
Fine-grained Dynamic Resource Allocation
for Big-Data Applications

Luciano Baresi, Sam Guinea, Alberto Leva and Giovanni Quattrocchi

Abstract—Big-data applications are batch applications that exploit dedicated frameworks to perform massively parallel computations
across clusters of machines. The time needed to process the entirety of the inputs represents the application’s response time, which can
be subject to deadlines. Spark, probably the most famous incarnation of these frameworks today, allocates resources to applications
statically at the beginning of the execution and deviations are not managed: to meet the applications’ deadlines, resources must be
allocated carefully. This paper proposes an extension to Spark, called xSpark, that is able to allocate and redistribute resources to
applications dynamically to meet deadlines and cope with the execution of unanticipated applications. This work is based on two key
enablers: containers, to isolate Spark’s parallel executors and allow for the dynamic and fast allocation of resources, and control-theory to
govern resource allocation at runtime and obtain the precision and speed that are needed. Our evaluation shows that xSpark can (i)
allocate resources efficiently to execute single applications with respect to set deadlines and (ii) reduce deadline violations (w.r.t. Spark)
when executing multiple concurrent applications.

Index Terms—Distributed architectures; Control Theory; Quality assurance; Batch processing systems

1 INTRODUCTION

THE resource management of web-, service-, and cloud-
based applications [1]–[6] has been studied for years.

In these cases resources are usually provisioned to meet
response times and/or throughput thresholds, and their
fulfillment typically depends on the intensity and variety of
incoming requests [7]. Big-data [8] applications are different:
they are batch computations that transform, aggregate, and
analyze (extremely) large amounts of data. Special-purpose
frameworks [9]–[11] slice these data and carry out their
analysis by means of parallel processes executed on a
distributed cluster of virtual (or physical) machines. Inputs
are provided once and for all at the start of a run, and a
single execution may take several minutes or hours. The
response time is defined as the time it takes to process the
entire set of inputs of a single application run, and resources
are provisioned to meet a deadline, i.e., a maximum threshold
for the response time [12]. Furthermore, big-data applications
that exploit the same framework, that is, the same cluster of
machines, compete for the resources made available by the
framework itself.

Spark [13] is the most widely used framework for
these applications. It is more flexible than Hadoop [9] and
can support more complex computations. Indeed, a Spark
program can embed multiple transformations and actions
by organizing them in a direct acyclic graph (DAG). Spark
allocates resources to applications statically, at the beginning
of their execution, and tends to use all the provisioned
resources. The only dynamism managed by Spark refers
to switching preallocated executors off or on; for example
when they remain idle for a user-defined amount of time,
or some tasks have to wait for too long (and idle executors
are available). In addition, the resources that are provisioned

to executors (e.g., CPU cores) cannot be changed. Scalability
is only horizontal and is based on simple time-outs and on
the availability of preallocated executors. This means that
the resources that are allocated to the applications —to meet
their defined deadlines— must be planned carefully, and that
runtime deviations are not managed. In addition, Spark can-
not (dynamically) redistribute the available resources among
the concurrent applications, nor among applications whose
concurrent executions were not planned at the beginning.

Literature shows that the static resource allocation prob-
lem for big-data applications is a hot research topic. For
example, [14], [15] propose solutions for the resource allo-
cation of Hadoop applications, [16], [17] introduce resource
optimization models for the a-priori allocation of resources
in Spark, [18] presents a performance model of Spark
applications. Runtime resource allocation, on the other hand,
has received limited attention so far.

The runtime resource allocation problem can be seen
as the capability to provision resources as needed, and not
just as initially planned. This is not a simple task, since the
provisioning will depend on multiple elements. Some will
be known beforehand (e.g., the size of the input data set),
some will be known after a profiling step (e.g., the nominal
performance of the system), while others will only be known
during the actual execution (e.g., performance, failures, and
the characteristics of other applications that are competing
for the cluster’s resources).

Dynamic resource provisioning becomes a means to make
different applications, which execute concurrently, share
resources efficiently. Dynamic provisioning would allow
for (i) redistributing resources to the different applications
as needed, and (ii) accommodating the execution of new
unforeseen applications, even when the resources they need
might have already been allocated to others.

This paper presents xSpark (extended Spark), an ex-
tended version of Spark that enables the fast and fine-grained,

2

dynamic provisioning of resources to single or multiple big-
data applications running on shared infrastructure. If we fo-
cus on a single application, xSpark allows one to dynamically
acquire and release resources to meet set deadlines precisely.
This way xSpark reduces the resources needed to execute an
application without over-provisioning, and helps take into
account contingent situations like failures and unexpected
delays. If we focus on multiple applications, it redistributes
provisioned resources and can also help minimize deadline
violations by supporting different scheduling policies —
based on actual needs.

xSpark is based on two key enablers. On the one hand,
containers —a lightweight virtualization technology [19],
[20]— allow for the isolation of processing components
(executors) and for the fast and fine-grained provisioning
of resources (vertical scalability) [21], [22]. On the other
hand, control theory provides the machinery to govern the
allocation at run time with the required precision and speed.
xSpark starts with an initial approximate resource allocation,
and then employs hierarchical, heuristic-based and control
theoretical planners to adjust the provisioned resources as
the applications execute. Runtime controllers enact fast, fine-
grained resource allocations: the CPU time of each Spark
executor is allocated with a control period of just 0.5 seconds.
Memory is also dynamically provisioned by exploiting off-
heap allocation. Our evaluation shows that xSpark can
allocate resources dynamically to allow applications to meet
deadlines with an error that is always less than 2.5% when
dealing with homogeneous data and less than 5.5% with
skewed data. It also demonstrates that xSpark can reduce
deadline violations with respect to Spark when controlling
multiple concurrent applications.

To summarize, the main contributions of this paper
are: (i) a container-based extension of Spark, called xSpark,
(ii) off-heap-based dynamic memory management, (iii) a
hierarchical planner for runtime resource allocation based
on a heuristic and a gray-box control-theoretical model, (iv)
an additional control-theoretical supervisor that oversees the
execution of multiple applications on the same framework,
and (v) a thorough evaluation in which we considered both
single and multiple applications concurrently.

The rest of the paper is structured as follows. Section 2
introduces Spark and the way it works. Section 3 presents
xSpark. Section 4 describes the heuristic used for the pre-
liminary resource allocation, while Section 5 focuses on the
control-theoretical solution used to adjust the initial plans
at runtime. Section 6 explains how xSpark can allocate
resources to control the execution of multiple concurrent
applications. Section 7 evaluates the proposed solution and
xSpark, Section 8 surveys related approaches, and Section 9
concludes the paper.

2 SPARK

Spark is deployed on a cluster of (virtual) machines and
employs a master/worker architecture. The Driver Program
(i.e., the big-data application to execute) starts by creating a
Spark Context that interacts with the Master Node to manage
the parallel computation. The Master Node is the manager
of the actual computing resources, which are called Worker
Nodes. Each worker node is installed on a dedicated machine

and contains an Executor that runs for the entire lifetime
of the application. The executor performs multiple tasks in
parallel using a thread pool, and the number of parallelized
tasks depends on the number of CPU cores it has been given.

Different applications may share the same cluster. Each
would have its own Spark context; master and worker nodes
would be shared, but executors would be assigned to their
respective applications before execution. Tasks can persist
the results of their computations on a distributed storage
layer (e.g., HDFS [23]), hosted on the Spark cluster, or on
dedicated machines.

To fully comprehend Spark one must understand driver
programs. The simple Python program of Figure 1 analyzes
a text file in which each line has the following structure
class:word, where word is an English word of a specific
class: verb, adjective, name, etc. The goal is to identify the
words that are not verbs, and that share the same first and
last letters. Line 2 creates context sc by providing the URL
(local, in this case) of the master node and the name of
the application (example). The statement starting at line
3 comprises 6 Spark operations. Besides reading from file
dataset.txt (line 3), it splits each line in the original data
set into two parts: word and actual class (lines 4 and 5). It
then proceeds to create lists of words that share the same
class (line 6), and eliminates the list of verbs (line 7). The
remaining lists are flattened to create x, that is, the list that
contains all the words that are not verbs. The statements
at lines 9 and 11 use x to create y and z. They are both
lists of tuples of the form pc,wordsq where c is the first/last
character of the words. Finally, line 13 computes the result
by performing the cartesian product of y and z to obtain a
list of tuples of the form ppcf ,wordsf q, pcl,wordslqq, where
f and l stand for the first and last characters, respectively. It
then proceeds to perform the set intersection of wordsf and
wordsl to find all the words that start and end with the same
letters. The result is collected at line 15.

Spark operations manipulate RDDs (Resilient Distributed
Dataset). An RDD is an immutable and fault-tolerant collec-
tion of records that is split into multiple redundant partitions
to facilitate parallel computation. Operations can be of two

1 from pyspark import SparkContext
2 sc = SparkContext(’local’,’example’)
3 x = sc.textFile("dataset.txt")
4 .map(lambda v: v.split(":"))
5 .map(lambda v: (v[0], [v[1]]))
6 .reduceByKey(lambda v1, v2: v1 + v2)
7 .filter(lambda (k,v): k != "verb")
8 .flatMap(lambda (k, v): v)
9 y = x.map(lambda x: (x[0], x))

.aggregateByKey(list(),
10 lambda v1,v2: v1+[v2],

lambda v1, v2: v1+v2)
11 z = x.map(lambda x: (x[-1], x))

.aggregateByKey(list(),
12 lambda v1,v2: v1+[v2],

lambda v1, v2: v1+v2)
13 result = y.cartesian(z)

.map(lambda ((k1,v1), (k2, v2)):
((k1+k2), list(set(v1) & set(v2))))

14 result = result.collect()

Figure 1: Example Spark code.

3

Job 0

textFile

stage 0

reduceByKey

stage 1

flatMap

reduceByKey

stage 2

flatMap

aggregateByKey

stage 3

aggregateByKey

cartesianmap

map

filter map

filter map

map

Figure 2: The DAG of our example application.

kinds: transformations create new RDDs (e.g., map, filter, etc.),
while actions perform computations that generate values (e.g.,
count, first, collect, etc.). Spark treats the former lazily, that
is, it chains them together for optimization purposes, and
only truly performs them when an action is encountered.
This makes Spark particularly efficient when executing
iterative algorithms (e.g., machine learning applications or
computations on graphs).

