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Abstract 

The optimization of dimensional tolerances requires that a cost-tolerance function is evaluated consistently for 

all the part features involved in a given functional requirement. This is difficult because the parameters of 

commonly used functions are set using cost data from various sources and on possibly different scales. As an 

alternative, the paper proposes a revised form of one of the available cost-tolerance functions (reciprocal 

power), which expresses its parameters in empirical relationship with a set of design specifications on the 

toleranced features. These include the nominal dimension, the shape, the surface area, and the material. 

Following a previous study based on cost data available in literature, the values and expressions of the 

parameters are validated and refined using a feature-based method for the estimation of machining cost. The 

properties of the extended function allow to develop a simplified method for tolerance allocation that avoids 

the task of solving the optimization problem; it is a modified version of proportional scaling where the initial 

solution satisfies optimal ratios between tolerances. The discussion of the results and an application example 

help to justify the proposed function on grounds of correctness, convenience, and reference value. 
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1 Introduction 

In the design of a mechanical assembly, tolerances must be specified for the functional dimensions of parts. 

Each dimension corresponds to a geometric feature that is created with a machining process (turning, milling, 

drilling, etc.). Traditionally, tolerances are set according to the expected geometrical variation of the process, 

and then possibly adjusted if the stackup of dimensional errors on a set of connected part features (tolerance 

chain) exceeds the allowable variation on a given assembly requirement. As a more advanced approach, 

tolerance allocation seeks an optimal set of tolerances satisfying one or more assembly requirements [1-4]. 

Most definitions proposed for the allocation problem are based on the minimization of the manufacturing cost 

with stackup constraints. The objective function of the optimization problem is the sum of the costs of the 

features in the tolerance chain; these are evaluated using a cost-tolerance function for each feature. 

Despite possible cost reductions, allocation methods have found limited application in design practice. This is 

mainly due the limited availability of cost data that can dependably support the optimization of tolerances. The 

cost-tolerance functions proposed in literature include parameters whose values are not usually related to the 

properties of the toleranced features. Therefore, it is not guaranteed that costs are estimated on the same scale 

for features with different size and shape, or for parts made of different materials. 

A previous study [5] outlined a possible approach to overcome this difficulty. It consists of finding extended 

formulations of cost-tolerance functions taking into account those design specifications that are likely to 

influence manufacturing costs. Such a formulation was proposed for the reciprocal power function, which is 

used in many allocation methods. Orientative values for the parameters of the function were calculated using 

cost-tolerance data collected from various sources and normalized on a common scale. 

The objective of this paper is to validate and refine the above formulation, in order to get a cost-tolerance 

function that can be used on different types of mechanical assemblies without the need to collect domain-

dependent cost data. The limitations related to the heterogeneous cost sources analyzed in the previous study 

are now overcome by using an existing method for the estimation of machining cost. The method is applied to 

the most common cases of toleranced features to generate consistent cost data, which allow a statistical 

estimation of the parameters of the extended cost-tolerance function. As will be shown below, the validation 

confirms the previously proposed form of the function and derives different values for some parameters. 

The remainder of the paper is organized as follows. Section 2 reviews the literature on the topics related to the 

work (cost-tolerance functions, cost estimation). Section 3 recalls the previous results and describes the method 

used in the development of the cost-tolerance function. Section 4 describes the implementation of the method 

and presents the proposed form for the function. Section 5 highlights some properties of the function and 

discusses how they can be exploited in a scaling procedure that makes optimal allocation easier to deploy in 

design practice; this is also demonstrated on an example. Section 6 summarizes the contribution and limitations 

of the work. 

2 Background 

In most studies on tolerance allocation, cost-tolerance functions are used in either the objective function or the 

constraints of the optimization problem. As reported in some surveys [6-8], several cost-tolerance functions 

have been proposed. Each of them includes a set of parameters, which are evaluated from cost data published 

in textbooks or applying to specific cases. The choice of the function is usually driven by the solution methods 

proposed for the optimization problem. Earlier studies mostly adopted simple two-parameter functions such 

as the linear [9], the reciprocal [10] and the reciprocal squared [11]. The increasing complexity of allocation 

methods (from closed-form solutions to deterministic and stochastic algorithms) has led authors to prefer three-

parameter functions such as the reciprocal power [12] and the exponential [13], which allow a more accurate 

approximation of available cost data. More complex expressions, such as the Michael-Siddall function [14] 

and the combined and polynomial functions [15] are potentially more accurate but require a larger amount of 

cost data for a reliable estimation of their parameters. 

Comparative studies on cost-tolerance functions [16-20] focus on the choice of the correct function as a 

compromise between accuracy and suitability to specific allocation methods. As highlighted in [5], an often 



neglected task is the selection of function parameters, which is seldom related to the properties of toleranced 

features. In some cases, the values set for the parameters are referred to published datasets. The one provided 

in [21] includes cost-tolerance graphs for several manufacturing processes; costs are given in relation to a 

baseline cost for the same process, making it difficult to compare data from different processes. 

