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DESIGN OF THE ON-BOARD IMAGE PROCESSING OF THE
MILANI MISSION

M. Pugliatti*, V. Franzese†, A. Rizza∗, F. Piccolo∗, C. Bottiglieri‡,
C. Giordano† , F. Ferrari§, and F. Topputo¶

Milani is a 6U CubeSat that will visit the Didymos binary system as part of the Hera mission.
Its objectives are both scientific and technological: to study and characterize the asteroid en-
vironment, and to demonstrate the use of CubeSat technologies for interplanetary missions.
The latter includes optical-based autonomous navigation algorithms in a close-proximity en-
vironment, which are enabled by robust image processing functions. In this work, for the
first time, the design of the image processing of Milani is described in detail. Its algorithmic
core is divided among two blocks: the blobs characterization and the observables extraction.
The former one extracts low-level optical observables while distinguishing the primary from
the secondary of the Didymos system. The latter processes the input of the previous block to
generate higher-level observables such as the center of figure, the range, and the phase angle.
These estimates are generated thanks to data-driven functions which are tuned on a global
dataset representative of the geometric conditions which Milani would encounter during its
mission. After a detailed description of its functionalities, the image processing is tested on
two datasets representative of the nominal mission phases: the far range phase and the close
range phase. After the characterization of the various algorithms, it is demonstrated that Mi-
lani’s image processing is capable of robustly generating a set of optical observables to be
used on-board by the GNC and the rest of the CubeSat.

INTRODUCTION

Small bodies in the Solar System represent the current frontier in space exploration. Various missions

such as Rosetta [1], Hayabusa 1 [2] and 2 [3], and Osiris-Rex [4] have been launched towards these targets,

while others are planned for the future [5, 6, 7]. When arrived in the proximity of a small body, deep-space

CubeSats offer the advantage of diversifying and complementing large spacecraft missions [8]. Indeed, they

can be exploited as opportunistic payloads to be deployed in situ, once the main spacecraft has reached

its target. An example is given by the AIDA (Asteroid Impact and Deflection Assessment) collaboration

between NASA and ESA to study and characterize an impact with the Didymos asteroid system [9]. As

part of this collaboration, NASA launched the DART (Double Asteroid Redirection Test) kinetic impactor

spacecraft [10], whose impact with the secondary asteroid of Didymos will be observed and characterized

by LICIACube in autumn 2022 [11]. As part of this cooperation, ESA will launch in October 2024 the Hera

mission [6] together with two deep-space CubeSats, namely Juventas [12] and Milani [13, 14, 15], to study

and characterize the system.

Autonomous Optical Navigation (OpNav) is an enabling technology for present and future exploration

missions. Such a technique exploits an Image Processing (IP) method to extract optical observables and then

use them to generate a state estimate with associated uncertainties. Often the state estimate is refined through

filtering techniques, which combine information from the dynamics with an observation model to achieve
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much higher accuracy than from IP alone. Since images can be inexpensively generated on-board with

low-cost and low-mass sensors, OpNav is experiencing a growing interest. This is particularly relevant for

CubeSat missions, which are often tightly constrained in terms of mass and power. In the case of proximity

to small-bodies, OpNav can be exploited to reduce costs by enabling autonomous system and unlocking

the capabilities to perform critical operations. By linking OpNav capabilities with guidance and control

algorithms, autonomous GNC systems can be foreseen in the near future in self-exploring missions with

reduced or complete absence of humans-in-the-loop. Within this context, the design of an accurate and

robust IP algorithm is of paramount importance for a vision-based autonomous GNC system.

In this work, for the first time, the design of the IP algorithm that will be used in the Milani mission is

described in detail and its performance are characterized on two nominal phases of the mission. The case of

Milani is particularly challenging due to the binary nature of the Didymos system, which requires tailored

solutions and some intrinsic robustness of the IP. Due to the associated high uncertainty about the system, the

IP is designed to be highly tunable using its many configuration parameters. Moreover, the IP of Milani is

making use of data-driven functions, pivoting on the fact that new data about the system could be provided

before release by the DART and Hera missions.

The rest of the paper is organized as follows. First, the main characteristics of the Milani mission are briefly

illustrated. This is followed up by a detailed discussion about the design of the IP. After such discussion, the

performances of the IP are illustrated in the two main phases of the mission. Finally, some conclusions about

the current developmental stage of the IP are discussed as well as some points for future improvements.