Spark starts executing a program by identifying jobs,
delimited by the presence of actions in the code, and stages
(within jobs), delimited by operations that require data to
be shuffled (i.e., moved among executors), thus breaking
locality. Indeed, Spark distinguishes between narrow and
wide transformations specifically for this purpose; the former
do not shuffle data (e.g., map, filter, etc.), while the latter do
(e.g., reduceByKey, etc.). Spark “identifies” all the operations
that are to be executed, up to the first action, and materializes
them as a directed acyclic graph (DAG)1. The DAG defines
the execution order among stages, and defines the extent to
which stages can be executed in parallel. Note that a task
performs all the operations of a particular stage on a partition
of the input RDD of that stage. As previously stated these
tasks are executed in parallel, depending on the number of
available executors and on the number of CPU cores assigned
to each executor.

Figure 2 shows the single job that is created from
the example code (there is only one action, i.e., the final
collect) and its four stages. Stage0 comprises the operations
from line 3 to 5, and ends with the reshuffling operation
reduceByKey of line 6. Since statements at line 9 and 11 use
the RDD generated by this last operation (they both exploit
x), and RDDs are immutable, they could evolve in parallel,
but the parallelism starts after reshuffling, that is, just after
the end of the stage. This is why the operations at lines 6, 7,
and 8 are duplicated and are part of both Stage1 and Stage2,
which also comprise the specific maps that help create y and
z. Since operations aggregateByKey at line 9 and 11 require
data shuffling, they cannot be part of the parallel stages but
they initiate Stage3. This last stage aggregates the data from
the two preceding stages, computes the cartesian product,
and applies the final map transformation. The intersection of
the two sets is plain Python and thus is not part of the DAG.

1. The DAG is not the control-flow graph of the job’s code. It does not
contain branches and loops since Spark has already resolved them.

3 XSPARK

To extend Spark with dynamic resource provisioning, xS-
park2 modifies both its architecture and processing model.
xSpark focuses on stages. Instead of considering complete
applications, xSpark reasons on per-stage deadlines as a
means to decompose the overall execution time. Since
stages are composed of diverse operations with different
degrees of complexity, they must be modeled and controlled
individually. xSpark creates dedicated executors for each
stage, instead of general-purpose executors that can execute
the tasks of any stage, as Spark would normally do. This
way, the resources that are (dynamically) provisioned to a
given executor will only impact the performance of the stage
that it is associated with. This gives xSpark a fine-grained
control of the execution of the different stages, and thus of
the whole application. Moreover, when a stage is submitted
for execution, one executor per worker node is created and
bound to that stage. This allows xSpark to equally distribute
the computation and the data among the whole cluster.

xSpark uses containers (Docker3) to isolate multiple
executors running on the same worker node, and to al-
locate CPU cores and memory (using Linux cgroups [24]).
In particular, xSpark uses CPU quotas to allocate small
fractions of cores4 to containers/executors. Spark statically
preallocates the memory that is associated with each executor,
and thus with each application. xSpark, on the other hand,
distinguishes between heap memory, which can only be
allocated statically, and off-heap memory, which can be
managed dynamically; a small portion of heap memory is
reserved for each application, while the remaining memory
is assigned dynamically through off-heap memory.

To operate, xSpark requires an appropriately annotated
DAG of the entire application. For each stage, the DAG must
contain: the execution time, that is, the stage’s duration, the
number of identified tasks per stage, the number of input
(read) records, the number of output (written) records, and
the nominal rate, i.e., the number of records that a core
processes in a second. These numbers can come from an
initial profiling execution, which is often a viable solution
since Spark applications are usually not executed only once,
and tend to be long-lasting assets. Annotated DAGs are stored
in the Annotated Application DAG Repository and are retrieved
as soon as an application is submitted for execution. Note that
xSpark does not require that provided annotations be precise
with respect to the used input data since they only serve as
an initial assumption; xSpark will cope with imprecisions
and changes at runtime.

3.1 Architecture
Figure 3 shows xSpark’s architecture. Gray boxes represent
components that we added to Spark, while dark-gray boxes
correspond to control components. White boxes represent
the existing components that we modified.

xSpark is based on four controllers. A single, centralized
Memory Manager (Section 3.2) is deployed on the master
node; it manages how memory is shared among running

2. The source code of xSpark is available at https://github.com/
deib-polimi/xSpark

3. https://www.docker.com
4. Quotas assign a specific quota of the CPU period to a container.

https://github.com/deib-polimi/xSpark
https://github.com/deib-polimi/xSpark
https://www.docker.com

4

Annotated Application
DAG Repository

Master Node

Application 2

Context
Monitor Planner Control

Enactor

Stage Scheduler

Task Scheduler

Application 1

Context
Monitor Planner Control

Enactor

Stage Scheduler

Task Scheduler

Memory
Manager

Container Manager

Supervisor

Worker Node N

Container
Controller

Executor

Container
Controller

Executor

Container Manager

Supervisor

Worker Node 1

Container
Controller

Executor

Container
Controller

Executor

Figure 3: Architecture of xSpark.

applications. As previously stated it considers both heap
memory, which cannot be varied at runtime, and off-heap
memory, which can be added and removed on demand.

Each application is controlled by a heuristic-based Plan-
ner (Section 4), implemented within the master node, that
oversees the execution of the different stages of the applica-
tion. For each stage, it computes a deadline, calculates the
amount of CPU cores needed to meet it, and assigns them to
the executors allocated to the stage. Context Monitor oversees
the life-cycle of the stages scheduled by Stage Scheduler,
while Control Enactor creates a containerized executor for
the submitted stage on each worker node, with the memory
limits imposed by Memory Manager.

Unfortunately, many factors can influence the actual
performance and invalidate the estimation: for example, the
quantity of filtered-out records, available memory, number
of used nodes, size of storage layer, etc. This is why each
executor is equipped with a Local Controller (Section 5),
based on control theory; it is used to fix these imprecisions by
dynamically modifying the amount of CPU cores assigned to
the executor. These controllers interpret the estimated dead-
lines from Planner as desired durations or set-points, and
aim to allocate just the right amount of resources (i.e., ideally,
the minimum amount) to meet the local deadline. xSpark
requires that all the executors working on the same stage
process the same number of tasks to avoid synchronizing the
controllers that are dedicated to the same stage since they
work on the same deadline and data quantity. By combining
these lightweight controllers and the fast vertical scalability
of containers, xSpark is able to achieve control periods of less
than a second.

The executors created for different applications can be
executed simultaneously and share the resources of the same
worker nodes: for example, Figure 3 shows the case of two
applications that share the same cluster. Moreover, new
applications could be submitted for execution while others
are already running and may saturate the cluster. To cope
with these issues an additional Supervisor (Section 6) is

added to each worker node to oversee the local controllers
and solve possible resource contentions among the different
applications5 Different policies are supported.

Supervisors also allow xSpark to speed up the compu-
tation of stages when the load is low by allocating more
resources than the ones strictly needed to satisfy the desired
progress rates (e.g., the cores computed by the local con-
trollers). The speed up mechanism is entirely configurable.

3.2 Memory Management
At application-submission time, Spark requires users to
specify the amount of memory to dedicate to each executor.
When dealing with a single application, choosing this value
is simple. In general, picking a larger value will reduce the
probability of disk swap and improve performance. However,
we still need to pay attention to the system load, because if
the heap tries to grow, and there is not enough free memory
in the system, the executor (i.e., the JVM) will crash.

Choosing the right amount of memory for each executor
when dealing with multiple applications is more complex.
Hypothetically, if one could know in advance the number
of applications being submitted to the cluster, s/he could
partition the available memory among them. Since this is not
always feasible, one can either under-provision the running
applications to save memory for possible future applications,
or allocate the memory dynamically.

Unfortunately one cannot resize the heap memory of a
JVM at run time: one would need to kill the process and
restart it with a new configuration. Knowing that Spark
postpones the launch of an application if the requested
allocation of memory is not satisfiable, we need to pay
attention when choosing the application’s memory value.
Assigning a high amount of memory would cause application
executions to be serialized, while deciding for a lower value
would allow for a higher number of applications in parallel,
at the price of an increased risk of disk swapping.

One possible solution is to use off-heap memory to make
memory boundaries flexible; even if the best performance
is obtained when operating with on-heap memory, Spark
can use off-heap allocation both for execution and storage.
Off-heap memory refers to objects that are managed directly
by the operating system and stored outside the process’ heap,
that is, they are not processed by the JVM’s garbage collector.
Accessing off-heap data is slightly slower than accessing
on-heap data, but it is faster than reading from and writing
on a disk [26].

Since Spark does not provide a way to dynamically
resize off-heap memory, xSpark adds the Memory Manager
component. xSpark launches an application with a relatively
small amount of heap memory and dynamically resizes
the provisioned off-heap memory according to the number
of applications running at any given time. Given a set of
running applications A, and the total memory of the cluster
M , Memory Manager uses the following strategy:

‚ The quantity of heap memory h allocated to an applica-
tion is fixed and configurable by the user;

‚ Given the allocated heap memory h ˚ |A|, the remaining
portion O “ M ´ h ˚ |A| is equally distributed to

5. Recall that each worker node manages the same applications and
thus contentions can be resolved in a distributed way.

5

the running applications through the off-heap memory
mechanism, meaning that each application is set to use
at maximum o “ O

|A|
off-heap memory in addition to h;

‚ When a new application is submitted for execution, the
total off-heap memory becomes O1 “ O ´ h and each
application reduces its off-heap quota (o1 “ O1

|A|`1);
‚ When an application terminates, it frees its heap and off-

heap memory O2 “ O1 ` h, and the other applications
increase their off-heap quotas to o2 “ O2

|A|´1 .

4 PLANNER

Each application uses a heuristic-based planner to compute
per-stage deadlines. The only input is the foreseen deadline
(execution time) for the entire application. When a stage
s P S —where S is the set of the application’s stages— is
submitted for execution, xSpark computes a preliminary
deadline using the following formula:

deadlines “
α ¨ appDeadline ´ spentT ime

ws
(1)

where spentT ime is the time already spent on executing
the application, appDeadline is the deadline submitted
by the user, and α is a constant, between 0 and 1, that
xSpark uses to set the level of conservativeness foreseen to
respect the deadline. If α “ 1, the execution time will be
controlled (by the lower control levels) to meet the deadline
exactly, while with smaller values for α the control will
be more conservative and allow for possible delays due to
imprecisions in the control6. ws, the weight of the stage, is
computed as follows:

ws “ β ¨ |Rs| ` p1 ´ βq ¨ ds (2)

where Rs is the set of the stages still to be executed, s
included, and ds, the ratio between the sum of the profiled
durations of the stages in Rs and the profiled duration of s
itself. Hence:

ds “

řRs

r durationr

durations
(3)

Since the performance measured during profiling may be
different from the one seen at run time, we mitigate the
heuristic by means of constant β. To find a proper value for
β, we performed a sensitivity analysis (see Figure 4) using
four benchmark applications that we also used to evaluate
xSpark (Section 7).

