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Multiple One-Port Nonlinearities

Alberto Bernardini, Member, IEEE, Enrico Bozzo,
Federico Fontana, Senior Member, IEEE, Augusto Sarti, Senior Member, IEEE

Abstract—The digital implementation of a nonlinear audio
circuit often employs the Newton-Raphson (NR) method for
solving the corresponding system of implicit ordinary differential
equations in the discrete-time domain. Although its quadratic
convergence speed makes NR attractive for real-time audio
applications, quadratic convergence is not always guaranteed,
since it depends on initial conditions, and also divergence might
occur. For this reason, especially in the context of Virtual
Analog modeling, techniques for increasing the robustness of
NR are in order. Among the various approaches, the Wave
Digital (WD) formalism recently showed potential to rethink
traditional circuit simulation methods. In this manuscript, we
discuss an original formulation of the NR method in the WD
domain for the solution of audio circuits with multiple one-port
nonlinearities. We provide an in-depth theoretical analysis of
the proposed iterative method and we show how its quadratic
convergence strongly depends on the free parameters (called port
resistances) introduced when modeling the reference circuit in the
WD domain. In particular, we demonstrate that the size of the
basin where the WD NR solver can be initialized to converge
on a solution with quadratic speed is a function of the free
parameters. We also show that by setting each port resistance
value as close as possible to the derivative w.r.t. current of the
nonlinear element v—; characteristic we keep the basin size large.
We finally implement an audio ring modulator circuit with four
diodes in order to test the proposed iterative method.

Index Terms—Wave Digital Filters, Nonlinear Audio Circuits,
Newton-Raphson Method, Virtual Analog Modeling, Ring Mod-
ulator

I. INTRODUCTION

HE digital modeling of analog audio circuits, often re-

ferred to as Virtual Analog modeling, has been an active
and prolific research field in recent years [1|—[7]]. In fact, audio
and music technology are increasingly computerized and there
is a strong need of emulating electronic musical instruments
and analog audio effects by means of software capable of
reproducing vintage sounds in a realistic and efficient fashion.
The distinct sonic characteristics of most analog devices, such
as guitar distortion effects or synthesizers, arise from their
nonlinear behavior [3]], [8] due to the presence of nonlinear
circuit elements, such as diodes, transistors, and vacuum tubes.
Virtual Analog modeling methods are often classified as gray
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box and white box [4]. Gray box modeling methods approx-
imate the reference system with the input-output model that
best fits circuit measurements; examples are Volterra-Wiener-
Hammerstein models [9]—[11]], neural networks [12]], [13]], and
Legendre nonlinear filters [[14]. White box modeling methods,
instead, are based on the solution of the ordinary differential
equations describing the actual audio circuit to be emulated;
examples are state-space methods [15], [[16], port-Hamiltonian
methods [[17], and Wave Digital Filters (WDFs) [2], [18]]. Gray
box modeling approaches are widely applicable and, usually,
less computationally expensive than white box approaches,
once the parameters of the model have been derived. White
box models, however, are generally more accurate and their
parameters do not need to be estimated, since they are usually
available from the reference circuit schematic.

Among white box modeling approaches, WDFs [18]] have
been extensively used in the fields of both Virtual Analog
modeling [2], [7]], [19]-[24] and block-based sound synthesis
through physical modeling [25]], [26] in which audio systems
are represented using electrical equivalents. The Wave Digital
(WD) description of an electrical network is based on a port-
wise consideration of the reference analog circuit and on a
representation of circuit elements and topological junctions as
input-output blocks characterized by scattering relations. In
the Kirchhoff domain, every port of the circuit is identified by
a pair of variables, namely a port voltage and a port current.
Moving to the WD domain, each port voltage and port current
pair is mapped into a pair of wave variables (an incident wave
and a reflected wave) with the introduction at each port of a
free parameter called reference port resistance or, simply, port
resistance [[18]]. The free parameters are set so as to eliminate
as many implicit relations (often called delay-free-loops in
the literature [27]) as possible between port variables. As an
example, in most WD realizations of one-port linear elements
of interest, the local dependence between the wave incident to
the element and the wave reflected from the element can be
removed by properly setting the corresponding port resistance
(L8]]

It follows that WDF principles allow us to compute dynamic
circuits with up to one nonlinear element using a thoroughly
explicit implementation, i.e., with no need to run iterative
solvers, using stable discretization methods, such as Backward
Euler and the trapezoidal rule [23]], [24]], [28[]-[34]. This is not
generally the case when we employ other circuit simulation
strategies operating in the Kirchhoff domain, like modified
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nodal analysis methods [35], state-space methods [36] or
port-Hamiltonian methods [17]. Such an advantage of WDF
modeling, unfortunately, does not apply to reference circuits
containing multiple nonlinearities because not all the delay-
free-loops can be removed, and the use of iterative solvers
is required also in the WD domain [37]. However, recent
publications demonstrate that even in these cases working in
the WD domain may be beneficial [23]], [38]-[49].

