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A ROBUST IMAGE PROCESSING PIPELINE FOR PLANETS
LINE-OF-SIGHT EXTRACTION FOR DEEP-SPACE AUTONOMOUS

CUBESATS NAVIGATION

E. Andreis*, P. Panicucci†, V. Franzese‡, and F. Topputo§

The adoption of CubeSats marks the beginning of new momentum in interplane-
tary exploration, owing to their low cost as compared to standard missions. Yet,
the proliferation of deep-space CubeSats will cause the saturation of the ground
networks, hindering the traditional navigation through ground-based radiometric
tracking. The solution to this issue resides in the exploitation of autonomous
miniaturized probes.
Autonomous vision-based navigation (VBN) and robust Image Processing (IP) are
crucial to overcome these limitations. This is because of the capability of such al-
gorithms to provide near real-time information to navigation filters on-board. For
these reasons the use of passive cameras, in combination with IP algorithms, pro-
vides compelling navigation performances with light and cost-effective hardware.
It is thus necessary to develop efficient, robust, and fast IP algorithms that must be
strongly integrated within navigation filters. In the context of deep space naviga-
tion, CubeSats can perform celestial triangulation by exploiting visible planets as
beacons. Given these considerations, this paper proposes an innovative and robust
planets line-of-sight extraction procedure applicable to interplanetary autonomous
CubeSats. In particular, the work focuses on the description of a new methodology
adopted for star pattern and planets identification. Statistical results show that a 3σ
accuracy of 30 arcsec is obtained for the planet line-of-sight (LoS) extraction with
a failure lower than 1% when the spacecraft position is known with a 3σ accuracy
of 105 km.

INTRODUCTION

The adoption of autonomous CubeSats marks the beginning of a new era in deep-space explo-
ration.1 Thanks to the cutting down on the production costs, nanosats grant the democratization of
interplanetary exploration and exploitation, opening access to space also to small companies and
universities. Nevertheless, the CubeSats flourishing proliferation could be obstructed by the satu-
ration of ground control slots.2 To prevent this, self-driving deep-space CubeSats, which do not
require any ground-based support, would overcome these limitations.3 The ability to autonomously
navigate and move in the Solar System requires the Guidance, Navigation, and Control (GNC) to be
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autonomous. From a navigation perspective, the spacecraft must be aware of the external environ-
ment by determining its position with respect to the Solar System reference frame without ground
support. For this purpose, planet positions observed during the cruise can be exploited to triangulate
the spacecraft position.4 In this context, one of the most relevant issues concerns the recognition
and labeling of the planet in the image against the stellar background.
This work, framed within the ERC-funded EXTREMA (Engineering Extremely Rare Events in As-
trodynamics for Deep-Space Mission in Autonomy) project,5 aims to prove that the autonomous
planets line-of-sight extraction from images is possible during deep-space cruise without ground
support to pave the way to autonomous navigation.
The paper is structured as follows. First, the “Projective Geometry Preliminaries” section defines
the work-frame adopted in this work. Then, the “Methodology” section describes the step-by-step
procedure followed by the IP pipeline for the extraction of the planet LoS direction. Finally, the
“Simulation” section presents the performances of the procedure in different scenarios and discusses
the robustness of the algorithm.

NOTATION

In this paper the following notation is used:

• 3D vectors are denoted with lower case bold text, such as r, and 2D vectors are denoted with
upper case bold, such as R.

• Matrices are in plain text in brackets, such as [A]

• A = {a, a1, a2, a3} is the reference frame centered in a with axes a1, a2, and a3. All the
reference frame are right-handed.

• A = {A, A1, A2} is the a 2D reference frame. This reference frame is centered in A with
axes A1 and A2 which are orthonormal.

• All rotation have a passive function. This means that points, vectors and all geometrical
entities are fixed in space and the reference frame is translated and rotated.

