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ABSTRACT. The aim of this note is to present the recent results in [16] where
we provide the existence of solutions of some nonlinear resonant PDEs on T2

exchanging energy among Fourier modes in a “chaotic-like” way. We say that
a transition of energy is “chaotic-like” if either the choice of activated modes or
the time spent in each transfer can be chosen randomly. We consider the nonlin-
ear cubic Wave, the Hartree and the nonlinear cubic Beam equations. The key
point of the construction of the special solutions is the existence of heteroclinic
connections between invariant objects and the construction of symbolic dynam-
ics (a Smale horseshoe) for the Birkhoff Normal Form of those equations.
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1. INTRODUCTION

A fundamental question in nonlinear Hamiltonian Partial Differential Equa-
tions (PDEs) on compact manifolds is to understand how solutions can exchange
energy among Fourier modes as time evolves.

In the last decade there has been a lot of activity in building exchange of en-
ergy behaviors in different Hamiltonian PDEs almost exclusively for the nonlinear
Schrödinger equation. They can be classified into two groups: the first one are the
so-called beating solutions [19, 18, 17, 27, 26], namely orbits that are essentially
supported on a finite numbers of modes and whose energy oscillates between those
modes in a certain time range; the other group are those addressing the problem
of transfer of energy, namely constructing orbits whose energy is transferred to
increasingly higher modes as time evolves [4, 29, 30, 6, 23, 20, 22, 24, 25, 21, 35,
36, 32, 7, 13, 14].

Most of these results rely on analyzing the first order Birkhoff normal form
of the Hamiltonian PDEs and building invariant objects for such models. Note
that these first order Birkhoff normal forms are typically non-integrable Hamil-
tonian systems (at least in dimension greater or equal than 2). Nevertheless, re-
stricted to suitably chosen invariant subspaces those models are integrable (they
have “enough” first integrals in involution). The analysis of the dynamics at (or
near) these invariant subspaces allows to construct unstable motions and exchange
of energy solutions.

The purpose of this note is to present the recent results in [16] where we con-
sider three different PDEs, a nonlinear Wave equation, a nonlinear Beam equation
and the Hartree equation (see (1.1), (1.2) and (1.11) below) and we show the exis-
tence of solutions that display exchange of energy behaviors in a chaotic fashion
(up to a certain time scale). They are thus rather different from the previously
constructed beating solutions results [18, 17, 27], whose exchange of energy is
periodic in time. On the contrary, the beating solutions we construct undergo
oscillations that can be “randomly” chosen (see Section 1.1 for the precise state-
ments). This “random” choice is obtained by exploiting the non-integrability and
chaoticity (symbolic dynamics) of its Birkhoff normal form.

1.1. Main results. Consider the completely resonant cubic nonlinear Wave and
Beam equations on the 2-dimensional torus

utt −∆u+ u3 = 0 u = u(t, x), t ∈ R, x ∈ T2 (1.1)

utt + ∆2u+ u3 = 0 u = u(t, x), t ∈ R, x ∈ T2. (1.2)

We prove the existence of special beating solutions for such PDEs which are (es-
sentially) Fourier supported on a finite set of 4-tuple resonant modes

Λ := {n(r)
j }

r=1,...,N
j=1,...,4 ⊂ Z2, N ≥ 2, (1.3)
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in the sense that
u(t, x) =

∑
j∈Λ

aj(t) e
ij·x +R(t, x)

where R(t, x) is small in some Sobolev norm. The transfers of energy between
modes in Λ are chaotic-like, in the following sense. Either

(a) one can prescribe a finite sequence of times t1, . . . , tn and find a solution
that exists for long but finite time exhibiting transfers of energy among the
modes in Λ at the prescribed times t1, . . . , tn

or
(b) one can prescribe any sequence of resonant tuples {n(rh)

j }h=1,...,k ⊆ Λ
and find a solution and a sequence of times t1, . . . , tk such that at time
tn all modes are ”switched off” (modulus of the modes almost constant)
whereas the modes (n

(rn)
1 , n

(rn)
2 , n

(rn)
3 , n

(rn)
4 ) are “switched on”, in the

sense that they exchange energy between them.
We look for these solutions in the subspace

