13.00

Average 2435.92 2457.10 64.46 12.94 12.74

Table 7: Results on Central instances with 100 customers

Instance
GRASP

Min TD Avg TD Avg Time-to-best AFVs used Refuelings

Central100 1 4966.03 5000.79 82.23 26.00 26.00
Central100 2 4730.11 4746.06 90.05 25.00 24.67
Central100 3 4757.50 4782.34 87.17 25.00 25.00
Central100 4 4697.35 4726.88 80.93 25.00 25.00
Central100 5 4732.49 4753.31 120.93 25.00 25.00
Central100 6 4524.44 4603.63 91.32 24.40 24.40
Central100 7 4786.57 4790.82 57.06 25.00 25.00
Central100 8 4784.18 4808.73 40.25 25.00 25.00
Central100 9 4795.70 4795.70 66.51 25.00 25.00
Central100 10 4686.57 4705.79 63.06 25.00 25.00

Average 4746.09 4771.40 77.95 25.04 25.01
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Alternative Fuel Stations (G-VRP-CAFS). The G-VRP-CAFS aims at rout-
ing a fleet of Alternative Fuel Vehicles (AFVs), each one starting and ending
in a common depot, serving a set of customers at the minimum total dis-
tance, within a maximum duration. Along the routes, each AFV is allowed
to refuel at the Alternative Fuel Stations (AFSs) supposed to have a limited
number of fueling pumps. This implies that only a certain number of AFVs
can simultaneously refuel at the same station. The G-VRP-CAFS was in-
troduced in Bruglieri et al. (2019b) and solved through an exact approach
on a set of benchmark instances with up to 20 customers.

The aim of this work was to design a metaheuristic based on the GRASP
framework in order to efficiently address also large-sized instances of the
G-VRP-CAFS with even 100 customers. Some theoretical results on the
compatibility among routes were also detected in order to properly guide
the GRASP. Moreover, along the local search, possible violations on the
route duration were allowed and properly faced through a penalty objective
function in order to better explore the neighborhoods.

Computational results were carried out on both the sets of benchmark
instances taken from Bruglieri et al. (2019b) and a set of large-sized instances
specifically introduced in this paper. In particular, the results obtained by
the GRASP on the benchmark instances were compared with those found
by the CP-Proactive proposed and shown to reach the best performances
in Bruglieri et al. (2019b). The proposed GRASP was suitable to close to
optimality about 83% of the instances with an average time-to-best (the time
required by the GRASP to obtain the best solution among those generated)
that is by far less (about 98%) than the total computational time required
by the CP-Proactive. Finally, the GRASP was shown to efficiently address
also the large-sized instances in an average time-to-best equal to about 1
minute.

Future works may concern the extension of the proposed procedure to
similar problems, such as, the VRP with Intermediate Facilities and the
Electric VRP where, unlike the G-VRP, the refueling time is not constant
but depends on the vehicle state of charge.
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T. (2016). The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3 , 43–58. doi:10.1016/
j.orp.2016.09.002.

25

http://dx.doi.org/10.1016/j.simpat.2017.09.001
http://dx.doi.org/10.1016/j.eswa.2016.09.002
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1016/j.orp.2016.09.002


Lu, J., Chen, Y., Hao, J.-K., & He, R. (2020). The time-dependent elec-
tric vehicle routing problem: Model and solution. Expert Systems with
Applications, (p. 113593).

Madankumar, S., & Rajendran, C. (2018). Mathematical models for green
vehicle routing problems with pickup and delivery: A case of semiconduc-
tor supply chain. Computers & Operations Research, 89 , 183–192.

Moghdani, R., Salimifard, K., Demir, E., & Benyettou, A. (2020). The
green vehicle routing problem: a systematic literature review. Journal of
Cleaner Production, (p. 123691).
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