We defined the error on the application deadline (a
negative value implies a violation) as:

ϵa “ 100 ¨
appDeadline ´ appDuration

appDeadline
% (4)

and the error on a stage deadline as

ϵs “ 100 ¨

ˇ

ˇ

ˇ

ˇ

stageDeadline ´ stageDuration

appDeadline

ˇ

ˇ

ˇ

ˇ

% (5)

6. Note that when the application deadline is missed, the heuristic
computes negative or null stage deadlines, and the estimated number of
cores will be equal to the number of available ones.

A
pp

lic
at

io
n

D
ea

dl
in

e
Er

ro
r

%

0

1.25

2.5

3.75

5

Beta

0 0.2 0.4 0.6 0.8 1

aggr-by-key
sort-by-key
PageRank
KMeans

(a) Impact on ϵa

St
ag

e
D

ea
dl

in
e

Er
ro

r
%

0

1.25

2.5

3.75

5

Beta

0 0.2 0.4 0.6 0.8 1

aggr-by-key
sort-by-key
PageRank
KMeans

(b) Impact on avgpϵsq

Figure 4: Sensitivity analysis for beta.

where app|stageDeadline is the desired execution
time of the application/stage, respectively. Similarly,
app|stageDuration represents the actual execution time.
Note that Equation 4 does not use the absolute value to
distinguish between delays and early terminations, and
Equation 5 uses the entire application’s deadline, and not the
stage’s deadline itself, as the denominator, to have a more
relevant indicator of the control error. We also defined the
average and the standard deviation of ϵs for all the stages of
an execution of an application as avgpϵsq and stdpϵsq.

Figure 4 shows how ϵa and avgpϵsq change with respect
to different values of β (ranging between 0 and 1). Even
though we could not identify an optimal value for all the
applications we used, the values between 0.2 and 0.4 were
reasonably adequate, and thus we set β to 0.3. This way
we avoid over-fitting profiling data, which is what would
happen if we only used ds. Note that all ws are computed at
run time, since the order of stage execution cannot be known
a-priori if there are parallel threads in the DAG. The number
of CPU cores to be allocated for executing the stage in a time
that is equal to the computed stage deadline (i.e., minimum
amount of cores that avoids the deadline violation) is then
estimated as:

estdCoress “ r
inputRecordss

deadlines ¨ nomRates
s (6)

where inputRecordss is the number of records that must be
processed by s, and nomRates provides the nominal rate of
s, i.e., the number of records processed by a single core per
second (obtained during profiling). inputRecords depends
on the sum of the data written by the parent nodes in the
DAG (i.e., the sum of records produced by the parents).

The final step computes the initial number of cores and
the number tasks to be processed by each different executors.
xSpark distributes the load equally amongst all the available
workers by creating one executor per stage per worker. This
way each executor holds, and thus remotely reads during
shuffles the same amount of data meaning that xSpark can
compute the same deadline for all the executors (as seen by
using function deadline). The initial number of cores per
executor is computed as follows:

intlCoresExecs “ r
estdCoress

cq ¨ numExecutors
s ¨ cq (7)

where numExecutors is the number of executors (which
is always equal to the number of workers), and cq stands
for core quantum, a constant that defines the quantization
applied to the resource allocation. The smaller the value, the

6

more precise the allocation is. In our experiments we set this
constant to 0.05 to allocate cores with a precision of up to
0.05 cores and obtain a low error.

This is only the foreseen, initial core allocation for each
local controller, which may continuously change it at runtime.
The tasks are then distributed equally (excluding remainders)
to the different executors. Since clearly not all deadlines are
feasible, given the provided resources and input datasets,
xSpark conducts a feasibility check before starting any
execution by means of the aforementioned heuristic and
warns the user if it is the case. We acknowledge that more
sophisticated and precise approaches exist (e.g., [27], [28]),
but they are on average too slow for a preliminary check.

5 LOCAL CONTROLLERS

Each containerized executor has its own local controller
to fulfill a per-stage deadline in the face of exogenous
disturbances, by dynamically allocating CPU cores. The cen-
tralized heuristic-based control loop determines the desired
duration, the maximum and the initial cores to allot for
each executor and the number of tasks to be processed prior
to the execution of a stage. The local controllers will then
continuously adjust the numbers of cores allocated to the
executors, according to the work already accomplished and
to the desired completion rate.

Executors that are dedicated to different stages are
independent, and therefore so are their controllers. Executors
that work in parallel on the same stage must complete the
same amount of work (i.e., number of tasks) in the same
desired time; this means that their local controllers are also
independent and do not need to communicate with one
another. Given their decentralized nature, we concentrate
on the design of a single controller, while the interactions of
controllers with their respective Supervisors are extensively
detailed in Section 6.

5.1 Controlled System
To derive a model of the controlled system we started with
the following two assumptions.

Assumption 1: at steady-state, with constant resource
allocation and disturbances, the progress rate is also
constant, and is a function —fp¨q to name it— of the
allocated resources and of the disturbances. This function
is generally non-linear, but regular enough for the values
of interest of the involved quantities.

This assumption is technically required to express the
mathematical model. Later in this section we will show
how the resulting algorithm can perfectly cope with time-
varying disturbances and allocations. For completeness
we also notice that progress rates may also depend on
available memory. However, memory is either sufficient,
thus allocating more is useless, or it is not sufficient. In
the latter case there is a performance degradation, but this
depends on fine-grained effects connected to cache, swap,
and so on, and are best viewed as disturbances at this level.
Memory management is especially critical when dealing
with multiple applications in parallel. A description on
how xSpark dynamically provisions memory is provided
in Section 3.2.

Assumption 2: the output of fp¨q exerts its effect
through an asymptotically stable, linear, time-invariant
dynamic system with unity gain and relative degree.

This assumption is met if the reaction of the controlled system
to a modification in the resource allocation is faster than the
control period. In literature the control period is usally set
in the order of minutes, but the use of containers, which can
be resized in hundreds of milliseconds, allows for a control
period of a second or less, while preserving the hypothesis
above. In the absence of significant actuation delays thanks to
containers, we can safely suppose that the system’s relative
order is one, but we cannot know anything about its dynamic
structure. Therefore, we assume the simplest possible form
with one pole and no zeros, that is:

ρpkq “ pρpk ´ 1q ` p1 ´ pqfpcpk ´ 1qq (8)

where ρ is the progress rate and p the pole. Having
p in the r0, 1q range ensures that the control system is
asymptotically stable, as for that |p| ă 1 would be sufficient;
the choice to limit p to positive values further ensures that the
reference completion rate will be tracked without oscillations,
i.e., with good regularity.

The model is affected by bounded uncertainty, but affine
and time-invariant. It belongs to the Hammerstein class,
which opens to interesting generalizations. There is a lot
of literature on the identification of Hammerstein models,
from works like [29] to the time-varying case, which could
be useful in the future to generalize our results [30]–[32].
To date, we obtain fp¨q’s bounds through profiling, while p
in (8) is estimated using step response analysis.

5.2 Control Synthesis
The progress set point is chosen based on the desired
completion time, which is received from the upper control
layer as illustrated in Figure 5. tco is the desired completion
time (per-stage deadline minus the time at the start of the
elaboration) and ϕ P p0, 1s is a configuration parameter that
determines the extent to which the control will attempt to
complete the execution earlier than the deadline, as a safety
measure (as α in Equation 1 but for stage-deadlines).

t

Prescribed completion %,
100

0, elaboration starts tco, req. compl. time
φ tco

Figure 5: Set point generation for a local controller.

To design the control law, we denote by q the con-
trol timestep —i.e., the time between two calculations of
cpkq— and express the dynamics between cpkq and the
accomplished completion percent a%pkq; for the data epkq

elaborated up to step k (the rate between k ´ 1 and k is
decided at k ´ 1) we get:

epkq “ epk ´ 1q ` qρpk ´ 1q, (9)

7

so that indicating with Do the total amount of data to
process, a%pkq evolves as:

a%pkq “ 100
epkq

Do
“ a%pk ´ 1q `

100q

Do
ρpk ´ 1q. (10)

In z transfer function form (8) and (10) respectively read:

ρpzq

upzq
“

1 ´ p

z ´ p
,

a%pzq

ρpzq
“

100q{Do

z ´ 1
(11)

where upkq “ fpcpkqq. The transfer function from u to a%,
that is the linear part of the dynamics seen by the controller,
is thus:

a%pzq

upzq
“

100qp1 ´ pq{Do

pz ´ 1qpz ´ pq
. (12)

To track the ramp set point showed in Figure 5, the loop
transfer function must have two poles in z “ 1, which can
be achieved by a PI (Proportional plus Integral) controller of
the form:

Cpzq “ K
z ´ a

z ´ 1
. (13)

Since specifications in terms of durations are given in
time units (e.g., seconds) and not as numbers of sampling
periods, it is convenient to re-interpret the control loop in
the continuous time. To do that we back-apply the forward
difference method and we obtain the s transfer function:

Pcpsq “
µP

s p1 ` sτP q
, µP “

100Kf

Do
, τP “

q

1 ´ p
, (14)

whereas for the controller we have:

Ccpsq “ µC
p1 ` sτCq

s
, µC “

Kp1 ´ aq

q
, τC “

q

1 ´ a
.

(15)

0 ω

dB |L(jω)|

1
τC

= 1
ητP

1
τP

K f
K f ,nom

cutoff frequency ωc

Figure 6: Bode magnitude diagram of the required open-loop
frequency response.

