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Abstract

5G RAN slicing is an essential tool to support the simultaneous coexistence of enhanced mobile broadband (eMBB)
and ultra-reliable low-latency communications (URLLC) network slices on a shared mixed-numerology physical layer.
Moreover, due to recent advance of the private network paradigm, RAN slicing assumes a central role to provide dedicated
radio coverage to industry 4.0 applications as a standalone RAN. Unlike the stochastic traffic behavior characterizing
URLLC slices in classical mobile networks, industrial networks support URLLC services with deterministic and periodic
traffic patterns. Based on this alternative network characterization, we design a deep reinforcement learning (DRL)
agent that simultaneously provides a spectrum allocation fulfilling the eMBB and URLLC service requirements and
mitigates the inter-numerology interference (INI). Furthermore, by exploiting the information about the deterministic
traffic patterns, we specialize the agent reward function to improve the spectrum allocation effectiveness for URLLC
slices deployed in industrial environments. We assess the agent performance with respect to resource allocation schemes
that are INI agnostic. Results reveal that the proposed solution outperforms the benchmark schemes in terms of
service provisioning performance in both network scenarios (e.g. mobile and industrial) and showcase the benefit of INI
mitigation.
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1. Introduction

5G radio access networks (RAN) support under a uni-
fied radio interface a plethora of different user applications
that are characterized by heterogeneous service require-
ments. In detail, 5G applications can be matched into
three main categories named as enhanced Mobile Broad-
band (eMBB), Ultra Reliable Low Latency Communica-
tions (URLLC), and Massive Machine Type Communica-
tion (mMTC) services. Each group is characterized by
different values of data rate, latency and reliability.

In this work, we focus our analysis on eMBB services,
which provide a high data rate communication, and on
URLLC services, that ensure a real-time communication
to applications requiring low communication delay. Lever-
aging the flexibility provided by RAN slicing, eMBB and
URLLC services are multiplexed as logical networks on
the same physical RAN infrastructure. The advantage of
this architecture makes it possible to independently cus-
tomize each logical network, also refereed as network slice,
according to the specific service level requirements (SLA)
of eMBB and URLLC users [1].

The performance analysis of coexisting eMBB and URLLC
slices has been normally pursued under the typical network
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scenario of mobile networks. Specifically, eMBB services
such as high-definition video streaming and augmented re-
ality applications are characterized by a continuous trans-
mission of data packets that are required to sustain the re-
lated throughput specifications. Conversely, URLLC ser-
vices such as mission critical applications and vehicular-
to-vehicular communications are characterized by a bursty
transmission of a variable number of small-sized packets.
However, the recent focus on 5G private networks for in-
dustry 4.0 applications has introduced an alternative net-
work scenario which is disjoint from the classical mobile
network one [2]. As a matter of fact, private networks
are deployed to offer dedicated radio coverage to the pro-
duction activities in industrial environments like factories
and warehouse. The advantage of this business model,
which makes it possible to separate mobile users from in-
dustrial users into physically different RANs, increases the
flexibility capabilities of network slicing since the latter
can be employed to tailor the network performance exclu-
sively based on industrial applications [3]. Example of such
services are robots remote control, machine coordination
monitoring and automated vehicle driving.

The 3GPP standardization body has recently profiled
the service communication requirements in the automa-
tion domain and has analyzed an effective integration of
their functionalities within the 5G RAN. The main fea-
ture differentiating these applications from the URLLC
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Figure 1: Examples of deterministic packet arrival rate and stochas-
tic packet arrival rate in different time windows.

services deployed in classical mobile network is the statis-
tics of the generated data traffic. In detail, a large per-
centage of URLLC industrial applications are character-
ized by deterministic and periodic traffic patterns [4]. In
Fig. 1, we schematically depict this concept and we com-
pare it to a stochastic packet arrival rate. The periodic
nature of the industrial traffic derives from the operations
performed by the various devices, involved in the produc-
tion line, that require stringent communication delay as
well as a constant bit-rate in order to enable their remote
control and/or activity monitoring [5]. In this regard,
the 5G Alliance for Connected Industries and Automation
(5G-ACIA), which is a consortium investigating the em-
ployment of 5G technologies to support the industrial pro-
duction pipeline, has defined practical industrial use-case
scenarios that require such traffic type in order guarantee
the production activity reliability [6]. Consequently, given
this unprecedented usage of RANs for industrial applica-
tions, it is important to design communications algorithms
specifically suited for industrial environments to fully ben-
efit from the 5G technology.

Regardless of the considered RAN deployment scenario,
the low latency requirements of time-sensitive applications
are efficiently addressed by mixed-numerologies access schemes.
Unlike the conventional orthogonal frequency division mul-
tiplexing (OFDM) scheme that employs a homogeneous
subcarrier spacing for each symbol (in other words, OFDM
can be considered as a single-numerology scheme), a mixed-
numerology scheme supports a variable subcarrier spacing
within the same transmission symbol, where each subcar-
rier spacing value denotes a different numerology [7]. On
one hand, the benefit provided by such flexible transmis-
sion frame structure allows to tailor the subcarrier spacing
according to the application requirements. For example,
the tight delay requirements of URLLC users are effec-
tively satisfied by a wider subcarrier spacing which reduces
the packet transmissions time, whereas a lower subcarrier
spacing is suited to support a high data rate under differ-
ent propagation scenarios.

Following the observation about the multiplexing of
eMBB and URLLC services in different network scenar-
ios as well as the necessity of INI mitigation techniques,
we address the problem of the design of an INI-aware slice
spectrum allocation policy for URLLC and eMBB network

slices. Moreover, differently from our previous work in
this topic [8], we extend the proposed solution for URLLC
slices deployed in industrial networks that we character-
ize according to the deterministic traffic model previously
introduced. We solve the considered problem leveraging
deep reinforcement learning (DRL). The benefit derived
by employing this resolution scheme is twofold. First, the
generalization capabilities of this scheme allow to automat-
ically infer the relationship between INI and the related
wireless channel fading fluctuations of each user. Such in-
formation can be exploited to boost the system data rate
thanks to a smarter slice spectrum allocation that limits
the INI. Second, the deterministic nature of the periodic
traffic patterns in industrial URLLC slices makes the net-
work behavior more predictable, which benefits the agent
learning effectiveness. The main contributions of this work
are as follows:

• We define an integer non-convex optimization prob-
lem that maximizes the cumulative throughput of
the eMBB and URLLC users subject to the related
SLA requirements, where the INI power dynamic is
analytically embedded within the objective function
formulation.

