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Abstract—A novel framework is introduced for the supervisory here use a broader interpretation of controllability, édasng
control (SC) of timed discrete event systems, based on Timee®i  as controllable any event whose firing time can be influenced
nets. The method encompasses both logical (markings to reac by the supervisor.

or avoid) and temporal specifications (arrival and departure . . .
times in specific markings). It relies on the construction ofa The described approach for the modeling of TDESs relies

partial forward reachability graph of the Modified State Class On the elementary framework of regular languages and finite
Graph type and the formulation of integer linear programming automata, and represents time by the explicit enumerafion o
problems to establish suitable firing time intervals (FTls) for  ticks. Both these features contribute to the state expiosio
the controllable transitions. The SC algorithm provides fa each problem, which makes this approach hardly useful in prac-
enabled controllable transition the largest FTI that guarantees . Y .
that the specifications are met, irrespectively of the firingtimes  tICE- Furthermore, due to this inherent complexity, onlg th
of the uncontrollable transitions. enforcement of logical specifications is typically addesks
(see,e.qg, [2]), although the framework can handle temporal
ones as well. Typical objectives in the SC framework are
reachability and safety,e. the requirements to reach or avoid
specific states, respectively. These can be formulated in a
l. INTRODUCTION purely untimed form, or be associated to time constraints,
The most consolidated framework for the supervisory cote enforce performance-related goals. In the usual pectic
trol (SC) of timed discrete event systems (TDESs) has begg@achability and safety requirements are addressed sefyara
proposed in [1]. In detail, an event is constrained to ocaur bfrom performance-related ones, the former at the logical
tween a lower and an upper time bound relative to its enabliagntrol level and the other at the task planning level. This
instant, the evolution of time being accounted for by a post@ractice typically yields over-conservative control p@s and
lated global digital clock, to which the occurrence of egenultimately leads to under-performing control systems.
is synchronized. The lower bound typically represents ayjel It is worth recalling that the supervisor is not in charge of
due, e.g, to communication or control enforcement issuesleciding which enabled transition must fire. Hence, if two or
while the upper bound (if finite) determines a hard deadlirfgore enabled transitions are in conflict, another agent in an
to the event occurrence, imposed by a legal specification upper level of the control architecture —the dispatcherl wi
physical necessity. Events are classified as eitiiespective decide which of them must fire. This paper does not address
or remoteif the upper bound is finite or infinite, respectivelythe problem of designing a dispatching policy, which is mare
An event can be disabled only if it is remote, by indefinitelgcheduling-like problem than a control type one. The irster
preventing it from occurring. Prospective events cannot iseader can refer to [3] for further details on this issue.
permanently disabled, as this would result in a behavior The state explosion problem can be alleviated to some extent
incompatible with the uncontrolled system (the controlen by adopting Petri nets (PNs) instead of automata, in view of
only restrict the behavior of the uncontrolled system). TH&eir intuitive and compact graphical representation dreirt
control action can also “force” an event (denoted dtsaible convenient mathematical formulation. Several modelsdase
event) to fire at a specific time instant, preempting a tick 8Ns have been introduced to describe the behavior of TDESsS,
the clock, provided that the time elapsed from its enablirgyich as timed PNs [4] and Time PNs (TPNs) [5]. In timed
is within the associated firing time interval (FTI) [1]. Noéi PNs the enabled transitions are associated with a constent t
that in the timed context the tick must be allowed to occwelay, while in TPNs the enabled transitions may fire within
unless a forcible event is enabled. In the framework of [ll], egiven FTIs, similarly to the previously introduced framewo
non-prohibitible eventsi.g., events that cannot be preventedf [1] for TDESs. Furthermore, TPNs are widely used in the
from occurrence) are labeled as uncontrollable, assogiglie literature for real-time system specification and verifmat
notion of controllability only to events that can be disablé/e [6], [7]. For these reasons, in this paper we focus solely on
TPNs, and we address the challenge of incorporagngporal
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an infinite state space. For this reason, several abstnactio Much fewer works address the design of SC laws that
have been developed in the literature, such as the State Clasforce temporal reachability and safety specifications, and
Graph (SCG) [5], with its variants (see,g, [8], [9]). The mostly in the context of TAs. A timed reachability problem
SCG aggregates infinite states of the net system in a singn be studied using an augmented automaton, that includes
node of a graph. While it preserves linear properties, sischan additional clock variable, which is never reset to zerd an
marking reachability and firing sequences, it does not pvesehence measures the time elapsed since the beginning of a run
the full state space representation, which may be a proldem f16], [18]. A standard on-the-fly symbolic algorithm for TAs
SC if specifications explicitly involving state and time rhbs typically employed for the reachability analysis. Thisahes
met. Other abstractions, such as the strong SCG, use clockthe exploration of all paths in the automaton, considerrg f
characterize state classes rather than firing domain eomistr  each path all the possible choices of times in which a state
Because of this, they yield a larger graph than the SCG, thetnsition could occur. Thus, the algorithm has to manifgua
does not preserve the finiteness property for all boundedsTPNignificant (exponential) number of zones (special polyaed
By contrast, the Modified SCG (MSCG) employs a symbolim the clock space) [18]. Indeed, the reachability algonith
characterization of the FTIs of the enabled transitionsdtaas was originally conceived for verification, and, consequyeiit
[10], [11]. This formulation depends on the time spent intthas exhaustive (it computes all possible runs of the autonmato
class [11], and avoids clocks. The MSCG allows a completdis makes it not particularly convenient to handle tempora
representation of the evolution of a TPN system and presergpecifications with TAs.
the finiteness property for bounded TPNs, provided thaticycl In TPNs, time is implicitly represented by a real variable,
sequences of null duration cannot occur (which is typicallywhich generally leads to more compact and concise models,
non-limiting assumption). Furthermore, it allows to egjily that are more amenable to dealing with temporal specifieatio
formulate the duration of a sequence of transitions as the s&or example, a basic type of temporal specification, coriegrn
of the times spent in each class along the sequence. This fagtg deadlines for the transitions of the TPN, is addressed
unique property of the MSCG is essential when addressiimg[19] without resorting to state exploration. Howevere th
temporalspecifications. For these reasons we here adopt tlesulting controller is not maximally permissive, and the
MSCG as a reference tool for reachability analysis. considered type of temporal specifications is not suffityent

A number of contributions in the literature concerns thgeneral to handle complex problems. To the best of the
application of logical SC laws to TPNs. For example, a Cdntrauthors’ knowledge, general temporal specifications hate n
Class Graph (an extension of the SCG) is proposed in [12Et been considered in the SC synthesis for TPNs.
[13], to take into account also a non-negligible delay for This paper elaborates on the results presented in [17],
control computation. This graph is equivalent to an untimegroposing a SC framework that can handle general temporal
automaton, that accounts only for the ordering of actisitiespecifications. As in [17] (and in a number of other contribu-
induced by timing bounds, while the timing structure is Jest tions), the control action operates by restricting the FTawo
that only logical specifications can be considered in thesupenabled controllable transition. This paper improves éseiits
visor synthesis. An online algorithm is used in [14] to elithb presented in [17] from several points of view:
if the logical supervisory control law can be relaxed when « A SC framework is developed for TPNs to address both
applied to the TPN, thus reducing its over-conservativenes logical and temporal specifications of a general form. The
This algorithm computes online partial MSCGs, where only  specifications include target markings to be reached in
the uncontrollable transitions are considered. successionréachability), and markings to avoidséfety.

In [15] and [16] logical reachability and safety objectives  Arrival and departure times in the target markings are
are pursued and the SC synthesis is carried out working on required to be in prescribed time intervafe(formancg
state regions, employing TPNs and Timed Automata (TA), « The MSCG is employed as a state space abstraction

respectively. The control problem is addressed by comgutin
the winning states of the modele. states which will not lead,
by the firing of uncontrollable transitions, to an undesstate.

The computation of the winning states is based on the concept

of controllable predecessors of states. Unfortunately,tthins
out to be computationally demanding.

In [17] a forward on-the-fly method is proposed for the
synthesis of maximally permissive controllers for TPNsrgua

anteeing safety. On the basis of the exploration of the SCG,e

all sequences containing at least a controllable trams#iod

leading to undesired states are extracted, and FTIs to be

avoided are determined. The merit of this approach is that it
the first to compute illegal FTIs for the controllable traitsis,

as opposed to winning states. This reduces the computhtiona

since it allows to address temporal requirements in a
straightforward way, thanks to the parametric formulation
of the firing times. The full computation of the MSCG

is avoided. Instead, the firing vectors that may allow the
system to fulfil the reachability and safety requirements
are enumerated, and based on these a partial MSCG is
constructed that encompasses all and only the TTSs that
potentially meet the temporal specifications.

The legal FTIs for the enabled controllable transitions are
computed by solving a series of simple Integer Linear
Programming (ILP) problems, that can be constructed in
a modular way from the partial MSCG.

II. PRELIMINARIES AND BACKGROUND

effort and emphasizes the advantage of using TPNs over TAs Petri nets
or finite state automata. However, the method requirestieat t A PN [20] is a quadrupleV = (P, T, Pre, Post), where

complete SCG be computedpriori.

P is a set ofn, places (represented by circleq),is a set



of n, transitions (represented by bar§re, Post € N"»*"t T-invariants of N, of this type are denoted singular com-
are thepre- andpost-incidence matriced\ denoting the set of plementary T-invariants (SCTs) [22]. The other T-invati&an
non-negative integers. Thacidence matrixs C = Post — of N. have either none or multiple firings af, and are
Pre. A marking(i.e., the net state) is a vecten € N"» that denoted non-complementary T-invariants (NCTs) and non-
assigns to each plagea nonnegative integer number(p) of singular complementary T-invariants (NSCTSs), respeltive
tokens (represented by black dots). We will sometimes use tHotice that the NCTs correspond to the T-invariantsN\of
multiset formalism)_."*, m(p;)p; to represent markingn. A Accordingly, we can partition the sét of T-invariants of V.
PN system(N,my) is a netN with an initial markingm,. asY = Yy UY; UYs, whereYy = {y € Y | yn,+1 = 0},

A transitiont is enabled ain if m > Pre(-,t). Thefiring Y1 ={y €Y |yp,41 =1}, andYo ={y € Y | yp,4+1 > 2}
of an enabled transition at a markingm yields a marking are the NCTSs, the SCTs, and the NSCTs, respectively. Any
m’ = m + C(-,t). The enabling (firing) of in m is often elementy € Y; can be constructed as a linear combination of
denotedm|t) (m[t)m’). We denote ag.(m) = {t € T | the MS T-invariantgy", ... y® C Y [22]:
m > Pre(-,t)} the set of transitions enabled at, and as

p
ne(m) = |T€(m)| and IE(m) = {.7 € {L---vnt} | tj € y:Zajy(j) (1)
T.(m)} their number and indices, respectively. A transition =1
sequence (TS} = t;, t;, ... t; is enabled at a marking provided the coefficients;; > 0, j = 1,...,p, satisfy the

my (briefly denoted asng[s)) if myglt;, )m1, mq[t;,)ma,

.., my_1[t;, ), and the effect of its firing can be compute
in a single operation using the state equatimh= m + Co,
whereo = o(s) is the firing count vector (FCV) associate
to s (0; being the number of times that transitiopn fires in
s). Accordingly, the firing ofs in m is denotedm[s)my.
We will characterize an FCV asdmissibldf it admits at least
one enabled TS.

