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Abstract—Regular Expressions (REs) are a computational kernel widely used for finding patterns in data in compute-intensive tasks
such as genomic markers research, signature-based detection, and database query. Although flexible on the set of searched REs,
software-based solutions cannot fulfill latency or throughput requirements to analyze massive data volumes at a given power budget.
For this reason, many approaches exploit hardware accelerators as an offloading engine for REs matching. Indeed, various solutions
rely on FPGA reconfigurability to embed automata into the reconfigurable fabric. However, this approach leads to time-consuming
updates of the REs to search. This work exploits REs as sequences of basic instructions and builds a Domain-Specific Architecture
(DSA), called TiReX, for RE matching on FPGAs. Our approach enables the user to change the desired RE at run-time, providing
software programmability, flexibility, and specialized hardware mechanisms. Our DSA delivers performance in line with other
state-of-the-art hardware approaches, while providing remarkable flexibility and we underline the importance of energy efficiency for
these computations. We compared with multiple state-of-the-art software obtaining remarkable performance while achieving noticeable
results with a better energy efficiency that ranges from 3x to 490 x with our multi-core.
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1 INTRODUCTION

EGULAR EXPRESSIONS (REs) are widely used in several

fields, from genome analysis [1] to text analytics [2] and
Intrusion Detection Systems (IDSs) [3] for fast and efficient
pattern matching tasks [4], [5]. The requirements of these
applications and the high amounts of data to analyze make
the performance of RE matching solutions crucial, keeping
fostering research on this problem. For example, IDSs may
require near-real-time analysis of packets at the network
rate, thus requiring specialized hardware solutions [3], [6].
At the same time, the growth of fields such as “Person-
alized Medicine” [7], [8] highly relies on REs to identify
genomic patterns in data [9] and requires fast analysis
abilities to push forward research. Many researchers address
these challenges by efficiently representing the automata
that accept the language defined by the RE [10], [11],
[12]. In contrast, others exploit specialized hardware (e.g.,
ASICs or FPGAs [2], [13]) to build effective domain-specific
solutions [14]. Indeed, reconfigurable devices demonstrate
computing and energy efficiency advantages over general-
purpose processors [15], as well as higher adaptability than
ASICs. For this reason, several methodologies embed au-
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tomata into the reconfigurable fabric of an FPGA. In this
way, they leverage the reconfigurability to change the RE(s)
to find [2], [5], [16], [17], [18].

Generally, the reconfiguration time of an FPGA is in the
order of milliseconds to seconds, while generating a new bit-
stream requires from one to several hours, making real-time
adaptation unfeasible [18]. Thus, the reconfigurable fabric
embedding requires a database of ready-to-use bitstreams
or bitstream regeneration if the pattern is new. On the one
hand, sacrificing the run-time adaptability with automaton
embedding achieves remarkable performance [11]. On the
other hand, having this flexibility could lead to sub-optimal
performance [19]. However, easily changing the searching
pattern is an essential feature in many application fields [18],
where wasting a few microseconds could lead to unsustain-
able performance degradation [20]. IDS on datacenters [21],
malware detection [22], genome markers search [1], and
database queries [23] are all application scenarios that re-
quire to update their patterns, or REs continuously, to keep
pace with the newest advancements, otherwise, they would
result in incomplete computations.

This work proposes a software-programmable Domain-
Specific Architecture (DSA) for reconfigurable systems tai-
lored to the REs domain. Our DSA, called TiReX [24],
overcomes the reconfigurability embedding issue exploiting
the idea of using REs as a programming language for our
custom Instruction Set Architecture (ISA) [24], [25], [26].
This domain narrowing leads to an optimized architecture
for multi-character analysis easily adaptable at run-time to
the REs to analyze. We devised a multi-core architecture
that operates in a multi-pattern single-stream of data or
single-pattern multi-stream of data using software control.
Moreover, our DSA is easily deployable on different FPGA-
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based platforms depending on the target workload, e.g.,
embedded or high-performance. The domain specialization
of TiReX pushes towards the energy efficiency required to
address current computing challenges [14], [27]. In sum-
mary, the main contributions are:

e The design of a multi-core DSA for RE matching. We
evaluated it on various platforms showing remark-
able performance against software solutions with the
same adaptability while reaching performance in line
with related hardware solutions;

e Two architectural models tailored for latency- and
throughput- driven scenarios and their evaluation on
state-of-the-art benchmarks, showing the remarkable
energy efficiency achieved.

The rest of the article discusses the background and the
motivations for REs matching (Section 2) and related work
(Section 3). Then we describe our approach (Section 4) and
system architecture models (Section 5). We evaluate our
approach architectural parameters, multi-core scaling area,
and run-time results (Section 6), and finally, we draw the
conclusion of this work (Section 7).

2 BACKGROUND AND MOTIVATIONS

REs are a declarative way of describing sets of character
strings used to define Regular Languages [28], with meta-
characters for specifying operations. Table 1 presents min-
imum symbols for RE algebra, some of the most used RE
operators in all the typical application scenarios (e.g., text-
editors search functionality, software libraries for REs, web
search engines). There are advanced operators on top of
these symbols, which are nowadays involved in pattern
matching but not related to Regular Languages, such as
backreference. In this work, we focus on classical REs.
Finite Automaton (FA) is a descriptive way of defining
a finite state machine that accepts a particular RE or a class
of REs that belong to Regular Languages. FA splits in Deter-
ministic FA (DFA) or Non-deterministic FA (NFA) based on
the possibility of being in one or more states simultaneously,
i.e., deterministic vs. non-deterministic execution model.
Though the NFA’s execution model relies on a breadth-first-
like approach and provides the best theoretical performance,
it is equivalent to a DFA, which usually adopts a depth-first-
like approach, on the class of acceptable languages [28].
REs and Automata are general execution engines for
a wide variety of applications ranging from simple text
searching to random forest execution [1]. Among these
application fields, REs find room in computer security sce-
narios, for example, in Signature Based Detection techniques
for malware detection, such as Firewall filtering and IDSs;
here, tools like YARA [22] attempt to identify and classify
malware samples via REs. Additionally, these fields require
low-latency and high-throughput security countermeasures
without sacrificing usability. Previous IDS solutions employ
specialized hardware [3] to sustain the increasing network-
ing rate and remove the CPU burden, often renouncing the
fundamental ability to run-time change the patterns without
synthesizing a new design or using more flexible alterna-
tives like GPUs [6]. A completely different field regards the
adoption of REs in Bioinformatics to find common patterns

TABLE 1: Some meta-characters for Regular Expressions.

Meta-Character Description

xy concatenation of x and y, same as writing x&y
x|y alternation of x or y
0 priority encoding
x" repetition of zero or more x
x* repetition of one or more x

x{nm} repetition of x from n times to m times

. any alphanumeric character
[x —y] character ranging from x to y

among genomic sequences for various goals, ranging from
classification of proteins or generic genome sequences [9]
to the study of diseases and their treatment. In these appli-
cations, the shared DNA patterns, called genetic markers,
are involved in the identification of various types of health
issues (like genetic diseases [7] or cancer treatment [8]),
which are heavily based on pattern matching techniques,
where the analysis of genomic data facilitates the discov-
ery of the best treatment for the patient. Although initial
studies showed promising results, further developments
of matching solutions for healthcare- and genomic-related
scenarios are fundamental to scale to real-world applica-
tions. In addition to bioinformatics, REs find room also in
the relational databases field, showing their importance on
large applications [23] due to the amount of data to process.
Indeed, different database-focused research approaches ex-
ploit new in-memory architectures combined with heteroge-
neous architectures [23] showing promising results in terms
of throughput, usage of memory bandwidth, and run-time
hardware flexibility, meaning cost reduction of the acceler-
ated operations. All these applications can benefit from a
pattern-matching engine with a good ratio of performance-
per-watt, tailored to the target deployment environment,
and that can keep up with the fast evolution of new patterns
and an easy run-time adaptation [18].