MILANI MISSION

Milani is a 6U CubeSat that will characterize the Didymos binary system and its close environment. The

primary and secondary bodies of the system are called Didymos and Dimorphos (for simplicity, also referred

to as D1 and D2 in this work). The first has an estimated diameter of 780 m, the latter of 170 m. Milani’s

objectives are both scientific and technological: to map and study the composition of D1 and D2, and to

demonstrate CubeSat technologies in deep space. Milani is designed with orbital maneuvering capabilities

and attitude control and will carry the ASPECT [16] visual and near-IR imaging spectrometer and VISTA

thermogravimeter [17] to characterize the dust environment around the system. The CubeSat is currently

designed to host a NavCam (21× 16 deg FOV, with a 2048× 1536 pixels wide sensor mounted co-axially to

ASPECT), a lidar, Sun sensors, a star-tracker, and an IMU.

Milani will be hovering in the Didymos system and will perform the required scientific observations during

two main phases: The Far Range Phase (FRP) and the Close Range Phase (CRP). The FRP lasts roughly 21

days while the CRP 28 days. The FRP exhibits symmetrical arcs that develop within 8-14 km from the

asteroids. On the other hand, the CRP exhibits asymmetrical arcs within 2-11 km from the asteroids. The

NavCam characteristics have been tuned together with the ASPECT requirements to make sure that images

can be obtained with D1 fully resolved during scientific acquisitions and for on-board navigation, avoiding

the use of mosaics.

Milani is designed with semi-autonomous capabilities enabled by innovative image processing and au-

tonomous navigation components paired with traditional guidance and control logic. Milani’s on-board nav-

igation strategy relies on optical observables of D1 extracted from images and then used in on-board filters.

To do so a robust, simple, and accurate IP method is needed. For the case of Milani, the IP needs to provide

reliable data about D1 for navigation, but at the same time to be able to distinguish D2 in the image for

pointing purposes. This stems from the consideration that D1 being the largest, most visible, and regular

body, it would be simpler and more robust to use for navigation. On the other hand, D2 being the focus of the

mission is important to be able to distinguish D2 from D1 in the image to eventually be able to point towards

it for scientific acquisitions.

Various works in the literature are sprouting illustrating different aspects of the Milani mission. The most

relevant ones are briefly listed here for the interested reader to provide context for what is presented and what

is omitted in this work. The process of designing close-proximity operations in a binary asteroid system

is discussed at length in [14] while the preliminary mission analysis and GNC design of Milani, which
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constituted the proposal and phase 0 of the mission, are illustrated in [13]. A partial description of the IP can

be found in [18], which also contains a performance assessment of one of the algorithms presented in this

work against machine learning methods. This same algorithm is tested in a Hardware-In-The-Loop facility

in [19], illustrating its robustness to varying conditions. A detailed overview of the mission and its semi-

autonomous vision-based GNC system is illustrated in [15] while in [20] the important relationship between

the trajectory design and orbit determination processes is shown. The interested reader is also directed to

[17, 16] for details about VISTA and ASPECT, respectively.

Milani consortium is composed by entities and institutions from Italy, Czech Republic and Finland. Con-

sortium Prime is Tyvak International, responsible for the whole program management and platform design,

development, integration, testing and final delivery to the customer. Politecnico di Milano, and in partic-

ular the DART* team, is responsible for the Mission Analysis and GNC. Milani successfully achieved the

Preliminary Design Review (PDR) in Summer 2021 and is currently in phase-C.

IP

The IP software of Milani is composed of 5 blocks, as it is illustrated in Figure 1. The input is made by

a combination of signals containing both data (images, readings from other sensors, variables from higher

systems) and configuration parameters. The latter are currently represented by a set of 23 parameters which

are used to tune the performance of the IP. For simplicity, these are not explicitly represented in the architec-

tures nor illustrated in this work. The output of the IP is a state vector whose elements are summarized in

Table 1. The PreProcessing and PostProcessing blocks handle the interface between the IP and the rest of the

on-board software, performing internal logic checks and generating validity or other types of flags. The State
Machine is the decision-making core of the IP. On the basis of the validity and operative flags communicated

from outside or generated internally, it decides which of the 4 operative modes to use. From the highest to the

lowest, it can operate in the SSWCOB, WCOB, COB, or NOP mode. The first three are associated with the

choice of the main algorithm to use in the Observables Extraction block while the latter is a mode in which no

operations are performed. The algorithmic core of the IP resides in the Blobs Characterization and Observ-
ables Extraction blocks, which sequentially process an image and generate optical observables to be used by

the rest of the GNC. The task of the Blobs Characterization is to generate low-level optical observables from

a simple blob analysis while also distinguishing between D1 and D2. The task of the Observables Extraction
is to further process the image content around D1 to generate a more sophisticated set of observables.

State

Data & Configuration

State

Machine

PreProcessing

Observables

Extraction

PostProcessing

Blobs

Characterization

Figure 1: High level architecture of the IP.

The IP software is set to run on-demand within the Milani’s NavCam whenever a new image is available.