A vectory > 0 such thatCy = 0 is called a T-invariant.
An admissible TS whose FCV coincides with a T-invariant )
produces a null net marking variationn{ = m), thus C- Time Petri Nets
taking the PN system back to the initial marking. The set of A TPN is a pairN. = (N,Q), whereN = (P, T, Pre,
transitions||y|| = {t; € T'| y; > 0} is called the support of Post) is the net structure an@ : T — R x (R U {oo})
the T-invariant. A T-invarianty has minimal support if there is the set ofstatic intervals associated with the transitions,
does not exist another T-invariapt such that||y’|| C ||y||. WhereR] is the set of non-negative real numbers. In detail,
A T-invariant y is minimal if there does not exist anotherQ(¢;) = (I;, u;) for each transitiont; € T', where0 < [; < oo,
T-invarianty’ such thaty’ < y. A minimal-support(MS) T- u; > I; (u; may also bex). Transitiont; may (must) fire if
invariant has minimal support and is minimal. The set of M§ has remained logically enabled uninterruptedly for atske
T-invariants is finite and constitutes a basis: any T-iraatrcan [; time units (foru; time units).
be obtained by linear combination of MS T-invariants [21]. A pair (N,,mg), where N, is a TPN andm, is the

A marking m is reachablein (V,m,) if there exists a marking of N, at the initial time instanty, = 0, is called
TS s such thatmg[s)m. The setR(N, my) of all markings a TPN system A TPN evolution is defined by d@me-TS
reachable frommy is thereachability seof (N, mg). Aplace (TTS), namely a sequence of pairs (transition, time inytant
p; € Pisboundedifdk > 0s.t.m(i) < k,Ym € R(N,mq). sr = (tiy,71)(tin, 72) - (tin, ) € (T x R{)*, where 7;

Jollowing conditions: i) all elements of are integers, and ii)
Un,+1 = Zi.’:lajyfftll = 1. It follows from condition (i)
O}hat theo; coefficients must be rational numbers.

The SCTs ofN, corresponding to admissible FCVs of
(i.e.such that there exist at least one enabled TS taking the PN
system fromm to m;) are nameddmissibleSCTs and are
collected in the seYy* C Y;. The details of their computation
are discussed in Section IV.

A PN system is bounded iff all its places are bounded. indicates the time whety, fires,j = 1,...,k, andr; <7 <
N _ _ - < 1. The enabling (firing) ofs, at the initial marking
B. Firing vectors and T-invariants my is briefly denotedmyg|s,) (mg[s,)my), my being the

Given a PN systemN,m,), where N = (P,T, Pre, final marking reached. We denote &s,) = t;t;, ...t
Post) and a target markingn,, one can define @omple- the logical sequence of transitions associated withand as
mentednet [22] N, = (P, TU{t.}, Pre., Post,.), where the o = o (I(s;)) € Nt the corresponding FCV.
auxiliary transitiont,,, .; = t. is connected to the places of A marking m is reachablein (N.,mo) if there exists a
the original PN as specified by the additional last column fTS s, such thatm[s,)m. The set of all markings reachable
the pre- andpost-incidence matricesPre. = [Pre m,] and from my is thetimed reachability sef2; (N, my). Note that
Post. = [Post my). As a result, the incidence matrix of R-(N-,mo) € R(N,mg), N being the untimed version of
N. is given by C.. = [C (mg — m,)], which implies that if N [20].

t. is fired inm, the system goes back to the initial marking A TPN system(N;, my) is boundedif there existsk > 0
myo. Indeed,m; + C.e™*) = m, + (my — my) = my, Such that for allm € R.(N.,mg) m(p) < k ,Vp € P.
wheree?) is the jth versor of the coordinate space. Then, Blotice that the boundedness @V, m,) is only a sufficient
necessary condition for the reachability.f;, from m, in N condition for the boundedness OV, m,).

is the existence of a T-invariant of, with a singlefiring of ¢... In the rest of this paper we make the following assumptions.
The corresponding FCV foN is trivially obtained removing « (Al) Single server semanticRegardless of the current
the n; + 1 entry from such T-invariant. enabling degree, a transition may only fire once at a time.



Hence, each transition represents an operation that can be c gfgf; .
executed by a single operation unit (a single server). = i3
o (A2) Enabling memory policy23], [24]. A transition ts AL, 2]
has no memory of any previous enabling. if it is
re-enabled after being disabled by the firing of other o| TEhEEEEM L,
transitions, the period of time during which it has been Mg = p*ps
enabled before is not considered. ta, B30 [1, min(2-4y, 5)]
e (A3) For each T-invariant of the TPN, there must be at
. P . 0< 0-A1=A3< B, < 2-A1-A3
least one transition; in its support withl; > 0. In other G = P
words, the system canngt (.i'XeCL-Jt.e idle loop$ ime. o 800 (MO, G009, 2- -]
The state of a TPN system is identified by the pati, =

. . C =
(my,~,), Wwherem,, € N"» is a reachable markingy, € d m7 = 2

(RE)"=m+) is a vector associating to each enabled transitiqgiwg 1
under m,, the time elapsed from its enabling. Obviously, =
i < u;. Notice that the state depends on the timdoy

way of ;, and, as a result, the set of states is infinite. ThRe system enters;,, but must fire not later thaa time units
initial state of a TPN system at the initial time instantis  4fier that same instant, whatever that instant might be.
denoted bySy = (1mo,y,) wheremy is the initial marking e \MsCG is a directed graph where the nodes are the
andyp,; = ,O’ Vi € L(mo). classes and the edges are associated to transitions. Amiragitg
Alternatively, one can represent the state of a TPN systeéage from classC, = (my,©y) is labeled with a pair
as Sy = (mx, &), where®y is a set ofne(my) inequaliies , °A )1 wheret, € T is the transition whose firing causes
likg i < uy, Vi € Ie(mk)' The generlc_lnequahtgf < @i < the exit from clas<Cy, and A represents the total time the
u; means that transitiosy may (must) fire atmy; only after gy gtem stays iify,. Notice thatA, is common taall outgoing
I¥ (beforeul) time units have elapsed, unless another enablggges fromCy. In an edge labeled;, Ay,), A, must belong
transition has fired meanwhile, disabling In particular,/* = to a specific FTIIF = [L¥,U¥| wzh’ereL,’? — max(0, 1¥)
H}f‘x{o’li =i} andui = u; — ;. Obviously,lf < 1; and UF = minge; (mk)EUZ)- The notationC;, [tiz> Cjis used to
ui < u;, the equalities holding only at the instant whens  yenote a class transition fro, to C; by firing t;. Occa-

enabled. o sionally, we will denote asC}, (Cye) the set of predecessor
Notice, finally, that not all the enabled transitions may aQsuccessor) classes 6f, in the MSCG.

tually fire in a gi\lien state, since a transitigreannot possibly 1 jjjystrate the notation and some basic concepts reggrdin
fire beforet; if I > uj. Denoting asle(Sk) C Te(mx) the e MSCG, consider the portion of a MSCG depicted in

MSCG example.

set of transitions that can be fired #, one has that: Fig. 1 (taken from [10]). Each node represents a cl&&g),(
T.(Sy) = {t: € To(my,) | 1F < min (u’;)}. ) and contains a markingnt;) and one inequality for each
j€le(my) - enabled transitiond;), expressing the allowed FTI. Each edge
accounts for a class transition, as a consequence of thg éfin
D. The Modified State Class Graph a transition. For example, if; fires in C; the system enters

The notion of state as introduced in the previous subsecti%qniw ?aSShC& t;he trfi[msnmnt firing I\?ctt_:ursthatt a t|mA1t
is not amenable to the construction of state graphs repl'ragenre ative to when the system enter€yl. Notice thatts canno

explicitly the dynamics of the system, unless a suitabléest ire earlier than} (d_ue to its lower bound), but must not fire
aggregation is carried out. Indeed, when a transition firesna ater than2, which is the upper bound for the other enabled

stateS, — (my, ®,) is reached, with a new marking. Fromtransmontg. In classC3 a new transitiont(;) is enabled, while

then on, the mere passing of time before a new transitibh remains enagled.ngcal;]se _Of th'?’ thed Fle of_the I_a'FterI
firing modifies the state, by eroding the time bounds of thtgansmon IS reduced by the time elapsed from Its origina
enabled transitionsd; is changed, whereas:; stays the enab]lng B1), and.|.s th.ereforqo.arametrlc In general, thg
same). As a result there are infinite states associated to ?I‘?Qd't'on.s for the firing time variablea can be parametric
same markingm,, each of which specifies the FTls for theand nonlinear (due the presence of the min and max operat_ors)
enabled transitions relative to tspecifictime instantin which __ 1hanks to the fact that the MSCG represents explicitly
it has been reached. The MSCG [10], [11] employs the concdfirough theA,. variables) the time passed by the system in
of class to aggregate the infinite states of the TPN systéarﬂCh class, one can stralghtforwar(_jly expressdl!natlon of
associated to the same reachable marking. More in det&jSeqUeENCce as the sum Qf the variables ass_oua_lted t‘? the
a classC;, = (my,©;) is a pair composed of a reachabl&lasses in the corresponding path. Such duration is suloject
marking m, € R, (N,,mo) and a set of inequalitie®, set of constraints on th&, variables expressed on the edges

associated to the transitions enabledhat. Differently from ofdthe Sa'gs path. Trgs featulre of ,tfr_'e MSCG ;15' Essqntlal In
®,., these inequalities define the firing timing constraind'der to address timed control specifications, whic ultertya

relatively to thearbitrary time instant when the system enters | . _ _ _
In the original version of the MSCG, as introduced in [10], abél

. ko
'n the class. For.examplé{f < < U 'nd|ca_tes t_hati may  associated te; is also employed. This label is omitted here as we are dealing
fire only afterl¥ time units elapse from the time instant whenith unlabeled nets.



involve the duration of sequences. time-varying control function, which is implementable as a
restriction of the firing regions associated to the coratd
IIl. PROBLEM STATEMENT transitions enabled in the current marking.
Definition 1: Let S, = (m, ®x) be a state of the TPN.