Several fixed-point and Newton-Raphson (NR) methods
have been developed so far for the solution of lumped circuits
with multiple nonlinearities in the WD domain. It is known
that an advantage of NR methods over fixed-point methods
is that under certain circumstances NR methods converge
with quadratic speed rather than the linear convergence speed
characterizing fixed-point iterations. On the other hand, unlike
fixed-point methods, NR methods require the computation of
inverse Jacobian matrices. In [40], [41] a fixed-point method
invoking the multi-dimensional WDF formalism [50] was
developed. Another WD fixed-point method was proposed in
[39] by Kabir et al. who noticed that “the optimum selection
of reference impedances (port resistances) at nonlinear device
ports [... ] may have to be adaptive since the optimum values
are dependent on the circuit state.”. However, there were no
systematic studies about the optimal selection of reference
port resistances (free parameters) until the publication of the
alternative WD fixed-point method, called Scattering Iterative
Method (SIM), that was originally proposed in [44], [45] for
the analysis of large nonlinear photovoltaic arrays and later
extended in 23, [46[, [47], [49] for the solution of dynamic
nonlinear audio circuits. As far as the application of the NR
method and variants thereof in the WD domain is concerned,
Christoffersen proposed in [38] a hybrid scheme including
fixed-point, NR method and Newton-Jacobi as particular cases,
showing flexibility and efficiency in solving several nonlinear
circuits in the WD domain. Other Newton’s approximated
schemes using the secant and pseudo-secant method applied
to a diode clipper circuit with two diodes were then discussed
in [42]]. An NR method based on automatic differentiation
is applied in [51] for solving the same circuit simulated in
[42]. Further NR methods using backtracking and improved
initial guesses proved to fit WD models of a diode clipper
circuit and a circuit with a 2-port transistor in [43]. To the
best of our knowledge, however, no publication presents a
theoretical study on the optimization of port resistances in
nonlinear WD networks in order to maximize the robustness
and the convergence speed of the NR method.

This manuscript provides a first answer to the question about
the best selection of port resistances while solving a circuit
with multiple one-port nonlinearities in the WD domain using
the NR method. We reconsider an approximation of a sufficient
condition for quadratic convergence of the NR scheme that
was recently derived in the Kirchhoff domain [52] from a
known mathematical theorem [53]]. Once expressed in the WD
domain, such an approximation is used to infer values of
port resistances that make the region of quadratic convergence
large. Section |lI) describes the WD networks that are the object
of our investigation, and the way NR can be applied to their
solution. Section [[II] elaborates on the conditions of quadratic

convergence of the proposed WD NR method. Section
applies the theoretical tools provided in Section [[IIto nonlinear
networks with multiple diodes. As a case study, Section
discusses the robustness and the computational cost of the
proposed WD NR method when employed for the solution of
a ring modulator circuit. Section[VI| concludes this manuscript.

II. MODELING AND NEWTON-RAPHSON SOLUTION OF
WD NETWORKS

A. WD Description of Circuits with One-Port Nonlinearities

We consider a reference electrical circuit composed of an
arbitrary number N of linear or nonlinear one-port elements
interconnected by a generic reciprocal lossless connection
network. The class of reciprocal lossless connection networks
includes purely topological interconnections made of wires,
but also topological junctions that embed multi-port reciprocal
lossless elements, such as ideal multi-winding transformers
[54]. The reciprocal lossless connection network is imple-
mented in the WD domain using an N-port scattering junction
to which the N one-port WD elements are connected.

In the discrete-time domain, the scattering junction and
the WD elements exchange voltage-wave signals expressed
at every sampling step as follows

a=v+Zi, b=v-Zi, (D

where the discrete-time index is omitted to avoid unnecessary
complication of the notation, v = [vy,...,vn]T is the vec-
tor of port voltages across the elements, i = [i,...,in]|"
is the vector of port currents through the elements, a =
[a,...,an]T is the vector of waves reflected from the junc-
tion and incident to the elements, b = [by,...,bx]|7 is the
vector of waves reflected from the elements and incident to
the junction, and Z = diag[Zy, ..., Zy] is a diagonal matrix
of positive-valued free parameters called port resistances. The
superscript 7 denotes transposition.

At a given sampling step, in the domain of voltages and
currents, referred to as Kirchhoff domain, the generic linear or
nonlinear nth one-port element is characterized by a constitu-
tive equation

Xn (Unain) =0 1<n<N, 2

where X, is a constant or time-varying linear or nonlinear
scalar function. For a large class of linear elements, including
resistive sources, resistors and linear capacitors or induc-
tors that are discrete-time transformed using certain stable
discretization methods (e.g., the trapezoidal method or the
backward Euler method [23])), eq. (Z) can be written in the
form

Up — Rgnln - ‘/gn =0, (3)
where Vj,, is a constant or time-varying voltage offset and
Rgy, > 0 is a constant or time-varying resistance parameter.

According to (I, at each port n we have

an — by

in=—57— Z “4)

an + by

Un = D) )
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Substituting @) in (@) we get the linear scattering relation

Rgn - Zn 2Zn
= n Ven - 5
Ren + Zn ™" Ren + Zy * ®)

bn

We note that, by setting Z,, = Ry, €q. () reduces to b,, = en
and we remove the instantaneous dependency of b, on a,.
This substitution is called adaptation in WDF theory [18]].