• Due to the prohibitive computational complexity de-
rived from the combinatorial nature of the consid-
ered allocation problem, we employ deep reinforce-
ment learning to design a multi-branch agent, based
on Branching Dueling Q-networks (BDQ), which al-
lows an efficient environment exploration. The de-
signed agent provides an INI-aware spectrum alloca-
tion policy that approximates the original problem
formulation.

• We improve the agent reward function design in or-
der to boost the URLLC slice performance when de-
ployed in industrial scenarios. This alternative for-
mulation allows the agent to compute a more effec-
tive spectrum allocation by exploiting the determin-
istic traffic information that would not be available
in the mobile network scenario.

• We compare the agent performance against differ-
ent resource allocation algorithms that do not ac-
count for the INI. Moreover, we also analyze the re-
sults provided by the agent when the URLLC traffic
statistic is modelled according to mobile and indus-
trial networks.

The remainder of the paper is structured as follows.
We discuss the related work in Section 2. We describe the
system model in Section 3. We formalize the optimization
problem as well as the agent environment formulation in
Section 4. We present the multi-branch agent architecture
in Section 5. We analyze the performance in Section 6.
Finally, the conclusion is drawn in Section 7.
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2. Related Work

Most of the research activity has proposed spectrum
allocation algorithms to fulfil the service requirements of
eMBB and URLLC slices. Similarly, many works have de-
signed signal processing techniques for the INI minimiza-
tion. In our opinion, a joint analysis of the mutual impact
of these two problems has received a limited attention.
Similarly, the majority of the research has focused on RAN
slicing schemes that do not consider the traffic characteris-
tics of industrial scenarios. According to this observation,
we review the RAN slicing solutions in the context mo-
bile network and industrial networks. A general overview
of the main challenges related to the coexistence eMBB
and URLLC services can be found in [9]. Similarly, the
fundamental concepts of inter-numerology interference are
introduced in [10].

2.1. RAN slicing in mobile networks

The authors of [11] formulate a sum-rate maximization
problem that enforces latency and minimum data rate con-
straints on a OFDMA physical layer with the incorpora-
tion of adaptive modulation and coding schemes. The au-
thors of [12] present a mini-slot based resource allocation
scheme to augment the URLLC service reliability while
also ensuring a certain degree of fairness among eMBB
users. Differently from [11] [12], we extend the eMBB
and URLLC multiplexing analysis for a mixed-numerology
access scheme. The authors of [13] design a DRL agent
to allocate spectrum resource with a flexible numerology
structure in order to accommodate URLLC and eMBB
users. The authors of [14] propose a preemption punctur-
ing scheme based on DRL that minimizes the performance
degradation of eMBB users when punctured by URLLC
traffic. Compared to the previous works, [13] and [14] pro-
pose solutions that consider different numerologies for the
URLLC and eMBB services. However, the INI impact on
the performance of the presented schemes is not covered.
Conversely, we analytically consider the INI dynamic to
increase the SLA accommodation reliability by designing
an INI-aware agent based DRL. The authors of [15] pro-
pose an INI-aware mixed-numerology resource allocation
scheme that analytically accounts for the INI in order to
maximize the user data rate. However, they only consider
the INI generated by higher numerologies over the lower
ones. Moreover, their approach does not differentiate be-
tween eMBB and URLLC services. Instead, we consider
the INI generated by each numerology in order to better
model the performance degradation affecting eMBB and
URLLC users.

2.2. RAN slicing in industrial networks

The authors of [16] propose an allocation scheme of the
radio resources to support deterministic traffic required
by different time sensitive applications. The authors of
[17] design a spectrum reservation scheme for industrial
URLLC slices that preemptively allocates the resource based

on the a-priori knowledge of the number of incoming pack-
ets. Authors of [18] propose a novel latency descriptor
that identifies the number of transmission slots to reserve
in order to satisfy the latency requirements of industrial
applications. Authors of [19] design a fading correlation-
aware resource allocation scheme to boost the reliability
of time-critical applications in industry 4.0 scenarios. Dif-
ferently from these works that employ optimization based
solutions, we showcase the performance gain provided by
a spectrum allocation scheme based on DRL when a the
URLLC slice is characterized by a deterministic traffic pat-
tern.

3. System model

We consider a RAN that provides radio coverage to a
set Ue of eMBB users, and a set Ul of URLLC users. Let
U = Ue ∪ Ul be the set of all the users. We character-
ize a mobile network scenario with a continuous transmis-
sion of data packets (e.g. full-buffer model) for the eMBB
slice and with of a bursty transmission of small packets
modelled as Poisson arrival process for the URLLC slice.
Differently, we characterize an industrial network scenario
by replacing the stochastic traffic behavior of the URLLC
slice with a periodic and deterministic packet arrival rate.
In other words, the number of incoming packets is fixed
and it is scheduled in known transmission intervals. Note
that this traffic type has been supported by 3GPP with the
introduction of the Time-Sensitive Communication Assis-
tance Information (TSCAI) [20]. The latter is a network
descriptor that contains the details about the packet size,
number of arrived packets and related transmission pe-
riodicity and it can be employed by the RAN scheduler
to optimize the resource allocation for the URLLC users.
Following this observation, we assume that TSCAI is avail-
able when we consider the spectrum policy design for the
industrial network scenario.

The physical layer employs a mixed-numerology access
scheme where each slice is multiplexed with a different
numerology dictating a fixed subcarrier spacing. Following
the 3GPP specification for NR, the available numerologies
are ∆fi = 15 · 2i kHz, i ∈ {0, .., 4} [21]. In our model, we

assume that ∆f
(URLLC)
i ≥ ∆f

(eMBB)
i due to the fact that

higher numerology values are better suited to support a
low latency communication.

The available spectrum is composed byK non-overlapping
bandwidth parts (BWP) of bandwidth W , which are ac-
cessed by the eMBB and URLLC users. A BWP is defined
as a fixed number of contiguous resource blocks (RB), each
one identifying a time transmission interval (TTI) of 1-
ms duration and a frequency range of 12 subcarriers with
subcarrier spacing depending on the numerology type [22].
The network owner (NO), which manages the physical net-
work infrastructure resources, assigns a suitable number of
BWPs to the users of each slice in order to accommodate
the related SLA requirements. A scheme of the considered
RAN architecture is shown in Fig. 2.
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Figure 2: RAN slicing architecture for eMBB and URLLC services
with mixed-numerologies. Based on the multiplexed service, each
BWP is defined by a different numerology.