L _ . The control action is a time-dependent function of the syste
Temporal control specifications can be formulated in Va'Olétate]-"(Sk ) = &, where

ways, e.g. by logical clauses involving markings and timing ) R
conditions. We here adopt a reachability-oriented apgroiac ), = {If <@ <af,Viel(S)},
which the specification prescribes that certain markingstar with lZ-“ > F and i < ub (Zf — ¥ andd* — u* for the

A. Control specifications

be V'S't.ed N a given sequence, ac<_:ord_|ng to specific tenhloo{razlinsitions inT.(Sy) that are not controllable). u
constraints. This kind of specification is amenable to aantr This formulation encompasses both control actions pro-
problems that are naturally posed in a reachability-oeiéntposed in [1]:

perspective, as is often the caseg. with manufacturing

systems, robotic and logistic systems, aerospace systems. . ;
We formalize the control specifications by means of a chen_g;e contrtol. "?‘ﬂ?,f'(in F,?Tp;e;ely d!{sabkgt_s th

Generalized Timed State Sequence (GTSS), defined as ah orcible events: 1l = u; = o for a transitiont;, then

ordered list of 4-tuples of the forth%;, .7;, I, IP), where: transitiont; must f'r_e exactly at t'mek +9. _
The net system obtained by applying the control function

« thetarget marking set?; C R,(N,, my) is a non-empty . . .
set of reachable markings of the TPN system; F 1o (N-, myo) is denoted by N-,mo, 7). It is obvious that
Rr(Nnmo,]:) c RT(NT7mO)'

« the forbidden marking set#; C R,(N,,myg) is a
(possibly empty) set of reachable markings that must be
avoided in the process of reachitg; C. Control synthesis overview

« the absolute arrival time interval* = [I4,u#!] defines ~ When the control action is computed in a stafig, a
the absolute time constraints within whiclf; must be worst-case scenario must be assumiegl, the FTIs of the

« Prohibitible events: ifi* = 4% = oo for a transitiont;,

reached, with € R, uf! € Rf U {co}; enabled controllable transitions must be defined so that the
« the absolute departure time interval? = [I”,uP”] GTSS can be satisfied for all possible firings of uncontrddiab
defines the absolute time constraints within whiéfy transitions. This ensures that the system can be made ¢wvfoll
must be left, withl? € Rf U {co}, uP € RE U {o0}. a legal trajectory at all times, provided that the conttulba
Accordingly, a general form of an-step GTSS is transitions enabled % are fired within the prescribed FTls,

and that subsequent firings of controllable transitionssfyat
the conditions calculated a,.

L o e . 3) This implies that all possible evolutions of the system
where the initial 4-tuple indicates the initial marking’( = 416 accounted for in the computation of the control action.
{mo}), the initial time (), and specifies a departure UMerccordingly, the search for all TTSs moving the system from
interval. For the consistency of the sequence, the [}'m”aﬁhe marking to another assigned one plays a key role and must
cgnstramés must obey the folloj\évmg cogdmoglé = liA’ be performed as efficiently as possible. This information ca
uft < upydo= Looom,and G2y < 1P uity S Ui e retrieved from the MSCG of the TPN, but the computation
i = 1,...,n. In the following, we will say that a GTSS f the full MSCG is often a demanding task (impossible, in
the unbounded case). It is also unnecessary, as the pae of th

9= (301@77—0710[))($17yla‘[i41]1£))"'($n7yn7IA ID)

n’n

is time-boundedif «2 is finite. It is also possible to ex-

press through a GTSS the purely logical requirement thg{sc that is relevant to the given GTSS is generally much

a markingm; is reached (at any time instant) by setfing gmajier. For this reason, we build gartial MSCG (denoted

g = (mo, @, 70,")(mMi, 3, -, ). _ PMCSG in the following), that encompasses all legal TTSs.
A legal trajectory must be coherent with the sequence ¢his greatly reduces the computational load associateteto t

marking sets to be reached (and avoided) according 10 th&eration and processing of the MSCG. The allowed FTIs of

associated temporal constraints. To enforce a GTSS these myjq ¢onirollable transitions are calculated based on thiphy
exist at least one TTS that results in a legal trajectory. We W 156 in detail, a three-step procedure will be introduced to
denote a GTSS asompleteif a TTS is executed such that all .5icylate the control function in a given state:

temporal and logical requirements of the GTSS are fulfilled. . Step 1) Structural analysis is applied (to the untimed net)

to find the setY;* of admissible FCVs corresponding to
B. The control action TSs leading fromm;_; to m;, for each pairm;_1, m;)
The control action does not consist merely in the full in %1 x %, i=1,...,n.
disabling of a controllable transition, but may also resnlt « Step 2) The PMSCG is constructed, describing only
the disabling of a transition for a fraction of its allowed the TTSs compatible with the admissible FCVs found
FTI. To express this partial disabling action, we introdace at the previous step. Paths leading to forbidden states

or incompatible with the temporal specifications of the
Simpy 2o and & ngleLpomt absclte tme reers o] e A ao  CTSS are pruned posterior
m, - T T. . .
use the notatiori;“ = (IZ.D = .) in the absence of temporal constraints on ® Step 3) The PMSCG is used to determine the necessary

the arrival in (departure from) a marking set, for brevity. restrictions to the FTIs of the controllable transitions



enabled in the current state, in order to guarantee thalgorithm 1: Online control algorithm
timed specifications in the_worst case. To _this aiM, Input: (N,, mo), So = (mao, To), 0, g

each path of the PMSCG is analyzed individually tQ Sc.. = (mecurr, Ceurr) := So; Tewrr := To;
calculate the time constraints it yields on the controtablz forall ¢; € Te(mcur) do

transitions to ensure that a) the arrival and departufe if t: € T. then .

time interval specifications for each way point are mef, L computes (Seurr, Teurr) = [I7*"", 47"""];
and b) transitions taking the state of the TPN outside 't a solution does not exishen exit

the designed PMSCG cannot fire. Then, all path-specific | €lseli™"" = [i*""; 47" = ui*"™";

time constraints for a controllable transition are merged Feed backF(Scurr, Teurr) to the controller;

to determine its allowed FTI. 8 while g is not completedio
9 if obs = (Tobs, Tobs) 7 0 then
// new set of events observed

A crucial point concerns thiéming of the control algorithm, 10 Sprev = (mpr-.ezu Lprev) := Scurr;
i.e. when the outlined procedure should be invoked. Sin?e Z’Tb”::;z’;l?b )
the control function cannot affect the firing of uncontrbla I m‘;;’ L Coue
transitions, it is only computed when the system enters;a Tewrr = Tobs’
class where at least one controllable transition is enabled forall ¢ € Te(mcurr) do
While the system remains in the same class, time passes,but it t € Te(mprev) \ Tobs then
the constraints on the controllable transitions do not gean*’ [ Feurr(t) := Tpreo(t) + (Teurr = Tpreo);
Therefore, there is no need to invoke the procedure ag#in | elselcurr(t) :=0;
until a transition fires. While in principle it could make sen 19 Securr := (Meurr, Leurr);
to anticipate the computation of the control function befop? forall ¢; € Te(mcu,r) do
the actual enabling of a controllable transition, this optis % if ¢: € T then o
not pursued here, since it generally yields over-consieat™ L (iompmeft(Sc“”"T““”') = [ e
conditions. Indeedbefore an uncontrollable transition fires,23 | elseli"™" =7 ai = ui
one has to account for the possibility that this event wilk Feed backF(Scurr, Teurr) to the controller;

occur at any time in the corresponding FTI. Howe\agter -
it has fired, the remaining part of its FTI can be disregarded.
In view of this, the constraints considered previously ie th
computation of the control action can be relaxed, possibly IV. STEP1: COMPUTATION THE FCVs

resulting in larger FTIs for the controllable transitiorisat The f fth d . . .
must yet be fired to fulfil the GTSS, compared to wha e first step of the procedure consists in enumerating

computed previously. This justifies the recalculation o thhe admissible FCVs, associated to sequences leading from

control action after the firing of any uncontrollable traiusi g_mlarklng mli_'l te' '%f_l rt]o atr:n?rtlﬂn%ﬂ?i < <, for
(provided that at least one controllable transition is éedin  * ~ b 0" Is trivial to show that the following property

the resulting state). holds: . .
Property1: Let s, be a legal TTS according to a given

Algorithm 1 gives the details of the online implementationGTSSg. Then, the TS = [(s,) satisfies the untimed version
the actual computation oF (Sey:r, Teurr) being addressed in of the reachability and safety requirements expressegl Il
the following sections. The procedure requires a TPN (withhis provides a necessary condition for the TTSs of interest
its initial state and time) and a GTSS. If a solution exigtg, t whereby the analysis of the timed system can be restricted to
algorithm follows the process evolution and recalculates tsequences following the mentioned FCVs. Conveniently, the
time firing constraints on the enabled controllable trams# latter can be found by structural analysis of the untimed net
at every class change up to the completion of the GTSS. Theseoutlined in Section II-B.
constraints are fed back to the controller, that will adtual
decide what transition to fire and when.