In the more general case in which (2) is nonlinear, we
assume that the substitution (@) in (2) leads to a corresponding
scattering relation in the WD domain:

by, = fn (an) ) (6)

where f,, is a (nonlinear) scalar function that depends both on
the incident wave a,, and the free parameter Z,,. In order to
simplify notation, the dependence on Z,, is not made explicit.
Moreover, without loss of generality we have assumed (6) to
be in explicit form.

We then express the N scattering relations (one for each
one-port circuit element) in vector form as

by fi(ar)
b=|:|l=| : |=f@). )
by In(an)

On the other hand, the reciprocal lossless connection net-
work, containing all the topological information of the circuit,
is implemented in the WD domain using a junction character-
ized by a N x N scattering matrix S such that

a=Sb . ®)

As discussed in the literature [54f], the scattering matrix of
a reciprocal lossless WD junction based on the definition
(I is characterized by two special properties: the self-inverse
property and the losslessness property. According to the self-
inverse property, S is involutory, i.e.,

SS=1 9

where I is the identity matrix. According to the losslessness
property, instead, S satisfies
s’z7's=z"", (10)
where the diagonal matrix Z~! is the inverse of Z.
Combining and (8) we obtain the following vectorial
equation that describes the WD network in terms of the
incident waves,

a—Sf(a)=0, (11)

where 0 is a NV x 1 column vector of zeros. It is worth noticing
that, since S is involutory by (9) we can equivalently rewrite
(L1 as

Sa—f(a)=0 . (12)

If more than one circuit element is nonlinear then the system
(12) is characterized by implicit equations, and the unknown
vector variable a needs to be estimated at each sampling step
employing approximation methods that are usually iterative.
In the next section we discuss the case when an NR solver is
used.

B. Proposed WD Newton-Raphson Solver

Let us define the nonlinear vector function g(a) =

[g1(a),...,gn(a)]T, according to (T2)), as

g(a) = Sa— f(a) . (13)
and its Jacobian matrix as

Jg (a) =S —Je(a) | (14)

where Jg(a) is the Jacobian of the vector function f(a). Both
Jg(a) and J¢(a) are N x N matrices whose entries depend
on the incident waves in vector a. In particular, we have that

J¢ (a) = diag[f{(a1), ..., fy(an)] (15)

where

f;L (an) = dfn(an)

day, (16)

is the derivative of f,, with respect to a,,.

An NR solution of (I2) can be obtained by iteratively
computing the following update rule, starting with an initial
guess a(®),

T e ) (s 20— _ f(a('Yfl)))
17)
where a(?) is the outcome of the ~th iteration. The stop
condition is
||V(v) _ v(7*1)|

| < &Wpnr (18)

where || - || is the Euclidean norm, {wpnr is a small tolerance
(that in this manuscript is set as &wpNr = 10~8), while v(?)
is the vector of port voltages computed at the vth NR iteration
and defined by as
-1 ( =) &) )
v 5 @7+ f(a®))) . (19)
Generally, the closer the initial guess to the solution, the
faster the NR convergence. In our case, the initial guess a(®) [k]
at sampling step £ > 1 can be set by substituting the most
recent values of v, i and Z in @:
aO k] = v[k — 1] + Z[Ki[k — 1] (20)
where v[k — 1] and i[k — 1] are the vector of port volt-
ages and the vector of port currents found at the previous
sampling step k& — 1, while Z[k] is the diagonal matrix of
free parameters at sampling step k. As far as the sampling
step £ = 1 is concerned, the initial guess should be set
according to the initial conditions of the circuit. A discussion
on how to set initial conditions in WD structures can be found
in [29]]. However, in most scenarios of interest in Virtual
Analog modeling, we assume that the circuit is off at the
sampling step k = 0; therefore Kirchhoff port variables are
initialized to zero, i.e., v[0] = i[0] = 0. Since, according
to (20), we would have that a(®)[1] = 0, and a zero-valued
seed vector might cause numerical problems to NR, we set
a(O)[l] = [e1,...,en]T, where €1,...,ex are small voltage
values, e.g., e = =€y =0.1 V.
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III. QUADRATIC CONVERGENCE CONDITIONS OF THE
WD NEWTON-RAPHSON SOLVER

In the following derivation, for simplicity, we will refer to
the current-to-voltage characteristic of a one-port element of
the reference circuit generally as v(¢). Thus, the incident and
the reflected waves of a generic one-port element can be
observed as functions of the current ¢, respectively h, and hy:

a=v(i)+ Zi=he(i) , b=uv(i)— Zi = hy(i).  (21)

Let us assume that each one-port element is characterized by
a monotonically increasing current-to-voltage characteristic,
i.e.,

V(i) >0 . (22)

This assumption is satisfied by all linear elements whose
discrete-time model can be put in the form (@) if Ry, > 0
at every sampling step. Assumption (22) is also satisfied by
nonlinear diodes characterized by the Shockley exponential
model and one-port nonlinearities with memoryless saturation
characteristics, e.g., pairs of exponential diodes in anti-parallel.