We need to force the magnitude Bode diagram of the
open loop frequency response Lpjωq “ CcpjωqPcpjωq to
behave like in Figure 6. We substitute fp¨q with a (positive,
bounded, unknown) gain Kf , for which we assume a
nominal value Kf ,nom, and make the controller time constant
τC proportional by η ą 1 to τP , selecting the controller gain
so that the cutoff frequency —for Kf “ Kf ,nom— is the
logarithmic mean of τC and τP . This provides the nominal
cutoff frequency ωc and phase margin φm as:

ωc “
1

η
?
τP

, φm “ arctan p
?
ηq ´ arctan

ˆ

1
?
η

˙

. (16)

Higher values of η yield higher margins but also a lower-
frequency zero a in controller (13); this in turn would result in

control kicks in the presence of step-like set point variations
—which do not occur according to Figure 5— and in longer
disturbance recovery times. Omitting lengthy computations,
once the continuous-time controller is tuned this way and
converted back to discrete time, we get:

K “
Dop1 ´ pq

100qKf
?
η
, a “

η ` p ´ 1

η
(17)

to put into (13). With a value of η around ten —corresponding
to φm around 55˝— as a reasonable default, the controller
behaves satisfactorily provided that q is small enough with
respect to the required completion time, which is plainly a
matter of reasonableness. The discrete-time controller in state
space form reads:
#

xCpkq “ xCpk ´ 1q ` p1 ´ aq
`

a˝
%pk ´ 1q ´ a%pk ´ 1q

˘

rcpkq “ KxCpkq ` K
`

a˝
%pkq ´ a%pkq

˘

(18)
where a˝

%pkq is the prescribed progress percentage and rcpkq

the computed core allocation at each k control step. As a final
remark, in a real application it may transiently happen that
the controller computes a negative rcpkq, or one exceeding
the number of available CPU cores. Denoting by cmin and
cmax the minimum and maximum number of available cores
in the worker, rcpkq needs to be clamped within the two, and
the state of (18) has to be recomputed to maintain consistency
with the input and output. This is done by:

xCpkq “
cpkq

K
´ a˝

%pkq ` a%pkq. (19)

Note that rc stands for requested cores since this value is
read and eventually modified by the worker’s Supervisor as
detailed in Section 6.1.

Finally, we need to assess a couple of important properties
of the control system. The asymptotic stability refers to nom-
inal conditions, i.e., when the model describes the controlled
system exactly. With the controller as defined in Equation 18,
phase margin considerations allow us to state that the
closed-loop system is guaranteed to be asymptotically stable,
provided that the reduction of the said margin due to the
sampling and holding is not excessive. To this end, one could
set a maximum φm reduction δφm, and then bound q to the
upper limit 2δφm{3ωc, with δφm in radians, as usually done
in digital controls.

As for the nominal performance, the nominal response
time τr of the closed loop is the inverse of the cutoff
frequency, i.e.,

τr “ η
?
τP . (20)

The time to reach a new set point, or to recover from a
step-like disturbance like the abrupt unavailability of a core
—provided the goal is still attainable— can be quantified as 5
times τr . This is fine because τP is the time constant used by
the step-by-step resource allocation to act on the processing
speed, thus in a well sized system it is small with respect to
the control-relevant time scale.

Finally, as for applicability caveats, we need to distinguish
between model errors due to mismatch and variability. In
the former case the controlled system does not change its
behavior, but the model does not represent it exactly. In the
latter, the model may even start out as a perfect replica of the

8

system, but then this can change its behavior. In our case
variability should be scarcely relevant, as the typical task
consists of elaborating a huge amount of data, but the single
operation is simple and self-similar. If this assumption is
heavily violated, however, the applicability of our solution
may be questioned.

As for mismatch, the main point is whether or not the
structural assumptions made on the model are reasonable.
Again, this can be assessed by off-line profiling, or through
simulation if a reliable enough model of the applications
being considered is available. In this respect it is difficult
to make general statements on the applicability of our
technique, except that once the convenient off-line testing is
carried out, no post-deployment issues are to be expected.

6 SUPERVISORS

When dealing with multiple applications running at the same
time we need to take into account two possible cases: either
we know the workload (i.e., the applications that will be
executed in parallel) in advance, or we do not.

In the former case, one can statically allocate resources so
that all applications have enough (or at least some) resources.
This a-priori allocation could be wrong or sub-optimal, for
example, if one application does not really need all the
resources that it is given or it needs more. While in the former
case we only have a waste of resources, in the latter case
we might witness under-performance and missed deadlines.
Furthermore, if all resources are pre-allocated there is no
room for unplanned applications that may be submitted for
execution while the others are already running.

As previously stated, xSpark adds a new hierarchical
control layer, implemented by multiple distributed Supervi-
sors to deal with these scenarios. This is needed to oversee
how the executors manage concurrent applications when the
resources provided by the cluster are not enough to allow
each application to meet its deadline.

6.1 Controlling Local Controllers
We deploy a Supervisor to each worker node; it is responsible
for managing the resource demands of executors (local
controllers) running on that machine. Every local controller
continues to autonomously determine the CPU cores needed
to follow its application’s desired progress rate, but the
Supervisor can decide to modify this value according to the
state of the resources.

Local controllers that are deployed to the same machine
are synchronized and have the same control period. The
Supervisor collects resource allocation requests in vector r̄c
(requested cores), where rci is the specific request made by
application i, and produces a new core allocation as vector
c̄c (computed cores):

c̄c “ γ ˚ āc ` p1 ´ γq ˚ r̄c (21)

where āc is an allocation vector that uses all available re-
sources. Parameter γ P r0, 1s allows us to boost the execution
speed. If γ “ 1, the allocation saturates all resources, and
applications will be executed faster than planned. If γ “ 0,
the allocation only considers the resources requested by the
local controllers. This way we keep the cluster’s utilization

8

App 1
cores

App 2
cores

7

43

2

8

Safe Area

C
ontention Area

Figure 7: Example of two resource requests made by two
applications running in a shared environment; the maximum
number of allocatable cores is 8.

low and we save resources. The different strategies that can
be adopted to compute āc are described in Section 6.2.

Since applications are not aware of one another, the Super-
visor needs to check whether there is resource contention. If
the total amount of requested cores (cr), that is the sum of all
rci, is less than (or equal to) the cluster’s available resources
(cmax), there is no contention. If cr is greater than cmax, we
have contention and the requests cannot all be satisfied: we
must correct the amount of resources to attempt to manage
the contention. The two cases can be easily visualized by
considering two applications on a two dimensional plane (see
Figure 7). On the two axes we have the resources requested
by the two applications. In this example, the maximum
amount of resources that can be allocated consists of 8 CPU
cores. The white dot represents a feasible allocation, because
the sum of the requested cores (3 ` 2 “ 5) is lower than 8.
The black dot, on the other hand, represents an infeasible
allocation, since the sum (4 ` 7 “ 11) is greater than 8. The
region above the thick line represents all the combinations
of resource requests that cause contention. In this latter
case, we need to find a new pair ac1 and ac2, such that
ac1 ` ac2 “ cmax, where aci is the value in vector āc that
corresponds to the ith application.

Finally since the number of CPU cores that the executor
will acquire might not be what the executor controller
calculated, we also need to update the state of the local
controllers to maintain consistency otherwise the next control
operations would be based on an incorrect previous state.

6.2 Strategies for Core Allocation

Multiple strategies, that take into account the different static
and/or dynamic characteristics of the involved applications
(e.g., deadlines or nominal rates), can be adopted when
distributing the available cores. The Supervisor can use these
strategies (i.e., how āc is computed) to resolve contention
and to speed-up the computation (i.e., to set γ). Note
that γ is part of the initial configuration, and thus is set
before starting any computation (and before knowing of any
possible contention).

We advocate that one can make a parallelism between
the problem of allocating resources to xSpark executors and
the preemptive online scheduling of sporadic tasks, with

9

arbitrary deadlines, in a real-time multiprocessor system.
In this latter case, it has been proven ([33]–[35]) that no
optimal on-line scheduling algorithm exists for sporadic task
sets with constrained or arbitrary deadlines. Therefore, we
decided to focus on sub-optimal approaches.

One of the most popular dynamic-priority planning-
based on-line algorithms is called Earliest Deadline First
(EDF) [36]; it uses deadlines to determine the priorities of
tasks. We can adopt this same strategy and use execution
deadlines to determine priorities when allocating resources
for multiple applications, but we can also build more sophis-
ticated strategies. Table 1 compares the different strategies
we have devised, using three example applications, under
the assumption that only 16 cores are available.

Earliest Deadline First "All" (EDFall). This strategy
allocates all the available resources to the application with the
nearest upcoming deadline, even if the application requested
fewer resources. In general, this approach completes the
execution of a single application before allocating resources
to the next one, and completes the applications in a certain
order, as defined by the proximity of their deadlines. The
algorithm requires the maximum number of allocatable cores
(cmax), and the time to complete (ttci) and remaining tasks
(rti) of each application.

Table 1 shows that the only application that actually ac-
quires resources is the one with the smallest time to complete
(deadline). In this case, we have made the assumption that
the tasks each application still has to execute can use all the
cluster’s cores.

Earliest Deadline First "Pure" (EDFpure). This strategy
uses priorities to allocate resources to applications. An
application’s priority is defined by its remaining time to
complete: the shorter the time, the higher the priority. With
this strategy applications with low priorities may be paused.
Again, the algorithm requires the maximum number of
allocatable cores (cmax), as well as the time to complete (ttci)
and the requested cores (rci) for each application. Table 1
shows that the application with the shortest time to complete
acquires all the cores it asked for; the second application
obtains all the remaining cores, which are fewer than the
requested ones. The third application is not granted any
resource as they are depleted.

Earliest Deadline First "Proportional" (EDFprop). This
strategy assigns a weight to each running application. The
weight is related to its remaining time to complete ttci and
calculated as

wi “ 1 ´
ttci ´ minp ¯ttcq ` 1

řI
j rttcj ´ minp ¯ttcq ` 1s

where ¯ttc is the vector composed by all the ttci and i P I is
the set of applications running at that time. If there is not
a huge difference in terms of remaining times to complete,
all the applications will acquire a portion of the available
resources. The algorithm requires the requested number of
cores for each application (rci) and the maximum number
of allocatable cores (cmax), and produces the applications’
weights (wi). Requested cores are taken into account to avoid
giving an application more resources than actually requested,
even when its calculated weight is higher than that of other
applications. Table 1 shows all applications receive a certain
amount of cores, and none of them is paused.

Proportional. This strategy represents the rawest way
to allocate available cores. In this case, the weights are
calculated as

wi “
rci

řI
j rcj

where I is the set of applications running at a given time, and
i P I . This solution creates a fair distribution of resources
since no application is preferred over the others. Table 1
shows that the weights are directly proportional to the
amount of cores requested by the applications: the final
allocation is proportional to the amount of requested cores.

Speed. This strategy takes into account the applications’
average nominal rates, that is, the number of input records
each application can process per second per core. This value
can be obtained, for example, by profiling the application
or can be inferred in other ways. An application’s average
nominal rate is computed as

anri “

řS
s nomRates ¨ ws

řS
s ws

where S is the set of stages of the application, s P S,
nomRates is the nominal rate of stage s, and ws is its
weight (see Formula 2). An application’s weight can then be
computed as

wi “
ANR

anri

where i P I , the set of applications running at a given time,
and ANR is the average among anri. Table 1 shows that the
three applications require 30 cores, but only 16 are available,
and that ANR is equal to 5, that is, the average among
the three anri. Since applications A and B have the same
nominal rate, they also have the same weight. C has a lower
nominal rate —half the one of A and B— and its weight is
therefore double that of A and B. As a result, C obtains half
the cluster’s cores, while A and B receive one quarter each.