A. Finiteness of the FCVs

Remark1: In the considered timed framework, multiple The following results establish the conditions for whick th
events can fire simultaneously at timg, in a stateS,,., = number of FCVs that must be computed is finite, and provide
(Mprev, Dprev). Denoting with obs = (Tops, Tobs) the set an upper bound for the number of transitions firings they
of simultaneous event occurrences, whétg, is the set involve.
of fired transitions, the resulting system stateds,.. = Theorem1: Let (N,,m,) be a TPN system abiding by
(mcurrarcurr)a where Meyrr = Mprev + CUObSv Oobs = a.SSUmptionS Al1-A3. Let aISS-,— be the set of TTSs Ieading

aobs(Tobs) denoting a firing vector having an entry equal térom m,, to a target markingn, within a time 7,,4,. Then
1 for each transition inl,ys. As for Ley,r, it is important the setS = {s | s = i(s;), Vs, € S, } is finite. [ ]
to remark that the timer of each transition enabled under the proof: If the setF = {o | o = o'(s),Vs € S} of FCVs

previous markingn,,., and fired atr,,; must be reset if the corresponding to sequencesdris finite, the thesis holds. Let

transition is still enabled under the current marking...-, N be the untimed version oi,. Then, F = {o | o(j) =
since it has been immediately re-enabled after zero tinl. () j =1,... n,,Vy € Y1}, whereY; is the set of SCTs of



the complemented neV.. As a consequencé,F'|| = ||Y1||. an efficient enumeration scheme to find all the relevant FCVs,
As explained in Section II-B, any elemegtc Y; is obtained based on the following two features: i) an ILP formulation
as a non-negative linear combinatign= 3y’ + y” of the MS to characterize the admissible FCVs of maximum lenfth

T-invariants [22], wherey’ = i?(?:l aj,y) and and ii) a Branch & Bound (B&B) procedure that partitions the
- ot prpa solution space once a solution is found, introducing siétab
Yy = Z o,y + Z aj,yt?) ) constraints to exclude previously found solutions. Notluat,

differently from the approach of [25], where the existen€e o

) ) fireable TSs compatible with the calculated FCVs is verified
where a; > 0, j = 1,...,p, With p = po + p1 + P2, 3 posteriorj here the admissibility check is integrated in the

ym = {y.j = 1.....p} is the (finite) set of MS enymeration procedure, to avoid carrying over useless FCVs
T-invariants of N, and y) € Yy, for j = 1,....p0, tg the —more costly— timed analysis.

y9) e vy, forj = po+1,...,p0 + p1, y9) € Y, for

j = po+p +1,...,p. The coefficients in (4) must also ) ) o
satisfy the conditior}_”_, Of.jyv(i)+1 = 1, which implies that B- An ILP formulation to characterize admissible FCVs

Jj1=po+1 Jj2=po+p1+1

a; < 1/?/7(1'&1’ j=po+1,....p. As a consequencg” is An admissible FCVe is necessarily associated to an SCT
bounded. A bound;” can be computed as: of the complemented nef € Y1, by way of the relatiory =
W) [o 1]7. Now, consider a generic T§;,,...,t;.) of_length
7/ = max Y ’ — 1. (5) K, wherej-l, .o JK € {1,}.{..7@}. The corrgspondlng FCV
J=potlip ) can be written ar = >°,- | €Ux). Expressings as a sum
7 =1 (6) of versors automatically ensures the integrality of veajor

Furthermore, it can be used to enforce the fireability of the
On the other hand, the coefficients;, ; = 1,...,p0 corresponding sequence by setting the following congsain

can exceedl. This implies that there exist virtually infinite

non-minimal SCTs, since the coefficients; associated to

NCTs are not bounded. Consider.,g. the j*th NCT, with

1 < j* < po, and assume that the marking in the net is

sufficient to enable once the execution ®f"). Since, by =~ Assembling the previously developed expressions we can

Assumption A3 the TPN does not admit T-invariants witibtain an ILP formulation characterizing the admissiblé/BC

all transitions fireable in zero time, each sequence inmglviinvolving not more thank transition firings solving the

the complete firing ofy’") requires a minimum tinfe say reachability problem fromm, to m:

7;+. Similarly, each sequence involving the complete firing of K

h-yU"), with h € N, will require at leasth - 7 time units. minimizeZZe(@

Then,aj« < Tyaq/7j+ . If the net marking allows &-enabling e =1 ’

of the NC_T, the bound is correspondingly increa_sed by a faCtQubject to

k. Now, since alky;, j = 1, ..., po are boundedy’ is bounded

as well. A bound ony’ can be calculated as

i—1
mo—l—C’Ze(j’“)ZPree(j?‘), i=1,....,K. (8)
k=1

mt:mo—i—Ca

Po ) . (k)
g =Y k), @ T2
wherek; is the enabling degree of thigh NCT. [T] => ayV

Finally, sincey is bounded, there exist only a finite number
of vectors inF’, and the thesis follows. [ | izl _

Theorem2: Letg be a GTSS, andN,, m() a TPN system mg + CZ e® > Pre e 1=1,..., K
abiding by assumptions A1-A3. Let alsf be the set of legal k=1
TTSs according to the GTSS. Thenyifis time-bounded, the ol 2k
setS = {s|s=1(s;), Vs, € S;} is finite. | Zeg.Jr)gZe;)gl k=1,... K-1

Proof: The boundedness gfimplies thatu? is bounded 7=! =1
for i = 1,...,n. Then, by the previous Thm. 1, the numbeeg-k) e {0,1} j=1,...,ny, k=1,... K
of sequences taking the net from a markimg_, € .%;_; to a; >0 j=1,...,p
a markingm; € %, i =1,...,n, is finite. [ | '

In view of Thm. 1, the maximum number of transitionin the previous formulation, the sequeng®, . .., e(*) iden-
firings required to get from a markingn;_; € .%;,_; to a tifies the sequence of transition firings’) corresponds to the
markingm; € .% is bounded byK = ||¢/||, + ||g”||; — 1, kth firing in the sequence). To allow for sequences shorter
wherey’ is calculated withr,,.,, = u*. Then, one can apply than K, some of these vectors can be null (no transition
fired), while those corresponding to actual transition §isin

A conservative value for this bound can be obtained by taking are versors. To avoid having multiple equivalent solutions
maximum of the lower bounds associated to the transitionthénsupport

of the T-invariant. Depending on the structure of the nets leonservative (corresponding to the same firing Sequence)' null vectars f’”
bounds may be defined. forced to be at the end of the sequence. The cost function



ensures that the solutiom will be the admissible FCV with  « Only 7‘1””“ can include solutions that are element-wise
less transition firings among all the solutions. In the s&que greater than or equal t9* (non-minimal solutions).

will denote the previous ILP formulation d$, = I1(f,C), f In view of the previous partition, if a solution to the ILP
denoting the cost function ari@ithe set of constraints. The setproblemI1, = II(f,C) is found, corresponding to a firing
of vectorsy = [0 1] satisfyingC equalsY™* = Y* N {y € vectoro*, further solutions can be sought for by addressing
Y30y < K} the following modified versions of the same problem:

11, = H(f,C A (0'1 < 0'{)),

I, =TI(f,C A (01 > 07) A (02 < %)),

,, =1(f,CA(0j 2 0%, j=1,....;n0 = 1) A(on, <0},))
Hpp1 = I(f,CA(0; > 0F,5 = 1,...,n) A (Z?;l oj >
Z?;l ‘7;‘))-

To complete the enumeration, the partitioning procedure of
Property 2 is applied again for each of the generated sub-
problems that admit a solution, thereby configuring a tree
of sub-problems stemming fronhl, each one associated
Fig. 2. PN of Example 1. to a specific subset of}*. Notice that all nodes of the

Considere.g.the PN system depicted in Figure 2 [25], for.tree that include a constraint of the typg < oj can be

. - immediately classified as infeasibledif = 0. When all leaves
which we want to solve the reachability problem from, = . . .
991 t0m, — 2140 With K — 25. The set of MS T-invariants of the branching tree correspond to infeasible sub-problem
P1 DM = P11 o ms the enumeration is complete. The enumeration procedure is
of the complemented net is given W™ = {y,, v, Y3},

wherey, —[00111010000]%, g, — 11000110000/, Summarized in Algorithm 2
and y; = [00000001111]%. The first two are NCTs : : : :
(their last element i®) and correspond to the T-invariants Algorithm 2: Algorithm EAFCV: Enumeration of admis-
of the original PN. The last one is a SCT, corresponding &2l FCVS frommy to m, with at mostx’ firings.

a (non-admissible) FC\&5 = [0000000111]7 satisfying '(QP‘“: N}v/’*"ov my, K

the required marking variation. Solving the resultiig yields . Dg;i%lgﬁo-

the non-MS SCTy, = y; + 2y, + ys. Indeed, the shortest , 5 ._ (Ho)’§ // Init. list of open problems

TS achieving the wanted result contaih transition firings, s Y* := @: // Init. solution set

e.g. (t3 titotrtitatyatotstgtiotrtrts tG). In other words, to 4 while A # () do

reachm, one has to followos, but in order to enable the 5 | 1 =(/, *C:) ::TPOP(A);

sequence the necessary tokens mustbbeowed through izflyf ;[éanu||11he:n:/s/0|\;e(l;[());lution st

suitable executions of the T-invariants of the original RS][ Y=Y U {y)

for j:=1ton; do // Branching

C. The branching scheme 10 L C'=CA(ok>0of,k=1,...,5—1)

. . . A (oj < 07);
Using the previous ILP formulation as a cornerstone we cgn A= (A, (f,C)):;
employ a B&B method to enumerate the element¥of The C = C Aoy >0t =1,... m)
B&B method operates by partitioning the solution space into A (i@zlgj > 27711 ;,;);
smaller regions that exclude all previously fo_uand solusion 3 A= (A, (f, C/)_); J_
Property2: Assume thatYy* # @ and letY, C Y{* be -

a generic non-empty subset. Let algd € Y be such that 14 "eturn Y,

there does not exigj € Y5 \ {*} such that|y||; < [|y*]].