Eq. (Z1), combined with (22) and with the further assump-
tion that

Z>0, (23)

implies that the function h,(¢) is monotonic, hence invertible.
From here, b = f(a) = hy(hy ' (a)). Deriving the composition

hyt o hy yields
hy(ha'(@)) _v'(i) —Z
= hZEht;l((a;; - 'U'Ei; + 7 (24)
Conditions (22) and (23) applied to (24) imply also
If'(a)l < 1. 05)
Deriving we get
') = o e (0 (@) - hb(:ah,f‘g;{lhla(g;; (a))
h (ha'(a))
R (M a)) R, (R M a)) — By (it (a)) B (R (a))
- h (ha(a))?
_ o (i) (' (i) + Z) — (v/(5) — Z)v" (i)
) (i) +2)°
270" (3)
(26)

In [52], a sufficient condition for quadratic convergence of
NR has been discussed, along with an approximated and more
tractable version of it. Such a simplified condition makes use
of Hg(a), a matrix in which every element (n, j) is the second
derivative of g, with respect to a;, 1 < n,j < N. In our case,
given (13), (I4), and (I3), matrix Hg(a) can be written as

H, (a) = —diag[f{ (a1), ..., fx(an)]. 27

Let us consider a hypersphere centered on a solution point a
and with radius 1/M (a) such that

M) = 595 @Hg()], < @HJ?(a)Hg@w 28)

where the operators || - || and | - || indicate the infinity
matrix norm and the Euclidean matrix norm, respectively. The
inequality in holds because of the equivalence between
the infinity matrix norm and the Euclidean matrix norm [55].
The simplified condition discussed in [52] states that there
exists a basin around a and included inside the aforementioned
hypersphere where the NR solver can be initialized to converge
on the solution a with quadratic speed. According to the
experimental results in [52]], the larger 1/M (a), the larger the
basin of quadratic convergence. We will therefore elaborate on
expression ([28) to infer port resistance values (free parameters
Z,) that keep the size of this basin large, as a possibility to
speed up the convergence.

First of all, if condition 23) descending from (24) holds
for each one-port element then Jg(a) has an inverse. This is
proved in Appendix [A] This inverse is such that

1 Zmax 1
(PG \/;1 — 13|’

in which HJ f(a)H < 1, and Z,x and Zy;, are respectively the

largest and smallest port resistance. Hence,

< \/N Zmax ||Hg(a)H

= 2V Znin 1— || 3e(a)||

Egs. and are proved in Appendix
We can minimize the upper bound in (30) by simultaneously

minimizing its numerator and maximizing its denominator.

The latter operation is straightforward. In fact, by (I3) and
24), Jf(a)H can be set to zero by choosing

Zp =0 (in)

(29)

M(a) (30)

€1y

for each 1 < n < N, that is, at each port of the WD network.
The same upper limit depends also on the second-order
derivatives f}/(ay), through |[Hg(a)||. When (1) is used
to maximize the denominator of the upper bound, then (30)
becomes, by substituting Z,, = v} (i) in (Z7) through 26),

< \/N Zmax
-2 Zmin

P
e v (in) ol (i)

énnigN v) (in) 1<n<N [V),(i)])%

M(a)

[Hg(a)]|

(32)

In principle there is no guarantee that condition (3I) min-
imizes . For this reason, this choice remains heuristic.
On the other hand is especially attractive besides its
simplicity, as it generalizes the principle of linear one-port
element adaptation known in traditional WDF theory [18] to
nonlinear one-port elements as soon as their instantaneous
current-to-voltage characteristics are monotonically increasing.
In fact, even for linear one-ports characterized by a consti-
tutive equation in the form (3) the adaptation condition is
Zn = Ryp = v),(in). As a further consideration, please note
that for linear one-ports condition f}/(a,) = 0 always holds,
implying by (27) that the radius 1/M (a) is infinitely large in
a fully linear WD network. As a matter of fact, if all one-ports
are linear and condition is applied then NR converges in
just one iteration. In light of these considerations (30) suggests
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that, by choosing the same condition (3I) if one or more
nonlinearities are present, NR converges with high speed to
the equilibrium point of the network at every sampling step.

Even more interestingly, a similar result in terms of optimal
values of port resistances has been found when a fixed-point
method, instead of NR, was used in [23], [44]-[46], [49] for
solving circuits with multiple nonlinear one-port elements. In
fact, in references [44] and [49], the convergence analyses of
the WD fixed-point iterative solver, called SIM, show that the
free parameter (port resistance) of each one-port should be set
as close as possible to the slope of the tangent line intersecting
the operating point on its v—i characteristic, i.e., Z, = v} (i),
in order to increase speed of convergence as much as possible.

Moreover, it is worth noting that, in this manuscript, there
is no quantitative expression putting the size of the basin in
relation with the speed of convergence. Though, there is ample
evidence that the larger the basin, the faster the convergence
is [52]. For instance, as we have already seen, in a linear WD
network the radius 1/M (a) is infinitely large and NR would
hit the solution always in one step. Holding this evidence, the
factors VN and v/Zmax /Zmin in the upper bound of M (a) are
also expected to condition the NR convergence speed.

