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Abstract: In the field of Scheduling Optimization, the Job-Shop scheduling problem entails a high level of complexity and is 
often solved with the aid of metaheuristic algorithms. In its Flexible version it is possible to choose the machine which will 
execute a specific operation. In this scenario both the scheduling and the routing problem need to be solved when aiming to 
optimize the production makespan. Many optimization approaches account for the routing decision by encoding it in addition 
to the job ordering, to let the metaheuristic algorithm account for this decision. The No-Wait Flexible Job-Shop is a variant 
of the problem characterized by consecutiveness constraints among operations, which need to start directly after the previous 
one's completion time. These constraints can be encountered for example in the pharmaceutical and metallurgic sector. In 
this context Timetabling Algorithms are used to decode the solution and provide a makespan given a schedule. In this paper, 
an approach to exploit the Timetabling Algorithm routing capabilities is discussed, in order to investigate which decision level 
of the optimization procedure shall execute the routing selection. Finally, possible experimental settings to validate the most 
convenient routing strategy are discussed. 
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1. Introduction 

Scheduling optimization is often one of the hardest tasks in 

an industrial facility. Often in this domain decision-making 

requires support from computational tools, which can 

require an ad-hoc implementation according to the 

production system’s characteristics. One of the most widely 

adopted performance measures for a schedule is 

represented by the makespan, i.e. the latest instant of 

completion among all jobs, and most scheduling execution 

problems involve its minimization. 

Among scheduling problems, the Job-Shop (JS) scheduling 

problem involves a product required to be processed by 

several resources along a predefined path, and it is known 

to be NP-Hard (Garey, Johnson and Sethi, 1976). The 

Flexible Job-Shop (FJS) allows operation of a job to be 

processed by possibly more than one resource in the 

problem. Every operation is thus characterized by a subset 

of the available resources which are entitled to execute it. 

While the JS scheduling problem entails the ordering of the 

jobs, in the FJS the optimization procedure also requires 

selecting, for each operation, which one of the allowed 

resources shall process it. The routing among resources 

becomes thus a part of the optimization procedure, 

involving an additional decision level to the sequencing one 

(Pezzella, Morganti and Ciaschetti, 2008). 

According to (Brandimarte, 1993), approaches to solve the 

FJS scheduling problem can be categorized as: 

• Concurrent, which are based on the idea of solving 

the routing and scheduling problems at the same 

time. 

• Hierarchical, in which different problems are 

solved in separate phases. Among the most 

frequently adopted, a first stage is aimed at solving 

the routing problem, and then sorting its related 

sequencing problem. This decomposition is 

driven by the fact that once a resource selection is 

performed, the problem reduces to a JS. 

The No-Wait constraint imposes each operation to be 

executed directly after the previous one. Any time interval 

between consecutive operations would result in a violation 

of the No-Wait constraint. This constraint characterizes 

production systems that can be found in the metallurgic 

(Aschauer et al., 2017) and pharmaceutical (Raaymakers 

and Hoogeveen, 2000) sector, just to make a few examples. 

A No-Wait Flexible Job-Shop (NWFJS) is thus a 

scheduling problem in which a Job-Shop has the No-Wait 

constraint between its consecutive operations, which can 

be executed by a resource selected from a subset. Every 
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operation thus possesses its own subset of resources 

capable of executing it. 

When solving No-Wait scheduling problems, a common 

approach is to decompose the problem into a sequencing 

and a timetabling one (Macchiaroli, Mole and Riemma, 

1999). The sequencing part is often solved by applying a 

metaheuristic algorithm to search the solution space. A 

Timetabling Algorithm is then applied to decode the 

solutions by obtaining their makespan. 

However, for the NWFJS no relevant contribution 

determines if a concurrent or hierarchical approach would 

be better. A comparison of different strategies is in fact 

missing in the literature, as we will see in the proceedings 

of this work. While in fact several works treat the FJS 

scheduling problem, the NWFJS lacks relevant benchmarks 

suggesting which approach, hierarchical or concurrent, 

should be followed. To overcome this gap, our work will 

present a hybrid approach to the solution of the NWFJS 

scheduling problem when the processing time of the 

operations does not depend on the selected resource. The 

hybrid approach can be used to gather insights on the best 

approach for the NWFJS scheduling problem. The 

proposed approach is based on a Timetabling Algorithm 

capable of determining the resources path allowing the first 

possible entry point for a job. Then we will present an 

encoding to couple the Timetabling Algorithm proposed 

with a meta-heuristic search algorithm capable of 

leveraging the hybrid approach proposed in order to 

inspect which component of the optimization procedure 

shall select the routing among resources. 