Every BWP is modelled as a flat-fading channel whose
gain can be perfectly retrieved by the NO (in other words,
we assume perfect channel state information (CSI)). In de-
tail, such information is reported by the various users that
estimate the subchannel gain in every BWP. Analytically,
we compute the subchannel gain power of the generic user
u at time slot t over the k-th BWP as gut,k = hu

t,kα
u
t , where

hu
t,k is an exponential random variable with unit mean

that models the small-scale fading, whereas αu
t expresses

the channel attenuation derived from the large-scale fading
consisting of path loss and shadowing.

Due to the loss of the orthogonality between subbands
of different numerologies, the simultaneous allocation of
eMBB and URLLC users over contiguous spectrum regions
generates INI. The INI power dynamic can be analytically
modelled relying on the expression proposed by authors of
[23]. The latter provides the INI power value when two
subbands of different numerologies are contiguously allo-
cated. We generalize this result to compute the INI power
for multiple mixed-numerologies subbands based on the
BWP structure previously introduced. Practically, we can
compute the INI power affecting each BWP by progres-
sively summing each single contribution of the remaining
BWPs. In detail, let k and k′ be two different BWP, user u
(either belonging to eMBB or URLLC slices) is allocated
to BWP k using a numerology with subcarrier spacing
∆fi. Assume that another user is allocated to BWP k′

and employs a numerology with subcarrier spacing ∆fi′ ,
then the INI power affecting user u over BWP k during

time slot t can be approximated as, if ∆fi < ∆fi′ ,

Iut (k, k
′) ≈Pt,k′

Nk′

Nk∑
z=1

Nk′∑
v=1

gut,k′

Nk′Nk

[∣∣∣∣∣ sin[
π
Nk

w(z, v)ξN
(T )
k′ ]

sin( π
Nk

w(z, v))

∣∣∣∣∣
2

+ ξ

∣∣∣∣∣ sin[
π
Nk

w(z, v)N
(T )
k′ ]

sin[ π
Nk

w(z, v)]

∣∣∣∣∣
2]

, (1)

otherwise, if ∆fi > ∆fi′ , as

Iut (k, k
′) ≈ Pt,k′

Nk′

Nk∑
z=1

Nk′∑
v=1

gut,k′

Nk′Nk

∣∣∣∣∣ sin[
π

Nk′
w(z, v)Nk]

sin[ π
Nk′

w(z, v)]

∣∣∣∣∣
2

(2)

where Nk = W/∆fi corresponds to the number of subcar-
riers of BWP k, Pt,k′ is the allocated transmission power,

N
(T )
k = Nk +NCP

k denotes the total number of subcarri-
ers considering also the number of subcarriers employed
as cyclic-prefix NCP

k , ξ = ⌊Nk/N
T
k′⌋ is the number of

OFMD symbols of the wider numerology that are trans-
mitted within the time transmission window of one OFDM
symbol of the smaller numerology, and w(z, v) is the spec-
tral distance between subcarriers of different numerologies
and it is computed as the total number of subcarriers sep-
arating subcarrier z from subcarrier v. From (1) and (2),
we observe that both a wider numerology gap and sub-
channel power gap increase the resulting INI power over
the surrounding BWPs.

We define the allocator indicator function xu
t,k that as-

sumes value 1 when BWP k is assigned to user u at time
slot t or value 0, otherwise. Consequently, we compute the
data rate rut,k achieved by user u in time slot t on BWP k
as

rut,k = W · log2(1 + γu
t,k(x

u
t,k)), (3)

where γu
t,k(x

u
t,k) is the signal-to-interference-noise ratio (SINR)

and it is computed as

γu
t,k(x

u
t,k) =

Pt,kg
u
t,k

σ2
w +

∑
k′ ̸=k

xu
t,k′Iut (k, k

′)
, (4)

with σ2
w indicating the white Gaussian noise power. From

(3), we can observe that data rate of the URLLC and
eMBB users are mutually affected by the INI power gen-
erated by the related BWP multiplexing.

4. Problem Formulation

The INI mitigation improves the service provisioning
performance by ensuring a higher user data rate (in other
words, it enforces the inter-slice isolation). This goal can
be achieved by a suitable multiplexing of the spectrum re-
source. Following this observation, we define an optimiza-
tion problem that accounts for the INI and it maximizes
the cumulative throughput of eMBB and URLLC users.
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4.1. Optimal INI-aware resource allocation

We consider a spectrum allocation over T time slots.
During such time window, we indicate as re the minimum
per-user data rate requirements of the eMBB slice. Sim-
ilarly, URLLC SLA requirements are fulfilled when the
packets of each user are delivered within T time slots. We
indicate the number of pending packets in each user buffer
as bu and the bit packet size as L. Based on these SLA
definitions, we formulate the optimization problem as

max
x

U∑
u=1

T∑
t=1

K∑
k=1

xu
t,kr

u
t,k (5)

subject to

T∑
t=1

K∑
k=1

xu
t,kr

u
t,k ≥ re ∀u ∈ Ue (6)

T∑
t=1

K∑
k=1

xu
t,kr

u
t,k ≥

but · L
T

∀u ∈ Ul (7)

U∑
u=1

xu
t,k ≤ 1 ∀t ∈ T, ∀k ∈ K (8)

xu
t,k ∈ {0, 1} ≤ 1 ∀t ∈ T, ∀k ∈ K,∀u ∈ U. (9)

The objective function (5) maximizes the cumulative
data rate achieved by both the eMBB and URLLC within
the considered time windows. Note that the data rate
formulation embeds the INI expression so its maximiza-
tion indirectly mitigates the INI effect. Constraints (6)
and (7) implement the data rate and latency requirements
for the eMBB and URLLC service, respectively. Finally,
constraints (8) and (9) enforce the solution feasibility by
ensuring that BWPs are uniquely allocated to a single user
only and that the allocation indicator function can assume
binary values only, respectively.