• The rotation matrix from S to C is [CS]

• The vector r expressed in the S reference frame is denoted Sr

• The 3D vector r in its homogeneous form is labeled hr and the 2D vector R in its homoge-
neous form is labeled hR

• The projection of the 3D vector r on the 2D image is labeled R

• The identity matrix of dimension n is labeled [In]

• The zero n×m matrix is labeled [0n×m]

• The skew symmetric matrix associated with the cross product x × y is [x∧]. Thus x × y =
[x∧]y = − [y ∧]x
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PROJECTIVE GEOMETRY PRELIMINARIES

Let Nrpl and N
h rpl be the planet position vector in the inertial reference frame N = {n,n1,n2,n3}

expressed with non-homogeneous and homogeneous coordinates, respectively, and let Nr be the
spacecraft position in non-homogeneous coordinates.
The position of the planet as seen by the spacecraft in N is described as

Nρ = Nrpl − Nr (1)

Let a projective camera observe the planet. The camera frame is defined as C = {c, c1, c2, c3}.
The vector Nρ can be transformed in C though a passive rotation from N to C and applied by the
attitude matrix [CN ]:

Cρ = [CN ] Nρ (2)

For the definition of the attitude matrix, in this work, the Axis-Azimuth representation6 is adopted.
By assuming that the camera boresight is coincident with the spacecraft-fixed reference frame third
axis, [CN ] is

[CN ] = [R3(α)] [R2(π/2− δ)] [R3(ϕ)] (3)

where [CN ] is obtained through a succession of counterclockwise rotations taking into account the
camera pointing angles: right ascension α ∈ [0◦, 360◦], declination δ ∈ [−90◦, 90◦], and twist angle
ϕ ∈ [0◦, 360◦].
Once the position of the planet as seen by the spacecraft in C is computed (see Eq. 2), the 3D
point is projected on the image plane exploiting the pin-hole camera model. The 2D projection
CR = [CXpl,

CYpl]
⊤ is so obtained, where C = {C,C1,C2} represents the 2D digital camera

frame: C1 points to the right, C2 downward, and the center C is placed at the upper left-hand
corner of the image. At this point, since the central projection is expressed in a linear fashion in
homogeneous coordinates,7 the following relationships exploit this formalism. The transformation
of the planet position vectors in homogeneous coordinates from N to C is compactly described as

C
hRpl = [K] [CN ]

[
[I3]| − Nr

]
N
h rpl︸ ︷︷ ︸

Cρ

(4)

where [K] is the intrinsic camera matrix.7

Finally, the planet position projection in C in non-homogeneous coordinates becomes

CRpl =

(CRpl1
CRpl2

)
=


C
hRpl1
C
hRpl3
C
hRpl2
C
hRpl3

 (5)

where Rpli is the ith component of the planet position projection in C in homogeneous coordinates.
Through an analogous procedure, stars are projected on the camera frame. Stars positions are usu-
ally stored in catalogs, such as the Hipparcos catalogue,8 which provides their right ascension and
declination on the celestial sphere.9

It is important to note that the geometrical relationship outlined in this section are useful not only
for image rendering but also for IP and VBN algorithms.
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METHODOLOGY

In this section, the developed IP pipeline is expounded. The final goal of the algorithm is the
extraction of the planet LoS direction, which has been shown to be a valuable observable for deep
space VBN even with limited-performance cameras.10, 11 To do so, the IP algorithm performs two
steps sequentially:

1. The identification of the star-pattern and the determination of the spacecraft attitude: Firstly,
a search-less method based on the k-vector technique12, 13 and bulked up with a RANSAC14

procedure is adopted, which also allow the recognition of non-stellar objects (spikes), such as
planets and uncatalogued stars, in the image. Then, by knowing the stars identifiers, it is thus
possible to extract their relative inertial position vectors from the onboard stars catalog and
compute the probe orientation.

2. The recognition of the planets in the image and the extraction of their LoS directions: Firstly,
the expected planet position projection and its relative uncertainty ellipse are computed. Then,
if one or more spikes are contained in the uncertainty ellipse, the spike closest to the expected
planet position projection is identified as the position projection of the planet itself, and its
LoS direction is extracted from the image.