In Section 2 we will briefly review previous works on the 

topic, with the problem being formally described in Section 

3. In the end Section 4 will present the proposed approach. 

 

2. Previous works 

In this section we will go through previous works on the 
topic. In the first part, we will cover works regarding the 
FJS, with a second one concentrated on the NWFJS 
scheduling problem. 

 

2.1 FJS works 

The FJS scheduling problem possesses a vast literature. In 

(Xie et al., 2019) several works are mentioned and 
discussed. In the following, we will consider some selected 
works according to the relevance for our investigation. 
(Brandimarte, 1993) presented a hierarchical approach 
based on a two-stage Tabu Search, exploiting the 
disjunctive graph representation to let neighbourhood 

functions act on operations on the critical path. (Mastrolilli 

and Gambardella, 2000) presented concurrent 
neighbourhood functions still leveraging the disjunctive 
graph representation, and then presented a Tabu Search 
algorithm exploiting them. Subsequent works concentrated 

on the problem encoding. (Pezzella, Morganti and 

Ciaschetti, 2008) proposed a hierarchical approach, based 
on a Genetic Algorithm with an encoding considering both 
operations sequencing and routing selection. The algorithm 
employs different strategies for initializing the population. 

(Zhang, Gao and Shi, 2011) and (Al-Hinai and 

ElMekkawy, 2011) proposed improved strategies for 
generating initial solutions, while proving their Genetic 
Algorithm to be better than already existing solutions. 
Their works showed the importance of providing to the 
metaheuristic search algorithm a proper initial population. 

(Fumagalli et al., 2018) treated the accurate representation 
of a production system in order to solve an application case 
of FJS scheduling problem. In that work, attention was 
posed in modelling the production system and defining 
duties for both decision levels, the metaheuristic and the 

simulation one. In (Chen et al., 2020) a strategy based on 
Reinforcement Learning is proposed to select crossover 
and mutation probabilities. The proposed approach 
resulted in a performance improvement on most instances 
from (Brandimarte, 1993). 

 

2.2 NWFJS works 

A limited amount of works in the literature is dedicated to 
the NWFJS. 

The first known contribution is from (Raaymakers and 

Hoogeveen, 2000), in which a production system allowing 
overlapping operations is considered. In this work the 
processing time of each operation is independent of the 
chosen machine, and the neighbourhood function 
performs resources assignment taking into account their 
load. A Simulated Annealing algorithm is used to search the 
solution space, and its performance is tested against several 
dispatching rules on a benchmark based on an industrial 
case. 

(Sundar, Suganthan and Chua, 2013) employs an Artificial 
Bee Colony to search the solution space of NWFJS in 
which an operation’s processing time depends on the 
assigned resource. In the work, a solution is encoded by 
means of job ordering and machines assignment, in a way 

similar to (Pezzella, Morganti and Ciaschetti, 2008). The 
algorithm is executed on instances derived from 
(Brandimarte, 1993). The resources assignment is thus 
determined by the meta-heuristic algorithm, which gives 
preference to resources implying the minor processing time 
for a given operation. 

In (Aschauer et al., 2017), a Tabu Search is used for 
sequencing jobs, while resources assignment is performed 
by the Timetabling Algorithm. The processing time of each 
operation is not determined a priori of the schedule, but its 
minimum and maximum durations are provided as an input 
to the problem. In the work, the algorithm is compared 
against construction heuristics on instances coming from 
an industrial case. 

(Pei et al., 2020) present a Column Generation based 
approach for a proportionate two-sage NWFJS, in which 
every job is composed by two operations, involving two 
different production stages. Both operations of the same 



XXVI Summer School “Francesco Turco” – Industrial Systems Engineering  

job are considered to have equal duration. The adopted 
approach is interesting, but the limitations of the problem 
tackled represent a distance from multiple application 
cases. 