The non-convexity of the objective function (5), which
can be considered as a difference of convex functions, makes
the proposed optimization problem NP-hard [24]. More-
over, the computational complexity is further exacerbated
by the combinatorial nature of the considered allocation
problem that has an integer optimization variable. Con-
sequently, it is not practical to compute a BWP allo-
cation employing classical optimization-based resolution
schemes due to the strict latency requirements needed at
the physical layer. Moreover, the proposed problem re-
quires the a-priori knowledge of both the subchannel gains
of each user and the number of incoming URLLC packets
over the T time steps. Note that the latter requirement
can be removed under the deterministic traffic assump-
tion since the packet arrival rate is provided by the TC-
SAI descriptor. Nonetheless, generally, the solution com-
putation also involves a channel and/or traffic prediction
scheme, which is not feasible in most real-world scenarios.
To overcome these challenges, we propose an alternative

resolution scheme, based on deep reinforcement learning,
that relies on a model-free formulation of the considered
problem to compute a suitable spectrum allocation policy.
In other words, our goal is to design a DRL agent that
can approximate the solution of (5). In the next section,
we describe the agent environment as a Markov Decision
Process (MDP) that is employed to learn the allocation
policy.

4.2. Agent environment design

Reinforcement learning (RL) makes it possible to com-
pute the optimal policy for problems formulated as MPDs
without any prior knowledge on its exact mathematical
model [25]. Formally, an MDP is described as the 4-tuple

{S,A,R(s, a), p(s′|s, a)},

where S indicates the set of states, A expresses the set
of actions, R(s, a) is a reward function that depends on
both the current visited state s and the selected action a,
and the transition probability distribution p(s′|s, a). The
latter models the probability to transition toward state s′

in time-slot t+1 when selecting action a in state s during
time slot t. Unlike classical dynamic programming algo-
rithms, RL schemes are able to compute the optimal policy
defined as π : S → A without the knowledge of p(s′|s, a).
Instead, throughout an iterative trial and error process,
they learn the optimal policy that maximizes the cumu-
lative discounted reward obtainable from the environment
over a fixed time horizon. Following the MPD definition,
we describe the state space, the action space and the re-
ward functions (one for the mobile network scenario and
one for industrial scenario) as follows.

State space. The state space is composed by the net-
work parameters that allow the agent to assess the effec-
tiveness of BWP allocation in terms of SLA accommo-
dation. Specifically, we denote the buffer status of the
URLLC users at time t as bl

t = {but } with u ∈ Ul. We
update the number of queued packets as

but+1 = max((but − rut,k/L), 0) + lut (10)

where lut denotes the number of packets arrived in time slot
t for user u. Note that in the industrial network scenario,
we assume that lut = Z if t = 1 and lut = 0 if 2 ≤ t ≤ T
(in other words, the packets arrival rate is of Z packets
every T time steps). With regard to the eMBB slice, we
track the number of bits transmitted to each eMBB user
up to time slot t, i.e. ret = {r̂ut }, with u ∈ Ue. We formalize
the state space as

St = {bl
t, r

e
t , g

u
t,k, r

u
t−1,k}. (11)

The subchannel gain coefficients gut,k of each BWP are up-
dated according to the CSI reporting periodicity which
dictates the frequency of the BWP quality estimation per-
formed by the users. We remark that the CSI reporting
granularity does not affect the training performance as gut,k
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is used by the agent to infer the system capacity in the con-
sidered transmission slot and to accommodate the users
service requirements accordingly. Instead, the correlation
between CSI values across consecutive time steps can im-
pact the agent learning efficiency. Specifically, the obser-
vation of correlated subchannel gains can be exploited by
the agent to predict the service performance in future time
steps and thus to provide more effective BWP allocations.

In addition to the aforementioned network parameters,
we also include the per-user data rate achieved in the pre-
vious time-slot, rut−1,k. This information is beneficial for
two main reasons: i) the data rate expression (3) already
accounts for the INI power, thus the explicit usage of the
complex formulations (1) and (2) is unnecessary ii) the
agent can better correlate the impact of the subchannel
gain on the INI power affecting the user data rate by ob-
serving the related performance in the previous time step.

Action space. The action space is composed by every
possible BWP allocation. We formally define an action
as a vector at of K elements where each coordinate ak
indicates the index of the user scheduled for the k-th BWP
in time slot t. Specifically, eMBB users are identified by
ak ∈ [1, ..., Ue], whereas the URLLC users are identified by
ak ∈ [Ue + 1, .., Ue + Ul]. Analytically, each action can be
written as

at = {a1, ..., aK}. (12)

To simplify the notation, we neglect the index t from each
coordinate ak since the time step information is already
included in the general action expression at. The agent
learning efficiency can be negatively impacted by the ac-
tion space dimension, that is equal to UK , since it slows
the environment exploration. We address this issue by de-
signing a simple metric that allows to discard unfeasible
actions. We are going to discuss this approach in the next
section.

Reward function. We design the reward function by
leveraging (5)-(9). The idea is to characterize the same
optimization goal of such formulation using an alternative
expression that can be employed by the agent to learn a
suitable spectrum policy. In particular, we propose two
reward functions, one for the mobile network case and one
for the industrial network case.

Mobile network scenario. Due to the stochastic nature
of the URLLC data rate that denies a reliable prediction
of future incoming packets, we express the reward func-
tion following this design choice. One one hand, the agent
should maximize the data rate of both slices in each time
slot t. One the other hand, it should satisfy the minimum
service requirements of each slice as soon as possible in or-
der to anticipate unexpected burst of URLLC packets that
can affect the overall service quality. We formally define
the reward as

Rt =
∑
u∈U

∑
k∈K

rut −
∑
u∈U

p(u), (13)

where

pt(u) =


ce if u ∈ Ue ∧ r̂ut > 0

cl if u ∈ Ul ∧ but > 0

0 otherwise

(14)

where ce, cl ≥ 0 allows to differentiate the penalty given
to unsatisfied eMBB and URLLC users, respectively. The
value difference between the two penalties allows to find a
trade-off between meeting the requirements of the URLLC
or eMBB users, hence the optimal values for ce and cl
should be tuned for the considered configuration scenario
as well as the environment propagation characteristics. We
remark that it is important to ensure a comparable mag-
nitude between such parameters to prevent the agent from
starving of one service or the other.