The flowchart of the image processing pipeline is shown in Figure 1.

Stars Identification
Attitude 


Determination






Planets Identification





Planet LoS
Extraction

Starfield
Image

Figure 1: Image Processing WorkFlow

Stars Identification and Attitude Determination Procedure

To determine the probe attitude, the stars-pattern has to be first identified. To do this, three steps
shall be performed: 1) the centroids of the bright objects in the image have to be determined, 2)
the bright objects have to be recognized as stars and matched with the corresponding values in the
onboard catalog, and 3) the RANSAC algorithm has to be applied to increase the robustness of the
stars-matching step.

Centroids Computation To compute the centroids of the bright objects in the image, the procedure
presented in Reference 9 is applied. First, a threshold value K, expressed in pixel intensity, is set
up to remove the background noise. In this work, a dynamic thresholding method is exploited, in
which K is a function of the image intensity.15, 16 That is,

K = µ+ k σ

µ = 1
N

∑
i,j Ii,j

σ =
√

1
N

∑
i,j |Ii,j − µ|2

(6)
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where N is the total number of the pixels, Ii,j the intensity of the pixel with pixel coordinates (i, j),
µ the intensity mean, σ the intensity standard deviation over the image, and k the tuning parameter.
Second, the coordinates of the brightest pixels in the image and its associated squared centroiding
window or Region-Of-Interest (ROI), which delimits each brightest pixel with a margin of one pixel
on each side, are identified. Third, the object centroid is found by computing the image momenta:17

I00 =
∑

i,j Ii,j wi,j

I10 =
∑

i,j xi Ii,j wi,j

I01 =
∑

i,j yj Ii,j wi,j

(7)

where i and j are the pixels within the ROI, x and y the pixel coordinates, I10 and I01 the momenta
of the ROI in the two directions, I00 the overall intensity within the ROI, and wi,j a weighting
parameter associated with the pixel at coordinates (i, j). In this work, the weighting parameter
is defined as wi,j = Ii,j to give more importance to brighter pixels inside the ROI. Finally, the
sub-pixel centroid coordinates are computed as:

xc =
I10
I00

yc =
I01
I00

(8)

This process is repeated for all the brightest pixels in the image.

Stars Matching Once the centroids of the brightest pixels are found, the core of the stars identifica-
tion procedure starts. The goal of the star identification procedure is to recognize, among the found
centroids, the ones which are stars projection in the image. To do so, the problem is rewritten as a
registration problem whose goal is to find the correct correspondence between the observed stars’
indices and the cataloged stars’ indices.18 For this purpose, a search-less algorithm is adopted. This
particular star identification procedure is selected for three main reasons:19 1) It is fast since it does
not require a searching-phase, 2) It can be exploited in the Lost-In-Space (LIS) phase since it does
not need an a-priori attitude guess, and 3) It allows to identify the non-stellar objects (spikes), whose
utility will be seen later on.
The search-less algorithm relies on the matching of a ground-computed on-board-stored catalog of
stars’ invariants with the same invariant as computed from the measured stars in the image. In this
work, the algorithm exploits as invariant only the inter-star angle, i.e., the angle between two unit
stars vectors, whereas no magnitude information is considered. Since this procedure is well known
in the literature, only the general workflow is illustrated, whereas further details can be found in
Reference 12 and 18.
Firstly, starting from the iobsth bright ROI centroid, all the interstar angles between iobsth and the
other ROI centroids jobs in the image are evaluated. At each measured interstar angle θobs corre-
sponds more catalogued interstar angles, each one relative to a catalogued stars-pair (ic−jc). Indeed,
all the catalogued star-pairs whose interstar angle falls inside the range [cos(θobs + 2ϵ), cos(θobs −
2ϵ)], where ϵ is the optical instrument precision, are considered as candidate matches. The stars ic
and jc associated to these star-pairs are regrouped in two vectors Ic and Jc. If the occurrence of
the two most frequent identifiers in Ic and Jc respect a certain threshold value, the most frequent
identifier in Ic ∪ Jc is selected as the reference star and associate to iobs. At this point, the other
object jobs is identified by looking for the star identifier coupled to the reference star among the
candidate star-pairs.
When the ratio between the number of objects and the number of spikes is low, the star pattern
can be not identified by the algorithm. In this case, the tuning value k of K (see Eq. 6), which is
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needed for the removal of the background noise, is increased and the star identification procedure
is repeated. This results in the diminishing of the number of bright objects in the image, which can
ultimately lead to the removal of some spikes. This procedure is repeated until the pattern of the
stars is recognized or less than three stars are detected. Figure 2 shows the results obtained after the
first (Figure 2a) and the second (Figure 2b) iteration of the star identification procedure, in which
the value of k goes from 10 to 12, respectively. It can be noticed that the number of bright objects
detected by the centroids computation procedure in Figure 2b is minor than the one in Figure 2a.
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Figure 2: Results before and after having increased the tuning parameter k