To overcome such limitation, some authors use cost-tolerance curves for combined processes, which were first 

proposed in [22]; they span a wide range of tolerance values, which correspond to different possible process 

sequences to machine a feature. Datasets for combined processes are also provided in [8, 15, 23]. A chart given 

in [1] uses a correction factor related to the type of machining process (e.g. for prismatic or rotational 

workpieces), and has a further advantage: the cost is related to a quality index that takes into account the 

relationship between tolerances and nominal dimensions. This seems one of the first attempts to relate cost 

data with design specifications, thus improving the consistency between the cost estimates of the different 

features in a tolerance chain. Trying to cover a wider set of specifications, [5] normalizes data from different 

sources and analyzes their statistical correlation with the IT tolerance grade of the ISO system of limits and 

fits [24]. This results in an equation for the selection of the parameters of the reciprocal power function, which 

will be used as a starting point for the present work. 

Several methods have been used to estimate the parameters of cost-tolerance functions from available cost 

data. Linear regression allows a statistical estimation of the accuracy of the function, and has been mostly used 

on data relating to single processes [15, 25-27]. For combined processes, the cost-tolerance curve is less regular 

in shape due to the occurrence of break-even points between alternative process sequences. Therefore, 

additional assumptions are needed in the regression model; in [28], regression is used to evaluate discrete 

points of the cost-tolerance curve, which are then linearly interpolated. As an alternative to regression, neural 

networks have been trained with cost-tolerance data for both single [29] and combined processes [30]; the 

resulting cost-tolerance models are said to allow a more accurate approximation of actual costs. This drives 

allocation away from the use of an explicit cost-tolerance function, as it has also been attempted using fuzzy 

methods [31] and the iterative solution of an equation based on process constraints [32]. 

As opposed to using published cost data, some studies propose procedures to allow the collection and 

maintenance of cost data at manufacturing companies. In [33], cost-tolerance functions are constructed by 

choosing the least cost alternatives from data collected for elementary operations (roughing, semi-finishing, 

finishing). In [34, 35], a coding related to part geometry is used to extract cost data from a process database. 

In [36-38], cost-tolerance functions are built from corporate data using activity-based costing. In [39, 40], 

objective cost estimations are replaced with the judgement of corporate experts on how cost would react to 

alternative tolerance choices in specific situations. 

The estimation of machining cost [41, 42] is a critical task when developing cost-tolerance functions 

accounting for the influence of design specifications. Creating a feature on a part requires a sequence of 

machining operations that depends on the tolerance specification. The cost of each operation includes the use 

of manufacturing resources (machine tool, direct labor) and some overheads (indirect labor, indirect materials, 

jigs and fixtures, setup, programming, etc.). Under some assumptions about equipment and production volume, 

which will also apply to the present work, the cost can be estimated by applying an appropriate shop rate to 

the cycle time of the machining process. 

Among the available approaches to the estimation of machining time, detailed engineering methods select the 

cutting parameters for each operation (e.g. cutting speed, feed, depth of cut) and use them to calculate cutting 

times [43-45]; non-productive times between operations are taken from charts relating to different 

manufacturing processes [46, 47]. As an alternative, feature-based methods do not require the choice of cutting 

parameters, and calculate cutting times using material removal rates depending on the work material and the 

type of feature. Existing feature-based procedures [48-50] provide charts with typical removal rates, possibly 

collected through detailed estimation on wide sets of cases. They allow a quick estimation with an acceptable 

compromise on accuracy with respect to engineering methods. Software tools have been proposed to streamline 

feature-based estimation by either CAD integration [51], evaluation of removal rates from design variables 

[52], or retrieval of cost data by group technology coding [53]. 

In this work, an existing feature-based method for the estimation of machining time will be used to develop an 

extended cost-tolerance function with the formulation suggested in [5]. This is necessary in order to overcome 

two main limitations of prior results. The first one is that the data used for the evaluation of function parameters 



came from different sources relying on possibly different assumptions; time estimation will help to verify if 

the function can actually fit cost data obtained with explicit and consistent assumptions. The second one is that 

the influence of some design specifications (e.g. the nominal dimension and the type of feature) was modeled 

only at a first approximation; more accurate expressions and parameter values will now be drawn from the 

estimation method. 

3 Methodology 

The development of the cost-tolerance function will be described in three main steps. First, the assumptions of 

the problem are recalled along with some prior results. Second, a regression model is defined to express cost 

as a function of tolerance and nominal dimension. Third, cost is estimated over a set of possible design 

specifications using an existing feature-based method. 

3.1 Assumptions and prior results 

The work will deal with the solution of the tolerance allocation problem under the following assumptions: 

 Only tolerances on linear and angular dimensions are considered. 

 The tolerances are regarded as design specifications, i.e. they are allocated to part dimensions without 

a prior selection of the machining process. 

 The functional requirements (or key characteristics) are expressed in geometric terms as single or 

independent assembly dimensions, which are related to part dimensions through linear equations. 

 The objective function to be minimized is the manufacturing cost, which increases as the tolerance 

decreases because the material has to be machined more slowly or in multiple phases to reduce 

geometric errors. 

 The constraints of the optimization problem include only the allowable variation on the assembly 

dimension, which is compared with the stackup of part tolerances calculated using the root-sum-square 

(RSS) equation. 

 The optimal solution is calculated analytically using the method of Lagrange multipliers [11]. 