The first term in (13) is equal to the aggregate data
rate of URLLC and eMBB users computed according to
(5) using the BWP allocation expressed by the selected
action at. The second term, p(u), enforces constraints
(6)-(7) in the form of a penalty function that lowers the
reward value when the SLA requirements of user u are not
satisfied in the current time slot. Consequently, this term
encourages the agent to compute a BWP allocation that
fulfills the minimum SLA requirements in few time steps
within the considered time window T .

Industrial network scenario. The deterministic struc-
ture of the traffic in the URLLC slice ensures the a-priori
knowledge of the packet arrival rate periodicity. As a mat-
ter of fact, the traffic can be perfectly predicted thanks to
the TSCAI availability. Relying on this information, we
can design a more flexible reward function. A shortcom-
ing of the reward function (13) is that it implicitly assumes
that the optimal BWP allocation (i.e. the solution of (5)-
(9)) is the one that satisfies the minimum service require-
ments within a limited number of time slots due to the
unpredictable behavior of both the wireless channel and
the traffic statistics as mentioned earlier. This strategy
could lead to a suboptimal allocation. When considering
the industrial network scenario, we can overcome this lim-
itation by designing the reward function as

Rt =
∑
u∈U

∑
k∈K

rut −
∑
u∈U

p̂(u). (15)

where, if t < T ,
p̂(u) = 0,

otherwise

p̂t(u) =

{
0 if

∑
u∈U r̂uT = 0 ∧

∑
u∈U buT = 0∑

t∈T

∑
k∈K rut otherwise.

(16)

As similarly proposed in previous the case, the first term of
(15) provides a reward that is proportional to the system
throughput. However, instead of penalizing the agent at
each time step, the agent obtains a negative reward (16),
which is equal to the total accumulated throughput, only
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in the last time step T when constraints (6)-(7) are not
satisfied. Such penalty erases any throughput gains ob-
tained by the agent within the considered time window,
thus leading to a net reward equals to zero.

This reward design approach allows the agent to au-
tonomously decide within how many time steps to fulfil
the service requirements since it is not affected by inter-
mediate penalties. This feature increases the allocation
flexibility thanks to a wider BWP allocation pool. For ex-
ample, for a given a wireless channel configuration, (15)
allows to approximate those optimal solutions character-
ized by the transmission of URLLC packets in the last
time step. This strategy is possible due to the fact that
no additional URLLC packets are expected to arrive until
the subsequent time window, hence the agent can delay
their transmission without incurring into the risk of facing
burst of packets between different time steps.

5. Multi-branch Agent overview

We leverage the multi-branch architecture of Branch-
ing Dueling Q-Networks (BDQ) to design the agent [26].
Unlike deep Q-networks (DQN), this architecture supports
discrete multi-dimensional action spaces and can be con-
sidered as an extension of DQN. The latter is hindered
by large action spaces which make the agent exploration
inefficient. In detail, DQN computes the optimal policy,
π∗, by selecting the action maximizing the estimated Q-
function value, Q(s, a), that provides an approximation of
expected obtainable reward when state s is observed, i.e.

π∗ = argmax
a∈A

Q(s, a). (17)

Storing each Q-function action-state pair is unpractical in
most scenarios, hence a deep neural network (DNN) of
weights θ is employed to simultaneously output the as-
sociated Q-function values Q(s, a) for every action a ∈ A
when the input state is s. This strategy leverages the DNN
generalization capabilities to efficiently encode the state
space. However, due to the fact that every action has to
be uniquely specified as a single output neuron, the esti-
mation of the Q-function value for each action-state pair
becomes unreliable when the number of actions is large,
thus leading to poor learning performance. In our prob-
lem, this would require the enumeration of the UK BWP
allocations.

5.1. BDQ general structure

In order to overcome the large action space issue, we
first provide an intuitive idea of the basic concept of multi-
branch agent as follows. We re-formulate the original al-
location problem in the form of smaller allocation sub-
problems whose solution can be easily computed. Then,
each single solution is merged together in order to retrieve
the global BWP allocation. Practically, the agent DNN is
composed by K branches (i.e. one branch for each BWP),

where each branch is in charge of scheduling the U users in
that specific BWP. In other words, every network branch
can be viewed as a sub-agent having action space ak. The
global BWP allocation at is obtained by simply concate-
nating the different sub-actions ak. We remark that the
global BWP allocation performance affects the scheduling
policies of various branches as to incentivize their coop-
eration in maximizing the reward function objective. In
this regard, BDQ employs a state-value estimator that is
shared between branches as well as a multi-branch dueling
layer. Their purpose is to promote the branches coop-
eration and to increase the agent exploration efficiency,
respectively.

Shared state-value estimator. This terms is im-
plemented as an additional agent branch and provides the
estimation of the state value function, V (s). The latter
approximates the obtainable reward that the agent can
achieve when the environment state is s, i.e.

V (s) =
∑
a∈A

π(a|s)Q(s, a). (18)

As mentioned earlier, by sharing (18) across the different
network branches, it is possible to enforce their coordina-
tion due to the fact that the agent can better correlate the
impact of the per-branch action on the global reward.

Multi-branch dueling layer. To enhance the agent
generalization capability during the training phase, the
agent exploits the concept Dueling Networks [27]. In de-
tails, this network layer speeds up the agent convergence
by computing the Q-function in each branch as a com-
bination of the shared state-value function V (s) and the
per-branch advantage function Ak(s, ak). Formally, the
Q-function is computed as

Qk(s, ak) = V (s) +
[
Ak(s, ak)−

1

U

U∑
a′
k=1

Ak(s, a
′
k)
]
. (19)

The advantage function quantifies the benefit of taking
action ak from branch k in terms of expected reward im-
provement when the agent observes state s. The resulting
effect of such alternative Q-function computation increases
the agent capability to discriminate between useful actions
and inefficient actions providing similar rewards.

5.2. Action masking module

We improve the training performance by including an
action masking scheme that allows the agent to discard
those actions that do not increase the accumulated reward
(from the agent perspective, such actions are considered
as unfeasible).

Since the URLLC traffic model do not assume a full-
buffer behavior, the buffer queues of the related users can
have zero pending packets in some time steps. Conse-
quently, such URLLC users do not provide any reward
due the fact that their potential data rate is zero. How-
ever, during the training phase, this external information
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Figure 3: Multi-branch DNN agent architecture. Each branch al-
locates the k-th BWP to one of the U users according to related
Q-function value Qk(s, ak). The action mask module adds a nega-
tive bias to the estimated Qk(s, ak) whenever the allocated URLLC
user has an empty buffer.

is not available to the agent that has to gradually infer it
by correlating a low reward with the allocation of spectrum
resources to empty-buffer URLLC users. Such inefficient
learning behavior slows the convergence to the optimal
policy. To overcome this issue, we artificially lower the Q-
function value of empty-buffer URLLC users in order to
avoid their selection, i.e.