When the pattern of the stars is recognized, the stars identification algorithm gives as output the
vector sindx = [sindx1 , ..., sindxn ]

⊤ and the matrix [N s] = [Ns1, ...,
Nsn], which contain the stars

identifiers and the associated stars position in the N reference frame, respectively. Moreover, also
a vector including the position of the spikes is delivered.

RANSAC Algorithm To increase the robustness of the algorithm and lower the possibility of a
wrong stars identification, a RANdom SAmple Consensus (RANSAC) procedure is included in
the IP pipeline. The RANSAC algorithm of Fischler and Bolls20 is a general and robust iterative
method able to estimate parameters of a mathematical model from a set of input data with a large
proportion of outliers.14 It can be also seen as an outliers detection method.
In this work, the RANSAC algorithm is applied to detect the misidentified stars (outliers) by ex-
ploiting the attitude of the spacecraft as the model for the data fitting.
At this aim, nR samples are considered. For each sample, a subset of 3 stars is randomly selected
within the vector sindx ( from now on called sindxold), and its related spacecraft rotation principal
axis ei is defined. The rotation principal axis e is the model instantiated for the RANSAC proce-
dure. At each ei is assigned a score dependent on the number of vectors ej (with j ̸= i) that are
within a distance threshold t of ei. The set of vectors that satisfy this requirement is called the
consensus set of ei. The vector ei that is associated with the largest consensus set is selected as
the best model. The size of the consensus set associated with ei can be determined as the score of
ei. The model is then re-estimated using the data in the consensus set: sindxnew and [N snew] are
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obtained by using all and only the star subsets that generate the vectors contained in the consensus
set of the selected model. The remaining stars (outliers) are identified as spikes. If two or more
consensus sets are characterized by the same dimension, the best vector is chosen arbitrarily among
the vectors ei related to these consensus sets. Let us look at Figure 3 for a graphical representation
of the selection procedure. To the orange, the blue, the green, and the yellow vector is associated
a score of 2,1,1,0, respectively. In this case, the orange vector is selected. Since the blue and the
green vector lie inside the consensus set of the orange one, all the star subsets that are adopted to
generate these three vectors are considered in the generation of the new sindxnew .