3 RELATED WORK

Previous researches explore either the algorithm part of RE
matching [4] or the efficiency of the execution platform [13].
The RE matching procedure usually executes through an
approach based on DFA or NFA and on their state transition
table. While DFA suffers from the exponential memory
footprint explosion [10], [11], NFA requires high band-
width to execute in parallel all possible active states [29].
Other solutions mix DFA-NFA characteristics to achieve the
best complexity from time and space requirements [30].
An example CPU-based engine is Intel Hyperscan [31],
which overcomes main deep-packet inspection limitations
with a novel regex decomposition mechanism and a CPU
SIMD pattern matching for multi-string divided in a shift-
or part and a verification of the false-positive part, at the
cost of high preprocessing mechanisms. The state-of-the-
art hardware execution engines are traditionally divided
into fixed architecture per automaton, or pattern(s) (e.g.,
[11]), and reconfigurable architectures. We call the former
category Streaming-Dataflow Architectures (SDAs), given
their adoption of streaming/dataflow patterns for their
fixed architecture. The latter category further divides In
Memory-based Architectures (IMAs) based on state lookup
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(e.g., [13]), or Software-Programmable Architectures (SPAs)
(e.g., [25]). Both the IMAs and SPAs share the ability to
change the pattern to be found without regenerating the
underlying hardware architecture. This Section gives an
overview of these approaches and presents some state-
of-the-art techniques applied in pattern matching engines,
focusing on FPGAs.

DFA-based hardware approaches, though they achieve
better time complexity, generally suffer the memory foot-
print explosion for state transition table representation [18].
For this reason, many approaches focus on compression
techniques such as states and transition clustering [11].
BFSM [10] encodes state transitions as rules, and groups
similar transitions into a rule, achieving a very short and
predictable memory lookup latency on an IBM Power Edge
of Network. Differently, Gogte et al. [2] implement a solu-
tion in ASIC, based on the Aho-Corasick algorithm, over-
coming its high memory requirements by splitting each
input character in single bits. Tang et al. [32] propose a
flexible real-time update FSM and optimized DFA encod-
ing scheme sacrificing the performance. Moreover, DFA’s
original execution scheme is limited to single-character anal-
ysis. Hence, to tackle this issue, PIDFA [12] parallelizes
character processing with a first computation of all the
possible input character transitions, which is then merged
in a pipelined fashion. Meiners et al. [3] propose a solution
based on Ternary Content Addressable Memory (TCAM),
which encodes the transitions of the DFA to improve the
lookup process. Another body of work leverages hardware
parallelism to increase the number of REs concurrently
analyzed. Vasiliadis et al. [6] leverage the characteristics of
GPUs to match multiple REs in parallel, encoding each RE
as a separate DFA. Other solutions embed in the FPGA logic
many REs for Network-IDS [33].

NFA-based hardware approaches start with Sidhu et
al. [5], that were the first to implement an NFA embedded
in the FPGA logic, showing a flexible self-reconfigurable
device, paving the way to further solutions directly synthe-
sizing NFA [34] or exploiting dynamic reconfiguration [35].
Trying to overcome the run-time adaptability of approaches
based on the fabric embedding, different solutions ex-
ploit either a partially reconfigurable solution based on a
multi-character NFA [36], or a fully flexible structure with
some patterns expression limitations [37]. Other FPGA-
centric approaches focus on specific applications, such as
database query with fixed parametrizable operation [23] and
signature-detection with YARA rules [38], which achieve
remarkable performance results while sacrificing the time
required for unknown REs at compile time. On a different
view, Dulgosh et al. [13] propose an attractive non-Von
Neumann reconfigurable architecture, called the Automata
Processor, for parallel automata processing for which they
released a simulator. With this simulator, many solutions
show promising results in applications such as NLP and
genomics [1]. Indeed, from the Automata Processor push,
Xie et al. propose REAPR [16], a tool that transforms a high-
level automaton description to a target RTL representation
for FPGAs. Sadredini et al. [17] claim the inadequacy of
current automata-based computations to exploit spatial ar-
chitectures and present an open-source toolkit for automata
simulation. Nourian et al. [29] provide a comprehensive

analysis of NFA solutions for different platforms (e.g.,
GPUs, FPGAs, Micron’s Automata Processor) with different
workloads and a partitioning scheme aimed at large NFA
handling, showing that NFA-parallelism is not well suited
to GPUs or vector architectures. In contrast, reconfigurable
architectures are the most promising ones.

Hybrid approaches mix DFA and NFA to tackle their
individual disadvantages. For example, Atasu et al. [19] use
NFA to tackle traditional DFA limitations like repeating the
matching process for each possible initial character or veri-
fying an unbounded number of possible initial positions. It
activates a new DFA for each first matching character, which
significantly improves the performance at the cost of not
scaling to complex or multiple REs. Others exploit multiple
DFA-based engines, called B-FSM [10], for a flexible NFA-
like approach in a heterogeneous system.

Different approaches do not rely on the use of FA
but focus on achieving an efficient lookup process. For
example, Agarwal et al. [39] propose a hash-based encoding
scheme for text patterns (not specifically REs) that generates
a dictionary matching engine. Instead, Nguyen et al. [40]
employ bitmap index structures to encode the strings to
match against, achieving multi-character lookups on FPGA.

Other methodologies consider REs as instructions,
such as Google’s library RE2!, which is mainly based
on Thompson’s NFA and detailed by Russ Cox, showing
the overwhelming power against a backtracking solution.
Furthermore, Cox [26] illustrates the VM approach, where
REs are seen as instructions to be executed [41]. Similarly,
ReCPU [25] explores RE matching by translating a RE into a
set of instructions executed on a “dedicated CPU”, offering
the run-time adaptability of a CPU with the performance
efficiency of an ASIC solution. However, its application to
real scenarios is limited, and the absence of a communica-
tion subsystem prevents its adoption. Employing REs as in-
structions provides an attractive alternative methodology to
the automata embedding for building an efficient hardware
accelerator that can execute new “programs” without regen-
erating the hardware. Moreover, this methodology avoids
the employment of explicit automata transition tables by
exploiting the REs declarative language.

This research work takes inspiration from these last
approaches and sees the REs as a programming language
where REs are a sequence of operations repeated over a set
of characters. Thanks to this approach, we build a custom
run-time adaptable architecture for the REs domain only,
called TiReX [24]. We rely on a custom compiler and ISA
to represent REs belonging to the Regular Languages and
on an optimized and energy-efficient microarchitecture that
shows remarkable results. Moreover, we present a software—
programmable multi-core architecture to exploit a multi-
pattern or multi-chunk-of-data and further tailored for dif-
ferent scenarios. This work extends our previous one [24]
providing unpublished details of the architecture and two
novel architectural models. Thanks to these models, we
enable the adaptation of latency-sensitive or throughput-
sensitive workloads and pave the way to deploy TiReX-
as-a-service thanks to the software-hardware application
implementation on a public AWS F1 instance. Finally, we

1. https:/ / github.com/google /re2
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Fig. 1: TiReX flow for a Regular Expression.

present novel experimental results and analyses that show-
case TiReX better energy efficiency over literature software
and hardware solutions.