*https://dart.polimi.it/, last accessed: 27th of January, 2021.
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Currently, the IP is designed in Simulink* in order to be easily interfaced with the rest of the GNC [15].

Exploiting the auto-coding capabilities of Simulink, the IP code will be translated into C to be deployed as

on-board software.

Table 1: Output of the IP of Milani.

Name Symbol Description
number of bodies f Number of bodies detected in the image

CoF of D1 (CoF )D1
Estimated Center of Figure of D1

CoF of D2 (CoF )D2
Estimated Center of Figure of D2

phase angle Ψ Estimated phase angle from D1
range ρ Estimated range from D1

ip mode γ Operative mode of the IP
consistency flag ν1 Consistency flag on the output of the IP

asteroid detection ν2 Detection flag of a body in the image

Blobs Characterization

This block has a twofold purpose: to distinguish between D1 and D2, and to generate low-level optical

observables. The architecture of the Blobs Characterization block is schematized in Figure 2.

At first, the image is binarized using the Otsu method [21] (default choice) or via an arbitrary binary

threshold. Morphological operations such as opening or closing are then applied to the binary image. Thanks

to this step, the number of detected blobs in the image is reduced, which is helpful in the following blob

analysis. The analysis is performed only on the group of pixels larger than a predefined threshold (this is

done to remove small image artifacts) and generates several geometric properties of interest for each blob:

e.g., area, bounding box characteristics (Γ), centroid coordinates (CoB), eccentricity (e) and major axis

length (δ) of the ellipse fitted to the blob of pixels, as illustrated in Figure 2. The output of the blob analysis

is first used in the object recognition algorithm to distinguish D2 from D1, which is designed as follows:

1. The blobs of pixels are ordered in ascending order based on their areas.

2. The blob with the biggest area is labeled as D1. Its key geometric properties are saved. All other blobs

are listed as potential candidates of D2.

3. Γ, the bounding box around D1, is expanded by an arbitrary factor in all directions in the image plane.

The expanded bounding box Γex is created.

4. The remaining blobs of pixels which are within Γex are removed from the list of D2 candidates. These

could be false positive identifications of D2 given by local areas in the terminator region of D1.

5. The biggest blob outside Γex is therefore labeled as D2. Its key geometric properties are saved.

6. The number of asteroids detected in the image, f , and the centroid of D2, (CoF )D2
, are passed as out-

put of the IP while the other geometrical properties about D1 are passed to the Observables Extraction
block.

Note that the CoF of D2 is designed to be equivalent to its CoB. This could not be the case (depending

on the operative mode γ) for the CoF of D1, as it is illustrated in the next section.

Observables Extraction

This block takes as input the Region of Interest (ROI) of the image around D1 identified by Γex, its

geometrical properties computed in the Blobs Characterization block, and external data to compute high-level

optical observables with algorithms that are more sophisticated than a simple blob analysis. The architecture

of the Observables Extraction block is schematized in Figure 3.

*https://www.mathworks.com/products/simulink.html, last accessed: 18th November 2021.
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Figure 2: Architecture of the Blobs Characterization block. The red arrow represents the output of the block.

Independently from γ, the range from D1 is estimated by using a simple apparent diameter relationship:

ρ =
RD1

tan
(

δ·ifov
2

) (1)

where RD1
is the radius of D1 in meters, δ is the major axis length of the blob of pixels and ifov is the sensor’s

instantaneous FOV. The remaining output of the block is computed based on the operative mode γ. These are

entangled with the 3 main algorithms that can be used to compute the CoF of D1 and the phase angle Ψ: the

Center Of Brightness (COB), Weighted Center Of Brightness (WCOB), and the Sun Sensor Weighted Center

Of Brightness (SSWCOB). Each of these constitutes a branch within the Observables Extraction block, as it

is illustrated in Figure 3.

The COB branch does not generate an estimate of Ψ, but generates only an estimate of the CoF of D1.

It does that with a simple centroid formula (the one computed from the blob analysis in the Blobs Charac-
terization block), which suffers from biases given by the irregular shape of the asteroid and the phase angle.
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Figure 3: Architecture of the Observables Extraction block. The red arrow represents the output of the

block.

To rectify them, a correction term is introduced in the WCOB and SSWCOB branches. In the former one,

this term is purely data-driven and computed via quantities extracted from the image, while in the latter it is

computed with a mix of data from the Sun sensor and processed from the image.