Let Y be a functional requirement, i.e. a dimension involving features on two distinct parts in an assembly. In 

general, Y depends on a set of dimensions Xi (i = 1, ... n) on features of individual parts, which are connected 

in a chain of geometric relations (tolerance chain). It is assumed that the relationship between Y and the Xi is 

linear or, for 2D or 3D tolerance chains, linearized by first-order Taylor approximation: 
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where Si = Y/Xi is the sensitivity of Y with respect to Xi. The variation TY allowed on the functional 

requirement, i.e. the difference between the upper and lower specification limits on Y, is assumed to be known. 

The values of the tolerances Ti on dimensions Xi are the results of the following optimization problem: 
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where Ci(Ti) is the cost-tolerance function for dimension Xi, and the stackup of tolerances is expressed by the 

corrected RSS equation; c is an inflation factor that accounts for possible violations of the statistical 

assumptions on the Xi (independence, normal distribution, no bias, equal process capabilities), and is typically 

set at about c = 1.5 [54, 55]. 

It is also assumed that the cost-tolerance functions are of the reciprocal-power type: 
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where: 

 ai is a fixed cost that will not be considered in the following as it does not influence the result of tolerance 

allocation; 

 bi is the factor of the variable cost (with respect to tolerance), and is different for each of the Xi; 

 k is the exponent of the variable cost, and is assumed to be equal for all the Xi. 

Under the above assumptions, the optimal values of the Ti can be calculated analytically with the method of 

Lagrange multipliers [11]. Once the Ti are known, the designer will be able to choose the correct sequence of 

machining operations for the different features (e.g. roughing, finishing, or grinding). This implies that each 

of the Ci(Ti) covers a wide range of tolerances, which corresponds to different process choices (cost-tolerance 

function for combined processes). 

The objective of this work is to evaluate the parameters bi and k consistently for dimensions on features with 

different properties. In detail, a typical value must be found for k, verifying that it holds with a good 

approximation for features of different types; furthermore, bi should be expressed as a function of feature 

properties. As the machining cost is roughly proportional to the cutting time, the factors that may have an 

effect on bi include the following: 

 the nominal dimension Xi, because a larger dimension will require a longer cutting time; 

 the surface area of the feature, for a similar reason as above; 

 the type of feature (rotational surface, planar surface, hole, etc.), because it requires different machining 

processes that will have different cutting times for the same feature size; 

 the material of the workpiece, because its machinability will require different cutting times for the same 

feature type and size. 

In [5], the two parameters were preliminarly estimated from cost-tolerance data from different sources, 

obtaining the following expressions: 
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where  is a constant, while the coefficients fM , fF and fA depend respectively on the material, type of feature, 

and surface area of the feature. The main property expressed in (4) is that the exponent k of the reciprocal 

power function also determines the influence of the nominal dimension on the cost; in [5], this result was 

derived from empirical relationships between dimensional tolerances and nominal dimensions. The values of 

the coefficients were set according to assumptions that will be recalled and revised in the present work. Special 

attention will be paid to the coefficient fF which relates the cost to the type of machined feature; the values 

given in [5] were preliminarly obtained by comparing cost data available in literature and referring to different 

machining processes. 

In [56], equations (4) were found to apply also to angular dimensions if the nominal angle  is replaced with 

the equivalent nominal dimension 
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where l1 and l2 are the lengths of the adjacent edges. 

3.2 Regression model 

It must first be verified that the expressions (4) are consistent with the properties of the involved variables 

(material, type of feature, surface area, nominal dimension). For this purpose, some choices already discussed 

in [5] will be recalled below with a few changes deriving from released assumptions and approximations. 

For two of the variables (surface area and material) it is reasonable to confirm the previous results. As 

mentioned before, it is assumed that the cost-tolerance function spans a wide tolerance range covering 

machining processes with increasing accuracy (combined processes). Furthermore, the parts are assumed to 

be manufactured in medium to large quantities on multipurpose CNC machines with automatic tool change. 

This implies that the variable cost includes only the cost of the cutting time and neglects the costs of non-



productive, handling and setup times. For a given choice of machining operations and cutting parameters, the 

cutting time is approximately proportional to the area of the machined surface (actually, the overtravel of feed 

motion may take proportionally longer for smaller features). Therefore: 

 the coefficient fA is properly set to the surface area of the feature in cm2; 

 the coefficient fM is the reciprocal of the machinability rating of the material, i.e. the ratio between the 

removal rates of the work material and a reference material (low-carbon steel). Tab. 1 gives orientative 

values of the coefficient for some categories of engineering materials (e.g. [57]). 

Tab. 1: Evaluation of the coefficient related to material 

Material fM 

Aluminum alloys 0.3 

Copper alloys 0.5 

Low-carbon steel 1 

Cast iron 1.3 

Mid-carbon steel 1.3 

Stainless steel 1.5 

Alloy steel 2 

 

In [5], the assumed values for the coefficient fF related to the type of feature were obtained by comparing cost-

tolerance data available in literature for different processes. In the following section, new values of fF will be 

found by estimating cutting time for different possible sequences of machining operations, which correspond 

to different types of machined features. By definition, the factor will be set to a unit value for a reference type 

of feature, namely an external cylindrical or flat surface on a rotational workpiece. 

Leaving aside the three factors discussed above, the effect of the nominal dimension remains to be verified. 