Q̃k(s, ak) = Qk(s, ak)− q(but ) ∀u ∈ Ul,∀k ∈ K (20)

where

q(but ) =

{
Q if but = 0

0 otherwise.
(21)

By choosing a sufficiently high value of Q, the agent dis-
cards any empty-buffer URLLC user from the BWP allo-
cation computation since the associated Q-function value
provides the lowest expected reward in each branch. We
schematically depict the general architecture of the de-
scribed multi-branch agent in Fig. 3.

5.3. Training phase

The objective of the training phase is the computation
of the DNN weights θ that ensure the best approximation
of the Q-function. The training is performed on episodes
composed by T time steps, where each episode is initialized
with a random user distribution over the base station cov-
erage area. In general, it is reasonable to assume a low user
mobility in industrial environments since devices operate
in limited space regions. Similarly, the same assumption
holds for the majority of users in mobile networks. Ac-
cording to these observations, the large-scale fading com-
ponents (i.e. path loss and shadowing) can be treated
as constants for the whole episode duration since the lat-
ter is defined by a tight time window of few milliseconds.
Moreover, the resulting slow-fading behavior of the chan-
nel allows to safely neglect the CSI report delay since the
channel quality estimate can be considered valid for a time
window that is longer than the episode length. By eval-
uating different user distributions for each new episode,

the agent can generalize the BWP allocation for different
propagation scenarios. Indeed, from the agent perspec-
tive, every user displacement that provides a substantial
modification of the large-scale fading values can be consid-
ered as a new episode having that specific user distribu-
tion. Since the computation of a suitable parametrization
of DNN weights is computationally demanding, such pro-
cedure is performed offline. Differently, the testing phase
supports the online deployment of the trained agent due to
the fact that the BWP allocation is efficiently computed by
simply feeding the environment status on the agent DNN
and selecting the output neurons based on (17). However,
we remark that the computational complexity required to
compute each action should satisfy the system scheduling
periodicity. In particular, to provide an intuitive evalu-
ation of this requirement, the DNN implementation on
a real system should be able to compute the allocation
within the transmission window defined by the highest-
order numerology service as the latter is characterized by
the most stringent transmission interval (in our scenario,
the URLLC numerology dictates the BWP computation
deadline).

The optimal policy is computed throughout a process
that involves environment exploration and exploitation. In
this regard, the agent employs an ϵ−greedy policy for the
exploration that, with probability ϵ, makes the action se-
lection from each branch as random. More precisely, at
is built by randomly selecting ak from each branch while
excluding empty-buffer URLLC users. Otherwise, with
probability 1− ϵ, the agent chooses the action that maxi-
mizes the aggregate per-branch Q-function value according
to the state observation, i.e.

at = (argmax
a1∈U

Q̃1(s, a1), ..., argmax
aK∈U

Q̃K(s, aK)). (22)

The experience tuple (st,at, Rt, st+1), that is sampled from
the environment, is stored in the replay buffer, which records
the most recent N experience tuples. At each time step
t, the agent samples a mini-batch of D experience tuples
from the replay buffer. The mini-batch is used to update θ
across the different branches by minimizing the loss func-
tion L(θ) defined as

L(θ) = Ei∈D

[
1

K

K∑
k=1

(yi −Qk(s, ak))
2

]
. (23)

In (23), yi is the target Q-value computed by means of
temporal-difference updates across the different branches
as

yi = R(st,at) +
δ

K

∑
k∈K

Q′
k(st+1, argmax

a′
k∈U

Qk(st+1, a
′
k)),

(24)
where δ is the discount factor. Note that Q′

k(·) refers to
the Q-function value approximated by a second DNN of
weights θ′ that are updated every few episodes as θ′ = θ
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and it is used to stabilize the Q-function computation con-
vergence. The mini-batch sampling is performed accord-
ing to the Prioritized Experience Replay procedure, intro-
duced by the authors of [28], that has been adapted for
BDQ. Unlike the uniform sampling procedure tradition-
ally employed in the original experience replay algorithm,
this scheme selects with higher probability the experience
tuples with a relative high value of (23) (in other words,
these are the tuples whose Q-function value is poorly ap-
proximated by the DNN). Moreover, we highlight that the
agent computes Q-function values according to Qk(s, ak)
instead of the biased version generated by the action mask-
ing scheme Q̃k(s, ak). The latter is actually transparent
with respect to the Q-function computation procedure,
hence the policy convergence is still achieved relying on
the original update scheme.

6. Results

6.1. Simulation setup

Both the agent as well as the network environment have
been implemented using MATLAB. We select the network
parametrization following two guidelines. On one hand, we
ensure a challenging environment configuration in term of
action and state space dimension complexity that allows to
showcase the benefit of the proposed multi-branch agent
architecture in computing an effective solution. On the
other hand, we tune the radio parameters as well as the
service requirements in order to make sure that the system
capacity is fully loaded.

As a network scenario, we considered a base station
serving users located at a random distance d. The RAN
spectrum is divided into 6 BWPs, which are allocated over
T = 4 time slots (i.e. 4 ms), which is the maximum delay
requirement for NR RAN [29], and provides connectivity
to Ue = 4 eMBB users and Ul = 4 users. As a result,
this configuration produces an action space composed by
86 = 262144 possible BWP allocations which is an un-
feasible number for a classical DQN agent as the latter
needs to explore every action multiple times in order to
estimate the associated expected reward. Differently, the
employed multi-branch architecture can rapidly generalize
among actions providing similar rewards, thus reducing
the exploration overhead.

The eMBB slice employs a numerology of 15 kHz, whereas
the URLLC slice can employ either the 15-kHz or the 60-
kHz numerology. By changing the URLLC numerology
configuration, we can better assess the benefits of INI mit-
igation when evaluating the agent performance with re-
spect to a interference-free single-numerology access scheme
(both slices have 15-kHz numerology) and with respect to
a mixed-numerology access scheme.