To design, train and validate the WCOB and SSWCOB methods, a global database is generated, referred to

as DB0. The setup used is the same as the one considered in [18]. DB0 collects a large statistical sample of

10, 000 images of the Didymos binary system seen from different geometric configurations. It comprehends

randomly generated points between 4 km and 14 km with azimuth angle between -95 deg and + 95 deg and

elevation between -45 deg and +45 deg with respect to a reference frame co-planar with the orbital plane of

the secondary. These conditions are representative of a mission designed to actively observe an asteroid from

the illuminated side. During the generation of the database, the angular position of the secondary with respect

to the primary is changed randomly, constraining the secondary to be tidally locked with the primary.

Figure 4: Cloud of points of DB0 used for training/validation (blue) and points used for testing (red and

green), representing the FRP and CRP.

For simplicity, ideal pointing towards the CoM of the primary is assumed and the images are obtained

with the NavCam characteristics but without noise. Moreover, the X axis of the NavCam is aligned with
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the equatorial plane of the binary system, assuming that the Z axis represents the boresight direction and

the X and Y axes are respectively the ones associated with the longest and shortest size of the sensor. The

shape models used are enhanced versions of the current ones for the Didymos system. They are processed

with procedural changes and re-mesh to simulate roughness and albedo variations with cloud and Voronoi

patterns. A 10 m crater is also added on the secondary (which in this work is considered only as a disturbing

element) to simulate the DART impact. The algorithm in each branch is now discussed in detail.

Using these settings both the training dataset (DB0, composed of 10000 images) for the data-driven func-

tions and the testing datasets (FRP and CRP , composed respectively of 12102 and 16020 images) are

generated and used to train, validate, and test the image processing software. A representation of the three

datasets is visible in Figure 4.

COB
The COB algorithm is a simple, traditional, robust, and well-known method used to estimate the centroid of a

figure by its center of brightness. The CoB is computed over the binary image in the blob analysis performed

in the Blobs Characterization block using the following equation:

CoBx =

∑N
i,j=1 Iijxij∑N
i,j=1 Iij

CoBy =

∑N
i,j=1 Iijyij∑N
i,j=1 Iij

(2)

where Iij is the logic value that determines if the pixel (xij , yij) is illuminated or not, whereas CoBx and

CoBy are the components in pixel of the CoB.

WCOB
The COB suffers a bias given by the irregular shape of the body and by high phase angles. To overcome the

latter, analytical scattering laws can be used [22, 23]. In the case of the IP of Milani, data-driven scattering

laws are applied as variants of the COB algorithm.

The WCOB corrects the CoB by a scattering law derived empirically through data from the irregular body

considered. The main goal of the WCOB is to generate a correction vector on the image plane that pushes the

CoB towards the CoM , assuming a body with constant density. The WCOB is constituted by two pipelines,

as it is possible to see in Figure 5. These are responsible for the computation of the magnitude and orientation

components of the correction term to apply to the CoB of D1. The starting points are two ROIs around D1

taken from the grayscale and binary version of the image.

Flowing first on the pipeline computing μ, is possible to determine thanks to the DB0 dataset that a

relationship exists between the eccentricity of the blob of pixels associated to D1 and Ψ. To describe this

relationship, a second-order polynomial is used to fit the data represented in Figure 6 in the least square sense:

Ψ(e) = p2e
2 + p1e+ p0 (3)

where p0, p1, and p2 are coefficients evaluated from the fit, while e is the eccentricity of the blob of pixels

associated with D1. As illustrated in Figure 6, the Ψ estimated with Equation 3 would be capable to provide

a rough estimate which is more precise at higher values of the phase angle. The fit error follows a Gaussian

distribution with mean μΨ = 0 deg and standard deviation σΨ = 6.383 deg.

Following a similar approach, it is also observed that a relationship could be defined between Ψ, δ and

the difference between the CoF and CoB, the latter being the magnitude of the correction term μ. The

relationship is described by a fifth-order polynomial surface which is once again fit in the least squares sense:

μ(Ψ, δ) =
∑

i=0,··· ,5
j =0,··· ,5
i·j ≤ 6

pijΨ
iδj (4)

Switching to the second pipeline of the WCOB algorithm, Φ is computed starting from the ROI of the

grayscale image around D1. A filter is applied to exacerbate differences between the soft and sharp gradient
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Equation 6

Equation 4

Ψ

μ Φ
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Equation 3

Equation 5

CoB
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CoM
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η

CoB, e, δ

CoB

Γ
ex Γ
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Figure 5: Architecture of the WCOB algorithm. The red arrow represents the output of the algorithm.