 

2.3 Literature gaps 

As it emerges from the review, the field of NWFJS 
scheduling optimization lacks a literature as consistent as 
the one of the FJS. In this context, there is a lack of 
evidence on which approach, concurrent or hierarchical, 
can lead to the best results. In our work we will thus 
propose an experimental strategy to investigate this aspect 
of NWFJS scheduling optimization. The assumption of 
processing time independent from the routing assigned 
seems reasonable from the practical point of view, since the 
only two presented application cases of NWFJS, i.e. 

(Raaymakers and Hoogeveen, 2000) and (Aschauer et 

al., 2017) consider the processing of an operation time 
unrelated with the machine selection. 

 

3. Problem description 

In this work we consider a NWFJS with 𝑛 jobs 𝐽1, … 𝐽𝑛 and 

𝑚 resources 𝑅1, … , 𝑅𝑚. Each job 𝐽𝑖  shall be composed by 

𝑛_𝑜𝑝𝑖  operations 𝑂𝑖,1, … , 𝑂𝑖,𝑛_𝑜𝑝𝑖
. Each operation 𝑂 shall 

be characterized by a subset of resources capable of 
executing it. Each operation is characterized by a 

processing time 𝑝𝑖,𝑗 , being 𝑖 and 𝑗 respectively the indexes 

of the job and of the operation inside the job. All the 
operations of a job have to be executed respecting the 
predefined sequence, and no operations are allowed to 
overlap. Between each operation of a job the No-Wait 
constraint applies, meaning that each operation has to be 
executed after the previous one without any idle time in 
between. In this situation, the starting time of a job could 
need to be delayed for ensuring that every operation can be 
executed without having to wait for any resource (Pinedo, 

2012). Considering 𝑠𝑖,𝑗 as the starting instant of an 

operation 𝑂𝑖,𝑗 , the following condition is imposed: 

𝑠𝑖,𝑗+1 = 𝑠𝑖,𝑗 + 𝑝𝑖,𝑗       ∀ 1 ≤ 𝑖 ≤ 𝑛, ∀ 1 ≤  𝑗 < 𝑛_𝑜𝑝𝑖  

Our objective is to minimize the total production 
makespan, defined as: 

𝐶𝑚𝑎𝑥 ∶= max (𝑠𝑖,𝑛𝑜𝑝𝑖
+ 𝑝𝑖,𝑛𝑜𝑝𝑖

)  ∀ 1 ≤ 𝑖 ≤ 𝑛 

 

4. Experiment Proposal 

In this section we will cover the design of the 
experimentation to inspect if and how a concurrent 
approach could benefit the solution of the NWFJS 
scheduling problem above described. In the following a 
Timetabling Algorithm aimed at selecting the routing of a 
job’s operations in order to anticipate as much as possible 
the insertion of a job of will be presented. Then a decoding 
strategy capable of exploiting the Timetabling Algorithm 
will follow. Finally, in order to evaluate the performance of 

a concurrent approach with respect to the hierarchical one, 
possible strategies will be presented. 

 

4.1 Adopted Timetabling Algorithm 

To implement the proposed concurrent approach, it is 
necessary to have a Timetabling Algorithm capable of 
generating a routing according to the insertion necessities 
of a job. We are in fact interested in obtaining the optimal 
insertion for every job. Once a routing decision is executed, 
the subsequent NWJS insertion problem can be 
approached by inserting each job at the available instant. 

Without a predefined routing already imposed, we need a 
Timetabling Algorithm dynamically able to select the 
resources in order to anticipate as much as possible the 
insertion point. In this way, the routing selection can be 
considered in function of the job insertion. We thus employ 
a Timetabling Algorithm which considers all the resources 
allowed for an operation and selects the one guaranteeing 
the first possible insertion for the given job, considering the 
previous jobs as already scheduled. 

 

Figure 1: Time entry instants example. 