Uodd =

u =
∑

j∈Z2
odd

uje
ij·x

 , Z2
odd =

{
(j1, j2) ∈ Z2 : j1 odd, j2 even

}
,

which is invariant under the flow of equations (1.1), (1.2) (see [37]). The origin of
such subspace is an elliptic fixed point, and solutions of the variational equation

üj + ω2(j)uj = 0, j ∈ Z2
odd, (1.4)

where ω(j) = |j| (for the Wave equation (1.1)) and ω(j) = |j|2 (for the Beam
equation (1.2)), are superposition of decoupled harmonic oscillators. Hence all
solutions are periodic/quasi-periodic/almost-periodic in time and, in particular,
there is no transfer of energy between the linear modes when time evolves. This
implies that the existence of beating solutions depends on the presence of the
nonlinearities. In order to describe the nonlinear effects in a neighborhood of
an elliptic equilibrium we perform a Birkhoff normal form analysis: namely, we
construct changes of coordinates that transform the Hamiltonian of the equations
(1.1), (1.2) into a Hamiltonian of the form

K = K(2) +K(4) +R, (1.5)

where K(i) are homogenous terms of degree i and R is a function that can be
considered as a small perturbation. Then, one can consider the truncated system

N := K(2) +K(4), (1.6)

called normal form, as a model which describes the effective dynamics of equa-
tions (1.1), (1.2) up to a certain time scale. It is well known that the existence of
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such changes of coordinates cannot be always guaranteed because of the presence
of small divisor problems and/or derivatives in the nonlinear terms. To overcome
these problems we adopt the strategy of performing a weak version of the Birkhoff
normal form (see Section 2) which is well established, for instance, in the KAM
theory for quasi-linear resonant PDEs [15], [9].

The normal form HamiltonianN possesses many finite-dimensional, symplec-
tic, invariant subspaces of the form

VΛ := {uj = 0 ∀j /∈ Λ}, (1.7)

where Λ ⊂ Z2
odd is a finite set (suitably chosen).

In the following theorem we state two results concerning the dynamics of the
normal form Hamiltonian N , which are fundamental ingredients for the proof of
the main Theorems 1.4 and 1.5.

To state this theorem, let us first introduce the Bernoulli shift. Consider Σ =
NZ, the space of sequences of natural numbers, with the usual topology taking as
neighborhood basis of ω∗ = {ω∗j }j∈Z the sets

Uk =
{
ω ∈ Σ : ωj = ω∗j for |j| < k

}
.

Then, the Bernouilli shift is a homeomorphism defined as

σ : Σ→ Σ, (σω)k = ωk+1. (1.8)

The map σ is one of the paradigmatic examples of chaotic dynamics and encodes
the dynamics of the classical Smale Horseshoe (of infinite symbols), see [34]. In
particular it has dense orbits, its periodic orbits form a dense set in Σ and it has
positive topological entropy.

Theorem 1.1. Let N ≥ 2. There exist sets Λ ⊂ Z2
odd of cardinality 4N such that

VΛ is invariant by the dynamics of N and the following holds.

(i) Let N = 2. Then, the flow Φt associated to N in VΛ has the following
property. There exists a section Π transverse to the flow Φt such that the
induced Poincaré map

P : U = Ů ⊂ Π→ Π

has an invariant setX ⊂ U which is homeomorphic to Σ×T5. Moreover,
the dynamics of P : X → X is topologically conjugated to the map

P̃ : Σ× T5 → Σ× T5, P̃(ω, θ) = (σω, θ + f(ω))

where σ is the Bernoulli shift (1.8) and f : Σ → T5 is a continuous
function (see Remark (1.2) below).

Namely, P has a Smale horseshoe of infinite symbols as a factor.
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(ii) There existN partially hyperbolic 2(N+1)-dimensional tori, T1, . . . ,TN ,
invariant for the restriction of the normal form Hamiltonian N at the
subspace VΛ, which have the following property. Take arbitrarily small
neighborhoods Vi of Ti and any sequence {pi}i≥1 ⊂ {1, . . . , N}N. Then,
there exists an orbit v(t) of N and a sequence of times {ti}i≥1 such that

v(ti) ∈ Vpi .
Remark 1.2. The normal form Hamiltonian restricted to VΛ has 5 constants of
motion which are in involution and linearly independent in a neighborhood of the
invariant set X . This implies the existence of a set of coordinates that puts these
first integrals as actions. The angles θ appearing in Theorem 1.1 are just their
conjugate variables. In particular the angles are cyclic, i.e. the dynamics of the
angles on the section Π is given by a translation f which does not depend on θ but
only on ω.