over the terminator and edge of the asteroid. To do so, in this work a Sobel filter is used. Once the activation

map of the Sobel filter is generated, an arbitrary factor is used to threshold the map by a fraction of the

maximum value present in it. The generated binary map is then analyzed and the CoB of the largest blob of

pixels, associated with the region on the edge of D1, is computed. This is referred to as eCoB (edge CoB)

and is used to provide an information about the lighting conditions on the asteroid. The CoM , CoB and

eCoB are illustrated in one case in Figure 5. From this figure, it is possible to see that the line connecting the

eCoB with the CoB can be used to estimate the orientation of the line connecting the CoB with the CoM ,

which represents the ultimate orientation at which the correction term of the WCOB method should aim. The

eCoB is then used together with the CoB of D1 to compute an orientation in the image plane, referred to as

η. Once again by plotting the estimated orientation η with the true one Φ, a relationship can be seen between

these quantities, as illustrated in Figure 8. This relationship is represented by the following equation:

Φ(η) = a1sin(b1η + c1) + a2sin(b2η + c2) + a3sin(b3η + c3) + a4sin(b4η + c4) (5)

The fit error follows a Gaussian distribution with mean μΦ = 0.758 deg and standard deviation σΦ =
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Figure 6: Ψ function (solid red) and 3σ value (dashed red) together with all datapoints of DB0 (blue).

Figure 7: μ function (red surface) vs Ψ and δ for all datapoints of DB0 (blue).

33.895 deg. The coefficients of the μ, Ψ, and Φ functions are not reported in this work but are the same ones

that are used in [18]. Now that both μ and Φ have been computed from the image, they are combined in the

following equation: [
CoFx

CoFy

]
=

[
CoBx

CoBy

]
+ ω · μ(Ψ, δ) ·

[
cos(Φ)
sin(Φ)

]
(6)

where ω is a weighting factor that can be used to tune the correction term. It is immediate to understand

that when ω = 0 the WCOB degenerates into the COB method. In this work, a value of ω = 1 is used for

all geometric conditions, but in general, this parameter could be optimized or varied in real-time depending

on the operative conditions. Also, note that at the current stage only synthetic images are used to train the

WCOB functions. In future iterations, it would be possible to use real images, as they could be abundantly

available from the Hera and DART missions before Milani is released.

SSWCOB
The Sun Sensor WCOB (SSWCOB) is a variant of the WCOB in which the CoB estimate is corrected by

a scattering law derived empirically through data for the irregular body considered and from the Sun sensor.

As for the WCOB, the main goal of the SSWCOB is to generate a correction vector on the image plane
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Figure 8: Φ function (solid red) and 3σ value (dashed red) together with all datapoints of DB0 (blue).

that pushes the CoB towards the CoM . Oppositely from the WCOB, a large portion of the functionalities

and quantities extracted from the image are substituted by data from the Sun Sensor. This simplifies the

algorithm at the cost of making it dependable on additional sensors. The architecture of the SSWCOB

method is illustrated in Figure 9.

Ψ

μ

Φ

(CoF )D1

SSuv

los

SSlos

θ

CoM

CoBlos

CoB

Equation 4 Equation 6

Γ
ex

CoB, δ, SSlos CoB,Γex, SSuv
los

Figure 9: Architecture of the SSWCOB algorithm. The red arrow represents the output of the algorithm.

As for the WCOB algorithm, two pipelines are identified for the determination of μ and Φ. Flowing first

from the μ pipeline, data retrieved from the Sun Sensor is used to compute Ψ. The IP receives the line of
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sight vector of the Sun direction in the CubeSat reference frame estimated by the Sun Sensor. Using known

rigid rotation matrices and assuming to know the attitude quaternion from the ADCS system, the CoBlos and

SSlos are transformed in the same reference frame. The angle θ between these two lines of sights is therefore

computed and related to Ψ as:

Ψ ≈ π − θ (7)

This formula is an approximation of Ψ since the computation is performed from the CoB (available from

the image) and not from the CoM (unknown at the moment of the estimation). As for the WCOB method,

once Ψ is determined, μ is computed by applying Equation 4.

Switching now to the pipeline to compute Φ, the projection of the line of sight of the Sun in the image

plane is used, SSuv
los. This quantity, centered on the CoB of D1, is used to provide an orientation from which

the angle Φ is computed. Having determined both μ and Φ, the same formula used in the WCOB is now

applied to determine the correction term to apply to the CoB of D1.

RESULTS

The performances of the IP are now tested on the FRP and CRP datasets. First, the performance of the

object recognition function within the Blobs Characterization block are illustrated, followed up by the ones

of the Observables Extraction block.

The performance assessment presented in this work is defined as a ’static’ one, since it is based on the

application of the IP on a datasets generated beforehand. On the other hand, the performance assessment of

the WCOB presented in [15] can be considered as a ’dynamic’ one, since it is done with the IP and the rest

of the GNC system connected in closed-loop.