Finally, it must be always considered that condition (3T)
can never be set exactly, as all the port currents and the port
voltages of the network become apparent after the computation
through NR of the vector a of incident waves. Keeping
robustness and efficiency in mind, a reasonable estimation
of the values v/ (i,) can be made using the port variables
at the previous sampling steps when setting the current port
resistances.

IV. APPLICATION OF CONVERGENCE ANALYSIS TO
CIRCUITS WITH MULTIPLE DIODES

In this section we discuss how the general convergence
analysis described in the previous section can be applied to
circuits containing multiple nonlinear diodes. We consider
two different models: the Shockley diode and the extended
Shockley diode, i.e., the Shockley model augmented with a
series resistor and a parallel resistor. In both cases we make
sure that the v—i characteristic is monotonically increasing,
then we provide mathematical expressions that are useful to
delimit the basin of quadratic convergence. Finally, for both
models we derive explicit WD scattering equations.

A. Shockley diode model case

The well-known Shockley diode model is characterized by
the constitutive equation

i—I(e"? —1)=0 (33)

where e is the Napier’s constant, ¢ is the port current, v is the
port voltage, I is the saturation current, and the parameter
B8 = nV; denotes the thermal voltage V; multiplied by the p-n
junction ideality factor 7. The port voltage can be expressed
by turning (33) into a function of the port current:

v(i) =fF1In (1 + ;) . (34)

From here,

, B
/ —
V(i) = 1
Since 8 > 0, I, > 0 and 7 > —I, then (22)) holds; it follows
that (34) is monotonically increasing. Deriving (33) again, we
get

B

v"(i) = T

Hence, by (31)), the port resistance of a WD Shockley diode
model is set as

(35)

(36)

: B
Z ='(i) = . 37
V) = o @7
Holding this choice, using (33) and (36), the ratio
(s 1
@] _ 1 (38)

@ B
is useful for evaluating the upper limit in (32). Under the
assumption that all the nonlinear one-ports of the circuit are
identical diodes characterized by the same Shockley model,
and remembering that for linear one-port elements we have
vl (in) = 0, (32) reduces to

< @ Zmax
o 86 Zmin

Although not necessary for the convergence analysis of the
WD NR solver, here we also provide an explicit WD scattering
equation which can be used for computing the WD Shockley
diode model. This equation, based on the Lambert W function,
was already presented in [[19], [32], [56] and is rewritten here
in terms of the Wright w function [57]], which is defined as
w(z) = W(e?) with z € R. The WD Shockley diode scattering
function is

M(a) . (39)

fla)=a+2ZI, —2Bw(p(a)) , (40)
where
ZI +a 71,
o(a) = 3 —l—log( 3 ) .

The first- and second-order derivatives of can also be
expressed in closed-form as follows:

, 2w (p(a)
f (a) -+ 1+w(%p(a)) ) 41
f”(a) _ 72(‘}(90(0‘)) (42)

B. Extended Shockley diode model case

The Shockley model of a p-n junction diode is usually ac-
curate only for relatively small voltage values. Large negative
values cause current leaks in parallel to saturation; conversely,
large positive voltages cause the diode to resist from excessive
current flow across itself. Such effects are modeled by adding
one resistor with large resistance Rp > 0 in parallel and one
resistor with small resistance Rs > 0 in series to the Shockley
diode [23]], [46]. The resulting v— characteristic hence obeys
to the following implicit relation

v(i)— Rgi AP ;
i—Is(e BRS_I)_U(Z) RSZZO7

R (43)



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. ?, NO. ?, MONTH 20?? 6

where v(i) and ¢ are the port voltage and the port current
of the one-port model that will be referred to as extended
Shockley diode model. The use of additional resistors also
prevents numerical problems that often arise when using the
Shockley diode model whose v—¢ curve is characterized by
extremely high (and extremely low) slopes, especially when
dealing with large-amplitude signals [23], [46]. It is therefore
useful to check whether the v— characteristic of the extended
Shockley diode model has a positive derivative. If this is true,
then we can apply the convergence analysis of Section [[II] also
in this case.

Let us define the function y(i) = (v(i) — Rsi)/f, later
simply referred to as y. From here, (@3) can be rewritten as

8,
Rp ’
This relationship confirms that y(0) = v(0) = 0, and also
implies that lim;_, 1.,y = o0o. Now, by deriving (#4) with
respect to ¢ we get

LeY — I+ (44)

s

Isyley + R7Py ﬁ

e+ —) =1
( RP ) ?
where y’ denotes the derivative of y with respect to ¢ and can
be written as

(45)

1
y=—-7. (46)
Isey + ﬁp

Eq. (46) shows that 0 < ¢/ = WT_RS < %, so that Rg <
v'(i) < Rs + Rp. Hence, v'(i) > 0 for every current; this
means that v(¢) is monotonically increasing. y'(¢) is always
positive, too, furthermore it decreases from Rp/S until zero
in the range (—oo, +00) of 4. Then, more precisely, v'(i) =
By (i) + Rs decreases from Rp+ Rs to Rs in the same range.
This characteristic behavior is self-evident by inspecting (@3]
in particular when ¢ = Foc0.