We model the mobile network scenario by generating
the URLLC traffic statistic according to a Poisson arrival
process with arrival rate of 6 packets per TTI and a packet
length of 100 bytes. Differently, for the industrial network

Table 1: RAN parameters

Transmission power 30 dBm
RAN spectrum 10 MHz
Number of BWPs 6
Coverage radius 250 m
Total number of users 8
eMBB numerology 15 kHz
URLLC numerology 15, 60 kHz
Fading statistic Rayleigh
Doppler shift 35 Hz
Fading update 1 ms
Path loss model [30] 36.7 log10 d+ 33.05 (dB)
Shadowing std. deviation 4 dB
Noise PSD −174 dBm/Hz

Table 2: Agent parameters

DNN layers 1024/512/128K
Learning rate 10−4

Discount factor 0.99
Prioritized sampling α0 = 1, β0 = 1
Experience-replay buffer size 105

Mini-batch size 32

scenario case, we assume that 24 packets of 100-byte length
are generated with a periodicity of 4 ms within the first
time step of the time window T . In both scenarios, we set
the eMBB user data rate requirement as re = 1.25 Mbit/s.
Finally, we assume that the BS transmission power is uni-
formly allocated among the available BWPs. We summa-
rize the RAN parameters in Table 1.

The DNN agent is made of a total of 3 fully connected
hidden layers. In detail, the shared network part that
is common to all the branches and it is composed by 2
hidden layers having 1024 and 512 neurons each, whereas
each network branch has 1 hidden layer having 256 neu-
rons. The input layer size corresponds to the state space
dimension St, which is equal to U(K + 2). Similarly, the
output layer size corresponds to the action space dimen-
sion at, which is equal to K · U (i.e. U output neurons
per network branch). Every hidden neuron uses the Rec-
tifier Linear Unit (ReLU) function, f(x) = max(0, x), as
activator function.

The DNN weights are updated using stochastic gradi-
ent descent. Specifically, we trained the agent with mini-
batches of D = 32 samples using the Adam optimizer [31]
with learning rate α = 10−4 and parameters β1 = 0.9,
β2 = 0.999. The agent explores the environment with
probability ϵ = 1 that is gradually decremented after each
episode following the update rule ϵ← max{0.1, 0.99ϵ}. We
summarize the agent parameters in Table 2.

We analyze the agent performance in terms of SLA sat-
isfaction and aggregated user throughput and we compare
it to two resource allocation algorithms, namely Round
Robin (RR) and Weighted Max Rate (WMR). The former
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is a simple scheme that ensures the highest user fairness
as the resources are evenly shared by the users. The lat-
ter is a more advanced scheme that ensures throughput
optimality in multi-queues systems [32].

Round Robin (RR): it equally allocates the BWPs
so that each user has access to a portion of the radio re-
sources for the same amount of time regardless of the wire-
less channel status. To ensure a more meaningful compari-
son with the agent, we heuristically reduce the INI impact
by contiguously allocating BWPs of the same numerology.

Weighted Max Rate (WMR): it assigns every BWP
by weighting the achievable data rate of each user with
respect to its buffer size. Note that the achievable data
rate is estimated from the subchannel gain gut,k without
accounting for the INI since the latter is generated once
the BWP has been already computed. Formally, for each
BWP k, the scheduled user is selected according to

argmax
u

rut,k ·
b̃u∑
u′ b̃u′

, (25)

where b̃u = r̂ut if u ∈ Ue or b̃u = but if u ∈ Ul.
Although the aforementioned resource allocation met-

rics are used in many practical systems, we acknowledge
that a comparison with the schemes discussed in the re-
lated work section could provide more insight about the
performance of our approach. However, a direct com-
parison to these works is not feasible due to the lack of
support of the mixed-numerology resource grid structure.
Nonetheless, it is worth noting that the authors of [14]
propose an URLLC and eMBB multiplexing scheme lever-
aging the NR frame flexibility, which can be configured
in mini-slots of heterogeneous duration. This structure
shares some similarities with the mixed-numerology struc-
ture considered in this paper. Therefore, we simulated
our agent with URLLC traffic load conditions similar to
[14] and calculated the resulting system spectral efficiency
under a variable URLLC traffic. In both schemes, the
increase of URLLC data rate lowers the cell spectral effi-
ciency, as the granularity of the allocated time-frequency
blocks cannot be perfectly tailored to the frequent arrival
rate of small-size URLLC packets. In other words, the
URLLC service is not able to exploit the available spec-
trum as efficiently as the eMBB slice which is characterized
by a higher and more consistent data rate. The scheme in
[14] shows a smooth spectral efficiency degradation since
it minimizes the time-slot duration of the URLLC service
in order to mitigate the negative impact over the eMBB
slice. Differently, our scheme shows a stepwise spectral
efficiency degradation as the URLLC traffic load is grad-
ually increased. This behavior is due to the fact that
mixed-numerology schemes are constrained by the tem-
poral alignment between different numerology BWPs in
order to maintain the symbol synchronization thanks to a
fixed TTI duration. Consequently, the allocated spectrum
is used less efficiently by the URLLC service compared to
the mini-slot approach of [14] in the presence of a sporadic
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Figure 4: Normalized agent reward obtained using the rewards (15)
and (13) with ce = 10 and cl = 10 when eMBB and URLLC nu-
merology is 15 kHz and 60 kHz, respectively.

URLLC packet arrival rate. However, when the URLLC
traffic assumes higher volumes, our agent is able to better
exploit the multi-user diversity to boost the system capac-
ity while mitigating the INI and thus limiting the spectral
efficiency degradation.

6.2. Training performance

In Fig. 4, we compare the agent learning performance
between the two considered network scenarios by showing
the achieved normalized reward. We can observe that the
agent converges within a smaller number of episodes when
employed for the mobile network scenario. This behavior
is explained by taking into account that the reward de-
signed for the industrial scenario does not prioritize the
service provisioning satisfaction at each time step unlike
the reward designed for the mobile network scenario. Con-
sequently, the agent requires more episodes to find the op-
timal policy as there are many BWP allocations, ensuring
the latency requirement fulfilment, that schedule the in-
dustrial URLLC users at different time steps.

6.3. Agent performance in mobile network scenario

We tested the trained agent by simulating the BWP
scheduling for a duration of 1 s, corresponding to 250 4-ms
episodes. Note that we discarded URLLC packets exceed-
ing the delay constraint. For every simulation, a new user
distribution is randomly generated and is kept fixed for
its whole duration. We initially discuss the agent perfor-
mance in the mobile network scenario, hence we employ
(13) as reward function during the training phase.