4 DESIGN METHODOLOGY AND APPROACH

This research work deals with REs as a programming lan-
guage where REs are a sequence of operations repeated over
a set of characters. The RE translates into a custom-defined
ISA, on top of which we build our custom DSA called TiReX.
The current ISA does not comprise advanced primitives of
pattern matching that do not belong to Regular Languages
or are derivable from those considered. Our DSA is not
a general-purpose engine but is a software-programmable
architecture tailored to the REs domain.

Figure 1 represents the workflow for executing RE
matching on our DSA. The user provides both a RE (or a
set of REs), the “program” TiReX will execute, and the data
to analyze. The TiReX compiler translates the input RE(s)
down to our low-level representation, i.e., the ISA. Then,
the DSA takes as input the compiled code, which is loaded
in the instruction memory. Finally, the architecture retrieves
the data to analyze and outputs the matching procedure
results. The next Sections first describe the compiler, then
the ISA (Section 4.2), and finally the single- and multi-
core architecture (Section 4.3 and Section 4.5), along with
a performance model (Section 4.6).

4.1 Regular Expression Compiler

The compiler is a custom Python-based component that
performs RE-to-ISA transformation. The compiler follows
a Very-Long-Instruction-Word (VLIW) approach, where it is
aware from the beginning of the underlining architecture
characteristics, and it produces the binary according to the
hardware features, e.g., the reference size determined by
Execute parameters (Section 4.3.2). The compiler builds on
two main passes: the Intermediate Representation (IR) pass
and the architecture-aware pass. On the one hand, the IR
level pass divides into two phases. The first one performs
opcode and literal recognition and detects the need for a
second pass for jump address insertion. The second (and
optional) pass deals with labeled locations from the first
pass and inserts the addresses for absolute jumps. On the
other, the architecture-aware pass accounts for character
parallelism abilities and word alignments.

TABLE 2: Opcode encoding of the operations.

opcode RE Description

000000 EOP End of Pattern

010000 AND/& And of cluster matches
001000 OR/| Or of cluster matches

011000 . Match any character

100000 ( Function call/sub-RE start
000100 ) Function return/sub-RE end
000001 ) Match any number of sub-RE
000010 )* Match one or more sub-RE
000011 )| Match previous sub-RE or next one
000101 OKP Open Kleene Parenthesis
000111 JIM Jump If Match

4.2

The TiReX ISA approach relies on a VLIW-like machine,
where multiple operations are bound together to form a
bundle. Table 2 shows the primary operations that compose
the TiReX ISA primitives. These primitives are composable
operators to form different REs, with their literal part, and
are at the basis of all the complex REs, such as repeating
n times the string x, i.e.,, x{"}. The compiler decomposes
advanced REs into TiReX primitives. Complex REs carry
the cost of a bigger program size; therefore, the instruction
memory has to accommodate a reasonable amount of in-
structions or to provide an adequate memory hierarchy. For
example, the RE a3} translates into a sequence of aaa, hence
turned into a simple concatenation of three ‘a” characters.
Each instruction is divided into two fields: the opcode field,
where we encode different pluggable operations, and the
remaining part, which is called reference or instruction
operands. The reference field usually contains the number
of parallel characters a TiReX core can crunch, or, in case
of particular operators, it contains helpful information such
as the branch target address. In our implementation, the
instruction word is 38-bit long, and it has 6 bits for represent-
ing the opcode field, while the remaining 32 bits represent
the reference field, i.e., at most four parallel standard ASCI
characters. TiReX operations divide into three main groups:
Character Match, Control Flow, and Support.

Character Match Operators represent the basic opera-
tions on REs to match characters with boolean logic, like the
AND instruction to match a fixed sequence of characters or
the OR instruction to accept several alternative characters.

Control Flow Operators represent an advanced class of
operators to compose advanced REs against the Character
Match operators. In particular, these operators control the
flow of the instructions (e.g., jump), perform a “function”
call preserving the “context” (e.g., matching process status,
current data and instruction address, prefetching hints).
These operators are described as follows:

Instruction Set Architecture

e EOP operator: The EOP is a special instruction
whose purpose is to signal the end of the program
(i-e., the end of the RE matching procedure).

e (operator: The open parenthesis operator represents
a “function call”, or sub-RE, and translates to context
preservation.

e ) operator: The closed parenthesis operator repre-
sents a “function return”; therefore, it instructs the
processor to restore the previous context.
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Fig. 2: Details of the core logic, with the pipeline components
and the reference to Section 4.3 subsections.

e ) and )* operator: These symbols represent the
Kleene operators at the end of a function call, which,
like a for-loop, re-execute the loop body of the match-
ing code until either a mismatch occurs or the string
ends.

o )| operator: This operator composes chains of OR-
ed REs: the sequence of functions matches when any
of the REs matches, in which case the hardware can
skip the remaining functions in the chain.

Support Operators are instructions to support the Con-
trol Flow ones and increase performance. Indeed, they are
needed to inform the architecture of the instruction memory
location to jump. In particular, the function call operator
“(” can ambiguously lead to a function with the Kleene
operators or an OR chain: in the former case, the architecture
has to re-execute the function, hence jumping to a previous
instruction, while, in the latter case, the flow of instructions
goes forward and the architecture can skip the following
REs in case of a match.

For this reason, we specialize the “(” operator to discrim-
inate the two cases and inform the architecture prefetchers
on which instructions and data TiReX has to load in the next
cycle for all the possible comparisons results. OKP operator
hints the architecture about the presence of a for-loop-like
sequence, hence showing a possible backward jump in a
matching case or a forward jump in a mismatch case. JIM
operator gives the flow-controller a hint of the presence of
OR-chained function calls, therefore preparing for a possible
forward jump in the flow in case of a match. In contrast, a
mismatch causes the architecture to load the next instruction
and re-read previous data (which can be cached).

4.3 Single-Core Architecture

TiReX DSA has a two-stage pipeline divided into Fetch/De-
code and Execute stages. The core tracks the RE procedure
status, and it can be in two different states (i.e., match or
not match state), which determine different execution flows.
Figure 2 shows the block design of the microarchitecture
and implementation details. The main components of the
core are the Instruction Memory (IM), which stores the

program instructions, the Fetch/Decode Units (FDUs) for
the homonymous stage, the Data Buffer (DB), which stores a
portion of the input data necessary for the matching process,
the Clusters and the Engine, which form the Execute Unit
(EU), and the Control Unit (CU), devoted to the control of
the whole matching process.

A general flow of the matching process starts with the
loading of the compiled RE into the IM, then the FDU loads
one instruction at a time, decodes it, and propagates the
control signals (e.g., the wvalid_ref signal, which indicates
how many valid characters are in the reference in one-hot
encoding scheme) and the instruction operands to the EU
and the CU. The EU loads the input characters from the
DB and searches for patterns according to what received
from the FDU, emitting a match to the CU when the current
input characters match the pattern encoded in the current
instruction. Finally, the CU exposes signals to the external
logic to indicate the completion of the matching process and
the presence of a match. The basic RE matching is an in-
trinsically sequential control dominated flow that analyzes
a single character per clock cycle [42]. We now describe how
TiReX deals with control hazards within a RE instruction
flow (Section 4.3.1) and how we increase the number of
characters analyzed in a single clock cycle (Section 4.3.2)
showing remarkable performance (Section 6.3.1).