Figure 3: Graphical Representation of the RANSAC Algorithm
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Figure 4: Results before and after the application of the RANSAC algorithm

Attitude Determination Starting from the new sindxnew , the updated matrices [N snew] and [Csnew]
can be found. Once a matching between directions in C and directions in N is performed, the rota-
tion matrix [A] can be computed by solving the Wahba’s problem. The Wahba’s problem solution
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is here computed by the Singular Value Decomposistion (SVD) method:21

[B] =

nAR∑
i=1

Csi
Ns⊤i (9)

where nAR is the total number of identified stars in the image after the RANSAC procedure and
Csi and Nsi are the ith columns of [Csnew] and [N snew], respectively. As the [B] matrix is not
orthonormal due to measurements errors, the closest orthonormal matrix [A] can be computed by
imposing the matrix eigenvalues. Thus:

[B] = [U ][S][V ]⊤ → [A] = [U ][M ][V ]⊤; (10)

where [M ] is used to impose a right-handed reference frame and it is defined as:

[M ] =

1 0 0
0 1 0
0 0 det[U ] det[V ]

 (11)

Planet Identification Procedure and LoS Extraction

Once the attitude matrix [A] is determined, the planet identification is performed. Assuming to know
the probe position with a 3σr uncertainty on each Cartesian component and the planet ephemerides,
the expected planet position projection CRpl0 is computed. If the planet CRpl0 falls inside the image
boundaries, its related planet position projection covariance matrix due to the spacecraft pose, i.e.
position and orientation, uncertainty is computed. This provides an area, in the image, where the
considered planet projection is expected to be found - with 3σ probability - according to spacecraft
pose uncertainty. If one or more spikes are contained in the planet projection 3σ uncertainty ellipse,
the spike closest to the expected planet position projection is labeled as the correct planet position
projection. This is because the closest to the ellipse center is the more probable - statistically - to be
the correct planet position projection.

Planet Position Projection Covariance Matrix The planet position projection covariance matrix
[P ] due to the spacecraft pose uncertainty is computed as

[P ] = [F ][S][F ]⊤ (12)

where [F ] is the Jacobian matrix of the mapping linking the planet projection CRpl with the space-
craft pose, and [S] is the uncertainty covariance matrix of the probe pose. To evaluate [F ], the
variation of CRpl with respect to the spacecraft pose has to be computed. To simplify the calculus,
the quaternions are chosen to represent the probe attitude matrix:

δ CRpl =
[∂ CRpl

∂q0

]
δq0 +

[∂ CRpl

∂qv

]
δqv +

[∂ CRpl

∂r

]
δr (13)

δ CRpl =

[[∂ CRpl

∂q0

] [∂ CRpl

∂qv

] [∂ CRpl

∂r

]]
︸ ︷︷ ︸

[F ]

δq0δqv
δr

 (14)
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The matrix [F ] has dimension 2× 7 and, by computing the derivatives of Eq. 4 and 5, is defined as

[F ] =


1

CRpl3

0 −
CRpl1
CR2

pl3

0
1

CRpl3

−
CRpl2
CR2

pl3


︸ ︷︷ ︸

Derivative of Eq. 5

[K]

[
∂([A] Nρ)

∂q0

∂([A] Nρ)

∂qv

∂([A] Nρ)

∂r

]
︸ ︷︷ ︸

Derivative Eq. 4

(15)

where the partial derivatives of ∂([A] Nρ) with respect to the spacecraft pose are

∂([A] Nρ)

∂q0
= 2q0

Nρ (16)

∂([A] Nρ)

∂qv
= −2 Nρq⊤v + 2q⊤v

Nρ[I] + 2qv
Nρ− 2[Nρ]∧ (17)

∂([A] Nρ)

∂r
= −[A][I3] (18)

On the other hand, [S] is a [7× 7] matrix and it is defined as

[S] =

 σ2q0 0 0

[03×3] σ2qv [I3] [03×3]

[03×3] [03×3] σ2r [I3]

 (19)

Since the uncertainty of the probe orientation is more clearly identified through the Euler’s principal
rotation theorem. Let us link the variations of the quaternions with the pointing error. The variation
of the quaternions with respect to the principal angle θ and the principal axis e are

δq0 =
∂q0
∂θ

δθ +
∂q0
∂e

δe δqv =
∂qv
∂θ

δθ +
∂qv
∂e

δe (20)

By knowing that qv = e sin(ϕ/2) and q0 = cos(ϕ/2) and assuming that θ ≪ 1, the total derivatives
are 