The evaluation presented in Section 7.2 highlights that
there is no single strategy that can outperform all the others
in all possible scenarios. The strategy to use will depend
on the requirements one wants to meet. If the goal is to
minimize deadline violations (i.e., delays) one of the EDF-
based strategies with γ “ 1 will be preferable. If the goal is to
minimize errors (i.e., missed deadlines and anticipated ones)
and thus minimize resources, one should consider EDFpure,
EDFprop with γ “ 0, or Proportional with γ “ 1. Finally,
Speed might be the best choice if the applications are highly
heterogeneous in terms of nominal rates.

Further strategies can considered and easily implemented
in xSpark given its modular and hierarchical architecture.

7 EVALUATION

This section describes the experiments we conducted to evalu-
ate xSpark. All the experiments used Azure Standard_D14_v2
VMs with 16 CPUs, 112 GB of memory, and 800 GB of local
SSD storage. This kind of VM is optimized for memory
usage, with a high memory-to-core ratio. Each machine ran
Canonical Ubuntu Server 14.04.5-LTS, Oracle Java 8, Apache
Hadoop 2.7.2, Apache Spark 2.0.2 and xSpark. We dedicated
five VMs to HDFS and five to Apache Spark and xSpark. The

10

Application EDFall EDFpure EDFprop Proportional Speed

name rci ttci aci aci wi aci wi aci anri wi aci

A 10 50 16 10 0.97 7.75 0.33 5.28 6M 0.83 4

B 8 60 0 6 0.67 5.35 0.27 4.32 6M 0.83 4

C 12 70 0 0 0.36 2.90 0.40 6.40 3M 1.66 8

Table 1: How the different strategies impact āc in a simple example.

datasets were randomly generated with the goal of obtaining
homogeneous data; all executions were repeated five times
and we show average values.

7.1 Resource Allocation
To assess how xSpark allocates CPU cores dynamically we
used eight applications taken from two benchmark suites.
aggr-by-key, aggr-by-key-int, group-by, sort-by-key, and sort-
by-key-int stress basic aggregation and sorting capabilities
and come from SparkPerf7. KMeans, SVM, and PageRank
come from SparkBench8: the first two are machine learning
applications, while the third is a well-known graph pro-
cessing solution. The first five applications do not contain
branches or loops, while the last three are iterative, but
the number of iterations are configured at the beginning
through parameters. This means that all the executions of
each program have the same DAG (see Section 3).

We first used Spark to run each application and set a
baseline (testBase), that is, to know the shortest execution
time given that Spark was configured to use all the resources
provided by the cluster: 64 cores in total in our case. The
datasets were randomly generated by the benchmark suites,
using the application specific parameters reported in Table 2.

App Parameters

aggr-by-key scaleFactor “ 5, keys “ 5000, tasks “ 5000

aggr-by-key-int scaleFactor “ 5, keys “ 5000, tasks “ 5000

group-by scaleFactor “ 5, keys “ 5000, tasks “ 5000

sort-by-key scaleFactor “ 50, keys “ 5000, tasks “ 5000

sort-by-key-int scaleFactor “ 60, keys “ 5000, tasks “ 5000

KMeans
iterations “ 1, partitions “ 1000,
dimensions “ 20,numClusters “ 10,
numPoints “ 100000000, scaling “ 0.6

PageRank iterations “ 1, partitions “ 1000
numV ertices “ 35000000

SVM iterations “ 1, partitions “ 1000
numExamples “ 150000000, features “ 10

Table 2: Benchmarks configuration.

We then used xSpark configured as shown in Table 3
to have a fair comparison against Spark. We executed each
application by imposing the same deadlines as the baseline
executions (test0%), and by relaxing the original deadlines by
20% (test20%) and 40% (test40%), respectively. Since xSpark
works as Spark, deadlines cannot be tighter than the baselines

7. https://github.com/databricks/spark-perf
8. https://github.com/SparkTC/spark-bench

without adding resources. The goal of these experiments was
thus to assess the precision with which xSpark can meet
deadlines, and how it can optimize the allocation of cores.

Param Value Range Description

γ 0 r0, 1s Increment of execution speed (Eq. 21).

α 1 r0, 1s Adherence to app. deadlines (Eq. 1).

ϕ 1 r0, 1s Adherence to stage deadlines (Sec. 5.2).

β 0.3 r0, 1s Divergence from profiling (Eq. 2).

cq 0.05 p0,8q Quantization of core allocation (Eq. 7).

q 0.5 sec. Control period (Eq. 9).

Table 3: xSpark parameters used for the experiments.

To better explain how xSpark works, Figure 8 shows the
behavior of a randomly-selected executor in charge of the
nine stages of PageRank (test40%). The black and gray lines
refer to the left-hand y-axis and show, respectively, the actual
percentage of stage completion (a%pkq in Equation 10) and
the prescribed one (a˝

%pkq in Equation 18), which is the set
point (at each control step k) of the local controller. The
blue line refers to the right-hand y-axis and shows the cores
allocated to the executor. The E-labeled green vertical lines
represent the actual stage ends, while the red dashed vertical
lines represent stage deadlines as computed by the planner;
the deadline for the last stage is also the deadline of the
entire application.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Co
re

 [#
]

0 20 40 60 80 10
0

12
0

14
0

16
0

Time [s]

0
10
20
30
40
50
60
70
80
90

100

St
ag

e
Pr

og
re

ss
 [%

]

E0 E1 E2 E3 E4 E5 E6 E7 E13

Figure 8: Example of how xSpark executors work.

This chart shows how xSpark fulfills stage deadlines with
an error that is close to 0. At runtime, the local controllers
foresee the allocation of core fractions to executors: when the
actual progress of the stage is lower than the prescribed one,
allocated cores are increased, while as soon as it becomes
higher, they are quickly decremented. As already said, local
controllers exploit a control period of 0.5 seconds and xSpark
can thus be quite precise.

Table 4 shows the precision and resource utilization with
which xSpark carried out the different experiments. The
error in fulfilling set deadlines is always less than 2.5% for

https://github.com/databricks/spark-perf
https://github.com/SparkTC/spark-bench

11

Test ϵa avgpϵsq all util

aggr-by-key test0% -0.90% 3.00% 60.41 94.40%
aggr-by-key test20% 0.78% 1.05% 37.63 58.80%
aggr-by-key test40% 0.26% 0.25% 29.15 45.55%

aggr-by-key-int test0% -2.31% 4.81% 62.22 97.22%
aggr-by-key-int test20% 0.77% 0.85% 39.21 61.28%
aggr-by-key-int test40% 0.77% 0.52% 30.86 48.23%

group-by test0% -1.73% 5.67% 61.57 96.21%
group-by test20% 0.28% 0.60% 42.95 67.12%
group-by test40% 0.31% 0.36% 34.59 54.05%

sort-by-key test0% -1.31% 0.79% 59.19 92.50%
sort-by-key test20% 1.18% 0.41% 45.23 70.68%
sort-by-key test40% 0.44% 0.31% 35.44 55.37%

sort-by-key-int test0% -2.48% 1.32% 59.19 92.50%
sort-by-key-int test20% 0.32% 0.21% 46.44 72.56%
sort-by-key-int test40% 0.42% 0.15% 38.29 59.84%

KMeans test0% -0.92% 1.71% 54.43 85.05%
KMeans test20% 0.89% 0.94% 43.08 67.32%
KMeans test40% 0.58% 0.72% 36.15 56.49%

PageRank test0% -1.20% 2.70% 58.77 91.83%
PageRank test20% 0.71% 1.03% 44.76 69.95%
PageRank test40% 0.61% 0.68% 37.93 59.27%

SVM test0% 0.71% 2.69% 52.62 82.23%
SVM test20% 1.49% 1,58% 41.62 65.03%
SVM test40% 1.91% 0.98% 34.39 53.74%

Table 4: Precision and performances of xSpark.

complete applications (ϵa), while it can be slightly higher for
single stages (avgpϵsq). This is caused by the fact that stages
can be very heterogeneous, but the errors compensate each
other and the overall error is close to 0%.

xSpark slightly violated the deadline (the negative values
of ϵa) only when considering as deadline the execution
time obtained on Spark (test0%) since we had to trade
the fine-grained, dynamic allocation capabilities for a bit
of performance. If the heuristic computed a stage deadline
that is slightly longer than the fastest execution time, xSpark
would not allocate all the resources, and the actual execution
becomes a bit slower. These violations can easily be avoided
by setting α to a reasonable value less than 1, and allow
xSpark to consider stricter, more conservative deadlines. This
is like asking xSpark to work a bit faster and then be able
to meet deadlines even in case of errors or delays. Further
experiments suggested that with α “ 0.95 xSpark never
violated set deadlines.

When deadlines are relaxed, xSpark meets them with an
error that is always less than 2%. The gain in used resources
is significant even when xSpark works with the baseline
execution times. Table 4 shows the number of allocated cores
per second, where all is the average value of allocated cores
(i.e., all is the ratio between the integral of used cores over
the whole execution and the execution duration), and util is
the percentage of used resources (cores) with respect to the
baseline (64 cores).

These numbers help us compare the average resource
allocation of xSpark with respect to Spark. Even if Spark
provides some rudimentary mechanisms for dynamic re-
source allocation (see Section 8), in our experiments it always
used all 64 cores. xSpark instead allocates the resources
according to deadlines, and even with the strictest response
times (test0%), it was able to use between 2.78% and 17.77%

fewer resources than Spark. This is due to the fact that
xSpark can immediately release resources when not needed.
In particular, the highest saving was with SVM (17.77%),
since in some stages the available degree of parallelism was
not fully exploited.

Column all shows a significant decrement in used re-
sources when relaxing deadlines, but the experiments witness
that there is no “easy” relationship between desired execution
times and appropriate amount of resources to achieve them:
a manual, experience-based allocation could then be tedious
and quite imprecise.

7.1.1 Data Skew

Test ϵa avgpϵsq stdpϵsq

group-by test20% (s “ 1) 5.44% 2.86% 2.51%
group-by test20% (s “ 2) -4.31% 2.83 % 1.72%
group-by test20% (s “ 3) -4.50% 2.46% 2.00%

Table 5: Precision and performance with data skew.

Data skew causes tasks (e.g., key-based operations) to
have different durations [37]. Even if managing skewed data
is out of the scope of this paper, this problem impacts and
degrades both the performance of Spark (by around 20%
according to [38]), and the control precision of xSpark. Since
xSpark monitors the progress of stage execution (progress rate)
by comparing the number of executed tasks against the total
number of tasks to execute, significantly different durations
hamper this estimation.