© 0 N o

ThenY? can be partitioned as: Algorithm 3 uses the EAFCV procedure to calculate the
Y9 = {y*} U 7‘11’1 U UMy ?lll,nrﬁ-l admissible firing vectors for a given GTSS.
where V. STEP2: COMPUTATION OF THEPMSCG
. 7'11"7 ={y ¢ Y‘f >y l=1,....—-1)A(y; < The second step of the procedure outlined in Section I1I-C
yi)h =1, consists in the computation of the PMSCG representing only
R ?‘1“”“ ={y e ?‘ll | (yj > v5,7 = 1,...,m) A the legal trajectories of the system according to the GTSS.
oy >y} ’ m Algorithm 4 summarizes the procedure.
Noticéi[hat' = The generation phase explores all and only the TTSs com-
. Yclz-,j m?lz,z o gl =11 AL patible with the admissible FCVs found in Step 1 for each
« None of the seté_/‘lw, j=1,...,n + 1 includesy* 4A list A is an ordered set of elements = (A1, A2,...,As). Thepop

(since either one element gfor the sum of its elements function extracts the first element of a list, reducing ithe= (A2, ..., Ag).
f d be diff Ut ith I Two lists A = (A1,...,Ag) and M = (u1,...,p5) can be appended
are forced to be different) or a solution with a smallefs foiows: (A, M) = (Ats-eey Apspits - pu). Finally, an empty list is

sum of elements (by assumption). denoted ag).



Algorithm 3: Algorithm FCVS: Calculation of FCV sets.

Input: N, mo, K, g

Output: V;*,i=1,...,n

for : :=1ton do

Y =0

forall mn; € -1 do
forall meng € % do

E/ifadd = EAFCV(N7 Mini, Mend, K),
L Y=Y u

o 0B W N

* .
i,add

7 if Y;* =0 then exit;
| // g not realizable

g return X, i=1,...,n;

Algorithm 4: Algorithm PMSCG: Computation of the
PMSCG

Input: (N, mo), So =
Output: G, Cunsafe
1 O := {max{(), li — I‘O(ti)} < (f)z <wu; — Fo(ti),
Vi € Ie(mo)};
Co :=(mo,0O0); // initial class
¢ :={Cov}; // classes (nodes of the MSCG)
o :=1; // arcs (edges of the MSCG)

(m07]-_‘0) 11/21 :1,...,77,

paths have been computed, the PMSCG is pruned from all
loose ends (see Algorithm 5), by iteratively removing the
forbidden classes and their exclusive predecessors.ital
facilitate the final step of the procedure, Algorithm 4 tags a
“unsafe” any class in the PMSCG enabling a transition that
moves the system outside the graph.

Remark2: Notice that each FCV can be associated to many
fireable sequences. However, the computation of a sequence
from a FCV can be efficiently performed (and consequently
Algorithm 4 can be significantly accelerated) starting fram
prefix of length one and adding a new transition at a time or
discarding the whole prefix if one of the following condit®n
holds: a) the transition results not (logically or temphyal
enabled, b) a class associated to a forbidden marking is
reached, c) the temporal conditions are violated. |

While most of Algorithm 4 is straightforward, it remains
to explain how to check the existence of an admissible firing
schedule for each path of the MSCG. For this purpose we will
formulate an ILP problem that models all the necessary jmin
constraints. A generic MSCG path compatible with a GTSS
of type (3) is the concatenation af sub-paths:

Ap :=0; // list of forbidden classes
o = {Co}, i:=0;

// Graph generation

while €; # 0 Ai < n do

o O B~ W N

T=m...Tp )

~

wherem; accounts for theth step ofg. Precisely,

8 =14+ 1;

9 G =0, // termlnal classes ith step m =0Cj = Cj, == C]n1+1

10 forall C'= (m,0) € 6;—1 do o = C.; — C; L O

1 forall s; = t;, . tzK st.oi = o4(s:) € Yy do 27 Bime 7 e 7 ot (10)
12 if m[s, ) then

13 Cj, = C, Tn = Cjnn,frl =20

14 fork_ltoKdo

15 Compute (following the MSCG rules) the where(C), is the unique class in the path associatearigp ¢

classCj, = (mj,,©;,) “reachable” by
firing ¢;, from C;, _;

“o, andCj, ., is the unique class in the path associated to

m; € %, with i = 1,...,n. The generic arc fronC;, to

ij i«;’; = fcj;uu{ﬁ W b C}: Cj,.. is endowed with the transition firing in the former class
Jk 19 Ik Ik
i Dy, €L
o 'fLm/(; g_/(}\t?egv ): break: as well as the allowed FTE;, — "% C;, . Parameter
o » Ik /) 1

n; denotes the number of transition firings fr@rmy, to the end
of 7;: denoting withK; the number of transition firings of the
ith sub-path, it holds that; = K, no = ny + Ko, ...,
=np-1 + K,.

The existence of legal FTIs for each transitionzircan be
2 | if system(11) 2t A = (Ap,C ascertained by checking the feasibility of the following s&

) constraints for the transition firing times;,,..., A;
23 G = (¢,), ' "
24 (G, Gunsare) = PrundG, Ar);

// full legal sequence
20 | G =% U{Cj};

L Nn,
// Test of temporal conditions
a1 forall 71 =Cy, ---Cy, ., € G do

25 retum G, Gunsase; <> A, <ul, i=1,.n (a;)
If <Ay <uf (bo)

source-target marking pair envisagedgand collected in the .

setsY}*, i 3 1,...,n. gAIFI)these TTgs P?;fe the structuse = < Z Aje 8y sy i=loon=1 (b)

Sr1872 .. Srn, Whereo; = o;(I(sr)) €Y, i=1,...,n - k=1

This automatically ensures that all included paths willspas ZAjk + iy, > 1P (bn1)

through %1, ..., .%,. The expansion of a TTS is stopped if | ;— ’

at theith step of the sequence a forbidden marking belonging ~..

to .#; is encountered. The corresponding class is marked asz A+, <ul (bn,2)

forbidden. Each full path is also tested for the admissibili | x=1

of the temporal constraints of the GTSS and its terminalsclas LM <A, < Uir k= 1,...,n,

A ()
marked as forbidden in case of infeasibility. When all polssi § (12)
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where @,, = mingy, (m; H)U'Z;""’ﬂ and l,, = wherew isan auxiliary (real) variabley, .. .,y, are auxiliary

mitge s, (m,, B lgnnﬂ, m;, ., being the marking in class binary variables, and/ is a sufficiently large number. B
Cj,. .. Variablesu,, and,, account for the worst case
time limitations for the firing of the enabled transitionstire

terminal class of the path.
VI. STEP 3: COMPUTATION OF THE CONTROL FUNCTION

Algorithm 5: Algorithm prune: Pruning of the PMSCG

glﬁturfl:lt:G'G‘A%unsafe The PMSCG computed with Algorithm 4 includes all the
1 (%, ) ::'G; paths for which there exists at least a transition firing doife
2 Gunsate =0, that configures a legal TTS, according to the given GFSS8
3 while Ap # 0 do control solution, if any exists, has to follow one of the math
4 | C:=pop(Ar); of this PMSCG. We denote ad(C) the set of such paths
Z foralilf g?,r.eoec.%:(t)hen A = (Ar,Core): stemming from the clas§’ corresponding to the current state
; L elsep‘%zn;fe = Bunsafe U {CpT;};W ' S (where one or more controllable transitions are enabled).

/) remove C from PMSCG No;ice that the admissibility of a path With respect tp the

8 @ =¢\{C); timing constraints does not guarantee their actual obtairim
9 forall a = (C',C") € & | (C' = C) v (C” = C) do because uncontrollable transitions cannot be forced toafire
10 | & =\ {a}; specific times. In the third step of the procedure we verify if
e (€, ); there. e_xists a feasible restriction of the FTIs of the cq_mtxl?e
12 16tUM G, Conea fo! transitions that guarantees that the temporal specifitsutid

the GTSS are obtained in the worst case.(for all possible

. . o firing time schedules of the uncontrollable transitions).
Constraints ;) impose the necessary limitations on the

length of each step of the sequence, to abide by the arrivafurthermore, the control function must also ensure that no
time requirements. Indeed.™ , A, i’s equal to the time firing of a transition is allowed in an unsafe class if it caise
spent to reach clase; “Such time must be inside theth€ System to exit from the PMSCG (which accounts for

allowed intervallA — [;XZ,};]. all paths that can fulfil the GTSS). We will characterize as
! AT “unsafe” such transitions. A controllable unsafe transitcan

Constraints &;) formalize the departure time requirement - . T
of each step of the sequence, including those for the start e delayed from firing by increasing its lower bound up to the

class of the path’;. (constraint §,)). The last clasg’; value of its upper bound. If this modification makes the lower
of the ith step Wi%ll’li ] n — 1 must be left \J/\;thmn bound of the unsafe transition greater than the upper bound

the allowed time interval” = [I”,u]. Notice thatA;, Or: thedsaf_e tdransm(_)ps in the samz class, theln t.?e flrltr;g of
represents the time spentdh the undesired transition is prevented. Conversely, if thea

..+1+ The last of such constraints A lable. its fir be delaved Gl
(i.e. (b)) is slightly different, as the actual transition firing inl'@nsition is uncontrollable, its firing can be delayed ahlys

C;. . is not specified by. Parameters, anda,  are used lower bound is paramet_ri_cally dependent on the firing ti_mes
to express the most stringent timing conditions associtsﬂedof any controllable transmons_ along the path, as occutsef
the firing of the enabled transitions diy, .. Indeed, if p,, ;) ransition has been enabled in a previous class.

is violated, any enabled transition that fires will be foreed  Notice that, in the absence of controllable transitionsiglo
do so beforé?, so thatC;, ., will be left too early. Similarly, a path, one can only perform a legitimacy check on the set of
if (bn.2) is violated, no enabled transition can fire earlier thaifie corresponding TTSs, but can take no corrective action.
u?, and the class will be left too late. Finally, constrainy ( Accordingly, in the sequel we will assume that each path

ensures that the variables;, , k = 1,...,n, stay inside the includes at least one controllable transition.

time intervals given in the MSCG. The computation of the control function is based on the
Notice that constraintsb) and ¢) in system (11) are analysis of all the paths in the sE{(C). Any pathr € TI(C)
nonlinear, by way of,,,,, u,,, L]; andU/*, which are defined has the structure (9), whex&;, equals the current class.
using the min or max operator. They can be linearized usigGch path imposes different restrictions on the FTIs of the ¢
the following rules (similar rules apply for the max operato trollable transitions, to guarantee that all the specificet are