Replacing (4) into (3) and setting coefficients fM, fF and fA to unity gives 
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which is the expression proposed for the cost of machining a surface area of 1 cm2 by external cylindrical or 

face turning on low-carbon steel. If equation (6) is correct, it must satisfy the typical relationship between 

tolerance and nominal dimension for a given accuracy level of the manufacturing process. In detail, the ISO 

system of limits and fits [24] calculates the tolerance T in mm as 

1000

nI
T   (7) 

where I is the standard tolerance factor in m, which grows approximately with the power 1/3 of the nominal 

dimension: 

3145.0 XI   (8) 

and n is a factor that grows exponentially with the IT tolerance grade g (the expression is more accurate than 

the regression equation used in [5]): 

 12.010  gn  (9) 

Replacing (8) and (9) in (7) gives 
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Comparing (10) with (6), the cost can be expressed as a function of g: 
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This equation can be written as 
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In the following validation by machining time estimation, equation (12) will be used as a linear regression 

model of C0 for different types of features. The same literature data used in [5], in a different scale from that 

assumed here, would fit the model with parameters p = 6.66 and q = 0.110; the approximation is statistically 

acceptable with coefficient of determination R2 = 0.93 and normal residuals. Based on these data, equations 

(13) would provide the following estimates for the parameters of the reciprocal power function in the proposed 

formulation: 
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These values will be compared with those obtained by the cost estimation method described below. 

3.3 Machining time estimation 

The choice of validating the expressions (4) by machining cost estimation aims to improve the accuracy of 

those parameters that rely on the consistency of cost data across different processes, such as the exponent k 

and the coefficient fF depending on the type of feature. Besides, it wants to provide further support to the 

observation that the effect of the nominal dimension depends on the same exponent k of the tolerance (reduced 

in a 1/3 ratio). 

The variable cost to be estimated is the cost of the operations needed to machine a feature, excluding those 

that do not depend on the specified tolerance. According to the above assumptions, such cost is approximately 

equal to the cutting time of those operations multiplied by the hourly cost of the process. The latter will be 

regarded as a constant, which is reasonable if workpieces do not require machine tools with special sizes. 

Therefore the cost is proportional to the total cutting time of the tolerance-depending operations for a given 

type of feature. 

The procedure that will be used for the estimation of cutting time is a part of the Boothroyd method for 

machining cost estimation [50]. It is a feature-based method that uses aggregate design data about the 

workpiece and the machined features. Compared to engineering methods, it does not require a detailed 

planning of the machining process or the selection of cutting parameters (cutting speed, feed, depth of cut). 

The method defines three types of removal rates (machined volume, area, or length per minute), and provides 

typical values for them under different possible assumptions (minimization of machining time or cost). 

The estimation of the parameters of the cost-tolerance function will use the removal rates of the original method 

[50] for most machining operations. The cutting time of each feature will be estimated on a limited number of 

machining operations with increasing accuracy: roughing, finishing, and grinding. Each operation will be 

associated with an IT grade assumed to be obtained in average cutting conditions, i.e. with a negligible scrap 

rate and a nearly optimal balance between cutting costs and tool replacement costs. 

For all machining operations, the cutting time t [min] for a feature with area Am [cm2] is estimated as 

A

m
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A
t    (15) 

where QA [cm2/min] is the area removal rate, which depends on the type of operation. 

Tab. 2 shows the removal rates assumed for the machining operations corresponding to the main types of part 

features. The source is indicated for each piece of data: some rates coincide with those suggested by Boothroyd 

for low-carbon steel in optimal cutting conditions, possibly with additional assumptions. Other rates result 

from more detailed evaluations as discussed below. 



Tab. 2: Removal rates assumed for cutting time estimation 

Part type Feature Operation Tolerance QA [cm2/min] Source 

Rotational Ext. plane/cyl. Rough turning IT10 400 Avg. cutting data 

  Finish turning IT7 240 Avg. cutting data 

  Ext. cyl. grinding IT5 275 [50] w/ assumption 

Both Int. plane/cyl. Rough boring IT10 320 Assumption 

  Finish boring IT7 190 Assumption 

  Int. cyl. grinding IT5 190 [50] w/ assumption 

Prismatic Plane Rough side/face milling IT11 320 [50] 

  Finish side/face milling IT8 280 [50] 

  Surface grinding IT6 220 [50] w/ assumption 

Prismatic Step/groove Rough end milling IT11 70 [50] 

  Finish end milling IT8 65 [50] 

Both Hole (D, L) Drilling IT10 90 kD kL [50] 

  Boring/reaming IT7 90 kD kL [50] 

kD = 0.2, 0.35, 0.6, 1, 1.5 for D = 3, 6, 12, 25, 50 mm 

kL = 1, 0.8, 0.7, 0.55, 0.5 for L/D <2, 3, 4, 5, 6 

 

For external cylindrical and face turning, [50] suggests very high removal rates (700 and 400 cm2/min for 

roughing and finishing). These have been revised using recommended cutting parameters for commercial tools. 