Before thinking of improving our controllers (e.g., by
considering solutions already proposed for MapReduce [39]),
we wanted to evaluate how xSpark deals with skewed data.
We ran application group-by on three different sets of skewed
data, generated using Zipf’s law [40]: given N values ordered
by frequency, the frequency of a value is equal to 1{ks

řN
1 1{ns ,

where k P r1,N s is the position of the value in the sequence
and s P r1, 3s identifies the degree of skewness of the data
set (the higher the more skewed). We chose application
group-by since it does not pre-compute any intermediate
result/reduction in parallel that may smooth the impact of
skewness on the final computation; reduce-by-key for
example would do that.

Table 5 shows the results of our experiments. Again,
we first ran the application on Spark to obtain the baseline
deadline, and then performed test20% with xSpark. The
table shows that xSpark can meet the deadline when s is
equal to 1 with an error of 5.44%. When s increases to 2 and 3,
xSpark slightly violates the deadline (ea is negative) with an
error of 4.40% on average. As mentioned before, the error is
higher than when executing applications not (or just slightly)
affected by skewed data because of the aforementioned
imprecisions of progress monitoring. Moreover, when the
data are skewed the control of xSpark is less effective since
the duration of a stage is heavily impacted by its long tasks
that cannot be parallelized.

Figure 9 shows how skewed data impact the execution
of a stage. The figure shows two different behaviors on
processing the second stage of application group-by imposed
by skewed data. The progress rate of the first executor
(line A in the figure) moves very quickly to 100%, since

12

it only receives short tasks that process low-frequency data.
In contrast, the second executor (line B) shows a step-like
progress rate. The executor is in charge of both short tasks,
when the progress increases at a very fast rate (e.g., after
120 and 220 seconds), and three longer ones where progress
is constant. In both cases, to complete the execution before
the deadline (see the expected progress in light gray), a few
cores are needed since the degree of parallelism is limited
by data skew. In the first case, xSpark immediately releases
allocated resources after completing the stage, while Spark
would wait for a predefined amount of time to do it (see
Section 8). In the second case, the execution lasts as foreseen,
but it only uses a few cores. xSpark releases unused cores as
soon as they are not needed anymore, while Spark cannot,
since resources are associated with executors and are only
released when they terminate. Note that since Spark uses the
same executor to process different stages, one cannot allocate
resources specifically for a particular stage, but must always
consider possible worst cases.

Figure 9: Execution with skewed data.

7.2 Concurrent Applications
To assess the problem of dynamic resource allocation with
concurrent applications, we configured xSpark to use its
Memory Manager, which was disabled with the previous
experiments (since single applications should not have
memory allocation problems). For these experiments, we
used composite benchmarks, that is, sequences of applica-
tions separated by time delays. Applications were grouped
according to their origins (SparkPerf and SparkBench). We
also selected and tested deadlines that would have been
feasible if the applications were executed alone, but not
necessarily satisfiable when running multiple applications
on the same cluster.

The first experiment aimed to assess how xSpark handles
the concurrent execution of applications. We used two
configurations for xSpark: EDFall with γ “ 1, to maximize
the resources allocated to the application with the earliest
deadline; and EDFpure with γ “ 0, to ensure that the
application with the earliest deadline is given enough
resources to complete its execution on time. Each Spark
application gets an independent set of executors, which
only run tasks and store data for that application. The
same happens with xSpark, but the main difference is that
Spark, by default, runs all submitted applications in FIFO
order, each consuming all available resources, unless the
user manually configures the resources allocated to each

Spark

EDFall, � = 1all, � = 1

EDFpure, � = 0pure, � = 0

wait

PA
GE

RA
NK

KM
EA

NS
SV

M

59

5940 145

222

200

80

340

300

78

wait
230 324

145 196161

289

time [s]

time [s]

time [s]

Figure 10: Concurrent execution of Benchmark 1.

application statically at submission time. Instead, xSpark
parallelizes the execution of the different applications and
allocates the resources to both fulfill deadlines and minimize
resource usage.

Table 6 reports the results for the first benchmark, where
∆ indicates the amount of time we waited after the beginning
of the experiment before submitting an application for
execution. Both ∆ and appDeadline, are defined in seconds,
and appDealine is expressed as a duration. Figure 10 shows
how the concurrent execution was handled by each system.

Due to the FIFO scheduling of applications in Spark, and
the fact that every application allocates all the resources in
the cluster, we can see that the deadline requested for SVM
cannot be satisfied. Moreover, as shown in Figure 10, the
execution of the last application actually begins when its
deadline is almost expired, since it needs to wait for the two
previous applications to release their resources. Even if Spark
was equipped with a non-FIFO application scheduler, one
that always selects the application with the closest deadline,
the situation would not have changed. When Spark can start
KMeans, SVM has yet to be submitted for execution, and
thus the only pending application is the one that is started.
Instead, xSpark allows us to satisfy all the three proposed
deadlines in both configurations.

Configuration App ∆ appDeadline ϵa

Spark
PageRank 0 300 80.3%
KMeans 40 300 65.0%

SVM 80 120 ´18.8%

EDFall

γ “ 1

PageRank 0 300 74.0%
KMeans 40 300 36.6%

SVM 80 120 32.5%

EDFpure

γ “ 0

PageRank 0 300 3.6%
KMeans 40 300 5.3%

SVM 80 120 3.3%

Table 6: Benchmark 1.

Choosing strategy EDFall with γ “ 1 allows us to satisfy
all the deadlines in the benchmark, as we can see in Figure 10.
However, due to the nature of this strategy, we have high
deadline errors: Table 6 says that PageRank completes with a
deadline error of 74.0%. In contrast, if we selected EDFpure

and γ “ 0 (again, as shown in Figure 10), we increased
the execution time of each application with respect to the
previous case, but we obtain a smaller deadline error: all
applications terminate with a deadline error that is less than
5.3% (see Table 6).

13

This experiment allowed us to also assess the penalty
introduced by our memory management based on off-heap
memory. Recall that the management of off-heap memory
is slower that the management of on-heap memory, but
if one only used on-heap memory, and preallocated all
available memory, no new application would be executable
because of lack of memory. Our memory management must
then be considered as a trade-off between dynamic memory
allocation and performance.

Figure 10 says that Spark completes the execution of the
three applications in 222 secs, while xSpark all,γ“1 after 230
secs, with a penalty of less than 4%. Even if this is not a
thorough evaluation, given the limitations in managing the
heap memory of JVMs, we advocate that xSpark provides a
viable solution for memory management at run time when
the number of running applications cannot be estimated
precisely beforehand.

Benchmark App ∆ appDeadline nomRate

Bench #2
(SparkBench)

PageRank 0 250 671K
KMeans 40 160 5142K

SVM 80 250 46K

Bench #3
(SparkPerf)

aggr-by-key 0 120 319K
group-by 40 200 486K

aggr-by-key-int 80 160 267K

Table 7: Benchmarks 2 and 3.

Strategy γ #A #D avgp|ϵa|q ϵaA ϵaD

EDFall 0 3 0 12.4% 37.2% 0.0%

EDFall 1 3 0 37.2% 111.7% 0.0%

EDFpure 0 3 0 6.6% 19.8% 0.0%

EDFpure 1 3 0 12.0% 36.1% 0.0%

EDFprop 0 3 0 6.7% 20.1% 0.0%

EDFprop 1 3 0 17.1% 51.2% 0.0%

Proportional 0 2 1 6.8% 7.5% ´13.0%

Proportional 1 3 0 13.7% 41.2% 0.0%

Speed 0 3 0 5.5% 16.5% 0.0%

Speed 1 3 0 18.1% 54.4% 0.0%

Table 8: Results for Benchmark 2.

We also ran two additional experiments to evaluate
the five strategies supported by xSpark with γ equal9 to
both 0 and 1, for a total of 10 options. Table 7 shows the
configurations of the two additional benchmarks. Again,
the tested deadlines are feasible when the applications
execute alone, but cannot be satisfied when running multiple
applications together on the same cluster.

Table 8 shows the results for the first benchmark
(Bench#2), where #A indicates the number of applications
that completed their execution before the deadline, while
#D is the number of applications that completed with a
delay. avgp|ϵa|q is the average of the absolute value of ϵa, for
the three applications, while ϵaA is the sum of the errors of
the applications that finished in advance and ϵaD is the sum

9. We decided to focus on the two extreme values, but any value
in-between could be applicable.

of the errors of those that completed with a delay. The table
shows that, for most of the configurations, we were able to
complete their execution before set deadlines: The value in
column #A is 3 in 9 out of 10 cases.

The smallest deadline errors —and no violations— in
this experiment were achieved with strategies EDFpure

(avgp|ϵa|q “ 6.6) and Speed (avgp|ϵa|q “ 5.5), both with
γ “ 0. Strategy Proportional (with γ “ 0) also shows a small
avgp|ϵa|q but one, out of three, applications ended with a
delay (#D “ 1). This might not be a problem if we want to
ensure a fair distribution of resources across the applications,
at the price of (slightly) violating some of the deadlines.
Furthermore, strategy Proportional with γ “ 1 increased the
number of applications that end in advance. Choosing γ “ 1
is not always the best choice; it is simply a way to speed up
the computation if future contention is expected. As a result,
if we consider EDFall, we move from avgp|ϵa|q “ 12.4 with
γ “ 0 to avgp|ϵa|q “ 37.2 with γ “ 1, which is about three
times greater.

Table 9 shows the results for the second benchmark
(Bench#3). The workload of the three applications is too
high for the allocated resources, resulting in at least one
violation with any strategy. Since we were not sure we could
eliminate the delays, we decided to examine how Spark
would behave if it had an EDF-like task scheduler for its
applications. In particular, we tried to give all the resources to
a single application, since we wanted to mimic the behavior
of EDFall with γ “ 1, but with the advantage of knowing the
workload a-priori. We called this approach Clairvoyance EDF:
we used the logs produced by Spark to know exactly all the
applications to execute, along with the duration of all their
tasks. Our analyses with Clairvoyance EDF showed that only
two out of three applications can complete their executions
by the designated deadlines (#A “ 2 and #D “ 1). This is
the same result obtained by EDFall (without knowing the
applications to execute and their duration in advance).

If this workload is run in a situation in which we have
a “strict” deadline, we need to minimize the number of
violations. As a result, we need to choose the strategy with
the smallest #D (#D “ 1). This ends up being either
EDFall or EDFpure with γ “ 1. On the other hand, if
the deadline is considered to be “soft”, we may want to
minimize the value of ϵaD by choosing EDFall with γ “ 1
(ϵaD “ 16.6). If paying for more resources is as costly as
violating the deadline (or even preferred), we may want
to minimize the average deadline error avgp|ϵa|q. In this
composite benchmark the best choice would be to use either
EDFpure or EDFprop with γ “ 0.