Rule 1.min(ay, as,...,aq) > b is equivalent to the set of met in the worst case.¢. for any possible firing time schedule
q constraintsa; > b, i =1,...,4q. B of the uncontrollable transitions). All these restricanust be
Rule 2. min(ay,a,...,as) < b is equivalent to the taken into account by the control function. Indeed, the @nt
following system of conditions: function provides for each controllable transition thegkst
w<b FTI that is compatible with the full set of restrictions.
ai—(l—y)M<w<a;, i=1,...,q Consider a generic path € TI(C) not including unsafe
q classes, and assume that it contains one controllabléttcams
Zyi >1 say t;, without loss of generality. The calculation of its
i=1 allowed FTIF7 (S,7) = L}, Uz'] with respect tor can be

yi €{0,1}, i=1,...,q carried out by solving two ILPs, with the following struceur
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Proof: i) By construction, each path in the PMSCG is

L} =mindj,  [U = max Ay ] associated to a fireable sequence passing by each way point
subject to: and leading the system to a target marking. It follows that if
C(r) (12) Fr(S,7)=[Lt,UL] and Lt andU_ are obtained from (12),

; ; , it is guaranteed that the controlled system satisfieshen
Aj, = L (A = U], Vie stty €Ty moving along the pathr. Now, F;(S,7) is obtained as the
where C(w) represents the set of constraints (11). Notidatersection of the FTIS[ (S, 1), V& € II(C'). Consequently,
that in problems (12) the timing variables associated to u#+(S,7) C F7(S,7), VY € II(C), which implies that the
controllable transitions are fixed (to the worst case), ahipermissivity along each path is further restricted, so that
those associated to other controllable transitions bssige satisfaction ofg is all the more guaranteed.
are free. Indeed, in a worst case scenario the minimumii) Assume,ad absurdumthat there exists a control func-
(maximum) firing time for the controllable transition is lit@d tion F/(S,7) that is more permissive thai;(S, ). Then,
by the minimum (maximum) firing time of all uncontrollablethe net systemN., my, F;) obtained by applying this con-
transitions. trol function must admit at least a TTS satisfying that

Assume now that pathr includes an unsafe clas§;, cannot be generated byV.,m, F;). Denote this TTS as
enabling an unsafe transitiap, . If ¢;, is uncontrollable, the s, = (ti,, 71)(ti,, 72) - . - (ti,, %), and letS; Sy ... Sy, be the
following constraint must be added to problem (12) to prévenorresponding sequence of states reached by the system at
its firing in Cj, : _ _ each transition firing. By constructiors;, ¢ = 1,...,k, is

lf; > ug: (13) associated to a class of the MSCG of the given net system,

but also to a clas¢’;,, j = 1,...,k of the PMSCG, since
s, follows a path that satisfieg (for some schedule of the
transition firings). Moreover, by firing, the PMSCG would
Tnove along the pattr = CC;, 0y, ... Cy,.

Then, it must be possible to move alondor any possible

Constraint (13) implies that the lower bound1gf is strictly
greater than the upper bound 6f, i.e. the transition that
should fire inC;, according to the considered path. Thi

guarantees that;, will fire, and ¢;, will not. Conversely, if

ti, is controliable, the constraint takes the form: firing time schedule of the uncontrollable transitions with

w* > ydr (14) violating g, and this would imply that theF;"(S,7) =
_ o o [Lt, U] D [LL,U!], which is a contradiction, ag! and
since the controllability of;, allows us to defer its firing at U! are obtained from (12). m

most until its upper bound.

Clearly, the control design problem for paththas a solution
only if the resulting FTI is not empty,e. if Lt < U, In
the negative case, there is no feasible FTI of the contrellab L
transitions that meetg, and = must be further pruned from Thg pr-oposed approaph guarante_es the optimality of the
the PMSCG using Algorithm 5 and removed frof(C) s_oluu_oq (in terms of maximal permissiveness), but at theesa
(notice that this also implies that a further constraintygfet time it is flexible en_ough to offe_r the user a whole range of
(13) or (14) must be introduced to account for the additionEE‘de'Oﬁs bet_ween Its computa_tlon_al Ioa_\d and the quality o
unsafe class). Once all unfeasible paths have been remov a,solutlon, n °Tder tq deal with t|ght-t|m_ed problems.eTh
then the overall control function for is simply obtained as next wo ;ubsectpn_s discuss th.e complexﬂy of the approach
Fo(8.7) = Nyeriey Fr(S.7). Then, either the intersection@nd Possible heuristic compromises, respectively.
of the obtained FTls is non-empty, in which case the overall
control design problem has a solution di¢l”) contains only A. A discussion on complexity

paths satisfying the given GTSS, or the intersection is gmpt The SC design requires a reachability analysis in a timed
and there is no solution. context, that can be restricted, but not avoided. This is the

Finally, if more than one controllable transitions are dadb main source of complexity of the methodology, which can be
in the current class, one can calculate the control fundton partially mitigated if a heuristic trade-off between comxity
each of them, and then leave to the controller the decisigRqg optimality {.e. permissiveness) is adopted, as suggested
regarding which transition to fire and when. in the next subsection.

Definition 2: Let F(S,7) and F7(S,7) be two control | et us consider Algorithm 1 first, regarding the computation
functions for the transition at current statés. Then, 7/ (S,7)  of the control law. This computation is carried out when a
is more permissive thai#? (S, 7), if 7/(5,7) 2 F7(S,7). B new class is reached that has at least an enabled conteollabl

Theorem3: Given a TPN systen{N:,m,) and a GTSS transition (so that a decision has to be made concerning its
g, let 73(S,7) be the non-empty control function for thefiring). The calculation of the control law determines the
transitiont at the current stateS, computed asF(S,7) = allowed FTls for the controllable transitions. To this awot
Nrern(oy F7 (S,7), whereC' is the class associated band |p problems are solved (see equation (12)) for each path in
Fr(S,7) = [LL,UL], Lt and UL being obtained from (12). the PMSCG going from the initial class to the target class (or
Then, it holds that classes). The number of such paths is an intrinsic feature of

i) (N.,mg,F;) satisfiesg; the considered instance. These ILP problems have a worst-

i) F:(S,7) is maximally permissive. B case number of constraints and binary variable®{mn,,n:),

VII. COMPLEXITY AND FLEXIBILITY OF THE PROPOSED
APPROACH
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that is bilinear with respect to the length of the path)Xand tion II-B. This results in a reduced PMSCG, which can be em-

the size of the net; is the number of transitions). Thereforeployed to find a feasible solution more quickly. Of course, as

their solution is in general a manageable task. long as some legal trajectories are neglected the solutiomd
The construction of the PMSCG with Algorithm 4 correwill not be necessarily maximally permissive. This paves th

sponds to the actual reachability analysis. As it is inhiéyenway for computation-saving strategies, where the PMSCG is

exponential, it can pay huge dividends to limit its extensis constructed incrementally (even one path at a time) with the

much as possible, avoiding the generation of the full MSC@im to find gradually improving feasible solutions. Obvilyus

To this purpose, two pre-processing steps restrict thettendf protracted to the point of including all legal trajectesiin

of the potential sequences (based on the time limit impostéte PMSCG, this strategy will eventually provide the same

by the specifications), and the set of firing vectors consisteoptimality guarantees of the presented approach.

with the potential sequences (based on structural anaysis

on the reachability objective). The former step enumerttes VIIl. CASE STUDY

MS T-invariants of the complemented net, the latter the non-

Consider the TPN tem depicted in Fi 3 modelli
MS SCTs, and consequently the FCVs: only the sequen(Ee onsider e system depicied In Fgure s modeting

ssimple material handling system with two AGV systems

%ubnets on the left) and a workstation (subnet on the right)

compatible with these FCVs are included in the PMSC
While the former step is relatively easy and admits efficie
algorithms, the latter deserves some further remarkseShe

non-MS SCTs are finite (as explained in Section IV-A), the
second step could be sped up by neglecting the admissibiflity

the FCVs and obtaining the non-MS SCTs by simple algebraic P,
combinations of the MS T-invariants (see equation (1) in
Section 1I-B and Thm. 1 in Section IV-A). g

However, the resulting PMSCG would include spurious
paths, increasing the cost of thiened reachability analysis,
which is much more computationally intensive. We therefore
prefer to apply a B&B process to check that there exists at p
least one admissible transition sequence for each FCV used ‘
to build the PMSCG. This corresponds to anticipating part
of the reachability analysis to the second pre-procesdsem s
increasing its computational load to reduce that of thedthir
one. The rationale is that a purely logical reachabilitylpsia
is generally faster than the corresponding timed task.

The computational advantage guaranteed by the two lim-
itations (sequence length and structural analysis) iscdiffi Py
to quantify precisely, as it is case-dependent. It is celgtai
significant for control problems with a very large reachiépil Fig. 3. TPN system of the case study.
graph and a short time horizon. Notice that, for unbounded
systems, a full reachability analysis would even be awkward The AGVs perform missions along their respective guided

" Workstation

.2 .y’
%)

if not impossible. paths. Preciselyp; and pio represent their home positions,
_ o o and the remaining places of each AGV subnet are associated
B. Complexity mitigation and heuristics to the presence of the vehicle in certain sections of its epliid

The control law need not actually be computed multiplpath. Accordingly, transitions, andty are associated to the
times. Indeed, as its computation adopts a worst-case pgpmmands to start the respective missions, and the rengainin
spective, the specifications are guaranteed for any pessitshnsitions in each AGV subnet (with the exception {gj
future firing schedule of the uncontrollable transitiori;yy represent the movement of the vehicle from one section to
following the computed path without further changes. Thanother. Finally, transition; describes the unloading of a part
purpose of recalculating the control when entering newselas in the input buffer of the workstation. As for the workstatjo
is to enlarge the firing time intervals (FTIs) of the contablle t7 represents the command to start a working cyclearttie
transitions with respect to the initial solution, takingzadtage processing of a part, while the marking pf indicates that
of the system evolution after the firing of an uncontrollablthe workstation is waiting for a part, ang andpy represent
transition. the working and the idle state, respectively.