4.3.1 Fetch/Decode stage

The Fetch/Decode stage consists of three copies of an FDU,
exploited to prefetch every possible instruction flow. An
FDU takes the bundled word from the IM and unpacks it
in the three pieces of information needed for the RE match-
ing procedure: the opcode, the reference, and how many
references are really in that field, i.e., the signal valid_ref, as
shown in Figure 2. Thanks to the Control Flow Operators,
which we tailored to change the instruction flow, we exploit
different instruction-pre-fetching mechanisms. By instanti-
ating three different and specialized FDUs (marked A to C
in Figure 2), the core can avoid cycle losses in the case of not
match or case of special instructions such as the JIM or the
OKEP. The identified flows are mainly three.

Sequential Execution: The RE matching process can run
in the simple sequential execution flow. Indeed, the FDU-
B continuously prefetches the next instruction, essential
when a match is found. Thus, we cover the basic sequential
execution flow of a “program”.

Instruction Rollback: The “program” can find a false
initial match up to a certain point. Indeed, discovering a
false partial submatch requires rollback the execution to the
first “program” instruction. Since restoring everything in
case of a false match leads to large cycle loss, FDU-A keeps
a copy of the very first instruction and its control signals.

Special Jump: Another possible performance degrada-
tion source comes from jump instructions. Indeed, as in
general-purpose processors, control flow modifications that
depend on run-time computations, such as a comparison
result, require special hardware components (e.g., branch
resolution anticipation, dynamic branch predictors) or clock
cycle stalls for control resolutions. Jumping back and for-
ward in the “program” leads to control hazards. Consid-
ering a backward jump, as for the Kleene operations, or a
forward jump, as for OR-chain, we need to know the target
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instruction. To handle this, the second pass of the compiler
hints at the core by inserting this target jumping address.
The FDU-C leverages compiler hints to prefetch instruction
located after the sequence of OR-ed REs (in case of JIM) or
the initial instruction of a sub-RE (in case of an OKP).

4.3.2 Execute stage

The other datapath portion is the EU, and it consists of
two parts: the Clusters and the Engine. The Clusters are
the components that compare input data against input ref-
erence; hence, the more the Clusters, the more the charac-
ters the core can analyze. The most basic primitive in the
RE matching process is a comparator for single character-
to-character comparison. More “advanced” primitives are
AND, or concatenation of characters, and OR, or alterna-
tion that in our ISA corresponds to the Character Match
operations. These primitives correspond to TiReX Clusters,
and each of them takes as input the reference characters
and the data characters. The EU has two orthogonal de-
sign parameters that determine the parallelism degree in
the character analyzable per clock cycle. The first one is
the width of the Clusters, called ClusterWidth parameter.
Figure 3 shows a ClusterWidth equal to four. Hence, that
Cluster performs at most four character comparisons in a
clock cycle. Depending on the opcode, we feed the Cluster
with different data characters. In the case of an AND, the
four comparators will receive different characters, as in
Figure 3. In the other case, i.e., the OR, each comparator
will receive the first data character of the substring (e.g.,
the first C in the CCGT substring), and compare against
all the reference characters. In this way, the ClusterWidth
determines the maximum amount of characters the core can
analyze with the AND opcode.

The other design parameter regards how many Clusters
the EU has, called NCluster. Considering Figure 3, NClus-
ter is equal to four. Following the previous data feeding
scheme, each Cluster will receive a substring shifted by
one of the data characters, i.e., Cluster one will receive
CCGT, Cluster two CGTA, etc. Hence, considering an OR,
we feed each Cluster with a single data character, while,
with AND, we feed them with four characters. The Clusters
then compare such characters against the reference ones. In
this way, the NCluster parameter determines the maximum
number of characters the core analyzes with an OR opcode.

The Engine collects all the intermediate results from
the Clusters, knows the current Character Match operation,
and combines them to produce an aggregate result for the
Control Unit. The Engine works in two different ways, de-
pending on being in matching or not matching state, and it
controls which Cluster is active or not, stalling the execution
if necessary. All these components are almost combinational;
hence, balancing the EU parallelism is crucial to avoid
unused or small resources.

Overall, the architecture might have different inputs
feeding schemes depending on the instruction result
(match/not match) and the number of matching characters
(from 1 to ClusterWidth). For this reason, we adopt different
data-shifting mechanisms for the DB, where we use registers
to store possible inputs for the next instruction.

Reference Data

NCluster

Cluster Width

Fig. 3: Detailed view of the EU during the first AND
instruction execution.

TABLE 3: Execution example of a Regular Expression on a
single core (the effective data analyzed are underlined).

Instruction Cycles EU Data
#1 #2 #3 #4 #5 #6 #7
& ACGT FD EX CCGTACG
& ACGT FD EX ACGTATT
OKP FD EX ATTGCAC
[)* AC FD EX ATTGCAC
[)* AC FD EX TTGCACT
EOP FD EX TTGCACT
Match found
Instruction:  ACGT(A|C)*

Data: CCGTACGTATTGCACTA

4.3.3 Control stage

While the EU handles the Character Match operations, the
CU handles all the other complex operations, e.g., Kleene
ones. Indeed, this unit is a centralized controller that syn-
chronizes the different prefetching and prediction mecha-
nisms. It is aware of the current RE matching procedure
status, e.g., match or not match, enabling dynamic schedul-
ing of the proper instruction, keeps track of the instruction
and data pointers, and generates the proper addresses for
the memories. Moreover, whenever the Control Unit finds a
function call, e.g., the “(” operation, it pushes the current RE
matching context to the Stack Buffer, our context memory,
and synchronizes the datapath to work in this new context.

4.4 Regular Expression analysis example

Table 3 shows an example of the matching process on the
TiReX core. First, the FDU-A retrieves the very first instruc-
tion producing the AND opcode, ACGT as reference, and
valid_ref signal equal to 1111, since every character in the
reference is valid. Then, the EU performs the comparison,
resulting in a mismatch. Indeed, as shown in Figure 3, the
reference is matched against the input stream in NCluster
exact starting positions, given the initial not-matching state.
Thanks to the presence of multiple FDUs, the CU does not
flush the pipeline as the first instruction is still present
in FDU-A. The data pointer jumps four characters ahead
(due to the presence of four Clusters), and the next batch
of characters is checked against the first instruction. This
process is executed until a valid intermediate match is found
(this happens at cycle #3 in the example), which moves the
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Fig. 4: Multi-core modalities with multi REs single data stream, or single RE multiple data streams, respectively.

CU to a matching state and increments the program counter
and data pointer by one and four, respectively. This offset
is computed from the Engine and depends on which is the
matching Cluster. The core continues until it reaches the last
instruction (EOP) and reports the final result, in this case, a
match found.

4.5 Multi-Core Architecture

The proposed single-core DSA adopts improved parallelism
at the character level. Although we could consider it similar
to a SIMD architecture, the domain requirements (i.e., real-
time analysis and flexibility) are not yet satisfied. Hence,
we propose a multi-core architecture based on the replica
of the same tile described previously. Each tile has its
private memories, separate for data and instruction, and it
is software programmable to work in two different ways
depending on the needed parallelism level, as shown in
Figure 4. According to the application, we tailor the system
to the RE recognition process, which can operate in two
different modalities, i.e., MISD- and SIMD- like.