Remark 1.3. The set Λ ⊂ Z2
odd is the union of N resonant tuples (with certain

properties). The “shape” of the resonant tuples n1, n2, n3, n4 ∈ Z2
odd are differ-

ent for the Beam and Wave Equations. For the Beam equation, as for the cubic
nonlinear Schrödinger equation, they are rectangles with vertices in Z2

odd, since
they must satisfy

n1 − n2 + n3 − n4 = 0, |n1|2 − |n2|2 + |n3|2 − |n4|2 = 0.

For the Wave equation they satisfy

n1 − n2 + n3 − n4 = 0, |n1| − |n2|+ |n3| − |n4| = 0.

Those tuples form a parallelogram inscribed on an ellipse with foci at F1 = 0 and
F2 = n1 + n3 and semi-major axis a = (|n1|+ |n3|)/2.

Actually there is a “large” choice for the sets Λ ⊂ Z2
odd for which Theorem

1.1 (and also Theorems 1.4 and 1.5 below) is satisfied. Indeed, Theorem 1.1 relies
on the existence of a transverse intersection between certain invariant manifolds.
This transversality is proven by perturbative methods and, therefore, we need the
restriction of N on VΛ (see (1.6), (1.7)) to be close to integrable. This relies on
choosing appropriate sets Λ. The precise statement goes as follows. Fix ε > 0
(which will measure the closeness to integrability). Then, for anyR� 1, one can
choose the resonant tuples in the set Λ generically in the annulus

R(1− ε) ≤ |n| ≤ R(1 + ε).

Generically means that one has to exclude the zero set of a finite number of alge-
braic varieties (and the number of those is independent of ε and R).

Items (a) and (b) above are consequence of items (i) and (ii) in Theorem 1.1,
respectively. Let us make some remark on the type of dynamics for the normal
form Hamiltonian N .
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• Item (i) of Theorem 1.1 gives the existence of an invariant set for N
(see (1.6)) which possesses chaotic dynamics. Such chaotic dynamics
is obtained through the classical Smale horseshoe dynamics for a suitable
Poincaré map. This invariant set is constructed in the neighborhood of
homoclinic points to an invariant tori orbit (which, after a suitable sym-
plectic reduction, becomes a periodic orbit with large period T� 1). The
(infinite) symbols codify the closeness to the invariant manifolds of the
periodic orbit, the larger the symbol is, the longer the return time to the
section Π is. In particular, one can construct orbits which take longer and
longer time to return to Π for higher iterates.

Even if the theorem, as stated, gives the existence of one invariant set,
one actually can construct a Smale horseshoe at each energy level.
• Item (ii) of Theorem 1.1 gives orbits which visit (possibly infinitely many

times) a given set of invariant tori in any prescribed order. The construc-
tion of such orbits follows the classical strategy of Arnold Diffusion [1].
That is, it is a consequence of the existence of a chain of invariant tori
(again periodic orbits in a suitable symplectic reduction) connected by
transverse heteroclinic connections, plus a classical shadowing argument
(Lambda lemma, see for instance [11]).

As for item (i) one can obtain the explained behavior at each energy
level. Indeed, the invariant tori come in families parameterized by the
energy level and therefore one can obtain this shadowing behavior at each
energy level as well.

Note that the knowledge of the orbits obtained in Theorem 1.1 is for all time. If
one adds the error terms dropped from the original equation, that isR in (1.5), one
can obtain orbits for equations (1.1), (1.2) which follow the orbits of Theorem 1.1
for some time scales. Next theorem gives solutions of equations (1.1) and (1.2)
which (approximately) behave as those obtained in Item (i) of Theorem 1.1.