These experiments show that there is no single strategy
that is always better than the others. To generalize, EDF
all with γ “ 0 is the best strategy when it comes to
avoiding deadline violations, while EDF pure with γ “ 0
is preferable when not violating deadlines is as important as
saving resources. Additional, custom strategies could also be
conceived and added to xSpark without modifying its local
controllers and heuristic-based planners.

7.3 Threats to Validity

The experiments were conducted using eight different ap-
plications and the datasets were generated randomly using

14

Strategy γ #A #D avgp|ϵa|q ϵaA ϵaD

EDFall 0 2 1 20.2% 39.5% 21.2%

EDFall 1 2 1 24.4% 56.7% 16.6%

EDFpure 0 1 2 10.8% 5.8% 26.7%

EDFpure 1 2 1 11.5% 12.1% 22.5%

EDFprop 0 1 2 11.0% 5.8% 27.3%

EDFprop 1 1 2 10.8% 6.1% 26.4%

Proportional 0 1 2 12.6% 3.8% 34.0%

Proportional 1 1 2 11.7% 5.0% 30.2%

Speed 0 1 2 13.6% 5.5% 35.5%

Speed 1 1 2 11.5% 5.8% 28.6%

Table 9: Results for Benchmark 3.

well-known benchmarks. Even if xSpark improves Spark
with respect to different metrics, we must highlight threats
that may hamper the validity of our experiments ([42]):

Internal Threats. Each application was profiled using
Spark and then executed using xSpark on the same dataset.
If the profiling datasets are (significantly) different in terms
of data distribution from the one used to execute the
applications, the precision of the heuristic in computing
stage deadlines decrease, but the local controllers could still
cope with these imprecisions. We conducted some additional
experiments (group-by test20%) to asses that xSpark is still
able to effectively allocate resources dynamically in this
scenario. In particular, we obtained an error (ϵa) on average
equal to ´3.30 when controlling a dataset generated with
s “ 0.5, but using the profiling of a uniform dataset. On
contrary when executing an application with uniform dataset
controlled with a profiling of skewed data (s “ 0.5) we
obtained an error that is on average equal to 0.86%.

More experiments are needed to correlate deadlines and
the optimal amount of resources to fulfill them. However,
this was not the goal of our work since we allocate resource
at runtime with our fast and fine-grained control. Not
only does a static (and manual) approach have to find out
the optimal allocation, using a comprehensive model or
past experience, without dynamic allocation it might be
impossible to optimize resources since resource demand is
non-constant. This is even truer when dealing with multiple
concurrent applications (the scheduling of which is often not
in control of the system administrator), that could contend
for resources at any time during their execution.

External Threats. Some of our assumptions may limit the
generalization of the experiments/solution. Even if Spark
was conceived to exploit in-memory processing, it relies on a
storage layer (usually HDFS), which may act as a bottleneck.
The first assumption is that HDFS must be sized properly: in
real world scenarios this is not always the case; to avoid the
problem we decided to dedicate the same number of VMs to
HDFS as the ones used to run the executors. Moreover, some
of the stages of our test applications were conceived to carry
out a high number of parallel read/write operations towards
the storage layer to stress its performance, and we observed
no significant delays.

The second assumption is that memory is considered to
be enough. The more data are processed in parallel, that

is, the more cores a VM offers, the more data must be
loaded in memory. This is a general requirement of any big-
data solution and we see it as part of configuring the VMs
properly, rather than a possible threat to the generalization
of our experiments.

The last assumption refers to the type of Spark applica-
tions we considered. xSpark takes into account the core API
and the graph and machine learning libraries of Spark. We
also conducted some preliminary experiments with another
well-known benchmark suite called TPC-H10 that exploits
Spark SQL to implement business oriented queries. The
results are similar to those presented and show that xSpark
can successfully control this type of application —both
individually and in parallel. In contrast, xSpark cannot deal
with stream-based applications: their processing model is
different and one should think of special-purpose qualities
of service, rather than setting a deadline for completing a
given execution.

Construct and Conclusion Threats. The experiments
demonstrate the validity of our claims, i.e., that the fine-
grained and fast resource allocation capabilities provided by
xSpark can provision resources precisely and efficiently to
multiple applications and have them meet set deadlines.

Obtained results are statistically robust, and only show a
small variance (see Table 4). We also used skewed data and
obtained similar results.

8 RELATED WORK

The work presented in this paper must be compared with
the results obtained in different research areas.

First of all, Ousterhout et al. [38] provide a comprehensive
analysis of the performance of various tools for data analytics.
As for Spark, they show that CPU allocation is often the
bottleneck. They quantify that network optimization reduces
execution time by 2%, while if one optimizes disk usage,
there is a gain of 19%. They also identify the Java garbage
collector and I/O transfers as significant speed limitations
for big-data applications.

Spark itself provides limited capabilities to adjust the
resources (executors) dynamically allocated to tasks. The
External Shuffle Service allows Spark to save resources by
switching off the executors that remain idle for a user-
defined amount of time; they can then be switched-on again
if tasks remain idle for too long. This dynamism however
is only limited to considering the executors preallocated to
an application (it cannot borrow additional executors from
the system), and works at executor level, that is, it cannot
manage CPU cores.

As for additional resource management solutions, Spark
can be paired with external resource managers —such as
Mesos [43] and YARN [44]. Mesos sends resource offers (push-
based scheduler) to its clients and manages both CPU cores
and memory, while YARN waits for resource requests (pull-
based scheduling) and only considers memory. These systems
do not support any application-specific policy for resource
management. One could think of using our controllers on
top of these systems for this. They both support containers to
launch executors, but they do not offer any form of vertical

10. http://www.tpc.org/tpch/

http://www.tpc.org/tpch/

15

scalability. Mesos also offers an optional fine-grained mode,
where each task is containerized, but the runtime overhead is
heavy: this is why the use of fine-grained resource allocation
is deprecated in Spark 2.0.

Lakew et al. [46] and Barna et al. [47] use containers
as means to allocate resources dynamically. Similarly to
our past work [3], Lakew et al. [46] exploit containers
and model-predictive control and system identification to
support vertical elasticity [1] and target different KPIs and
resource dimensions. Barna et al. [47] target autonomic,
containerized multi-tier applications. They exploit layered
queuing networks to create self-tuning controllers for ap-
plications composed of heterogeneous components such
as web services, databases, and big data elements. These
solutions could be used to manage the resources allocated to
a complete Spark instantiation, but they cannot manage the
resources allocated to the different applications since they
have no visibility of them. xSpark can do that since besides
working on dynamic resource management, we have also
changed the architecture and processing model behind Spark
to work at a lower granularity level.

Moving to complementing the execution of big-data
applications with deadlines, we can only mention a few
works. AROMA [15] is a deadline-aware tool for resource
inference and allocation of MapReduce applications on the
cloud. It uses a two-phase machine learning and optimization
framework. Adaptation matches resource utilization with
previously executed jobs and makes provisioning decisions
accordingly. Cura [49] is another tool based on a new
MapReduce cloud model for data analytics in the cloud.
It leverages MapReduce profiling to automatically create the
best cluster configuration and to optimize global resource
consumption. Malekimajd et al. [50] provide upper and lower
bounds for MapReduce job execution times in Hadoop based
on a linear programming model.

As for Spark, Gibilisco et al. [18] propose a performance
model for DAG-based applications that allows one to have an
accurate prediction of how the application will behave given
a specific data size and certain configuration settings; they
do not provide dynamic resource management. Marconi et
al. [28] describe a formal model to verify the feasibility of set
deadlines given the DAG of the application, the input dataset,
and the resources available. Sidhanta et al. [17] introduce
OptEx, an optimization model to configure a Spark cluster
according to time and cost constraints. Their approach is
static, they support VM-only clusters and do not consider
data skew.

Islam et al. [16] propose another static resource allocation
system called dSpark. It solves an optimization problem
to compute different possible resource allocation schemas,
with different costs and resources required; the user then
selects the one s/he prefers. dSpark cannot manage multiple
applications, runtime contentions, and data skew, and the
allocation is limited to VMs. Even if these works have some
limitations, they could be complementary to our solution.
Currently, we use our fast heuristic to preallocate resources,
but more sophisticated solutions could be adopted.

The same complementarity applies to the works that
monitor the execution of big data applications [39], [51]–[54].
For example, Morton et al. [39] propose ParaTimer, a progress
indicator for MapReduce DAGs. They estimate the progress

of complex MapReduce applications that are translated into
a DAG of jobs. They use a critical path algorithm to find the
longest sequence of tasks to be processed. They also handle
data skew and failures by providing a set of estimations that
consider different scenarios.

Different approaches exist for scheduling multiple big-
data applications (mostly MapReduce applications) on a
shared cluster. Kc et al. [55] present an approach that sched-
ules Hadoop jobs to meet QoS deadlines. They model the
execution cost of each task, taking into account both process-
ing and data transfer times, and then estimate the number of
Map and Reduce jobs required to satisfy the deadline. Polo et
al. [56] also provide a solution for the performance-driven co-
scheduling of the tasks of diverse MapReduce applications.
They introduce a new task scheduler that can dynamically
estimate the cost of parallel task executions, and dynamically
reallocates resources without distinguishing between Map
and Reduce jobs. [57] is another scheduling technique that
dynamically builds performance models of the workloads
and uses them to inform the adaptive scheduler when
numerous applications are competing for shared resources.
While these solutions address the problem of scheduling
applications given the executors (and thus the resources
reserved to them), xSpark considers resources first and then
computes a feasible scheduling given the policy adopted for
allocating resources at runtime.

9 CONCLUSIONS AND FUTURE WORK

The paper proposes a solution for enriching Spark with fine-
grained dynamic resource allocation, and presents xSpark as
a supporting prototype infrastructure. The proposed solution
considers CPU cores and memory and allows for their
optimized allocation when the framework is used to execute
both single and multiple applications. The assessment we
conducted witnesses both a better utilization of resources
and a reduced number of violated deadlines.

As for future work, we would like to extend our approach
to consider disk and network usage. We will also keep study-
ing how to combine containers and control theory to manage
an infrastructure that hosts heterogeneous applications (e.g.,
web services and big-data frameworks).

ACKNOWLEDGMENTS

This work was supported with grant by project EEB -
Edifici A Zero Consumo Energetico In Distretti Urbani Intel-
ligenti (Italian Technology Cluster For Smart Communities) -
CTN01_00034_594053 and by the GAUSS national research
project (MIUR, PRIN 2015, Contract 2015KWREMX).