Multiple REs Single Data Stream. Considering a sce-
nario where there is a need to analyze a wide range of pat-
terns simultaneously, e.g., Signature-Based Detection [22],
we designed a dedicated multi-core architecture based on
the TiReX tile described previously. Each core is equipped
with its private instruction memory, i.e., different REs that
it has to deal with, while the data stream is the same
for every core. In this way, we can increase the number
of patterns processed per single execution while keeping
a similar data crunching ability. However, this execution
mode requires further investigation in the topology of the
architecture, in the interconnection logic, and can lead to
data divergence and issues related to memory coherency
when considering terabytes of data, such as in the genomic
case. We will not address this issue here because we think it
is out of the scope of this work, and we think that exploiting
memory coherent protocols (e.g., OpenCAPI, CCIX, or CXL)
is a sufficient solution. Single RE Multiple Data Stream.
In contrast to the previous version, this operational way
exploits the parallel core to increase data crunching rates.
Indeed, a fast scan rate is essential when considering a vast
amount of data to analyze, such as the Human Genome,
or big database. To improve our single tile abilities, we fill
each tile IM with the same RE while providing different data
stream portions. These chunks of data are not independent
a priori, and potential matches in the crossing regions may
happen. Therefore, we do not consider a sharpened cut,

but we adopt a simple heuristic to provide an overlapping
region to avoid false mismatch at a negligible overhead cost.
The data splitting task is currently handled at the software
level and relies on a domain-expert specified threshold
that indicates the maximum length of a match, translating
into the overlapping region. We compute the batch size,
or By, for each of the i-th core of the N ones, through
Bgize = il which divides the size of the data (Sgata)
by the number of cores instantiated in the system (N.).
With the batch size, we compute the End of Data, or EoD;,
Vie N EoD; = min(Bsize - (i+1) +Tr, Sqate) per each i-th
core by simply adding a user-defined threshold (Tr) to ensure
coverage of a possible matching sequence of Tr maximum
length. Finally, we compute the new Start of Data, or SoD;,
except for the first core, which computes from the very
beginning, Vi ¢ N —{0} SoD; = EoD;_1 — Tr, as the
difference from the previous core ending point minus the
domain-specific threshold, ensuring coverage of a possible
matching sequence of Tr maximum length.

Sdata

4.6 Performance Analysis

Here follows a theoretical performance model to analyze the
expected throughput in both the worst and the best cases.
Although the matching process is highly data-dependent,
the time required to process a single character is the main
critical parameter measured in ;2. This time-per-char met-
ric (the lower, the better) is mainly affected by the process
status of the RE, i.e., match or not match case. Being in a not
matching case, the time per char T;,,,, depends on the system
frequency, F, and the number of characters processed per
clock cycle. In the worst case, it is NCluster; in the best case, it
implies the full utilization of the Execute unit. Consequently,
Tnm = % and Tnm = NCluster+C:'Ll/quterWidth71' On
the other hand, considering a matching state, we span from
a single character per clock cycle in case of union, or OR,
T = %, to a number of ClusterWidth character processed
in the concatenation case, or AND, T},. = m
Substituting the effective design parameters, we can com-
pute the worst and the best case of the time per char re-
quired to analyze a character at the single-core architecture
level. Additionally, we can model the expected throughput
of the architecture, both single- and multi-core, adopting the
presented equations and estimate the bitrate of the system in
Gb/s as B, = T% - 8 - Ny, where T}, is the time per char
obtained with the previous equations, Ny is the number of
TiReX cores.




IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) SYSTEMS 2022 8

Cache

TiReX Core 0
TiReX Core 1
TiReX Core 2

Fig. 5: Block design of the multi-core TiReX architecture.
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These equations provide an estimate of bitrate values for
possible implementations of TiReX with a variable number
of cores and frequency, allowing us to foresee how per-
formance scales up as the number of cores and frequency
increases. This makes it possible to estimate the goodness
of the various TiReX implementations before going through
empirical measurements.

4.7 Architecture analysis summary

To summarize, the proposed architecture relies on a cus-
tom ISA for RE matching flexibly. In contrast with many
NFA/DFA approaches, the proposed methodology handles
different run-time tunable REs without modifying the un-
derlying architecture. The current execution model of the
architecture is based on a depth-first-like approach, where
the execution of the instructions is intrinsically sequen-
tial [42]. Though it suffers from classical backtracking issues,
this model could lead to possible future solutions based
on a breadth-first-like model, similar to a theoretical NFA,
achievable through mainly NFA logic embedding. Addition-
ally, the architecture has two levels of parallelism to increase
execution efficiency. The first one resides in the number
of characters analyzed per clock cycle, which is a design
parameter, and all the prefetching mechanisms to handle
multi-flow executions. The second level of parallelism relies
on a private memory multi-core architecture that can em-
ploy two different theoretical execution models, i.e., MISD-
and SIMD- like. The first model increases the number of
parallel REs analyzed, while the second one increases the
parallelization of vast amounts of data.

5 SCENARIO-SPECIFIC ARCHITECTURAL MODELS

To demonstrate the adaptability of this work, we implement
the system following two different architectural models. The
first model targets all those platforms in embedded-like sce-
narios, e.g., a System on a Chip (SoC) comprising a CPU and
an FPGA. This model targets latency as the primary metric
and tries to increase energy efficiency as much as possible.
This specific architecture is called Embedded Host, given that
the host application executes on a CPU tightly coupled to
the FPGA. Instead, the second model involves server-like
systems targeting a throughput-oriented scenario, where
tackling highly intensive data workloads is paramount. In

Device
FPGA

FIFO 7
EbI I I = Master write port

FIFO

TiReX

Core 1
HOST

Application

Core 2 FIFO
AXI

adg
Q:I I I qj Master read port

‘ TiReX

Fig. 6: Architectural model of the external host implementa-
tion of the TiReX system.

this model, called External Host, the host application exe-
cutes on the server processor connected through a PCle bus
with the accelerating device.

5.1 Embedded Host

This model targets a more constrained execution environ-
ment where the FPGA is tightly coupled with a CPU.
Examples are the PYNQ platform provided with ZYNQ
technology, which embeds an ARM Cortex A-9, or a soft-
core, such as the MicroBlaze, directly instantiated on the
programmable logic. The embedded processor and TiReX
communicate through lightweight AXI-Lite ports for fast,
small transactions of both control or data of 32 bits per
transaction. We instantiate a multi-core architecture inter-
connected through a crossbar, as in Figure 5, by a simple tile
replica, each of which has its additional private cache mem-
ory, implemented through BRAMs, to exploit the available
reconfigurable fabric fully.

The overall system starts with the processor loading the
various caches and instruction memories of all the TiReX
cores instantiated in the system following a SIMD or MISD
fashion depending on the user’s needs. Once filled, the
processor enables the beginning of TiReX cores computa-
tion. Once one of the cores produces a result, the search
completes, reporting the outcome to the host. Section 6.3.1
shows the results this architectural model can achieve in
latency-sensitive scenarios.

5.2 External Host

Thanks to the presence of cloud FPGAs, everyone can ac-
cess a high-end cloud FPGA that communicates through a
peripheral bus to an external host processor. We devised the
external host model to target such a scenario. Consequently,
we can implement TiReX on systems like the AWS F1
instances, which contain high-end FPGAs equipped with
four physical DDR ports. Each physical port can transmit
up to 512 bits of data per clock cycle, for a total of 2048
bits. Moreover, we can time-multiplex each physical port for
logic port interleaving and instantiate a wider number of
cores. Therefore, we decide to exploit this chance by de-
ploying the kernel via the SDAccel framework, as shown in
Figure 6. The tool automates some system design steps and
provides a communication infrastructure, which requires
specific design interfaces and APIs for the transmission
phase among host and device through the high-bandwidth



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) SYSTEMS 2022 9

Average Bitrate / LUT Usage

0.2974 | 0.2602 | 0.293
8- 0.2274 | 0.2324 | 0.2 0.2287

16@ 0.2262 | 0.1912 | 0.1745 0.1626
2 4 8 16 64

NCluster

0 5 10 15 20 25 30
LUT Usage [%]

4- 02438 0.2944

ClusterWidth

Fig. 7: Heatmap representing ClusterWidth and NCluster
space exploration considering the ratio of average bitrate
and LUTs usage on a PYNQ-Z1. The darker the color the
closer (or beyond) the resource usage to the given budget for
a TiReX single-core. The (4,4) configuration reports a good
trade-off while respecting the budget.