For rough turning with coated carbide tools, [58] suggests cutting speeds in the range vC = 110-160 m/min, 

feeds f = 0.2-0.4 mm/rev, and depths of cut aP = 2-4 mm. Assuming average values of the parameters in the 

respective ranges, the corresponding removal rate is 

/mincm 400mm/rev 3.0m/min 135 2 fvQ
CA

 (16) 

Similarly, for finish turning with coated carbide or cermet tools, the cutting parameters vC = 160-210 m/min, f 

= 0.05-0.2 mm/rev, and aP = 0.5-2 mm give: 

/mincm 240mm/rev 13.0m/min 185 2 fvQ
CA

 (17) 

For internal cylindrical and face turning, [50] reports the same removal rates as for external turning. However, 

it is reasonable to assume that less severe cutting conditions are chosen in internal turning to avoid additional 

geometric errors due to the flexibility of the boring bar. Removal rates for lathe boring will thus be reduced by 

20% with respect to external turning, resulting in 320 and 190 cm2/min for roughing and finishing. The same 

removal rates are also assumed for cylindrical and face boring on prismatic workpieces. 

For grinding, [50] estimates the cutting time tg [min] as 

V

m

g
Q

V
t   (18) 

where Vm [in3] is the volume removed by the grinding wheel and QV [in3/min] is the volume removal rate. The 

latter parameter depends on the width wg of the wheel [in]: 

gggV
fwQQ   (19) 

where Qg = 0.68 in3/min is a reference removal rate, and fg is a coefficient depending on the type of grinding 

process (1.24 for external cylindrical grinding, 1.15 for internal cylindrical grinding, 1 for surface grinding). 

With a further assumption on the width of the wheel (1” for surface and external cylindrical grinding, 3/4” for 

internal cylindrical grinding), the above equations and SI conversion yield a volume removal rate QV = 13.8 

cm3/min for external cylindrical grinding, 9.6 cm3/min for internal cylindrical grinding, and 11.1 cm3/min for 

surface grinding. The equivalent area removal rate is 

a

Q
Q V

A
  (20) 



Assuming a total grinding allowance a = 0.5 mm, this gives the approximate removal rates QA listed in Tab. 

2: 275 cm2/min for external cylindrical grinding, 190 cm2/min for internal cylindrical grinding, 220 cm2/min 

for surface grinding. 

4 Implementation 

The above methods will now be used to estimate the parameters of the cost-tolerance function. 

Any type of feature requires a sequence of machining operations depending on the specified tolerance. The 

variable cost of the feature corresponds to the cutting time associated with the tolerance grade of the last 

operation. For example, an external cylindrical feature on a rotational workpiece with IT5 tolerance is obtained 

with the following sequence: rough turning, finish turning, external cylindrical grinding. For an IT7 tolerance 

the sequence includes only the first two operations, and for an IT10 tolerance it is limited to the first operation. 

In the estimation of cutting time, each operation is assumed to be done in a single pass. This is what actually 

occurs for a finishing operation, while in a roughing operation only the last pass will be considered (as any 

previous pass is meant to remove excess material regardless of tolerance); moreover, as discussed above, the 

multiple passes of grinding can be treated as a single-pass operation with an equivalent removal rate. Fig. 1 

illustrates the above assumptions. 

 

Fig. 1: Sequence of machining operations for a feature 

The method described in subsection 3.3 is first used to estimate the cutting time needed to machine a 1-cm2 

feature on a low-carbon steel workpiece. In equation (15) is Am = 1 cm2, while QA has the values listed in Tab. 

2. The time estimates are given in Tab. 3 for features of different types. 

The hypothesis to be tested is that the above estimates are in accordance with equation (12), where C0 is equal 

to the estimated time t of the sequence corresponding to tolerance grade g for the type of feature considered. 

Fig. 2 shows the results in a semilogarithmic graph of t as a function of g. Equation (12) is equivalent to 

 1loglog  gqpt   (21) 

Therefore the proposed formulation is correct if the estimated times for each sequence are approximated by 

straight lines with equal decreasing slope for all types of features. The graph shows that such condition is 

satisfied with good approximation. For the sequences with three operations, the coefficients of determination 

R2 of the linear regression are in the 0.98-0.99 range. Besides, all regression lines are very close to being 

parallel. For holes machined by drilling and boring/reaming sequences, the estimated cutting times shown in 

the graph refer to the case kD = kL = 1 as per Tab. 2 (i.e. a 25-mm hole with depth lower than twice the diameter); 

for different values of the two coefficients, the estimated times are multiplied by the same factor, thus the slope 

of the corresponding line does not change. 



Tab. 3: Estimation of machining time 

Part type Feature Tol. Sequence Calculation t [103 min] 

Rot. Ext. cyl./plane IT10 R-turn 1/400 2.5 

  IT7 R-turn, F-turn 1/400+1/240 6.7 

  IT5 R-turn, F-turn, ext. cyl G 1/400+1/240+1/275 10.3 

Both Int. cyl./plane IT10 R-bore 1/320 3.1 

  IT7 R-bore, F-bore 1/320+1/190 8.3 

  IT5 R-bore, F-bore, int. cyl. G 1/320+1/190+1/190 13.7 

Prism. Plane IT11 R-mill (face/side) 1/320 3.1 

  IT8 R-mill, F-mill 1/320+1/280 6.7 

  IT6 R-mill, F-mill, surface G 1/320+1/280+1/220 11.2 

Prism. Step/groove IT11 R-mill (end) 1/70 14.3 

  IT8 R-mill, F-mill 1/70+1/65 29.7 

Both Hole IT10 Drill 1/90 · 1/kDkL 11.1 / kDkL 

  IT7 Drill, bore/ream (1/90+1/90) · 1/kDkL 22.2 / kDkL 

R = rough, F = finish, G = grind  

 