Theorem 1.4. Let N = 2 and fix 0 < ε � 1. Then for a large choice of sets
Λ = {ni}8i=1 ⊂ Z2 as in (1.3) there exists T0 � 1 such that for all T ≥ T0 there
exists M0 > 0 such that for all M ≥ M0 there exists δ0 = δ0(M, ε, T) > 0 such
that ∀δ ∈ (0, δ0) the following holds.

Choose any k ≥ 1 and any sequence {mj}kj=1 such that mj ≥ M0 and∑k
j=1mj ≤ M − k. Then, there exists a solution u(t, x) of (1.1), (1.2) for

t ∈ [0, δ−2MT] of the form

u(t, x) =
δ√
2

8∑
i=1

|ni|−κ/2
(
ani(t) e

ini·x + ani(t) e
−ini·x

)
+R1(t, x)



CHAOTIC RESONANT DYNAMICS AND EXCHANGES OF ENERGY IN HAMILTONIAN PDES 7

where κ = 1 for the Wave equation (1.1) and κ = 2 for the Beam equation (1.2),
and supt∈[0,δ−2MT]‖R1‖Hs(T2) .s δ

3/2 for all s ≥ 0. The first order {ani}i=1...8

satisfies

|an1(t)|2 = |an3(t)|2 = 1− |an2(t)|2 = 1− |an4(t)|2,
|an5(t)|2 = |an7(t)|2 = 1− |an6(t)|2 = 1− |an8(t)|2,

and has the following behavior.
• First resonant tuple (Periodic transfer of energy): There exists a T-

periodic function Q(t), independent of δ and satisfying min[0,T]Q(t) < ε
and max[0,T] |Q(t)| > 1− ε, such that

|an1(t)|2 = Q(δ2t) +R2(t) with sup
t∈R
|R2(t)| ≤ ε.

• Second resonant tuple (Chaotic-like transfer of energy): There exists a
sequence of times {tj}kj=0 satisfying t0 = 0 and

tj+1 = tj + δ−2T (mj + θj) with θj ∈ (0, 1)

such that
|an5(tj)|2 =

1

2
.

Moreover, there exists another sequence {t̄j}j=1...k satisfying tj < t̄j <
tj+1 such that,

|an5(t)|2 > 1

2
for t ∈ (tj , t̄j)

|an5(t)|2 < 1

2
for t ∈ (t̄j , tj+1)

(1.9)

and

sup
t∈(tj ,t̄j)

|an5(t)|2 ≥ 1− ε and inf
t∈(t̄j ,tj+1)

|an5(t)|2 ≤ ε. (1.10)

Note that the first order {δani}i=1...8 are the trajectories obtained in Theorem
1.1–(i) which belong to the horseshoe.

The first resonant tuple has a periodic beating behavior similar to [18]. On
the contrary, the behavior of the second resonant tuple is radically different. The
modulus of the modes ani , i = 5, 6, 7, 8 “oscillate” from being O(ε) to being
O(ε)-close to 1 (see Figure 1). Moreover, the time intervals ∆tj = tj − tj−1

between times {tj} when the modes in the tuple have the same modulus, that is

|an5(tj)|2 = |an6(tj)|2 = |an7(tj)|2 = |an8(tj)|2 =
1

2
,

(and the modulus of an5 and an7 is increasing) can be chosen randomly as any
(large enough) integer multiple of T (plus a small error).
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0

1

2

1

t1 t̄1 t2 t̄2 t3 t̄3

|an5(t)|2

t

FIGURE 1. An example of the evolution of the energy |an5(t)|2
as time evolves. The energy is a multi-bump like function. It
assumes the value 1/2 at the “random” times t = tj and also
at t = t̄j . The randomness in the tj’s prescribes the separation
of the bumps. The larger is the increment tj+1 − tj , the more
separated are the corresponding bumps. This shows that one can
obtain very complicated energy transfer behaviors for the second
resonant tuple.

Now we state the second main result of this paper, which gives solutions of
equations 1.1 and 1.2 which (approximately) behave as those obtained in Item (ii)
of Theorem 1.1.