PClI-e link. Each tile has an AXI-Lite interface for control
exchange, while most of the data exchange goes through an
AXI-Master port attached to the DDR bank. The interface
requirements need additional glue logic and FSMs to handle
instruction and data transmission and some performance
counters. The Master port passes the data through a FIFO to
provide a back-pressure mechanism for DDR-tile exchange,
and the same happens in the other direction. We replicate
the tile and the additional interfaces to provide a multi-core
architecture, where each core is independent.

The final system flow starts with the RE(s) compilation.
We feed the data according to the operational way and
apply the splitting heuristic if needed. Then, the host writes
the data to the DDR through the PCl-e and starts the
FPGA kernel. Each core, which has a private portion of the
assigned DDR bank, reads and loads the instructions and
then retrieves the data to analyze. Once done, the overall
kernel writes back the computation results, while the host
waits for all the cores to end and reads the match outcome
along with performance counters, such as clock cycle count
and matching position. Section 6.3.2 details the performance
results the External host architectural model achieves in
throughput-oriented scenarios.

6 EXPERIMENTAL SETUP AND RESULTS

We designed TiReX architecture in VHDL, with additional
glue logic in System Verilog. We targeted three different Xil-
inx platforms: the VC707 and the PYNQ-Z1 boards with an
embedded host model, while the external host model makes
use of the AWS F1 instance powered by a Virtex UltraScale+
9 (VU9P) FPGA attached through a PCle connection, paving
the way to deploy TiReX-as-a-Service. While the VU9P sys-
tem is a more throughput-oriented solution, thus suggested
for a server-like system use case, the PYNQ-Z1 system
represents a more constrained use case, such as embedded
systems for an autonomous vehicle or IoT scenarios. We use
Xilinx Vivado and SDK 2016.4 to generate the bitstream and

manage the bare-metal host for the embedded host model.
For the external host model, we use Xilinx SDAccel 2016.4
to implement the system on the VU9P, and we exploit the
OpenCL library for the host. We employ four different state-
of-the-art software to compare against TiReX. The consid-
ered baseline is FLEX, which produces a DFA for each RE in
a C file that needs to be compiled. Then, we employ Grep,
which builds the matching NFA at run-time, Google’s RE2,
an optimized multi-threading C++ library that builds an
NFA as well, and Hyperscan [31] by Intel, which applies
an intensive preprocessing mechanism to decompose the
RE(s) into a SIMD NFA. We compile FLEX code, RE2 library,
and Hyperscan with -O3 optimization level and adapt the
software tools to stop as soon as a match is found. In par-
ticular, for RE2 we use the RE2: :PartialMatch function,
while for Hyperscan we employ the hs_compile with the
HS_FLAG_SINGLEMATCH flag. For reference CPU, we have
the ARM Cortex A9 of the PYNQ-Z1 running at 650 MHz,
an Intel i7-8750H with six cores and a peak frequency of
2.2 GHz, and a dual-socket Xeon E5-2680 v2 with a total of
twenty cores and a peak frequency of 2.8 GHz.

We focused on bioinformatics and networking to test
TiReX in real-life fields with state-of-the-art benchmarks.
We divided the experiments into two sets: a small one,
which we indicated as S, aimed at a latency-oriented sce-
nario, and a large one, told as L, targeting a throughput-
oriented scenario. For the S scenario, we used the first
16 KB of the first human chromosome®. We matched this
input against the three REs, whose complexity increases to
measure the internal core execution latency correctly and
stress the performance. For the L scenario, we first selected
the E-coli bacteria proteome, about 8.5 MB of data retrieved
from UniProtKB database® and used PROSITE [43] as the
REs dataset. PROSITE consists of a biologically significant
database and patterns formulated to reliably identify which
known family of proteins the new sequence belongs to,
including the REs. Then, we tested the throughput with
the PowerEN benchmark from ANMLZoo [1] with 1IMB of
data, which has been employed in the validation of the IBM
PowerEN for networking function embedding at the edge.
We analyze both the execution time and energy efficiency of
the proposed architecture for these testbeds. We collect the
power consumption of the whole board, hence including the
host, through a Voltcraft 4000 energy logger for the VC707
and the PYNQ-Z1, while we take the Thermal Design Power
(TDP) for the VU9P as from a literature work [44], i.e., 42W,
excluding the host. Besides, we use the TDP for the Intel
CPUs while we measure the ARM A9 power consumption
using the energy logger. We compute the energy efficiency
as throughput/power consumption, where throughput is
the inverse execution times.

6.1 Exploration of Designh Parameters

Here, we explore ClusterWidth and NCluster design param-
eters employing an open-source automation tool [45] and
targeting a PYNQ-Z1 device. The exploration aims at find-
ing a trade-off of these parameters that shows noteworthy

2. ftp:/ /ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/CHR_01/hs_
alt CHM1\1.1_chrl.fa.gz
3. https:/ /www.uniprot.org/uniprot/?query=ecoli&sort=score
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Fig. 8: Resources scaling (darker to lighter: LUT, Reg, Mux)
against core number on the PYNQ-Z1 (triangles), VC707
(dots), and VU9P (stars).

performance while keeping a low critical resource footprint
(i.e., LUTs). Figure 7 reports a heatmap with the ratio of
average bitrate, and LUTs usage. We set a maximum budget
of 30% of LUTs for a single core since we aim at scaling in the
core number; hence, Figure 7 shows darker configurations
that are close (or beyond) this upper bound. Among the
lighter configurations, (4,4) and (4,16) report remarkable
performance, but the (4,4) configuration shows less resource
usage. In this context, the (4,4) represents the optimal trade-
off of delivered bitrate per employed LUTs that eases the
core scaling even with resource-constrained devices.

6.2 Multi-core scaling synthesis results analysis

Here, we aim to exploit the reconfigurable fabric as much
as we can to scale the core number. Figure 8 shows the
resource scaling with power-of-two cores (though every
number of cores is suitable) architectures; in this way, we
explore a reduced portion of the design space and sim-
plify the memory traffic model. Given the limited number
of physical memory ports, those channels have to work
in interleaved mode. However, increasing the number of
nodes attached in an unbalanced way may not result in
deterministic performance prediction and load management
requirements. To devise a multi-core architecture, we first
investigated the area utilization of a single core imple-
mentation, which can provide insights into the number of
cores that can fit in a multi-core design. Figure 8 shows a
small resource footprint of a single TiReX core on the three
target platforms in all cases. We report the most relevan
resources utilization, given the nenglibile amount of the
others. Therefore, they do not represent an issue at all.
Although the numbers in Figure 8 suggest that it is possible
to deploy a high number of cores on each platform (like
more than a hundred for the VC707), this is not possible due
to routing-related issues. Indeed, a high number of cores
leads to congestion on the interconnection paths towards the
processor and the communication infrastructure, with very
high fan-outs hindering the routing phase. These issues limit
the deployable cores to 16 on the VC707, given that designs
beyond 32 cores fail during the routing phase. However,

on the PYNQ platform, the number of deployable cores
scales down to 8 since designs with more cores (from 16
on) or targeting higher frequencies fail during the routing
phase, having fewer resources available than the VC707. We
envision designing a dedicated interconnection network to
scale to more cores while keeping acceptable frequencies.
However, this is beyond the scope of this work.