By computing the derivative with respect to ¢ of both
members of equation @3] we get

M@ﬁ+£ﬁ+uw%“ﬂ, (47)
P

that, by moving the second term to the right and then using

(6] and (@3), becomes

yl/ B
= -1 48
7=V (Y L. (48)
Hence, we get
w_ V" N2, B
=— = -1 49
V=3 () pr )- (49)

Along with recalling that 0 < y' < Rp/f, eq. proves
that ¢/ and v are always negative. This conclusion, again by
(49), implies that v'(¢) is not only positive and decreasing as
we have already seen, but also monotonically decreasing.

By rewriting y and y’ respectively as functions of v(7),
according to (40), v'(7) can be written as
1)() Rgi
B(Rs + Rp) + RsRple

v(i)—Rgi

B + Rplge B

v'(i) = (50)

Expression (50), that can also be obtained by directly applying
the implicit function theorem to , is explicitly computable
only if both ¢ and v(¢) are known.

Given (9), we can also express v” (i) as

v(i ) Rgi

<>Rs)3'

We derived all the analytical expressions needed for com-
puting the upper bound of the basin M (a) in equation (30)
dealing with circuits with multiple nonlinearities characterized
by the extended Shockley diode model. Again, the upper
bound is kept low according to by setting Z = v'(4)
for each element. Using (50) and (51)), the ratio

BRI, ev(®)
(B + ReL,ev®) (B(Rs + Re) + RsRplev®)?
(52)
turns useful for evaluating the upper limit in (32). It can
be verified that when Iy and Rg are small and Rp is large,
for sufficiently low values of port current i, (32) is well
approximated by (38).
Like in the case of the Shockley diode, we also provide an

explicit WD scattering function that characterizes the extended
Shockley diode model:

BRI e
(6 + Rple

v"(i) = — (51)

@] _

@)

_ 2ZRpl,+a(Re+Rs—7Z)  28Z
fla)= Z + Rp + Rs Z+RSW(@(G))
(53)
where
(a) _ aRp + Rpl; (Z + Rs) o < Rpl, (Z + Rs) )
14 3(Z + Re + Rs) S\B(Z+Re tRs))

Closed-form expressions of the first- and second-order deriva-
tives of (33) are:

! _ RP + RS -7z
R
2ReZo((a)) (54)
+ :
(Rs+Z)(RP+Rs+Z<1+w )
. B —2ZRPw( (a))
f (a) = 3 -
B(Rs + Z)(Rp + Rs + 7)? (1 + w(gp(a)))
(55)

V. CASE STUDY: RING MODULATOR

In this section we apply the proposed WD NR method to a
signal modulator containing a ring circuit made of four diodes.
Invented by Cowan [58] in the thirties and originally used
as a heterodyning element in single-sideband communications
systems [59]], the ring modulator has been widely adopted
as an audio effect by electronic music composers such as
K. Stockhausen, by the BBC Radiophonic workshop, and
by sound synthesizer manufacturers including Buchla, Moog,
Oberheim, and Bode [[60], [61]. In the literature on Virtual
Analog modeling, several works present simplified or accurate
models of diode-based ring modulator circuits [23]], [32f], [46],
[52], [60], [62], [63]. Here we consider the ring modulator
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TABLE I
RING MODULATOR: PORT RESISTANCES OF LINEAR ELEMENTS
Port Res. | Value Port Res. | Value Port Res. | Value
Zs % Zg 22‘33 Z11 Ry
Zsg % Zy e ; Z12 Rout
Zy QESA Z10 Rin Z13 R

circuit in Fig. E], already discussed in [23]], [52]], [62]]. This
circuit is characterized by two ideal 3-winding transformers,
whose turn ratios are 0/p = v/u = /A = /A = 1/2,
where 60, v, p, & 7 and A\ are the numbers of turns in
each winding. The input signal and the carrier signal are
both sinusoids in the forms Vi, (t) = Ajsin(27 fi,t) and
Ve(t) = Acsin(27 f.t), where t is the continuous-time variable
in seconds, fi, and f. are the fundamental frequencies in Hz
of the input and the carrier, respectively, while A;, and A,
are voltage amplitudes. The output signal V, is the voltage
across the resistor R,y. The parameters of the linear one-port
elements and the corresponding values are: La = Lg = 0.8
H,CAZCB:CdzlnF,Rd:5OQ,Rin:80Q,
R, =1 Q and Ry, = 600 €. All four nonlinear diodes are
identical, and they are modeled with the extended Shockley
diode model discussed in Subsection their parameters
and corresponding values are: Iy = 1 nA, n = 2.19, V; = 26
mV, Rs = 1 m{2 and Rp = 100 k2.