Theorem 1.5. Let N ≥ 2, k � 1, 0 < ε � 1. Then for a large choice of a set
Λ := {n(r)

j }
r=1,...,N
j=1,...,4 ⊂ Z2 as in (1.3) there exist δ0 > 0, T > 0, such that for any

δ ∈ (0, δ0) and any sequence ω = (ω1, . . . , ωk), ωi ∈ {1, . . . , N}, there exists a
solution u(t, x) of the (1.1), (1.2) of the form

u(t, x) =
δ√
2

∑
n∈Λ

|n|−κ/2
(
an(t) ein·x + an(t) e−in·x)+R3(t, x), t ∈ [0, δ−2T ]

where κ = 1, for the Wave equation (1.1), or κ = 2, for the Beam equation (1.2),
supt∈[0,δ−2T ] ‖R3(t, x)‖Hs(T2) .s δ

3/2 for all s ≥ 0, and the first order {an}n∈Λ,
has the following behavior.

There exist some αp, βp satisfying

αp < βp < αp+1 and βp − αp & | ln ε|, p = 1, . . . , k

such that, if one splits the time interval as [0, δ−2T ] = I1∪J1,2∪ I2∪J2,3∪· · ·∪
Jk−1,k ∪ Ik with

Ip = [δ−2αp, δ
−2βp], Jp,p+1 = [δ−2βp, δ

−2αp+1],
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such that {an}n∈Λ satisfies:
• in the beating-time intervals Ip, there exists tp > 0 such that

sup
t∈Ip

∣∣∣|a
n

(ωp)
1

(t)|2 −Q(δ2t− tp)
∣∣∣ ≤ ε

sup
t∈Ip
|a
n

(r)
1

(t)|2 ≤ ε for r = 1, . . . , N, r 6= ωp,

where Q(t) is the periodic function given by Theorem 1.4,
• in the transition-time intervals Jp,p+1,

sup
t∈Jp,p+1

|a
n

(r)
1

(t)|2 ≥ 1− ε for r = 1, . . . , N, r 6= ωp,

and |a
n

(r)
1

(t)|2 = |a
n

(r)
3

(t)|2 , |a
n

(r)
j

(t)|2 = 1− |a
n

(r)
1

(t)|2 with j = 2, 4.

The orbits of Theorem 1.1 are obtained by shadowing a sequence of invariant
tori (periodic orbits for a suitable symplectic reduction) connected by transverse
heteroclinic orbits. Then, the beating-time intervals are the intervals where the
orbit is in a small neighborhood of each of the periodic orbits. In this regime, (the
moduli of) some modes oscillate periodically, whereas the others are at rest. The
transition-time intervals correspond to intervals in which the orbit is “traveling”
along a heteroclinic orbit and is “far” from all periodic orbits. In this regime, all
modes undergo a drastic change (see Figure 2).

1.2. Some comments on Theorems 1.4 and 1.5. Hartree equation. Similar re-
sults hold true also for the Hartree equation

iut = ∆u+ (V ? |u|2)u, u = u(t, x), t ∈ R, x ∈ T2 (1.11)

with a convolution potential V (x) =
∑

j∈Z2 Vj e
ij·x such that

V : T2 → R, V (x) = V (−x) (1.12)

and assuming the following hypothesis. Once fixed the set Λ ⊂ Z2 of resonant
tuples, the Fourier coefficients Vj of the potential with j = n1 − n2 for some
n1, n2 ∈ Λ satisfy

Vj = 1 + εγj with ε� 1. (1.13)
Assume that the coefficients γj satisfy a codimension 1 non-degeneracy condition
and take ε small enough. Then, the Hartree equation has solutions of the form

u(t, x) = δ
∑
n∈Λ

an(t) ein·x +R(t, x)

where the first order {an} and the remainder R satisfy the statements given either
in Theorem 1.4 (where R R3) or 1.5 (where R R4) .
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|a
n