REFERENCES

[1] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of
Elastic Processes,” IEEE Internet Computing, vol. 15, 2011.

[2] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive Control of Virtualized
Resources in Utility Computing Environments,” in Proc. of the
2nd ACM European Conference on Computer Systems. ACM, 2007.

[3] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A Discrete-time
Feedback Controller for Containerized Cloud Applications,” in Proc.
of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2016.

16

[4] N. Roy et al., “Efficient Autoscaling in the Cloud Using Predic-
tive Models for Workload Forecasting,” in Proc. of the 4th IEEE
International Conference on Cloud Computing. IEEE, 2011.

[5] D. Ardagna, B. Panicucci, and M. Passacantando, “A Game
Theoretic Formulation of The Service Provisioning Problem in
Cloud Systems,” in Proc. of the 20th international conference on World
wide web. ACM, 2011.

[6] C. Klein et al., “Brownout: Building More Robust Cloud Appli-
cations,” in Proc. of the 36th International Conference on Software
Engineering. ACM, 2014.

[7] D. A. Menascé, “QoS Issues in Web Services,” IEEE Internet
Computing, vol. 6, 2002.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality
for Delivering Computing As the 5th Utility,” Future Generation of
Computing Systems, vol. 25, 2009.

[9] “Apache Hadoop,” http://hadoop.apache.org, 2017.
[10] “IBM InfoSphere,” https://www-01.ibm.com/software/data/

infosphere/, 2017.
[11] M. Isard et al., “Dryad: Distributed Data-parallel Programs from

Sequential Building Blocks,” in Proc. of the 2nd ACM European
Conference on Computer Systems, 2007.

[12] A. Verma, L. Cherkasova, V. S. Kumar, and R. H. Campbell,
“Deadline-based Workload Management for MapReduce Environ-
ments: Pieces of the Performance Puzzle,” in Proc. of the 22th IEEE
Network Operations and Management Symposium. IEEE, 2012.

[13] “Apache Spark,” http://spark.apache.org, 2017.
[14] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic

Resource Inference and Allocation for Mapreduce Environments,”
in Proc. of the 8th ACM International Conference on Autonomic
Computing. ACM, 2011.

[15] P. Lama et al., “AROMA: Automated Resource Allocation and
Configuration of MapReduce Environment in the Cloud,” in Proc.
of the 9th International Conf. on Autonomic Computing. ACM, 2012.

[16] M. Islam et al., “dSpark: Deadline-based Resource Allocation for
Big Data Applications in Apache Spark,” in Proc. of the 13th IEEE
International Conference on eScience, 2017.

[17] S. Sidhanta, W. Golab, and S. Mukhopadhyay, “OptEx: A Deadline-
Aware Cost Optimization Model for Spark,” in 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2016.

[18] G. P. Gibilisco et al., “Stage Aware Performance Modeling of
DAG Based in Memory Analytic Platforms,” in Proc. of IEEE 9th
International Conference on Cloud Computing. IEEE, 2016.

[19] “Docker,” http://docker.com, 2017.
[20] D. Merkel, “Docker: Lightweight Linux Containers for Consistent

Development and Deployment,” Linux Journal, 2014.
[21] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated

Performance Comparison of Virtual Machines and Linux Contain-
ers,” in Proc. of the 16th IEEE International Symposium on Performance
Analysis of Systems and Software, 2015.

[22] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Operating System Virtualization: A Scalable, High-performance
Alternative to Hypervisors,” in Proc. of the 2nd ACM European
Conference on Computer Systems, vol. 41. ACM, 2007.

[23] “HDFS Users Guide,” https://hadoop.apache.org/docs/stable/
hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html, 2017.

[24] “Linux Manual: cgroups,” http://man7.org/linux/man-pages/
man7/cgroups.7.html, 2016.

[25] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, 2014.

[26] N. Kozlowski, “Spark Memory Management Part 1:
Push It to the Limits,” https://www.pgs-soft.com/
spark-memory-management-part-1-push-it-to-the-limits, 2017.

[27] E. Gianniti, A. M. Rizzi, E. Barbierato, M. Gribaudo, and
D. Ardagna, “Fluid Petri Nets for the Performance Evaluation
of MapReduce and Spark Applications,” SIGMETRICS Performance
Evaluation Review, vol. 44, 2017.

[28] F. Marconi, G. Quattrocchi, L. Baresi, M. Bersani, and M. Rossi, “On
the Timed Analysis of Big-Data Applications,” in Proc. of the 10th
NASA Formal Methods Symposium. Springer, 2018.

[29] K. Narendra et al., “An Iterative Method for the Identification of
Nonlinear Systems Using a Hammerstein Model,” IEEE Transactions
on Automatic Control, vol. 11, 1966.

[30] A. Nordsjo and L. Zetterberg, “Identification of Certain Time-
varying Nonlinear Wiener and Hammerstein Systems,” IEEE
Transactions on Signal Processing, vol. 49, 2001.

[31] J. Voros, “Identification of Hammerstein Systems with Time-
varying Piecewise-linear Characteristics,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 52, 2005.

[32] D. Guarin and R. Kearney, “An Instrumental Variable Approach for
the Identification of Time-varying, Hammerstein Systems,” IFAC-
PapersOnLine, vol. 48, 2015.

[33] K. S. Hong et al., “On-line Scheduling of Real-time Tasks,” in Proc.
of the 9th Real-Time Systems Symposium. IEEE, 1988.

[34] M. L. Dertouzos et al., “Multiprocessor Online Scheduling of Hard-
real-time Tasks,” IEEE Tran. on Software Engineering, vol. 15, 1989.

[35] N. W. Fisher, The Multiprocessor Real-time Scheduling of General Task
Systems. The University of North Carolina at Chapel Hill, 2007.

[36] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo,
Deadline Scheduling for Real-time Systems: EDF and Related Algorithms.
Springer Science & Business Media, 2012, vol. 460.

[37] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “A Study of Skew
in MapReduce Applications,” Open Cirrus Summit, vol. 11, 2011.

[38] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making Sense of Performance in Data Analytics Frameworks,” in
Proc. of the 12th USENIX Conference on Networked Systems Design and
Implementation. USENIX, 2015.

[39] K. Morton, M. Balazinska, and D. Grossman, “ParaTimer: A
Progress Indicator for MapReduce DAGs,” in Proc. of the 36th
ACM International Conference on Management of Data. ACM, 2010.

[40] J. Lin, “The Curse of Zipf and Limits to Parallelization: A Look at
the Stragglers Problem in MapReduce,” in Proc. of the 7th Workshop
on Large-Scale Distributed Systems for Information Retrieval, 2009.

[41] K. G. Shin and P. Ramanathan, “Real-time Computing: A New
Discipline of Computer Science and Engineering,” Proceedings of
the IEEE, vol. 82, 1994.

[42] C. Wohlin et al., “Empirical research methods in web and software
engineering,” Web Engineering, 2006.

[43] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center,” in Proc. of the 8th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI. USENIX, 2011.

[44] V. K. Vavilapalli et al., “Apache Hadoop YARN: Yet Another
Resource Negotiator,” in Proc. of the 4th Annual Symposium on
Cloud Computing. ACM, 2013.

[45] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types,” in Proc. of the 8th USENIX Conference on Networked
Systems Design and Implementation, 2011.

[46] E. B. Lakew et al., “Kpi-agnostic Control for Fine-grained Vertical
Elasticity,” in Proc. of the 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE, 2017.

[47] C. Barna, H. Khazaei, M. Fokaefs, and M. Litoiu, “Delivering Elastic
Containerized Cloud Applications to Enable DevOps,” in Proc. of
the 12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. IEEE, 2017.

[48] L. Baresi, S. Guinea, G. Quattrocchi, and D. A. Tamburri, “Mi-
croCloud: A Container-Based Solution for Efficient Resource
Management in the Cloud,” 2016 IEEE International Conference
on Smart Cloud (SmartCloud), 2016.

[49] B. Palanisamy et al., “Cura: A Cost-Optimized Model for MapRe-
duce in a Cloud,” in Proc. of the IEEE 27th International Symposium
on Parallel and Distributed Processing, 2013.

[50] M. Malekimajd et al., “Optimal MapReduce Job Capacity Allocation
in Cloud Systems,” SIGMETRICS Perform. Eval. Rev., vol. 42, 2015.

[51] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica, “BlinkDB: Queries with Bounded Errors and Bounded
Response Times on Very Large Data,” in Proc. of the 8th ACM
European Conference on Computer Systems. ACM, 2013.

[52] S. Chaudhuri et al., “When Can We Trust Progress Estimators for
SQL Queries?” in Proc. of the 31th ACM International Conference on
Management of Data. ACM, 2005.

[53] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “Estimating
Progress of Execution for SQL Queries,” in Proc. of the 30th ACM
International Conference on Management of Data. ACM, 2004.

[54] K. Lee et al., “Operator and Query Progress Estimation in Microsoft
SQL Server Live Query Statistics,” in Proc. of the 42th ACM
International Conference on Management of Data. ACM, 2016.

[55] K. Kc and K. Anyanwu, “Scheduling Hadoop Jobs to Meet
Deadlines,” in Proc. of the IEEE 2nd International Conference on
Cloud Computing Technology and Science. IEEE, 2010.

http://hadoop.apache.org
https://www-01.ibm.com/software/data/infosphere/
https://www-01.ibm.com/software/data/infosphere/
http://spark.apache.org
http://docker.com
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.pgs-soft.com/spark-memory-management-part-1-push-it-to-the-limits
https://www.pgs-soft.com/spark-memory-management-part-1-push-it-to-the-limits

17

[56] J. Polo et al., “Performance-driven Task Co-scheduling for MapRe-
duce Environments,” in Proc. of the 20th IEEE Network Operations
and Management Symposium. IEEE, 2010.

[57] J. Polo, Y. Becerra, D. Carrera, M. Steinder, I. Whalley, J. Torres, and
E. Ayguade, “Deadline-Based MapReduce Workload Management,”
IEEE Transactions on Network and Service Management, vol. 10, 2013.

https://www.researchgate.net/publication/334769323

	Introduction
	Spark
	xSpark
	Architecture
	Memory Management

	Planner
	Local Controllers
	Controlled System
	Control Synthesis

	Supervisors
	Controlling Local Controllers
	Strategies for Core Allocation

	Evaluation
	Resource Allocation
	Data Skew

	Concurrent Applications
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Luciano Baresi
	Sam Guinea
	Alberto Leva
	Giovanni Quattrocchi