 

Fig. 2: Estimated machining time versus IT tolerance grade for different types of features 

Within its limitations, the above analysis seems to support the correctness of equation (6) with exponent k 

approximately constant for features of different types. This is confirmed by the estimates of parameters p and 

q shown in Tab. 4 for all the regression lines. According to (13), k can be estimated as 

2.0

q
k   (22) 

It results that the exponent of the reciprocal power function can be chosen in the 0.5-0.6 range, with an 

approximate average value 

55.0k  (23) 

corresponding to q = 0.11 and equal to the previous estimate in (14). The deviations from the average value of 

k are within about 10% for all the feature types. As can be easily found from equation (11), such variation of 

k determines a variation of cost in the order of 30% (assuming g = IT8), which is reasonable compared to other 

sources of uncertainty on cost estimation. 



Tab. 4: Regression parameters for machining time 

Part type. Feature p  q k tIT8 [min] 

Rotational Ext. cyl./plane 0.0342 0.1245 0.62 0.0046 

Both Int. cyl./plane 0.0467 0.1292 0.65 0.0058 

Prismatic Plane 0.0403 0.1111 0.56 0.0067 

Prismatic Step/groove 0.1633 0.1058 0.53 0.0297 

Both Hole 0.0889 / kDkL 0.1003 0.50 0.0176 / kDkL 

 

The same results might also be used to estimate the factor  of (6) from (13). However, due to the slight 

differences in slopes, the intercepts of the regression lines with the line g = 1 would not be consistent with the 

actual proportions of costs in the useful range of tolerance grades. As shown in Fig. 2, more correct proportions 

among the costs of different types of features can be obtained by calculating the regression value tIT8 of the 

estimated time for g = 8. These are listed in the last column of Tab. 4. 

To set the remaining parameters of the cost-tolerance function, the cost will be expressed as a time in minutes. 

Based on (21), the tIT8 for external rotational features and the average slope give an alternative estimate of the 

intercept 

0271.0    57.17log
IT8

 pqtp   (24) 

hence 
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It can be noted that  has a different value from (14), because the literature data used in [5] were normalized 

in a different way and not expressed in machining minutes. The coefficient fF for each type of feature is finally 

evaluated from the corresponding value of tIT8 (last column of Tab. 4) divided by the one related to external 

rotational features (first entry of the same column, tIT8 = 0.0046). According to the results in Fig. 2, the same 

ratios between the costs of machining operations for different features are assumed to apply over the whole 

range of IT tolerance grades. Approximate values are listed in Tab. 5. 

Tab. 5: Evaluation of the coefficient related to feature type 

Part type. Feature fF 

Rotational Ext. cyl./plane 1 

Both Int. cyl./plane 1.25 

Prismatic Plane 1.5 

Prismatic Step/groove 6 

Both Hole 4 / kDkL 

 

5 Results and discussion 

Some properties of the function will be discussed below with the aim of further simplifying the solution of the 

allocation problem. Next, the results of the work will be demonstrated on an example. 

5.1 Properties and scaling procedure 

The proposed form of the reciprocal power cost-tolerance function can be used in any tolerance allocation 

method that is based on the combined-process assumption, i.e. on the use of a single cost function for the entire 

allowable tolerance range on a part feature (as opposed to the use of different functions for machining processes 

with increasing accuracy). Like the original reciprocal power function with constant k, it is suitable for an 

analytical solution of the allocation problem. Such opportunity will now be exploited to highlight some 

properties of the lowest-cost allocation. 

According to the method of Lagrange multipliers, the constrained optimization problem in (2) has the same 

solution of the following unconstrained optimization problem: 
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The condition CL/Ti = 0 provides the expression of the multiplier : 
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As  is a constant, equation (27) means that the optimal tolerances are in constant proportions (within their 

allowable ranges) regardless of the specified assembly variation TY: 
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The derivative of the reciprocal power function in (3) is 
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iiii
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As k is assumed equal for all dimensions, the proportionality condition becomes 
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According to the results of this work, the expression of factor bi in (4) gives the following condition on the 

optimal tolerances: 
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Once the coefficients fM, fF and fA have been evaluated for each feature, the allocation problem is solved by 

setting the tolerances to initial values in the proportions of equation (31), and then scaling them uniformly 

according to the value specified for TY. 

Based on the estimated values for k, the exponent 1/(k+2) that appears in (31) is fairly small. Therefore the 

influence of each of the coefficients related to feature properties is much less than linear. This adds robustness 

to the results of this work, because any uncertainty on the parameters (especially the exponent k and the 

coefficients related to material and feature type) is unlikely to have a strong impact on the optimal proportions 

between the tolerances. 