(1)
1

(t)|2

t

|a
n

(2)
1

(t)|2

t

|a
n

(3)
1

(t)|2

t

FIGURE 2. An example of the evolution of |a(j)
n1 (t)|2, j = 1, 2, 3

of a solution obtained by Theorem 1.5 as time evolves. We con-
sider N = 3 and the sequence of modes which are “activated” is
ω = {1, 3, 2, 3, 1, 2 . . .}.
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Smale Horseshoes in PDEs: Theorem 1.1 provides a Smale Horseshoe for the
Birkhoff normal form. This invariant set is partially hyperbolic and partially el-
liptic if considered in the whole infinite dimensional phase space. This is the
reason why, a priori, this invariant set is not persistent for the full equations (1.1),
(1.2), (1.11). As far as the authors know, the existence of Smale horseshoes in
Hamiltonian PDEs has been mostly obtained by adding dissipation to the equa-
tion which make these sets become fully hyperbolic [28, 31, 3, 2, 10].
Non-integrability of N on VΛ: Theorem 1.1 (and therefore Theorems 1.4 and
1.5) relies on the fact that the restriction of N on VΛ is not integrable and admits
invariant tori with transverse homoclinic orbits which lead to chaotic behavior. If
one tries to mimic the proof of Theorems 1.4 and 1.5 for the cubic NLS

iut = ∆u− |u|2u, x ∈ T2,

one fails to obtain chaotic dynamics for the normal form N on VΛ. This is due to
the fact that, for the sets Λ considered in Theorems 1.4 and 1.5, the dynamics of
N|VΛ

is integrable. Indeed the dynamics of the normal form restricted to each res-
onant tuple is decoupled and integrable for NLS (recall that Λ is chosen as union
of disjoint resonat tuples). The integrability prevents the existence of homoclinic
or heteroclinic transverse intersections and chaotic motions.
Certainly we expect the normal form of NLS to be non-integrable, but one should
consider solutions supported on sets Λ different from the ones considered in The-
orems 1.4 and 1.5 in order to capture the chaotic behavior.
Defocusing and Focusing equations: To simplify the exposition, the theorems
above only refer to the defocusing equations (1.1) and (1.2). However, it can be
checked that the sign of the nonlinearity does not play any role and therefore,
Theorems 1.1, 1.4 and 1.5 also apply to the focusing equations

utt −∆u− u3 = 0, utt + ∆2u− u3 = 0.

Transfer of energy and growth of Sobolev norms: The solutions of the Wave equa-
tion (1.1)/Beam equation (1.2)/Hartree equation (1.11) obtained in Theorem 1.5
undergo certain transfer of energy between modes. Unfortunately, such transfer
of energy do not lead to growth of Sobolev norms [5, 6, 22]. In [6], the authors
obtain orbits undergoing growth of Sobolev norms for the defocusing NLS equa-
tion on T2. One of the key points of their proof is to construct, for the Birkhoff
normal form truncation, a chain of invariant tori (periodic orbits in certain sym-
plectic reduction, named toy model) which are connected by non-transverse het-
eroclinic orbits (see also [8] for a thorough analysis of non-transverse shadowing
arguments). In order to obtain such connections, they rely on the fact that the
toy model is integrable once restricted to certain invariant subspace (called two
generations model in [6]). Then the orbits undergoing growth of Sobolev norms
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are well approximated by orbits which shadow (follow closely) this chain of pe-
riodic orbits. This approach does not work with the Wave (1.1), Beam (1.2) and
Hartree (1.11) equations. First of all, in these equations the two generations model
is not integrable (for the Hartree equation it is not for a generic potential), and the
models we consider are carefully chosen so that they are close to integrable, and
therefore can be analyzed through perturbative methods; for the Wave and Beam
equation, to be close to integrable we have to choose the modes in Λ with very
similar modulus, and it seems difficult to use the analysis done in this paper to
construct orbits undergoing growth of Sobolev norms. For the Hartree equation,
one should expect that the ideas developed in this paper could lead to growth of
Sobolev norms for a generic potential satisfying (1.12), (1.13). A second fun-
damental difference between NLS and the PDEs considered in this paper is that
the chain of tori connected by heteroclinic connections considered in [6] is not
structurally stable since to have such heteroclinic connections one certainly needs
that the connected invariant tori belong to the same level of energy; indeed, for
the Hartree equation (1.11) with a generic potential V the tori considered in [6]
belong to different level of energy and the same happens for the Wave and Beam
equations for a generic choice of resonant tuples. The tori considered in Theorem
1.1 are radically different from those in [6]: these tori come in families of higher
dimension which are transverse to the first integrals, and are connected by trans-
verse heteroclinic orbits. We believe that such objects could play a role if one
wants to implement [6] to other PDEs.
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2. STRATEGY OF THE PROOFS

The general argument we use in the proofs of Theorems 1.4 and 1.5 follows
some of the ideas in the literature [6, 22, 20, 25, 21]. The steps of the proof of
both theorems are the following.