Blobs Characterization

To assess the performance of the object recognition function to distinguish between D2 and D1 in the

image, the following metrics have been considered:

A =
TP + TN

TP + FP + TN + FN
(8)

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

where A, P , R stand respectively for accuracy, precision, and recall and TP, TN, FP, FN stands respectively

for True Positive, True Negative, False Positive, and False Negative. Since by design all datasets have always

D1 in the images, the metrics are evaluated for the correct detection of D2.

The performance are summarized in Table 2. First of all, it is possible to see that the conditions in which D2

is observed in the image are well balanced among the training (DB0) and testing (FRP and CRP ) datasets.

Due to the geometrical configuration of D1, D2, and Milani several phenomena can occur that impact the

visibility of D2 in the image. In particular, D2 could be: occluded by D1, in the shadow region created by

D1, outside of the FOV of the navcam, or in front of D1 occluding portions of it. Of these scenarios, the

latter is the most challenging one for the object recognition algorithm. The relative frequency at which this

happens is reported for the three datasets in Table 2, as well as the relative frequency of the other phenomena,

which make D2 not visible by the navcam.

From a performance perspective, it is possible to see that the object recognition is capable to recognize D2

with high precision (≥ 99.83 in all datasets) but with a medium-high recall (81.77 ≤ R ≤ 89.27). Therefore,

the object recognition algorithm is characterized by a low rate of FP and a high rate of FN detection of D2.

This is a consequence of the design of the object recognition algorithm. Note that the algorithm is based

on the generation of an expanded bounding box which rejects regions of the terminator of D1 from being
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Table 2: Performance of the object recognition algorithm.

DB0 FRP CRP

Number of images 10000 12102 16020

D1 is observable [%] 100 100 100

D2 is observable [%] 80.96 88.88 75.38

D2 over D1 [%] 7.56 12.35 13.76

Accuracy 91.20 87.39 86.15

Precision 99.85 99.95 99.83

Recall 89.27 85.86 81.77

wrongly labeled as D2. This works as expected, but introduces a high rate of FN whenever D2 is transiting

above D1, as seen from the CubeSat perspective. Having this in mind, and without the desire to complicate

the algorithms of the Observables Exctraction block to cope with these cases, this behavior is accepted once

it has been observed to impact minimally over the performances of the WCOB and SSWCOB algorithms.

Indeed, these algorithms seems to be significantly impacted by the disturbance generated by D2 only when the

two asteroids are as far away as possible from each other and their edges are connecting together, generating

a combined blob of pixels much greater than expected. Some examples of D2 recognition are illustrated in

Figure 10, together with their associated Γ and Γex to exemplify the performance of the algorithm.

Figure 10: Object recognition examples in the Didymos system. From Top-left to Bottom-right, left to right

there are respectively cases of TP, FN, FN, and FP for D2 detection. The blue and red bounding boxes are

the one associated to D1 and D2, respectively.

Observables extraction

In this section, the performance of the Observables Extraction block of the IP is discussed in detail. The

assessment in this work is focused on the (CoF )D1
, Ψ, and ρ output of the IP thus excluding the (CoF )D2
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from the analysis. It is also remarked that the performance of the SSWCOB is evaluated without introducing

any error in the attitude knowledge nor in the line of sight reading from the Sun Sensor, which is therefore

modeled as an ideal sensor. This choice has been made to have the SSWCOB being purely evaluated from

an IP perspective and at the best of its capability. For a more realistic evaluation its performances shall be

modeled with multiple sets of errors both in the attitude and sensor readings. The following error metrics are

defined:

εxCoF = CoMx − CoFx (11)

εyCoF = CoMy − CoFy (12)

εnCoF =

√
(εxCoF )

2
+ (εyCoF )

2
(13)

εψ = ψ − ψt (14)

ερ = ρ− ρt (15)

where the diacritic t indicates the true value, while the quantities without diacritic are intended to be the ones

estimated by the IP.

First, a series of histograms illustrate the distributions of εnCoF , εΨ, and ερ in the FRP and CRP datasets.

Note that the same color code is used across this section to distinguish the performance of the COB, WCOB,

and SSWCOB. From the histograms in Figure 11 it is possible to appreciate the beneficial effect of the data-

driven scattering laws of the WCOB and SSWCOB in increasing the accuracy of the CoF estimate. In

Figure 12 is possible to see that Equation 7, although an approximation, is capable to estimate Ψ much more

accurately than the estimate generated from the image alone. This result has been expected and is reflected

in the performance of the WCOB and SSWCOB methods. The greater accuracy which the SSWCOB can

exploit to estimate Ψ is also the main reason for the better performance observed in Figure 11: with an

accurate Ψ, the resulting μ is estimated better, since both the WCOB and SSWCOB are evaluated over the

same δ for each image.