The WD realization of the circuit in Fig. [T] is shown in
Fig. 2] The WD structure is characterized by 13 one-port
elements and a single 13-port junction embedding the two 3-
winding transformers. The WD junction realizes a reciprocal
lossless connection network [23[], [[54], [64], hence its scatter-
ing matrix S can be computed as

$=2Q7(Qz'Q7) ' QZ ! -1y

where Z = diag[Z, ..., Z13] is the diagonal matrix of port
resistances, Iy3 is the 13 x 13 identity matrix while Q =
[F,14], being I, the 4 x 4 identity matrix and

(56)

05 05 -05 —-05 1 0 1 0 O

F— 1 -1 1 -1 0 0 0 0 O
-05 05 05 —-05 0 1 0 1 O

1 -1 1 -1 0 0 0 0 1

The linear elements can be modeled using eq. (5). Each
linear element is adapted [18], i.e., the local instantaneous
dependency of the reflected wave variable on the incident wave
variable has been removed. The continuous-time derivatives
in the constitutive equations of capacitors and inductors are
approximated using the trapezoidal rule as in traditional WDFs
[18]. The chosen sampling frequency is Fy = 1/Ty = 44.1
kHz. The WD realization of nonlinear diodes is based on the
scattering relation in eq. (53). The Wright function w(z) in
eq. (33) is implemented using the method presented in [65].
The port resistances of the adapted linear elements are reported
in Table [l The choice of the port resistances Z1,...,Z, of
the nonlinear diodes is the main point of interest in this case
study. According to the considerations presented in Section [[II

and Section [[V]a good choice for the port resistances of both
linear and nonlinear elements characterized by a monotoni-
cally increasing v—i characteristic is Z, = v}, (i,). It can be
easily verified, using eq. (3), that the port resistances of linear
elements (adapted according to traditional WDF principles)
already satisfy condition (3I)), i.e., Z,, = v},(i) = Rgn. As
far as nonlinear elements are concerned, their derivative v/, (i,,)
can be estimated at each sampling step before solving the
circuit by using the respective value at the previous sample.

A. First Experiment

In a first experiment we simulate the ring modulator circuit
using the proposed WD NR method based on the update rule
(T7). At every sampling step, each of the free parameters
Z1,...,24 is set equal to the slope of the tangent line
intersecting the operating point on the v—i characteristic of
the corresponding element at the previous step. The output
signals resulting from two different simulations are reported
in Fig. 3] The upper plot of Fig. [3 refers to a simulation in
which we set the parameters of the input signal as gj, = 5
V and fi, = 1500 Hz, while the parameters of the carrier
signal as g. = 5 V and f. = 500 Hz. The lower plot refers
to another simulation in which we set gi, = 5 V, fin = 1500
Hz, g = 5 V and f. = 810 Hz. A comparison to the results
obtained with LTspice simulations confirms the accuracy of
the WD implementations. Despite the high level of distortion
of the output signal due to the high amplitude and the high
fundamental frequency of the input signals, the proposed WD
NR method always converges to the correct solution. Other
simulations with parameters f. and fj, varied up to 15 kHz and
parameters g, and g, varied up to 10 V have been performed;
the proposed WD NR method always converged to the correct
solution.

B. Second Experiment

In a second experiment the values of v (i,) at every
sampling step are precomputed in ways that they can be
assigned to the free parameters Z,, at ports 1,...,4 during
the simulation. In this way the performance of the WD NR
method is tested in the ideal case, as if v],(4,,) was known a
priori. After setting the parameters of the input signals as in
the first simulation of the previous experiment, i.e., g, = 5
V, fin = 1500 Hz, g =5 V and f. = 500 Hz, we performed
many simulations while progressively shifting the values of the
port resistances Z,, away from their reference value v/, (i,,).
The results are shown in Fig. |4l In both subfigures of Fig.
blue circles represent the average number of NR iterations
(upper plot) and the maximum number of NR iterations (lower
plot) for different settings of the free parameters Zy, ..., Z4.
On the z-axis of each plot we have the deviation in percentage
with respect to the reference setting in which Z,, = v/, (iy,).
Different ranges of deviation are considered in the two sub-
figures.

Fig. (a)| shows the result of 200 simulations in the deviation
range [—99.9%, 99.9%)]. Reducing the free parameters Z,, by
100% (—100% case) would have been equivalent to setting
71 = Zy = Z3 = Z4 = 0; therefore, since in this manuscript
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Fig. 1. Dynamic ring modulator circuit.
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Fig. 2. WD structure corresponding to the circuit in Fig. [T}

we assume that Z,, > 0, we take —99.9% as the lowest limit
of the deviation range. In both the upper and the lower plot,
the absolute minimum occurs when Z,, = v/, (i,); in the 0%
of deviation case, in fact, we get the smallest average number
of NR iterations, which is 4.41, and the smallest maximum
number of NR iterations, which is 7. We can clearly see how
the average number and the maximum number of NR iterations
progressively increase when the values of the free parameters
are decreased; when the values of the free parameters are
increased, instead, they stay almost flat.