CHAOTIC RESONANT DYNAMICS AND EXCHANGES OF ENERGY IN HAMILTONIAN PDES 13

Step 1: The PDEs under consideration have a Hamiltonian structure. Let us de-
note by H the Hamiltonian, which can be written as

H = H(2) +H(4),

where H(i) are homogenous polynomials of degree i. Given a finite subset Λ ⊂
Z2 of resonant modes, to be chosen later, we apply a weak normal form scheme
to H . Let us briefly describe such procedure. Consider the splitting u = v + z
where v is the projection of u on the finite dimensional subspace VΛ in (1.7) and z
is the projection on the L2-orthogonal of this subspace. Let us denote by H(4,k),
0 ≤ k ≤ 4, the projection of H(4) onto the monomials of the form v4−k zk. We
construct a change of coordinates Γ which normalizes all the Hamiltonian terms
of degree 4 which are independent or linear in the normal variables, namelyH(4,0)

and H(4,1). This normal form procedure is enough for our purposes. The terms in
H(4,0) and H(4,1) that cannot be removed or normalized (the resonant terms) are
the ones Fourier supported on the following resonances{∑4

i=1 σiji = 0,∑4
i=1 σiω(ji) = 0,

where σi ∈ {±1}, j1, . . . , j4 ∈ Z2
odd and at most one of them is outside Λ, ω(ji)

is the linear frequency of oscillation of the ji-th mode (see (1.4)).
Thanks to the momentum conservation, expressed by the first equation of the

above system, the termsH(4,0) andH(4,1) are given by a finite sum of monomials.
As a consequence, the normalizing transformation Γ is well defined as the time-
one flow map of an ODE. We observe that expressions of the form

∑4
i=1 σiω(ji)

appear at the denominator of the Fourier coefficients of the Hamiltonian that gen-
erates the Birkhoff map. These quantities in general may accumulate to zero, as
in the case of the Wave equation, but by the finiteness argument they are bounded
from below by a constant that depends on Λ.

We choose Λ such that there are no resonant monomials supported on just one
mode outside Λ, i.e. H(4,1) = 0. This means that the resonant Hamiltonian of
degree 4, we call it HBirk, is given by the normalization of H(4,0). Then,

H ◦ Γ = H(2) +HBirk +R,

where R is a remainder which contains degree 4 monomials supported at least
on two normal modes or monomials with degree greater or equal than 6. Such
terms shall be considered as a small perturbation of the truncated normal form
H(2) + HBirk. Moreover it is easy to see that VΛ is invariant by the flow of the
truncated normal form. The resonant model is obtained by considering the restric-
tion of the normal form on VΛ. In the following step we discuss how we construct
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particular orbits for this system.

Step 2: This step is the core of the paper and can be divided as follows.
Construction of the set Λ: The set Λ is chosen in such a way that its associated
subspace of modes VΛ is invariant by the flow of the resonant model, but of course
satisfies other requirements. Its precise definition depends on the PDE model
we consider, but all three instances (Wave, Beam and Hartree equations) of the
set Λ share some common features. They have exactly 4N elements, N ≥ 2,
which, using the terminology introduced in [6], encompass two generations. The
elements of the set Λ are organized in groups of four, pairwise disjoint, each of
them forming a “resonant” parallelogram. The choice of the modes is such that
each individual parallelogram is invariant; moreover, the dynamics of a single
parallelogram is integrable.
The dynamics of the finite dimensional model: We choose the modes in Λ in
such a way that the dynamics of the resonant model is close to integrable, where
closeness to integrability is measured through some parameter ε (see Remark 1.3).
In the case of the Wave and Beam equation the case ε = 0 corresponds to consider
all the modes in Λ ⊂ Z2 on a circle. We obtain the nearly integrability by placing
the resonant modes close to that circle.