Figure 11: Histograms of the εnCoF errors of the COB, WCOB, and SSWCOB in the FRP (left) and CRP

(right) datasets. The width of the bins is set to 1 pixel.

Looking at the histograms of ρ in Figure 13, it is possible to see a bias in the error, which is accompanied

by a high standard deviation. This results in a noisy reading of the range from the IP which may not be

beneficial for use as a standalone quantity (e.g., to trigger an event or another functionality outside of the IP)

or in the GNC system. For completeness, all metrics are reported in Table 1 with their means and standard

deviations.
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Figure 12: Histograms of the εΨ errors of the WCOB, and SSWCOB in the FRP (left) and CRP (right)

datasets. The width of the bins is set to 1◦ and 0.05◦ respectively for the WCOB and SSWCOB.

Figure 13: Histograms of the ερ errors in the FRP (left) and CRP (right) datasets. The width of the bins is

set to 20 m.

Another interesting visualization of the performance of the IP is visible in Figure 14, which depicts the

distributions of εxCoF and εyCoF in the image plane, together with their error ellipses. It is possible to visually

appreciate what the previous histograms have already illustrated: a trend in the increase of the accuracy

passing from the COB to the WCOB to the SSWCOB. It is also possible to note the different orientations

of the ellipses from FRP to CRP and a bias in the CoF estimate by the COB method in the CRP, which is

explained by the nature of its asymmetrical trajectories, as illustrated in Figure 4. The parameters of the error

ellipses in Figure 14 are reported for completeness in Table 4.

In Figure 15 and Figure 16 it is possible to see the performance of the COB, WCOB, and SSWCOB as a

function of time during the first two arcs of the FRP and CRP phases, together with the values of ρt and Ψt.

Once again, it is possible to note the higher accuracy of the estimate of Ψ by the SSWCOB when comparing

it with the one of the WCOB. Moreover, the estimate of Ψ by the WCOB seems to degrade with low values

of Ψt. This is explained by the poor accuracy of the data-driven function with low values of e (which are

associated to lower phase angles), as illustrated in Figure 6. Because both the WCOB and SSWCOB estimates
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Table 3: Performance metrics of the COB, WCOB, and SSWCOB in the FRP and CRP datasets.

FRP CRP

Metric COB WCOB SSWCOB COB WCOB SSWCOB

εnCoF

μ [pxl] 27.00 10.60 5.87 38.46 12.69 6.96

σ [pxl] 17.05 7.08 3.62 25.52 8.69 4.41

εxCoF

μ [pxl] -2.47 1.12 -0.41 -34.70 -0.64 0.66

σ [pxl] 29.66 7.28 3.71 28.38 8.69 4.73

εyCoF

μ [pxl] -2.22 -2.10 -0.75 -6.74 1.95 -0.58

σ [pxl] 11.37 10.49 5.58 8.67 13.22 6.52

εΨ
μ [m] n.a. -1.41 -0.23 n.a. -0.95 -0.31

σ [m] n.a. 7.03 0.15 n.a. 6.12 0.21

ερ
μ [deg] -45.19 -45.19 -45.19 -37.08 -37.08 -37.08

σ [deg] 302.64 302.64 302.64 225.30 225.30 225.30

Figure 14: Error ellipses in image plane of εxCoF and εyCoF for the COB, WCOB, and SSWCOB in the FRP

(left) and CRP (right) datasets. A 99% confidence interval is used to draw the ellipses.

the μ term using the same δ extracted from the image, it can be concluded that the overall better accuracy of

the SSWCOB against the WCOB method visible in the εnCoF error is caused by a better value of Φ, which

is orienting the correction term using a more accurate direction. The error on the range is mostly below 1

km and it is observed to vary with ρt with an expected trend. It is also noted that such error is affected

more from ρt than Ψt. While for most of the phases low values of Ψt are associated to low values of ρt and

vice-versa, around day 3 of the CRP is clearly visible an interval of time in which this is not true. In this

interval the performance of ρ follows the trend driven by ρt. Being the range estimated using δ, as described

in Equation 1, it is possible to conclude that this parameter is capable to provide a strong estimate in the face

of challenging illumination conditions. This is a consequence of a geometric property of the fitted ellipse in

the image plane: assuming a constant distance while facing D1 with varying phase angles, the variability of δ
would be small. Finally, from Figure 16 is also possible to see a limitation of data-driven approaches, which

shall be considered from an operational point of view: outside their training envelope, the methods cannot

be used. Because this scenario may happens, the COB is designed to replace the WCOB and SSWCOB

whenever conditions for their applications are not met. Finally, around days 2 and 5.5 of the FRP and days

2.5 and 3.75 of the CRP it is possible to clearly see that the COB method perform better than the others.

These events occur whenever low values of Ψt are reached.