 

Given an operation  𝑂𝑖,𝑗 and a resource 𝑅𝑘, we consider 

𝑇𝑖,𝑗
𝑘  as the set of time instants in which job 𝐽𝑖 could start its 

execution guaranteeing that the operation could be 
executed on that machine. An example can be seen in 
Figure 1, in which a job is composed by two operations, 
and considering availabilities of resource 2 the set of time 
instants in which the job can start is depicted, guaranteeing 

that its second operation is executed on the resource. 𝑇𝑖,𝑗  

represents the set of time instants in which the job 𝐽𝑖 could 
be executed guaranteeing proper execution of operation 

𝑂𝑖,𝑗 on any of the available resources. If a resource 𝑅𝑘 is 

selected a priori for an operation 𝑂𝑖,𝑗 , then for the 

Timetabling Algorithm the following condition will hold: 

𝑇𝑖,𝑗 =  𝑇𝑖,𝑗
𝑘  

Otherwise, the following expression shall be considered in 
order to indicate the set of time instants in which a job can 
be executed guaranteeing an operation’s correct execution: 

𝑇𝑖,𝑗 = ∪𝑘 ∈ {1,…,𝑚} 𝑇𝑖,𝑗
𝑘  

In the above expression, for a resource not entitled to 
execute a given operation the corresponding set of time 
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instants shall be an empty set. From these considerations, 
we determine a job’s starting instant: 

𝑠𝑡𝑎𝑟𝑡(𝐽𝑖) = min ( ∩
𝑘 ∈ {1,…,𝑛𝑜𝑝𝑖

}
𝑇𝑖,𝑗 ) 

This formulation allows to conceive the mechanisms 
required for the proposed Timetabling Algorithm to 
perform job insertion and routing at the same time. In case 
more than one resource guarantee the feasible execution of 
an operation at a given job insertion time instant, then the 
one with the smallest index is selected. 

 

4.2 Solution Encoding 

To properly represent a solution for our experiment, an 
encoding is needed. Two main requirements can be 
defined: 

• The opportunity for an evolutionary algorithm to 
interact with the routing subproblem. 

• The capability to relax for certain operations the 
routing imposed, thus letting the timetabling 
algorithm free the select a resource according to 
insertion necessities. 

To obtain this, we start from the encoding proposed in 

(Pezzella, Morganti and Ciaschetti, 2008) and (Sundar, 

Suganthan and Chua, 2013), in which both sequencing 
and routing selection are represented. In particular we will 
refer to the latter representation, in which a sequence 
vector determines the job order, while every operation is 
characterized by the index of the resource which will 
account for its execution. 

In this work, we are going to introduce a concurrent index, i.e. 
an encoding used to let the timetabling select the resource 
for a specific operation in order to anticipate the insertion 
point of the job it belongs. To better understand the 
proposed encoding, we can consider the following 
example, in which we denote the concurrent index as NA: 
we have three jobs and three resources, with the encoding 
for the jobs represented in Figure 2. 

 

Figure 2: Example of encoding. 

The three jobs are already sequenced, with a routing 

selection assigned for every operation but 𝑂3,2, which in 

our example can be executed on either resource 𝑅1or 𝑅2. 
When decoding this solution to obtain a makespan, the 
timetabling algorithm will select among the two resources 
the one guaranteeing the first insertion point for the third 
job. The depiction of the Gantt chart resulting from the 

decoding can be seen in Figure 3, with both possible 
routings depicted. 

 

  

Figure 3: Gantt chart for the decoding of the example. 

The timetabling algorithm will evaluate the use of both 

allowed resources, resorting to the use of 𝑅2 to finally 
anticipate the entry point of the job. Notice that once the 

third job is inserted using resource 𝑅2, in case subsequent 
jobs would have been present in the encoding, they would 
have had to consider the occupation of resources resulting 
from its allocation. Also, it would have been possible to 
allow for more than one operation in a single job to have 
the concurrent index, providing more choices to the 
timetabling algorithm.  