The computation of the control law itself involves the Transitionst,, t7 andty are associated to remote and con-
solution of a pair of ILPs for each path in the PMSCG. Ifrollable events (the commands can be enabled at any time),
computational time is an issue, the solution of an ILP prnoblets is associated to a prospective and controllable event (the
can be prematurely arrested as soon as the solver returrgpeed of the movement in the respective section can be tuned
feasible solution. within the static interval shown in Figure 3), while the athe

The most impactful heuristic, however, consists in ad@ptiriransitions are associated to prospective and uncorttiella
a value for K smaller than the bound computed in Secevents and their static intervals are shown in Figure 3.
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The following GTSS summarizes the logical and temporahd y(2¢?) = y(12)), plus the SCTy(?*3) = [0000110
specifications of the control problem: 011101]%. The following solution set was found with
Alaorithm 2: Y* — 211,37 (2a,3) 4 (2a,2)’ (2a,3) +
g= (mo,o, [07 0]7 H)(fla T, [37 5'5]’ [3’ 6'5]) y(ga,l)’ y(2a,3)+y2(a2a,1)+:g(y2a,2)75(211,3)_’_2;!(2(172)}.% similar
(L2, F2,(9,13.5], ), reasoning applies for the alternative missiomrigs, for which
where 4 = {mi}, with m1 = ps + pr + pro, F1 = Yol = (L1 4 (20,2) — ,(1.2) "and the unique MS SCT is
(m| m(ps) + m(p12) > 1}, & = {mar,ma}, with y©% = [_0000109111103]? Thbe corresbpondin% set of
M1 = p1 + ps + P13, Maz = ps + po + p13, and F, = SCTS is given byY 5, = {yC0?), y303) 4 4 72_)73/(2 Y+
{m| m(p2) = 1V m(pe) = 1}. In practice,g requires that: y(ib’1)7y12b’3) + y@ + y2} in conclusion, Y5 =
a) The system, initially in markingn, at the initial time Ya U Yo
instant iy = 0, leaves it to reach the marking,
representing that a part is ready to be delivered by AG\B. Step 2
to the input buffer of the workstation while AGV2 is The second step consists in constructing the PMSCG by
(or remains) idle. This must occur not earlier tiiaand  expanding all sequences that follow the computed FCVs and
not later thar.5 time units, and without passing by anythat can be fired in the TPN, and subsequently pruning those
marking such thain(ps) + m(p12) > 1, representing a that cannot be possibly executed without violating
shared zone where only one vehicle at a time can stay. As discussed in Remark 2, the computation of all fireable
b) The system leavesn; not earlier than3 and before sequences compatible with an FCV does not require to check
6.5 to reach either of the two markings it¥s, thus all possible permutations of the involved transitions (@thi
bringing back to the home position either AGV1 or theould be an extremely large number), but can be tackled as
workstation, while the other two agents remain one stepsimplified (temporal) reachability problem. To give anade
from their respective home positions. In the process, agy the potential reduction of the computational complexity
marking withm(pz) = 1 orm(py) = 1 must be avoided, considere.g. the non-minimal SCTy® + y( obtained for
indicating that only one agent between AGV1 and thge first mission. There ai® possible sequence permutations
workstation is allowed to reach its initial state. Finallycompatible with the associated FCV, but orgg2 fireable

£, must be reached betweénand 13.5 time units. sequences from a logical point of view, and oAl of these
are fireable also from a timed point of view. Finally, none of
A. Step 1 them admits a value for the transition firing times that meets

The TPN has two T-invariants, name[;'/‘,I(l) _ i1t the temporal conditions expressed faywhich is a necessary

1110000]7, T _ 000000001111)7, the first ac- condition for the solvability of the control problem.

counting for the operation cycle of AGV1 and the workstation Repeatmg this analysis on all the proylded FCVs one can
. : . determine merelyl9 sequences that are fireable according to
and the second for the cycle of AGV2. A simple inspection : . :
. ~all the requirements ofy, each corresponding to a different
of the two loops reveals that there is no way that, startin I i .
from the current marking, they can be completed in less th th of the PMSCG in Figure 4, obtained by applying Algo-
_ _ King, ey : P Aithm 4. The set ofl9 paths of the PMSCG is denot&H C)),
71 = 8.5 and 7, = 8 time units, respectively. . . -
! . Cy being the class corresponding to the initial state. Relatl t
The first step of the GTSS requires to go freny to m;. L .y -
. this is not sufficient for the solvability of the control prein,
The corresponding complemented mét has only3 MS T- . . .
. ) (D) T, (1,2) in that when solving the latter one has to take into account
invariants,i.e: y"Y = [1111111100000]*, y't*) = » -
that uncontrollable transitions cannot be forced to fire @t w

[0000000011110]7, y™*¥ = [1111001000001]7, : iy e
: . ) 2) Notice that the firing of any enabled transition, that would
the first two being NCTS (they correspon andT1 ™) cause the system to exit the PMSCG, must be explicitly

and the third being an SCT. As there is only one SCT, the . .
only possible way to obtain other SCTs consists in combini%rb'dden’ by applying condition (13) or (14). For example,

n C : ; Y
»(3) with integer multiples of the two NCTs. However, thec%nnot be allowed to fire 4, since there is no admissible

first mission has to be completed withirb time units, which sequence that can star.t W'tb' S”?°e ?9 1S controllable, Its
firing can be delayedd libitum, which is virtually equivalent

is more than what required to complete the_correqunt_jlpg prohibiting it. Similarly, ts should be prevented from
cycles. Therefore, the only SCT that may satisfy the t'mm@ring in Co, if g is to be met, but since this transition is

i i i (1,3) i o (1,3) . X . .
constraints is precisely’ . Accordingly, Y'; = {y""}. uncontrollable, this results in a more compelling constrai

This is confirmed by Algorithm 3, with a maximum sequenc e
length of K’ = 5, and this guarantees that the SCT is associatendjleed’Ag must be smaller than the lower firing boundef

to at least one fireable sequence of the untimed net.

The second step of requires to go fromm, to mo; ©C- Step 3
or mos. The mission has to be completed in no more than By solving problem (12) for tha9 paths of the PMSCG,
10.5 time units, which allows for a single execution of thet follows that only the paths where fires beforet; are
two system cycles. This results in a boundl1af for K in compliant withg, in a worst case scenariog., for all possible
both cases, according to Thm. 1. Regarding the reachabilitye firing patterns of the uncontrollable transitionseétsely,
problem fromm; to mao;, the complemented net hak letIl; = {9, 73, 76, 77 T10, 711, T14, 715} aNdIly = {ms,
T-invariants, i.e. the two previous NCTsy(#1) = y(Lb 79} Then, if the system were to follow any path in the set
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Fig. 4. PMSCG for the case study example.

T1(Cp)\ (11, UTI, ) there would be no way to guarantee thas Notice that under a SC approach, bethand¢; are enabled
met, by action of the controllable transitions. Converstig (not forced) to occur afy. A controller (not the supervisor)
specifications can be guaranteed if one of the pattis inIl,  will ultimately decide which of the two controllable tratisns
is chosen. Accordingly, any transition causing the system to fire and force its occurrence. Once this control decision
follow a different path must also be prevented from firing bis taken, the system will evolve from the initial state. The
the supervisor. procedure need not be invoked again, as long as the system
Now, considering only the paths if; U II,, and taking follows one of the legitimate timed paths (the controllable
into account all the necessary constraints required to Reep transitions fired in the sequence must adhere to the solution
system on track, it results th& (So, 7o) = [0,0.5], Vr € II;  of problem (12) for that path). However, the firing of uncon-
and F7 (So,70) = [0,00], V& € Iy, while 77 (So,70) = trollable transitions may relax the timing constraints e t
[0,00], V& € Iz, F7(So,70) = [0,0.5], Vr € II. Hence, control problem as the system evolves, enlarging the swoiuti
by application of the intersection operator, one can cateluspace.
that 73, (So, 70) = [0,0.5] and Fi,(So, 70) = [0,0.5] hold. Consider for example the case that the controller decides to
This result implies that, provided that or ¢; fires before fire t; atT = 0.5. Now, if we run again Algorithm 1 fot; in
0.5 time units, there always exists a firing time pattern of thihe new states; we getF,.(S1,0.5) = [0, 2], which indicates
controllable transitions that will be enabled afterwartiatt that there is now a larger discretion on the time of firing of
guarantees that is met, notwithstanding any legitimate firingt; with respect to the initial state, where the allowed FTI for
time pattern of the uncontrollable transitions. We nextyrea ¢; was just[0, 0.5].
a possible state (and class) evolution of the TPN systemAssume now that; is fired atT = 1.5, taking the system
illustrating the control evaluations along the sequenee édso in the stateS,, included in the class’s;. Here, the only
Table 1). enabled controllable transition ig, but its firing must still be



TABLE |
STATE EVOLUTION AND CONTROL FUNCTION EVALUATION OF NET
SYSTEM IN FIGURE 4 FROM THE INITIAL STATE ALONG THE SEQUENCE
(t1,0.5)(t7,1.5)(t2,2.5)(t3,3.5)(ta,4.5)(tg, 4.5)(t5,5.5)(te, 8.5)

(t, 1) C S m P P
0<0. <o [ [0.05]
(-,0) Co | So | p1+po+pio | 0<07 < oo [0,0.9]
0<fy<oo |0
1<62<2 [1,2]
(t1,0.5) | C1 | S1 | p2+po+pio | 0L 07 < o0 [0,2]
0<fy<oo |0
0<6, <15 | 0,15
(t7,1.5) | Cor | S2 | p2+pr+pio | 0<0y <0 0
1<63<2 (1,2]
(t2,2.5) | Cog | S3 | p3+p7+p1o | 0 <y < o0 0
1<6,4<1 (1, 1]
(t3,3.5) | Cos | S4 | pa+p7+p1o | 0 <y < o0 0
1<60;<1 [1,1]
(t4,4.5) | C5 | S5 | ps +pr+pio | 0<09 < o0 0,1)
T<0; <1 1,1
(t9,4.5) | C11 | Se | ps +p7+p11 | 3<610<4 3,4
3<0<4 3,3
(t5,5.5) | Ci2 | S7 | p6 +ps+p11 | 7.5 <603 <85 | [7.5,8.5]
2<610<3 | [2,3]
0<6; <oco ]
(t6,8.5) | C13 | Ss | pr+ps+p11 | 0<610<0 [0,0]
3.5 <0 <4.5 (3.5,4.5]
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Notice that the proposed framework can deal with time-
varying specifications and static FTls as well.