If k = 0.55, the tolerances can be set proportionally to the following factor: 

78.0072.039.039.039.0  SXfffF
AFM

 (32) 

which can be simplified into: 

SXAFM
F   (33) 

In detail, the coefficients in (33) can be evaluated as follows: 

 M depends on the work material (Tab. 6) with values ranging between 35% and +30% with respect 

to low-carbon steel; 

 F depends on the feature type (Tab. 7) with values ranging from 1 (external rotational surfaces) to 

about 4 (holes with small diameters and high depth/diameter ratios); 

 A depends on the ratio between the surface area A of the feature and the area Amax of the largest feature 

in the same tolerance chain (Tab. 8), with values ranging down from 1 (A = Amax) to about 0.1 (A = 

0.001 Amax); 

 X depends on the ratio between the nominal dimension X of the feature and the maximum nominal 

dimension Xmax in the same tolerance chain (Tab. 8), with values ranging down from 1 (X = Xmax) to 

about 0.6 (X = 0.001 Xmax); 



 S depends on the absolute value of the sensitivity S of the assembly dimension Y with respect to the 

nominal dimension X of the feature (Tab. 9), with values ranging between 40% and +70% with 

respect to the most common case when |S| = 1 for sensitivities between 2 e 0.5. 

Tab. 6: Effect of the material on the optimal tolerance 

Material M 

Al alloy 0.63 

Cu alloy 0.76 

Low-C steel 1 

Cast iron, mid-C steel 1.11 

Stainless steel 1.17 

Alloy steel 1.31 

 

Tab. 7: Effect of the type of feature on the optimal tolerance 

Feature F  D [mm] D  L/D L 

Rotational, external 1  3 1.87  < 2 1 

Rotational, internal 1.09  6 1.51  3 1.09 

Prismatic, plane 1.17  12 1.22  4 1.15 

Step/groove 2.01  25 1  5 1.26 

Hole (D, L) 1.72 DL  50 0.85  6 1.31 

 

Tab. 8: Effects of the feature area and of the nominal dimension on the optimal tolerance 

A/Amax A  X/Xmax X 

1 1  1 1 

0.8 0.92  0.8 0.98 

0.5 0.76  0.5 0.95 

0.2 0.53  0.2 0.89 

0.1 0.41  0.1 0.85 

0.05 0.31  0.05 0.81 

0.01 0.17  0.01 0.72 

0.005 0.13  0.005 0.68 

0.001 0.07  0.001 0.61 

 

Tab. 9: Effect of the sensitivity on the optimal tolerance 

S S 

0.2 3.5 

0.5 1.7 

1 1 

1.5 0.73 

2 0.58 

3 0.42 

5 0.28 

 

5.2 Example 

Fig. 3a shows a wheel assembly where the pin 1 is the fixed axle for the hub 6 of a wheel with a rubber rim; 

the roller bearings 5 are kept at a distance from the supports 3 by means of the spacers 4. The pin is axially 

restrained on the supports by two circlips 2. The functional requirement to be controlled is the axial clearance 

of the pin. As shown in the sketch of Fig. 3b, the clearance corresponds to the assembly dimension Y, which 

is the result of a tolerance chain involving the axial dimensions Xi (i = 1, ... 6) on the corresponding parts. The 

variation allowed on the clearance is TY = 0.4 mm. 



 

Fig. 3: Example: a) wheel assembly, b) tolerance chain 

The tolerance chain is expressed by the linear equation 

6554433221
XXXXXXXXXXY   (34) 

where dimensions X2, X3, X4 and X5 appear twice as distinct random variables related to equal parts on the left 

and right sides of the assembly. The stackup equation of the chain is 
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The value c = 1.5 is assumed for the inflation factor. The circlips and the bearings are stock components with 

tolerances T2 = 0.1 mm (IT12 on the 1.2-mm thickness) and T5 = 0.011 mm (IT6 on the 12-mm width). These 

are removed from the stackup equation in order to highlight the unknown tolerances T1, T3, T4 and T6: 
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where the residual assembly variation is TZ = 0.339 mm. Tab. 10 lists the data relating to the four tolerances to 

be allocated. The materials, areas and nominal dimensions Xi are derived from part drawings, while the 

sensitivities Si of the dimensions are consistent with the RSS equation taking into account the double 

occurrence for parts 3 and 4. 

In the following, the allocation of tolerances is done in two ways. The first one is the analytical solution of the 

optimization problem (2) by means of the cost-tolerance function in the proposed form (4). The second one is 

the scaling of an initial solution deriving from the proportionality factor (33). 

Tab. 10: Data for tolerance allocation on the example 

i Material Feature Area [cm2] Xi [mm] Si 

1 low-C steel rot. ext. 0.91 86.4 1 

3 Al alloy plane 24.13 14 1.414 

4 Cu alloy rot. ext. 8.42 10 1.414 

6 cast iron rot. int. 4.40 12 1 

 

To allow an analytical solution, the parameters of the cost-tolerance functions for dimensions X1, X3, X4 and 

X6 are determined according to the results in Section 4. Tab. 11 shows the evaluation of factor bi. With the help 

of Tab. 1 and Tab. 5, the data in Tab. 10 allow to evaluate the coefficients fMi, fFi and fAi. Finally, the bi of the 

four functions are calculated from equations (4), (23) and (25). 