δq0
δqv1
δqv2
δqv3

 =


− θ

4 0 0 0
e1
2

θ
2 0 0

e2
2

θ
2 0 0

e3
2

θ
2 0 0



δθ
δe1
δe2
δe3

 (21)

Moreover, if θ ≃ 0, the expression becomes
δq0
δqv1
δqv2
δqv3

 =


0 0 0 0
e1
2 0 0 0
e2
2 0 0 0
e3
2 0 0 0



δθ
δe1
δe2
δe3

 (22)

δq0 = 0 δqv =
1

2
eδθ (23)

Thus, [S] becomes:

[S] =

 0 0 0

[03×3] σ2qv [I3] [03×3]

[03×3] [03×3] σ2r [I3]

 (24)
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Planet Position Uncertainty Ellipses Once the planet position projection covariance matrix is found,
the associated uncertainty ellipse is generated.

Let λ1 and λ2 be the largest and smallest eigenvalues of [P ], respectively, and v1, v2 their related
eigenvectors. Note that [P ] ∈ R2×2. The characteristics of the 3-σ covariance ellipse are:

a = 3
√
λ1 b = 3

√
λ2 ψ = arctan

(vmaxy

vmaxx

)
(25)

where a is the 3-σ covariance ellipse semimajor axis, b the 3-σ covariance ellipse semiminor axis,
and ψ the 3-σ covariance ellipse orientation of the ellipse (angle of the largest eigenvector towards
the x-axis).

The equation of the planet position uncertainty ellipse as a function of the angle θ is so derived[
x
y

]
=

[
a cos θ b sin θ

] [ cosψ sinψ
− sinψ cosψ

]
+ CRpl0 (26)

Planet Identification and Line-of-Sight Extraction At this point, the spikes inside the uncertainty
ellipses are identified. The closest spike to the guessed position of the planet is identified as the
planet itself. If no spike is present inside the planet projection 3-σ covariance ellipse, the planet is
considered too faint to be observed by the camera at that position. Once the planet position CRpl is
identified in the image, it is backprojected on the 3D world to find the planet LoS to be provided to
the navigation filter.

Discussion about the algorithm

Since the star identification procedure is not performed with deterministic algorithms, one or more
stars may be wrongly identified for a given starfield. Moreover, to identify the stars, a 1D k-vector
exploiting only the interstar angle is applied. Differently from the statistic pyramid star identifi-
cation technique18 where the four-star polygon structure can be associated with an almost certain
star identification, in the 1D k-vector, several combination of stars pairs whose interstar angle lies
between [cos(θobs + 2ϵ), cos(θobs − 2ϵ)] are present. This leads to a possible stars misidentifica-
tion. To bulk up the stars identification procedure and reach the performances of the pyramid star
identification technique, the RANSAC algorithm is applied. It should increase the robustness of
the IP pipeline on two sides. Firstly, by recognizing and removing the stars wrongly identified, it
should enhance the confidence level of the attitude estimation. Secondly, by identifying as outliers
those non-stellar objects, as planets, mistaken for stars, it should decrease the rate of failure of the
IP pipeline due to the non-recognition of the planets in the image. This particular failure case (“
Failure A”) will be detailed in the following section, and it is verified when the planet uncertainty
ellipse contains a star, but not a spike.
Moreover, the IP pipeline may not be able to complete the stars identification step and recognize a
star pattern. This occurs when a high number of non-cataloged objects is present in the given im-
age. In this work, the non-cataloged objects are the planets and the stars with an absolute magnitude
greater than a set threshold value, which has been imposed to limit the computational burden related
to the creation of the ground-computed on-board-stored catalog of stars’ invariants. The IP pipeline
can recognize when this scenario takes place and associates to it an invalidity flag.
For what concerns planet identification, it is possible that, even if a planet is in the Field-of-View
(FoV) of the camera, it is too faint to be detected by the IP procedure. This happens because, in
this work, no planets selection based on the apparent magnitude has been included. Yet, since the
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planets exploited for the VBN are usually the brightest ones,11 this scenario has not been identified
as a failure of the pipeline. In the procedure, this scenario is verified when the planet uncertainty
ellipse does not include either a star or a spike. Similarly, a planet may be on the margin of the
camera detector, but its estimated expected planet position projection falls outside of it. In this case,
the planet uncertainty ellipse can not be determined. Nevertheless, this scenario is not considered
as a failing one because during VBN the planet is expected to be about at the center of the camera
detector.
Moreover, the size of the planet uncertainty ellipse is proportional to the uncertainty of the space-
craft position σr. When σr increases, the ellipse increases as well and the expected planet position
projection is far from the true one. This leads to a most likely planet misidentification. For instance,
it can happen that:

• Even if the planet is not detected by the centroiding algorithm and so no spikes are associated
with the planet, its uncertainty ellipse includes other non-recognized objects. Thus, the IP
pipeline wrongly identifies the closest one to the expected planet position projection as the
planet itself.

• Since the expected planet position projection is very far from the true one, it can generate a
planet uncertainty ellipse in which the closest spike is not the one associated with the planet
centroid.

To recognize and discard these scenarios where the IP pipeline performs wrong planet identification,
a validity flag is set. When the distance between the expected planet position and the closest spikes
is larger than 50 px, the algorithm is assumed to fail (Failure B).

SIMULATION

In this section, the performances of the IP procedure for the planet LoS extraction are shown. After
having described the simulation setting in detail, a Monte Carlo simulation of 1000 scenarios is run.
Moreover, for sake of clarity, the main steps of the IP pipeline are illustrated applied to a test case.
Finally, the robustness of the algorithm is discussed.

Simulation Settings

Synthetic Images Generation The processed images are generated exploiting the sky-field simula-
tor described in Reference 9, where only an improvement in the modeling of the variance of the
total noise is performed. At this aim, the procedure proposed by22 is adopted. Moreover, the char-
acteristics of the camera assumed onboard are reported in Table 1.

Table 1: Optical camera setup

FoV [deg] Image size [px] f [mm] F1[-] T [ms] Qe × Tlens
2 SEA3[deg] σd

4[px]

20 1024 × 1024 40 2.2 400 0.49 20 0.9
1 f-number
2 quantum efficiency × lens transmission
3 Solar Exclusion Angle
4 defocus level
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Star Identification Settings The threshold value of the absolute magnitude considered for the de-
velopment of the onboard catalogs is 5.5 for computational reasons. If an image contains fainter
stars, these are labeled as spikes.

For what concerns the RANSAC procedure, 20 samples are considered. Indeed, it is assumed that
the proportion of outliers in each sample subset (with a dimension of 3) is at most 40%.14 Whereas,
the threshold value t is set to 20 arcsec according to the camera measurement noise (t = 3σmeas).14

Planet Line-of-Sight Extraction Settings To compute the planet position projection covariance ma-
trix [P ], the probe pose uncertainties σθ and σr (see Eq. 24) are defined. As a result of a statistical
analysis, σθ is set equal to 40 arcsec. Instead, the probe position uncertainty is initially assumed to
be equal to σr = 105 km. Then, a sensitivity analysis is performed to analyze the robustness of the
algorithm with respect to the initial uncertainty of the probe position.