After a symplectic reduction the Hamiltonian of the resonant model has N -
degrees of freedom and it reads

H(ψi,Ki) = H0(ψi,Ki) + εH1(ψi,Ki), i = 1, . . . , N, (2.1)

with

H0 =

N∑
j=1

Kj(1−Kj)(1 + 2 cos(ψj))

H1 =
N∑
j=1

(
ajKj + bjK

2
j + cjKj(1−Kj) cosψj

)
+

N∑
i,j=1,i<j

dijKiKj ,

for some coefficients aj , bj , cj , dij ∈ R depending on the choice of Λ (and on the
potential V in the case of the Hartree equation).

The unperturbed system (where ε = 0) possesses certain invariant objects,
namely hyperbolic fixed points and hyperbolic periodic orbits, whose invariant
manifolds form heteroclinic separatrices. One can find a similar picture by con-
sidering the NLS Hamiltonian restricted to the subspace generated by 4 resonant
modes which form a non-degenerate rectangle (or many copies of such system).

The chaotic dynamics that build originates from the transverse homoclinic con-
nections that arise for 0 < ε� 1. Note that these homoclinics do not exist in the
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unperturbed case ε = 0 (where the invariant manifolds form heteroclinic con-
nections instead of homoclinic). To prove the existence of such homoclinics one
cannot apply directly the standard Melnikov theory [33], but suitable generaliza-
tions of it. With similar arguments, we construct heteroclinic connections between
objects which are not connected in the unperturbed case.

The conditions imposed on the set Λ (namely, suitable Melnikov-like functions
having non-degenerate zeros) ensures that these transverse homoclinic and hete-
roclinic connections exist for small ε 6= 0.

The infinite symbols Smale horseshoe: The orbits in Theorem 1.4 give rise from
a horseshoe of infinite symbols that can be constructed close to a hyperbolic peri-
odic orbit of (2.1) whose invariant manifolds intersect transversally. The construc-
tion of this horseshoe follows the ideas in [34]. In this horseshoe, each symbol
encodes the time in which the trajectory comes close to the periodic orbit. The
horseshoe and its dynamics can be described as follows. Let Γ = {1, 2, 3, . . . } be
a denumerable set of symbols and

Σ = {s = (. . . , s1, s0, s1, . . . ) | si ∈ Γ, i ∈ N},

the space of bi-infinite sequences, with the product topology. Notice that, unlike
what happens when Γ is a finite set, Σ is not compact. The shift σ : Σ→ Σ is the
homeomorphism on Σ defined by (σ(s))i = si−1.

Shadowing of a sequence of periodic orbits: The orbits in Theorem 1.5 travel
along a chain of periodic orbits connected by transverse heteroclinic orbits, fol-
lowing the diffusion mechanism described originally by Arnold [1]. This mech-
anism consists of a sequence - finite or infinite - of partially hyperbolic periodic
orbits, {Ti}i∈I , I ⊂ N, such that the unstable manifold of Ti, W u(Ti), intersects
transversally the stable manifold of Ti+1, W s(Ti+1). Here, since the system we
are considering is autonomous, transversally means transversality in the energy
level, which implies that the intersection of the manifolds is, locally, a single
heteroclinic orbit. If a nondegeneracy condition is met, this transversality is suffi-
cient to apply a Lambda Lemma that implies thatW u(Ti+1) ⊂W u(Ti) (see [12]),
which in turn implies that for any i, j ∈ I , i < j, W u(Tj) ⊂ W u(Ti). One can
then choose arbitrary small neighborhoods of the tori Ti and orbits that visit these
neighborhoods according to an increasing sequence of times.

It is worth to remark that the orbits found in the resonant model do exist for any
positive time. In the case of the horseshoe with infinite symbols, one obtains orbits
that arrive at randomly chosen times to a neighborhood of the periodic orbit. In
the case of the diffusion orbits, one obtain solutions that wander along the chain
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of periodic orbits for any positive time, and can be chosen to arrive closer and
closer to each periodic orbit.

Step 3: The last step of the proof consists on finding a true solution of each PDE
shadowing for long enough time the chosen solution of the resonant model. This
is accomplished by a standard Gronwall and bootstrap argument.
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43 (2010), pp. 761–810.

[14] , Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDE, 5
(2012), pp. 1139–1155.

[15] F. GIULIANI, Quasi-periodic solutions for quasi-linear generalized kdv equations, Journal of
Differential Equations, 262 (2017), pp. 5052 – 5132.
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