Tab. 11: Calculation of the factors of cost-tolerance functions for the example 

i fMi fFi fAi bi · 103 [min] 

1 1 1 0.91 0.82 

3 0.3 1.5 24.13 7.05 

4 0.5 1 8.42 2.57 

6 1.3 1.25 4.40 4.51 

 

The optimization problem is thus defined as 
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For an analytical solution, all the tolerances are expressed as functions of T1 in the stackup equation: 
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which allows to find T1 once the ratios between tolerances are known. The condition (30) on optimal tolerances 

gives 
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From the data in Tab. 10 and Tab. 11, the optimal tolerances are derived as shown in Tab. 12. To keep 

machining costs to a minimum, tighter tolerances should be specified on two dimensions (the distance between 

the grooves in pin 1 and the width of spacer 4). It would obviously be impossible to evaluate the merit of this 

allocation with respect to those that could be obtained with existing methods. However, the result has the 

advantage of representing an evaluation of "ease of machining" resulting from a set of factors (material, type 

of feature, nominal size, influence on the assembly requirement) that had not been considered together in 

previous approaches to the allocation problem. 

Tab. 12: Allocated tolerances for the example (from analytical optimization) 

i Ti/T1 Ti [mm] 

1 1 0.06 

3 1.77 0.11 

4 1.19 0.07 

6 1.95 0.12 

 

An alternative route for the solution of the allocation problem is the optimal scaling procedure deriving from 

the properties of the cost-tolerance function. Tabs. 6-9 allow a direct evaluation of the proportionality factors 

Fi between the optimal tolerances according to (33). The results are shown in Tab. 13, and help to understand 

the criteria that lead to coarser or tighter tolerances on the different dimensions. In detail, X1 and X4 call for 

especially tight tolerances because the corresponding features are relatively inexpensive to machine accurately. 

For the pin 1, this is due to the small area of the machined features (the grooves for the circlips). For the spacers 

4, the relevant factors are the small size of the features (the two sides) and the good machinability of the 

material; besides, the width has an amplified effect on the assembly dimension due to the double occurrence. 

The other two dimensions have looser tolerances mainly for reasons related to the material (wheel hub 6) and 

to the type of feature (width of the supports 3), which tend to increase their machining cost. 



Tab. 13: Evaluation of the proportionality factor for the example 

i Mi Fi Ai Xi Si Fi 

1 1 1 0.28 1 1 0.28 

3 0.63 1.17 1 0.87 0.75 0.48 

4 0.76 1 0.65 0.86 0.75 0.32 

6 1.11 1.09 0.50 0.87 1 0.53 

 

If the Fi are taken as the initial values of the tolerances in mm, the optimal values are calculated from them by 

applying the scaling factor 
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Tab. 14 shows the results of the calculation. The result is the same as that obtained by analytical optimization 

(Tab. 12); this was fully expected because the use of equation (33) and the coefficients in Tab. 6-9 are just a 

different way of applying equation (31) with the average value (23) assumed for the exponent k. On a practical 

side, this is easier and quicker than explicitly solving the optimization problem (2) with the extended 

reciprocal-power cost-tolerance function proposed in the paper. 

Tab. 14: Allocated tolerances for the example (from optimal scaling) 

i s·Fi Ti [mm] 

1 0.223·0.28 0.06 

3 0.223·0.48 0.11 

4 0.223·0.32 0.07 

6 0.223·0.53 0.12 

 

6 Conclusions 

The paper has proposed an extended form of the reciprocal power cost-tolerance function, which evaluates 

cost parameters according to a set of design specifications (material, type of feature, area, and nominal 

dimension). Compared to a previous feasibility study, the work presents two main contributions. First, better 

estimates of some parameters are obtained by the use of a feature-based method for the estimation of machining 

costs. Second, the properties of the cost-tolerance functions are exploited in a scaling procedure for tolerance 

allocation, which allows to minimize cost without having to explicitly solve an optimization problem. 

The results could give the following advantages for the solution of tolerance allocation problems: 

 The extended form of the function allows to evaluate the costs of all dimensions of a tolerance chain 

in the correct proportions. This is a necessary condition to ensure that the optimal allocation 

approaches the actual minimum cost achievable at production stage. 

 The parameters of the function can be readily set for all the features of a tolerance chain without the 

need to collect additional information (expert judgment, cost data from literature or industry). This 

improves the convenience of the procedure and thus removes one of the obstacles that seem to be 

preventing the deployment of allocation methods in design practice. 

 A ready-to-use cost-tolerance function can be of help to future research on tolerance allocation. New 

cost-based optimization methods will be able to benefit from the easy estimation of the parameters of 

cost-tolerance functions. The scaling procedure will possibly serve as a benchmark for more 

sophisticated methods that do not use cost-tolerance functions for combined processes, so that their 

additional benefits could be assessed. 

Future developments will have to overcome some limitations of the proposed approach: 

 The attempt to cover a wide diversity of machined parts and features may affect the accuracy of the 

cost-tolerance function. Such a compromise will have to be avoided by introducing further detail and 



company expertise in both the classification of machining features and the estimation of machining 

costs. 

 The scope of the cost-tolerance function is still limited to the allocation of dimensional tolerances. An 

extension to geometric tolerances according to ASME-GD&T and ISO-GPS standards will be a further 

step toward a full acceptance of allocation methods in industry, where the adoption of modern 

tolerancing criteria is increasingly required. 
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