In Fig. 5, we plot the CDF of the per-user data rate for
the eMBB slice when the URLLC slice employs a numerol-
ogy of 15 kHz and 60 kHz, respectively. We can observe
that the INI significantly degrades the SLA fulfilment per-
formance of both the RR and WMR schedulers. In partic-
ular, the RR scheme is the most affected as it is channel-
unaware. Conversely, the agent shows a more limited per-
formance degradation and guarantees the lowest violation
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Figure 5: Data rate CDF of the eMBB users. The minimum data
requirement is re = 1.25 Mbps.
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Figure 6: Latency CDF of the URLLC users. The maximum latency
is T = 4 ms.

probability (i.e. the probability that an eMBB user has a
data rate lower than re) for the mixed-numerology case.
This behavior exemplifies the agent capability to corre-
late the INI dynamic with the different subchannel gains
of each user in order to boost data rate. This motiva-
tion also indirectly explains the lower agent performance
in the single-numerology case when compared to the RR
scheduler. In detail, the INI level generated by the BWP
allocation is exploited by the agent to identify those sub-
channel gains configurations providing a favorable interfer-
ence mitigation to the related users in a given time step.
In other words, the deterministic effect of the BWP allo-
cation on the INI generation helps the agent to reduce the
purely stochastic nature of the channel, which changes in-
dependently of the computed action, and thus to improve
its generalization capability. For this reason, when the INI
effect is not present as in the single-numerology case, the
agent struggles to efficiently discriminate the best BWP
allocation that can simultaneously satisfy the minimum
data rate requirement and, at the same time, that can
maximize the aggregate throughput.

In Fig. 6, as similarly done for the eMBB slice, we
plot the per-user latency performance of the URLLC ser-
vice achieved by the single-numerology and the mixed-
numerology cases. Differently from eMBB slice, the INI
impact is much more limited as it is shown by the sim-
ilar latency distributions for all schemes, where the RR
scheduler is the most affected as it cannot counteract the
INI effect with a suitable BWP allocation that maximizes
the throughput as the WMR metric. In general, this re-
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Figure 7: Average cumulative data rate of eMBB and URLLC slices.

sult is explained by the asymmetric INI behavior that af-
fects more heavily the numerologies with a small subcar-
rier spacing compared to the ones with a wider spacing.
Nonetheless, the agent guarantees an average user latency
that is lower than the other schemes since the INI mitiga-
tion together with the prioritized transmission of URLLC
packets boosts the network capability in delivering the
data traffic within the latency deadline.

In Fig. 7 we show the total network data rate computed
as the aggregate performance of the two slices. We note
that the Agent approach ensures a modest throughput loss
when the mixed-numerology case is considered. Moreover,
unlike the performance loss suffered by the other schemes,
which heavily degraded the service reliability in terms of
the minimum data rate and average latency, the agent en-
sures a performance comparable to the single-numerology
case as previously discussed. In other words, in order to
mitigate the unavoidable performance loss due to the INI,
the proposed agent achieves a lower throughput in favor
of a BWP allocation that limits the degradation of the
service quality.

6.4. Agent performance in industrial network scenario

We now discuss the performance obtained by the agent
trained with the reward function (15). To better highlight
the agent performance in the industrial network scenario
that allows the agent to exploit the additional knowledge
about the URLLC traffic statistics, we compare the service
reliability of both slices to the mobile network scenario
case. In details, we compare the two scenarios by showing
the slice reliability as a function of α = cl/ce, which ex-
presses the magnitude of the penalty obtained when the
requirements of the URLLC slice are not met, versus the
penalty obtained when the requirements of the eMBB slice
are not met in the mobile network scenario. Specifically,
high values of α indicate that the agent prioritizes the
URLLC service fulfilment.

In Fig. 8, we report the results for the single-numerology
case. With regard to the eMBB slice, we plot the proba-
bility of providing a data rate higher than re, whereas for
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Figure 8: eMBB and URLLC slice reliability obtained with reward
(15) and (13) in the single-numerology case.

URLLC slice, we plot the probability of transmitting the
packets within the time deadline T . As expected, by in-
creasing the value of α, the URLLC reliability increases at
the expense of the eMBB reliability. However, there is no
value of α that simultaneously provides for both slices a
reliability score that is higher than the scores obtained by
the agent employed in the industrial scenario. As a mat-
ter of fact, even when considering the configuration with
α = 1, which ensures a balanced trade-off between the two
services, the deterministic traffic patterns of the URLLC
slice in the industrial scenario allow the agent to increase
the related slice reliability without hindering the eMBB
slice performance.

In Fig. 9 we show the results for the mixed-numerology
case. We note that the industrial network scenario does
not suffer from a performance loss due to INI, differently
from the mobile scenario. Similarly, the eMBB service re-
liability degradation is limited. Such performance gain de-
rives from the fact that the URLLC packet arrival is sched-
uled for a fixed time slot with known periodicity, hence the
agent can explore multiple BWP allocations that mitigate
the INI while ensuring that the packet is delivered within
the latency deadline. This behavior is ensured by the re-
ward (15), which is designed to provide a non-zero reward
as long as the SLA requirements are met by the end of
episode.

7. Conclusion

We proposed a DRL agent to compute a slice spectrum
allocation policy for eMBB and URLLC network slices.
We considered a mixed-numerology access scheme at the
physical layer. The proposed solution analytically consid-
ers the impact of the inter-numerology interference on the
user performance and it maximizes the system throughput
subject to the eMBB and URLLC service requirements.
Moreover, we differentiated the agent reward functions in
order to effectively accommodate the stochastic nature of
URLLC traffic, which is typical in mobile networks, as well
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Figure 9: eMBB and URLLC slice reliability obtained with reward
(15) and (13) in the mixed-numerology case.

as the deterministic nature of URLLC traffic, which is typ-
ical in industrial networks. We compared the agent per-
formance to two INI-unaware benchmark schemes based
on different metrics. Results showed that the proposed
DRL solution provides a higher service reliability thanks
to the INI mitigation. Moreover, the deterministic feature
of the URLLC traffic allows the agent to further enhance
the service provisioning performance when compared to
stochastic traffic.
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