Figure 17 and Figure 18 illustrate the best method for each phase identified as the one achieving the
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Table 4: Parameters of the error ellipses from Figure 14.

FRP CRP

Parameter COB WCOB SSWCOB COB WCOB SSWCOB
X0 [pxl] -2.47 1.12 -0.41 -34.70 -0.64 0.66

Y0 [pxl] -2.22 -2.10 -0.75 -6.74 1.95 -0.58

a [pxl] 93.89 32.20 17.85 86.55 40.23 19.88

b [pxl] 21.86 21.53 9.75 24.92 26.18 14.24

θ [deg] 197.00 101.83 67.87 185.85 95.77 82.31

Figure 15: Performances of the COB, WCOB, and SSWCOB as function time during the first two arcs of

the FRP.

smallest εnCoF . The points on the FRP and CRP datasets associated with the best methods are represented

in a phase space together with Ψt and ρt. In the FRP the COB, WCOB, and SSWCOB are considered the

best respectively for 8.71%, 22.94%, and 68.35% of the cases. In the CRP the COB, WCOB, and SSWCOB

are considered the best respectively for the 8.18%, 22.18%, and 69.64% of the cases above 4 km. From

Figure 17 and Figure 18 is also possible to see a clear preference for the COB method whenever Ψt is low.

In these cases, the application of a data-driven scattering law seems unfruitful with respect to a simple CoB
estimate.

Finally, Figure 19 and Figure 20 attempts to represent the points in space in the DB0 database in which the

WCOB is better than the COB and the SSWCOB is better than the WCOB, using as metric the εnCoF errors.
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Figure 16: Performances of the COB, WCOB, and SSWCOB as function time during the first two arcs of

the CRP. Points below 4 km are omitted for the WCOB and SSWCOB.

From these figures, it is immediately clear once again that the WCOB is exceptional in reducing very large

errors in a wide range of phase angles from medium to high, being the illumination from the Sun coming

from the X-axis. At the same time it is possible to see that the gain of the SSWCOB over the WCOB is

less remarkable if not in the areas at very high phase angles while is being consistently spread across various

points in space for smaller improvements.
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Figure 17: Scatter plot of the method with the smallest εnCoF as a function of the range and phase angle in

FRP.

Figure 18: Scatter plot of the method with the smallest εnCoF as a function of the range and phase angle in

CRP.
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Figure 19: Scatter plot of the error between the COB and WCOB (left) and WCOB and SSWCOB (right) in

the DB0 dataset. The color metric used is the difference between the εn
CoF

errors.

Figure 20: Scatter plot of the error between the COB and WCOB (left) and WCOB and SSWCOB (right) in

the DB0 dataset. The color metric used is the difference between the εn
CoF

errors.
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CONCLUSION AND FUTURE WORKS

In this work, for the first time, the design of Milani’s image processing is described in detail. The key

functionalities of the most important blocks of the IP are tested over the FRP and CRP datasets, which

together constitute a total of 28122 images being tested. It is demonstrated that the object recognition func-

tion works well in distinguishing D2 from D1 whenever the two bodies are separated in the image while it

performs poorly whenever D2 appears in front of D1 in the image. Nonetheless, in these cases, the failure of

the object recognition algorithm does not seem to impact the performance of the observables extraction step

of the IP. The latter is constituted by 3 algorithms: the COB, WCOB, and SSWCOB, whose performances

are characterized in detail. In particular, their capability to extract the CoF of D1, the phase angle Ψ and

the range ρ from D1 are tested on the nominal phases of the mission. The analysis carried out in this work

demonstrates that the IP can robustly generate a set of observables across the FRP and CRP phases of the

mission by exploiting different algorithms. In doing so, the SSWCOB seems to be the most accurate and

robust one, followed up by the WCOB and COB. In particular, it is noted that the WCOB method could play

the role of backup of the SSWCOB method, while at low phase angles, it would be more beneficial to use the

COB method and not apply any scattering law at all in the estimate of the CoF of D1. Operationally, this

could be achieved by a change in the mode of the IP or by a varying ω factor which nullifies or at least reduce

the impact of the correction term in the WCOB and SSWCOB formulations. It is also observed that the

WCOB would be a perfect backup option in case of a high level of noise in the Sun Sensor readings or high

attitude errors from the ADCS, which are expected to degrade the performance of the SSWCOB presented in

this work. It is also noted that the range estimated by the IP is often noisy and not accurate, which in the past

has been observed to be an issue when transmitted to the GNC.

Future works include a robustness assessment introducing noise in the images, testing the IP with different

and more irregular shapes, and most importantly to introduce attitude pointing and Sun sensor errors which

will degrade the SSWCOB performance to a level which would be more representative of the real mission.
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