 

4.3 Performance Evaluation 

To evaluate if letting the Timetabling Algorithm route a 
portion of the operations can be beneficial, it can be 
convenient to define a concurrent operator, i.e. a variation of 
commonly used mutation operators adopted in most 
solutions. Certain approaches evolve individuals by 
randomly selecting a resource for a specific operation. This 
assignment can be influenced by factors like machine loads 
or processing times. When such a random choice has to be 
made, we introduce a concurrent operator with probability 

𝑝𝑐 , meaning that with probability 𝑝𝑐 the resource selection 
result will be the concurrent index, thus letting the 
Timetabling Algorithm with the freedom to select the 
resource for the given operation. Given the concurrent 

operator, varying levels of 𝑝𝑐 can be used to inspect the 
effectiveness of the concurrent strategy based on routing 
selection provided by the Timetabling Algorithm. 

In the following, we will present possible strategies to 
evaluate the impact of the concurrent operator, and thus of 
the Timetabling Algorithm presented: 

• Initialization Evaluation: certain choices in the 
initial population generation can benefit the 

performance of a search algorithm (Al-Hinai and 

ElMekkawy, 2011; Zhang, Gao and Shi, 2011). 
The proposed Timetabling Algorithm can be used 
to randomly generate initial populations by 
applying the concurrent operator. In the original 



XXVI Summer School “Francesco Turco” – Industrial Systems Engineering  

encoding it is then possible to replace the 
concurrent index with the resource selected by the 
Timetabling Algorithm. The initial population 
thus generated can be provided to a subsequent 
metaheuristic algorithm, whose performance 
could be used as an indicator of the usefulness of 
such approach. 

• Survival Evaluation: an evolutionary algorithm 
like a Genetic Algorithm employs selection 
operators to preserve the fittest individuals of a 
population and use them to continue the search. 
While applying the concurrent operator, it would 
be possible to monitor the survival rate of 
individuals characterized by the presence of the 
concurrent index. Survival of such individuals 
would suggest the benefit of letting the routing 
selection being handled by the Timetabling 
Algorithm. 

• Performance Evaluation: one of the simpler and 
clearer approaches to evaluate the benefit of the 
proposed concurrent approach would be to run a 
meta-heuristic search algorithm with varying 

values of 𝑝𝑐 . A value of zero for the above 
mentioned parameter would imply a fully-
hierarchical approach for the solution of the 

NWFJS scheduling problem. Varying values of 𝑝𝑐 
in different executions of the search algorithm can 
suggest if the proposed concurrent approach can 
be useful for the solution of the NWFJS 
scheduling problem. 

• Reinforcement Learning Driven Evaluation: the 
approach mentioned above could be extended by 
adopting a Reinforcement Learning algorithm for 
the selection of parameters characterizing the 
search algorithm, among which the concurrent 

operator probability 𝑝𝑐 . This strategy was used in 

(Chen et al., 2020), and the power of the policy 
learning of the Reinforcement Learning algorithm 

could be exploited to inspect if values of 𝑝𝑐 bigger 
than 0 can benefit the search procedure. 

 

5. Conclusion 

We have seen a hybrid approach to investigate if a 
concurrent or hierarchical solution methodology would 
benefit more the NWFJS scheduling problem. This results 
in a methodology that can be used in multiple scenarios 
characterized by No-Wait constraint to evaluate the most 
performing routing approach. The hybrid approach 
proposed could be considered also a solution strategy in 
itself. While in fact a representation accounting for routing 
decisions is necessary for the optimization procedure, a 
search algorithm could benefit from an integration with the 
heuristic of letting the Timetabling Algorithm procedure 
select resources to anticipate the insertion of a job. While 
there is a gap between research on the FJS scheduling 
problem and its counterpart characterized by the No-Wait 
constraint, advancements in techniques like Optimal Job 

Insertion (Bürgy and Gröflin, 2017) and Reinforcement 

Learning (Chen et al., 2020) can possibly be exploited to 
reduce the gap in solving such scheduling problem. The 
introduction of IT technologies at the shop floor, leading 
to the paradigm of the Cyber-Physical System, can possibly 
lead to the inclusion of real-time information coming from 

the resources in the scheduling framework (Negri et al., 

2020; Ragazzini et al., 2020). In this paradigm, insights 
coming from the shop floor could be integrated in the 
scheduling process, leading to new heuristics and hybrid 
algorithms for optimization. Possible future works could 
regard the implementation of a tool to produce 
computational experiments, in order to apply the proposed 
methodology in the evaluation of possible routing 
strategies for NWFJS scheduling scenarios. 
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