Since the supervisory control approach described in this
work is based on a worst case analysis, it sometimes occurs
that the problem does not admit a solution at the curreng stat
(the firing time window for the enabled controllable traiusit
that guarantees the achievement of the specifications iygmp
This does not necessarily mean that the specifications tanno
be met, but only that this outcome cannot be guaranteed (it
requires that some of the uncontrollable transitions firthwi
a certain specific timing pattern). Repeating the procedure
later on (for another enabled controllable transition intaer
reached state), may provide guaranteed solutions. However
there remains the open problem of deciding what policy to
enact in the current state, where the procedure did not geovi
an answer. In this respect, future research activity witluf®
on the design of an optimization-based procedure that stigjge
the firing time for the enabled controllable transition tleat
most likely to yield positive results in the future.

REFERENCES

[1] B. Brandin and W. Wonham, “Supervisory control of timetatete-
event systemsJEEE Trans. Autom. Contrplol. 39, no. 2, pp. 329-342,
1994.

prevented to keep the system in the PMSCG. This is true ald@l B. Zhao, F. Lin, C. Wang, X. Zhang, M. P. Polis, and L. Y. Vgan

whent, andt; fire. Assume thafts, 2.5)(t3, 3.5) is observed.
However, with the subsequent firing of at time 4.5, the
system enters stat®; which belongs to the clasSs, and the

“Supervisory control of networked timed discrete eventteys and
its applications to power distribution networkdEEE Transactions on
Control of Network Systemsol. 4, no. 2, pp. 146-158, June 2017.
[3] F. Basile and P. Chiacchio, “On the implementation of ewfsed
control of discrete event system3$EEE Transactions Control System

firing of tg would now keep the evolution inside t_he PMSCG. Technology vol. 15, no. 4, pp. 725739, 2007.
Then, Algorithm 1 returnsr;, (Ss,4.5) = [0,1). This ensures [4] C. Ramchandani, “Analysis of asynchronous concurreystesns by
that ¢y will fire beforets, therefore keeping the system along timed Petri nets,” Massachusetts Inst. of Technology, Gafge, MA,

the paths belonging tdI; U II,. After the firing of ¢t and

USA, Tech. Rep., 1974.
[5] B. Berthomieu and M. Diaz, “Modeling and verification dfme de-

ts, a state is reached where a controllable transition is again pendent systems using time Petri net&EE Trans. on Software Eng.

enabled. Indeed, assume that the sequéncéd.5)(t5, 5.5) is
observed, and the system reacKesincluded in the clas€';s.
Algorithm 1 returnsF;,(S7,5.5) = [3,3] for transition ¢,
implying that it must be fired exactly at= 8.5 to guarantee

vol. 17, no. 5, pp. 259-273, 1991.

[6] J. C. Wang, Y. Deng, and G. Xu, “Reachability analysis eélitime
systems using time Petri netsEEE Trans. Syst., Man, Cybern., B
vol. 30, no. 5, pp. 725-736, 2000.

[7] S. Bernardi and J. Campos, “Computation of performangents for
real-time systems using time Petri netdfEE Trans. Ind. Informat.

g- If this is indeed what happens, then the system will travel 5 1o, 2, pp. 168-180, 2009.
safely to the target provided thatis disabled (to avoid exiting [8] R. Hadjidj and H. Boucheneb, “Efficient reachability &rss for time
the MSCG), whatever the firing times of the uncontrollable  Petri nets1EEE Trans. Computersiol. 60, no. 8, pp. 1085-1099, 2011.

transitionst,o andt,1, as guaranteed by Algorithm 1. Indeed,[

] G. Jiroveanu and R. Boel, “A distributed approach forlfaletection
and diagnosis based on time Petri netdAth. Comp. Simul.vol. 70,

ts will not fire before reaching the target. On the other hand, no. 5, pp. 287-313, 2006.
if ¢1o fires first inCs, say at timer = 7.5, the system enters [10] F. Basile, M. P. Cabasino, and C. Seatzu, “State estmaind fault di-

a stateSy included inC:4 wheretg is still enabled. Provided
that it is fired within the FTIF,,(Ss,7.5) = [0,1] (andt; is
disabled), the target will be safely reached avoiding thadir

of ts.

IX. CONCLUSIONS AND FUTURE WORK

In this work we outline a framework for the supervisory, 4

agnosis of labeled time Petri net systems with unobsenvadsitions,”
IEEE Trans. Autom. Contrplhol. 60, no. 4, pp. 997-1009, 2015.

[11] Z.He, Z. Li, A. Giua, F. Basile, and C. Seatzu, “Some refaan "State
Estimation and Fault Diagnosis of Labeled Time Petri Net&ys with
Unobservable Transitions"JEEE Transactions on Automatic Contyol
vol. 64, no. 12, pp. 5253-5259, Dec 2019.

[12] A. S. Sathaye and B. H. Krogh, “Synthesis of real-timpeswisors for
controlled time Petri nets,Proc. 32nd IEEE Conf. Decision Control,
San Antonio, TX, USApp. 235-236, 1993.

[13] ——, “Supervisor synthesis for real-time discrete avsystems,’Dis-

crete Event Dynamic Systenwl. 8, no. 1, pp. 5-35, 1998.

L. Li, F. Basile, and Z. Li, “An approach to improve pessiveness of

control of TDESSs, represented in the form of TPNs. This  supervisors for GMECs in Time Petri Net system&EE Transactions

framework is specifically designed to deal with tempor
reachability-type specifications, where the user pressria

?| on Automatic Contrglvol. 65, no. 1, pp. 237-251, Jan 2020.
15]

G. Gardey, O. F. Roux, and O. H. Roux, “Safety controlthesis for
time Petri nets,” inProc. IEEE Int. Workshop Discrete Event Systn

certain sequence of markings to be reached (and other mark- Arbor, MI, USA, 2006, pp. 222-228.
ings to avoid in the process), with timing constraints. Spel®l F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lirfifficient

ifications of this kind are typicaé.g. in trajectory planning

on-the-fly algorithms for the analysis of timed games,”"GONCUR
2005 — Concurrency Theoryl. Abadi and L. de Alfaro, Eds. Berlin,

problems, but are also common in various other applications Heidelberg: Springer Berlin Heidelberg, 2005, pp. 66-80.



[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

16

Luigi Piroddi (M'07) was born in London, U.K.,

in 1966. He received his laurea degree in Electri-
cal Engineering and the Ph.D. degree in Computer
Science and Control Theory from the Politecnico
di Milano, Milano, lItaly, in 1990 and 1995, respec-
tively. Between 1994 and 1999, he was a Professor
of fundamentals of automation with the Universita
degli Studi di Bergamo, Bergamo, Italy. From 1999
to 2004, he was an Assistant Professor with the
Politecnico di Milano. From 2004 to 2015 he has
been an Associate Professor, and from 2016 he is
Full Professor with the same institution, where he holdsouar courses in
the systems and control area. His research interests aciodlinear model
Systems: Net Theory and ApplicationsLondon, UK, UK: Springer- identification, Petri nets, modeling, and control of mactifang processes.
Verlag, 1980, pp. 213-223. He has served on the editorial board of the IEEE Transactian&utomation

A. E. Kostin, “Reachability analysis in T-invariargds Petri nets/EEE  Science and Engineering from 2014 to 2017.

Trans. on Automatic Contrplol. 48, no. 6, pp. 1019-1024, June 2003.

C. Seatzu, M. Silva, and J. van Schuppen, “Control otrmie-event

systems. Automata and Petri net perspectives¢ture Notes in Control

and Information Scj.vol. 433, 2012.

B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. Rouxnifarison of

different semantics for time Petri nets,”Rroc. 3rd Int. Conf. Automated

Technol. Verification Angl.2005.

A. E. Kostin, “Using transition invariants for reachlity analysis of

Petri nets,” inPetri Net,Theory and Applications/. Kordic, Ed. I-

Tech Education and Publishing, Feb. 2008, ch. 19, pp. 43%-45

P. Heidari and H. Boucheneb, “Maximally permissive otter synthe-
sis for time Petri nets,International Journal of Contrglvol. 86, no. 3,
pp. 493-511, 2013.

Y. Abdeddaim, E. Asarin, and O. Maler, “Scheduling witimed
automata,” Theoretical Computer Scienceol. 354, no. 2, pp. 272 —
300, 2006.

H. Wang, L. Grigore, U. Buy, M. Lehene, and H. Darabi, fé&rming
periodic transition deadlines in time Petri nets with nefoldings,”
IEEE Trans. Syst., Man, Cybern, ®ol. 41, no. 3, pp. 522-539, 2011.
T. Murata, “Petri nets: Properties, analysis and agpions,” Proc. of
the IEEE vol. 77, no. 4, pp. 541-580, April 1989.

G. Memmi and G. Roucairol, “Linear algebra in net thelbity Proceed-
ings of the Advanced Course on General Net Theory of Prosemsa

Francesco Basile(SM'11) received the Laurea de-
gree in electronic engineering and the Ph.D. degree
in electronic and computer engineering from the
University of Naples, Naples, in 1995 and 1999,
respectively. In 1999, he was a Visiting Researcher
with the Departamento de Ingenieria Informatica y
Systemas, University of Zaragoza, Zaragoza, Spain,
for six months. He is currently Full Professor of
Automatic Control with the Dipartimento di Ingeg-
neria dell'informazione ed elettrica e matematica
applicata, Universita of Salerno, Fisciano, Italy. He

has published over 100 papers on international journals comderences.
His current research interests include modeling and cbrafodiscrete
event systems, automated manufacturing, and roboticé. Basile has been
Associate Editor of the International Journal of Roboticel éAutomation,
IEEE Transactions on Control Systems Technology and IEEESactions on
Automation Science and Engineering. He has been member&d Eontrol
System Society Conference Editorial Board. He is Assodtatitor of IEEE
Control Systems Letters. He has been General Chair of l4#rnitional

Workshop on Discrete Event Systems (WODES 2018).

Roberto Cordonewas born in Milan, Italy, in 1969.
He received the “Laurea” degree in Electronic Engi-
neering and the Ph.D. degree in Computer Science
and Control Theory from the Politecnico di Milano,
Milano, Italy, in 1996 and 2000, respectively. From
2002 to 2017 he was an Assistant Professor with
the Universita degli Studi di Milano. Since 2017 he
is an Associate Professor with the Universita degli
Studi di Milano, where he holds courses on heuristic
algorithms and decisions methods and models. He is
a member of the editorial board of IEEE Transac-

tions on Automation Science and Engineering. His researt@rasts include
operations research and algorithm design and analysis.