Conversely, on the AWS F1 instance, the limit of 16
cores is not due solely to routing problems, even if the
area utilization also comprises the more significant AXI
logic. In this scenario, the limitation is due to the number
of logic AXI-Master ports that can be instantiated. The
toolchain constraints to up to 16 different AXI-Master logic
ports. Indeed, with internal design unchanged, each core
retrieves its data portion from the DDR banks after a setup
phase from an external host through PCle. To instantiate
a higher number of cores, it is necessary to insert back-
pressure mechanisms in the interconnection logic and the
internal logic itself for handling variable unavailability of
data. Indeed, the data transfer rate is limited to 2048 bits
per clock cycle, since there are at most four-DDR ports
available for each DDR memory bank, each one capable of
transmitting 512 bits per cycle.

6.3 Performance analysis against software references

Alongside the synthesis results, we compare our system
against state-of-the-art software approaches in terms of
performance, accounting for the latency (S scenario) and
the throughput (L scenario), and considering the energy
efficiency. The following experiments evaluate the multi-
core architecture presented in this paper in SIMD modality
and the single-core architecture on mainly the VU9P device.
We adopted the heuristic presented in Section 4.5 and a
threshold Tr equal to 100, which we manually computed
to be suitable for both the S and L scenarios. We analyze
the data transfer overhead from the host processor to the
target FPGA on the external host model, focusing on the L
scenario. The overhead is generated both by hardware and
software components. On the one hand, the data transfer
occurs via a PCle-Gen3x16 connection, which has a transfer
rate of up to 15.6 GB/s, hence providing a latency based
on the input data size. For example, the E-coli bacteria
protein dataset size is 8.5 MB and the resulting transmission
time is around 544 us. On the other hand, the software
introduces non-negligible overheads: the time for the call
to the OpenCL APIs, the CPU context switch time, the
time required for the interrupt to be served, and the ad-
ditional asynchronous driver time. The sum of the previous
software-based overhead times and the system setup time
for the execution of the first instruction is around 70 ps. This
value has been computed by injecting empty instructions
and empty data into the core, eliminating the data transfer
overhead. The transfer rate, along with the software-based
overheads, provides the base execution times of the TiReX
system that has to be taken into account.

6.3.1 The S scenario

This scenario evaluates the latency of the considered ap-
proaches on the first 16 KB of the first human chromosome.
We employ three different tests to stress the methodology
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TABLE 4: Performance results (in bold the best) of the S scenario tests, chosen to stress incrementally our architecture
(FLEX on the i7 is the baseline, while FLEX on the A9 is omitted being far slower than Grep on A9).

. Exec. Time [s] Speedup Energy Efficiency [1/(ms - W)]
Method Architecture Test 1T Test2f  Test3*  Test1f Test 2! Test3* Test1'  Test 2} Test 3*
Grep ARM A9 650 MHz 11963 12185 12374 0.02x 0.01x 0.02x 0.02 0.02 0.02
RE2 ARM A9 650 MHz 589 353 391 0.46x 0.34x 0.67 x 0.42 0.70 0.64
FLEX Intel i7 2.2 GHz 271 121 263 1x 1x 1x 0.08 0.18 0.08
Grep Intel i7 2.2 GHz 492 805 221 0.55x 0.15x 1.18x 0.04 0.03 0.10
RE2 Intel i7 2.2 GHz 50.69 29.30 41.98 5.35x 4.13x 6.27 x 0.44 0.76 0.53
Hyperscan Intel i7 2.2 GHz 78.92 53.58 35.08 3.43x 2.25x 7.50% 0.28 0.41 0.63
FLEX Xeon E5 2.8 GHz 598 136 404 0.45x 0.88x 0.65x 0.01 0.06 0.02
Grep Xeon E5 2.8 GHz 205 108 336 1.32x 1.11x 0.78x 0.04 0.08 0.02
RE2 Xeon E5 2.8 GHz 34.48 23.02 28.28 7.86 % 5.25x% 9.30% 0.25 0.38 0.31
Hyperscan Xeon E5 2.8 GHz 59.49 52.21 27.95 4.56 2.32% 9.41x 0.11 0.17 0.33
TiReX VU9P 1 core 299 MHz 37.66 18.32 29.63 7.19% 6.60 % 8.87 % 0.63 1.30 0.80
TiReX PYNQ-Z1 8-core 70.5 MHz 7.20 8.21 30.30 37.63% 14.73 % 8.67x 41.75 36.61 9.92
TiReX VC707 16-core 130.1MHz 2.07 4.54 3.36 130.9x 26.65x  78.27x 22.74 10.37 14.01
TiReX VU9P 16-core 202.7 MHz 1.03 0.75 2.96 263.11x  161.33x  88.85x 23.11 31.74 8.04
tACCGTGGA * (TTTT)TCT *(CAGT)|(GGGG)|(TTGG)TGCA(C|G)*

effectiveness, from string matching to more complex RE
matching tests. Table 4 summarizes the performance results
of the S tests run on the various platforms and compared
against FLEX, Grep, RE2, and Hyperscan without consid-
ering data transfers or I/O parts for all the considered meth-
ods. On the other hand, we account for the preprocessing
mechanism of Hyperscan since this phase highly influences
the matching methodology and performance. Moreover, we
did not evaluate Hyperscan on the ARM A9 since it does
not officially support ARM-based architecture. Considering
TiReX multi-core implementations, we achieve speedups
ranging from a 0.92x up to 33.47x against the best software
implementations of Hyperscan and RE2. The slowdown
comes from the single-core on the VU9P and the PYNQ-
Z1 with eight cores against RE2 and Hyperscan on Test 1
and 3. We must consider the differences in the execution
model, our DFA-like versus software NFA-like, and the
considered platforms. Indeed, both the software tools run
on a server-class CPU, while the PYNQ-Z1 is an embedded
device, and the running frequencies are incredibly different,
i.e., 2.8 GHz versus 70 MHz. Hence, the achievement of
performance in line with state-of-the-art tools on a server-
class processor demonstrates the remarkable benefits of
our approach even when employing an embedded device.
Moreover, scaling cores on the VU9P showcases a consid-
erable improvement (i.e., a top of ~69x) against the state-
of-the-art software solutions, validating the proposed multi-
core approach. Considering the energy efficiency presented
in Table 4, or ratio of throughput over power consumption,
TiReX DSA provides a higher degree of efficiency than
software solutions. In particular, TiReX multi-core delivers
a remarkable energy efficiency spreading from about 12x
up to 95x against the most efficient CPU implementations.
These results demonstrate TiReX specialization advantages
from single-core to multi-core in execution times and energy
efficiency. Although the 8-core PYNQ-Z1 implementation
achieves the same speedup as the VUIP single-core one,
we should consider the working frequency’s role. Indeed,
the two running frequencies differ by 220MHz, which gives
a non-negligible lead. Additionally, we must consider that

TiReX execution times come from the hardware perfor-
mance counters and account for the shortest matching time.
These results compare fairly with those on the CPU since
we ran the whole matching process inside a loop where the
first ten iterations were used to warm up the L1 data and
instructions caches (which are, for all CPUs, 32KB in size,
hence they can host the whole input and program code),
and we averaged the run-time of 30 iterations. Instead, we
averaged 30 iterations and subtracted a fixed amount of time
to let the system open the file to compare fairly with Grep.