Fig. shows the result of 100 simulations in the deviation
range [1074%, 108%)] represented in logarithmic scale. We
notice that a local minimum is reached when Z,, ~ 10x v, (i,,)
(corresponding to an increase of almost 1000% w.r.t. the refer-
ence); in that case, the average number of NR iterations is 4.67
and the maximum number of NR iterations is 8. It is evident
that, after the aforementioned local minimum, the average
and the maximum number of NR iterations keep increasing
while the values of the free parameters are increased. The

red asterisks on the z-axis in Fig. f(b)] refer to simulations in
which the number of NR iterations reaches 25; in those cases
we stop the simulation.

We conclude that considerable deviations from the reference
case in which Z,, = v/,(i,,) not only generally result in an
increase of both the average and maximum number of NR
iterations (apart from some local minima), but they also might
lead to situations in which the WD NR method does not
converge.

VI. CONCLUSIONS AND FUTURE WORKS

Theoretical and experimental results in this manuscript show
that setting Z,, = v/, () on each one-port element at every sam-
pling step keeps the basin of quadratic convergence of the NR
method large. Experiments have also shown that the condition
on the free parameters suggested by the theoretical analysis
minimizes the number of iterations needed to solve a nonlinear
electrical network with multiple diodes (the ring modulator
circuit). In practical scenarios in which the derivative v/, (i,)
of nonlinear v— characteristics is not available before solving
the circuit at a given sampling step &, such a derivative can be
estimated using the values of v], (i,,) at the previous sampling
steps, similarly to what done when applying the WD fixed-
point algorithm discussed in [23]], [44]-[47], [49] and called
SIM.

As a future work, it is worth extending the results presented
in this manuscript to circuits containing one-port nonlinearities
with non-monotonic v—i characteristics and multi-port nonlin-
earities [24], [41]], [66]. Moreover, a more general theoretical
analysis aimed at investigating whether the condition Z, =
vl (1), already known to maximize the speed of convergence of
SIM [44], is the optimal port resistance choice for increasing
the convergence speed and the robustness of a broader class
of WD iterative methods is also left for future research.

APPENDIX A
NON-SINGULARITY OF Jg
By and (9), Jg(a) = S — J¢(a) is singular if and only
if I—SJ¢(a) is singular. Furthermore, () and imply that
Zz7'=8"z2"'S & Z7's=s8"z"'. (57
Hence, the matrix S =7"3SZ3 is symmetric [44]:

S=7287> =72877": = §T. (58)
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Fig. 3. Time domain simulation of the ring modulator circuit. The upper plot shows the signal Voy in the case in which gi, = 5V, fi, = 1500 Hz, gc = 5
V and f. = 500 Hz. The lower plot shows the signal Vo in the case in which gi, = 5V, fi, = 1500 Hz, g =5 V and f. = 810 Hz.

In particular from (38), S and S are similar and hence they
have the same spectral radius p, that is the largest eigenvalue
magnitude: p(S) = p(S). Hence, again by similarity between
SJ¢(a) and Z71/28J¢(a)Z'/?, and since J¢(a) and Z are
both diagonal:

p(STe(a) = p(Z~28T¢(a)2%) = p(STs(a)
< [[SIe@)] < [IS][[[Ie@)] 9
— p(8)p(Ie(a)) = p(S)p(Ie(a),

where we have used the matrix norm inequality || AB||
[|A[[||B]| and the inequality p(A) <
becomes an equality if A is symmetric and, of course, if A
is diagonal [44], [53].

Since, by (9), all eigenvalues of S are equal either to 1 or
—1, and by |f(a)| < 1, then from (39):

p(SJe(a)) < p(S)p(Je(a)) = p(Je(a)) <1.  (60)

Since I — SJ¢(a) can be singular only if p(SJ¢(a)) > 1,
inequality implies that T — SJ¢(a) is non-singular.

APPENDIX B
AN UPPER LIMIT FOR M (a)

From (58) and (9) we have

STS =SS =7":8S7Z: = 1. ©61)
Hence, S is orthogonal and this implies ||S|| = 1.
Since J¢(a) is diagonal, from (T4), (38) and (61),
Jg(a) = Z2SZ 2 — Je(a)
=7Z3(S - Jp(a))Z 2 (62)
=2Z3S(I-SJ¢(a))Z 5.
Again making use of (61), eq. (62) can be inverted:
Jo'(a) =22 (I - SJe(a))”'SZ 3. (63)
Thus, by diagonality of both Hg(a) and Z,
J.'(a)Hg(a) = Z* (I - SJ¢(a)) 'SHg(a)Z 2.  (64)

Since S is orthogonal, and by (59) and (60):
I83e(@)] = [IS][[|9¢ (@) = [[I¢(=)

Hence, T — SJ¢(a) is not singular and furthermore we can
write [55]

<1 (65

H(I— SJf(a))’IH < 1—H31Jf(a)H (66)
Then, finally from (64), (66), and (63):
195" (a)Hg(a)]|
— 24| (1 - 83¢(@) ' SHg (@) |27
- (I,ng@)*lng(a)H o
<2 - 83a) ISt @)

o [Zoo |SHg@)] _ [Zuw |[Hg@)]
- Zmin 1 — HSJf(a)H Zmin 1 — HJf(a)H
This inequality proves (30) and, as a particular case, (29).
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