6.3.2 The L scenario

In this scenario, we focus more on the throughput-oriented
solutions, restricting our implementation to the external
host model and the AWS F1 instance, as it is the most rep-
resentative for a server-like environment, accounting for the
overhead presented at the beginning. Similarly, we consider
the Intel Xeon CPU only. We consider different datasets from
the S scenario, as described at the beginning of the Section,
for both REs and data to analyze.

Figure 9 shows the geometric means of the execution
times (the lower, the better) achieved on the two bench-
marks by the considered approaches, with the speedup of
the 16-core version of TiReX on the VU9P reported on top of
the bar. It is noteworthy that PROSITE exhibits more match-
ing situations, while PowerEN reports few matches. TiReX
single-core already offers a speedup compared to tools like
Grep and FLEX, showing the benefits of TiReX domain
specialization achievable at the single-core level. Scaling
TiReX to a multi-core architecture delivers a speedup of
1.233x and 1.585x over state-of-the-art software such as
RE2. Moreover, our DSA can reach higher performance by
further increasing the number of cores, but, as stated in
Section 6.2, the tools and technology limit the number of
AXI-Master ports we can instantiate on the VU9P.

Figure 10 shows the energy efficiencies (the higher, the
better) of the considered literature software approaches and
TiReX single and multi-core architectures. On top of the
bars is reported the improvements of TiReX VU9P 16-core
compared to the other approaches. We consider for all the
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Fig. 9: Execution time geometric means (the lower, the
better) and speedup of TiReX-16 VU9P with respect to other
solutions on L scenario.
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Fig. 10: Energy efficiencies (the higher, the better) and im-
provement of TiReX-16 VU9P with respect to other solutions
on L scenario.

TABLE 5: Comparisons in terms of platform, bitrate, flexibility and benchmarks with the Related Work (in bold the best).

Target

Frequency

Bitrate

Energy Eff.

Run-time

Solution Platform [MHz] [Gbjs] [Gb/(s-W)] adaptability Benchmarks
VC707 16-core FPGA (28nm) 130 1665-11648  0.78-548 v Synth;g&;%gs[?f [43]
PYNQ 8-core FPGA (28nm) 80 451-3584  135-10.77 v Symh;g;;g%gs[lff [43]
< .
& VU9P 16-core FPGA (16nm) 202 2594-180.99  0.62-431% v Symhf,gs\;gégs[?f [43]
ReCPU [25] ASIC (180nm) 318 10.19 - 18.18 N/A v Synthetic
Brodie et al. [33] ASIC (N/A) 133 16 N/A N Synthetic, Snort, Forensic
BFSM [10] PowerEN™ (45nm) 2000 20 -40 N/A v Open source REs
. Bro, Snort,
Meiners et al. [3] TCAM (N/A) N/A 10-19 N/A v L7-filter, Networking
< REAPR[1f] FPGA (20nm) 22-68  0.20-0.60 0.06 - 0.20 ; ANMLZoo [1]
2 FlexAmata [17] FPGA (16nm) 252 8.75 0.21% ; ANMLZoo [1]
=z FPGA/ASIC )
uD-) HARE [2] (28/45nm) 100/1000 3.20 / 256 N/A /213 - Synthetic, Snort
jDFA [11] FPGA (28nm) 150 230 - 430 N/A - Bro, Snort

and L7-filter

TRescaled from 3.7 Gb/s at 213MHz and then doubled for difference in alphabet size (16-bit vs. 8-bit)

approaches the TDP of the respective devices, i.e., Xeon
(115W) and VU9P (42W [44]). The 16-core design achieves
energy efficiencies that range from ~3x to peak of ~490x.

6.4 Comparison to related work

Finally, we compare our work against the top-performing
hardware-based solutions available in the literature, as re-
ported in Table 5. Among the considered metrics, we focus
on the throughput in bitrate, the energy efficiency when
available, and the run-time flexibility for replacing the REs.
Apart from FlexAmata, the numbers come directly from
results reported by the respective authors since other imple-
mentations are not open-source, hence not replicable by us,
or simulated only, while ours are derived from Section 4.6
best and worst case. The energy efficiency is the ratio of
throughput/power consumption, with bitrate in Gb/s as
throughput. Although few approaches (i.e., REAPR and
HARE-ASIC) give importance to the energy efficiency for
the computation, we claim it is a relevant comparison metric
also in this field. Indeed, being FSMs among the most
relevant computational kernels in computing fields [42],
and although they are intrinsically sequential, providing

TUsing 42W TDP [44]

efficient computations is paramount [14]. Flexibility is a
qualitative measurement that refers to the mutability of
the matching engine based on the RE(s). We adopted a
binary classification based on our understanding of the cited
research work. This means that this is not an absolute and
quantitative measurement but a criterion that we claim to be
relevant. A non-flexible approach means that, given a differ-
ent (set of) REs, the architecture needs to be re-synthesized
or changed accordingly. Indeed, the time to generate a new
bitstream can range from one to several hours, depending
on the design complexity. Hence, it is often unacceptable for
unseen REs and without a database of ready bitstreams.

Considering SDA/IMA approaches, jDFA [11] and
ASIC-based HARE [2] achieve the top throughput. Despite
this achievement, our approach delivers better energy ef-
ficiencies, and the time to adapt to new patterns is in
the order of milliseconds against hours of bitstream re-
generation. The scaled-down version of HARE, which is
effectively deployed on an FPGA, achieves a throughput
lower than our PYNQ-Z1 version, not devised for high-
throughput scenarios. FlexAmata [17] is an exciting tool
based on REAPR [16] for automata computations on FPGA
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tested extensively on a broad set of benchmarks. The main
focus of FlexAmata is 16-bit symbols, while we target 8-bit
ones. Thus, to compare these approaches, we rescaled the
bitrate according to their frequency and then doubled it to
account for symbols striding, though they do not account for
PCle overhead [17]. Besides, although REAPR reports the
power consumption, we exploited the TDP of the VUIP [44]
to compute the energy efficiency of FlexAmata, just like we
did for our solution. The resulting numbers showcase that,
even compared to an SDA approach, our solution reports re-
markable throughput and energy efficiency, also providing
software programmability. Finally, the work by Meiners et
al. [3] is the primary IMA solution that reports noteworthy
throughput but no data on power and compilation.

We now move on to what we named SPA solutions,
which provide run-time flexibility as their crucial feature.
While Brodie et al. [33] and ReCPU [25] ensure the run-time
REs change with very low throughput, the Power Edge of
Network (or PowerEN) by IBM represents the most interest-
ing related work. It exposes the software programmability
on the pattern to search and delivers good throughput,
though not reporting the power consumption.

In conclusion, the proposed approach represents a step
forward of the SPA approach with throughput close to the
top SDA but with the flexibility of changing to unseen
patterns at a faster rate than SDA.

7 CONCLUSIONS

This work presents a DSA, called TiReX, based on the REs as
a program approach. We design an optimized microarchitec-
ture for latency reduction and throughput increment against
software references such as FLEX, Grep, RE2, and Hyper-
scan. The single-core delivers performance in line with the
top software with promising energy efficiencies. We provide
a multi-core architecture to increase the parallelism level at
both the single RE and the multi-RE level while providing
an architectural model for different workloads. We show
how we reach comparable results with many state-of-the-
art hardware-based solutions, providing a high degree of
run-time adaptability of the RE. Our testing scenarios show
we can achieve a top speedup of 263x in latency and in
throughput of ~179x. Thanks to our domain specialization,
we deliver outstanding energy efficiency results that span
from 3x to 490x than state-of-the-art software.
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