Monte Carlo Campaign

To assess the performances of the developed algorithm a Monte Carlo campaign is carried on. The
IP pipeline for the planet LoS extraction is run for 1000 scenarios wherein each one at least one
planet is present. In each scenario the position of the spacecraft is randomly selected inside a 3σ
ellipsoid with axis a = b = 2AU km and c = 106 km and centered in the origin of N . Similarly,
the orientation of the probe is assigned by randomly choosing α, δ, and ϕ in the 3σ intervals [0, 2π],
[−0.6, 0.6], and [0, 2π], respectively. The declination δ is chosen in a narrower interval as planets
are distributed close to the ecliptic plane. At each iteration, the attitude determination and planets
LoS direction errors are evaluated with respect to their exact values. In particular, the attitude
determination error is represented by the angle between the principal axis directions relative to the
computed attitude matrix [A] and to the one associated with the true attitude matrix [CN ]. On the
other hand, the planet LoS direction error is described by the angle between the computed and the
true planet LoS directions, evaluated considering the spacecraft true position. Note that the attitude
determination error is embedded inside the planet LoS direction error.
Tables 2 and 3 report the 1-σ dispersion of the estimated attitude errors (σRot) and the 1-σ dispersion
of the planet LoS direction errors (σLoS), respectively. Moreover, their cumulative density functions
are shown in Figure 5.

Table 2: Statistics of the attitude determination error

σRot [arcsec] ≤ σRot [%] ≤ 2σRot [%] ≤ 3σRot [%]

10.46 86 96.77 99.08

Table 3: Statistics of the planet Line-of-Sight direction error

σLoS [arcsec] ≤ σLoS [%] ≤ 2σLoS [%] ≤ 3σLoS [%]

9.98 89.36 95.77 98.33

The error obtained in the extraction of the planet LoS can be also described as the residual between
the planet true and estimated position in the pixel reference frame. The 1σ standard deviation of the
residuals along the x and y directions of the pixel reference frame are reported in Tables 4 and 5.
Moreover, the histogram representing the 2D distribution of the residuals is shown in Figure 6 with
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(a) Cumulative Distribution Function of the Atti-
tude Error

(b) Cumulative Distribution Function of the Planet
LoS Error

Figure 5: Cumulative Distribution Function for 1000 scenarios and σr = 105 km

Table 4: Standard deviations and cumulative percentage of the planet position error along x

σx [px] ≤ σx [%] ≤ 2σx [%] ≤ 3σx [%]

0.14 85.59 95.07 98.29

Table 5: Standard deviations and cumulative percentage of the planet position error along y

σy [px] ≤ σy [%] ≤ 2σy [%] ≤ 3σy [%]

0.12 82.9 93.99 97.84

Table 6: Probe position and orientation for the test scenario

r [km] α [rad] δ [rad] ϕ [rad]

[−4.14;−5.43; 0.072] · 107 5.72 −0.04 0.05

1σ, 2σ, and 3σ bounds. Note that the distribution of the sample points is well represented by a
Gaussian distribution.
Finally, the Monte Carlo simulation results in a percentage of failure of the IP pipeline of 0.2 %.
See the subsection “Failure Cases” for the definition of different failures.

Test Case

The main steps that the IP pipeline performs to extract the planet LoS direction from the image are
here graphically represented for one test scenario. In this scenario, the values of the probe position
and orientation are reported in Table 6.
Before starting the procedure, the sky-field image relative to the assigned probe orientation is gen-
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erated (see Figure 7).
Then, the stars identification procedure is performed. In Figure 8 the recognized star-pattern is
shown; the marker + represents the computed centroids of the stellar and not stellar objects. The
bright objects that are not identified as stars by the k-vector and the RANSAC procedure are labeled
as spikes. Once the star pattern is identified, the probe attitude matrix [A] is computed. In this test

Figure 6: Gaussian distribution of the planet position projection errors with 1σ, 2σ, and 3σ bounds.
The colorbar represents the number of samples that lie in each grid intervals.

Figure 7: The synthetic image is generated by the sky-field simulator9
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scenario, the error performed in the determination of the probe orientation is 12.85 arcsec.
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Figure 8: Stars and non-stellar objects are identified for the given starfield

At this point, by knowing [A] and assuming to know the probe position with a 1σ uncertainty of 105

km, the expected position projection of all planets is computed. Only the planets whose position
projection is contained inside the image boundaries are taken into account for the following steps.
In Figure 9, the expected planets’ position projections in the image are represented with a blue ∗.
Afterward, the planet position projection covariance matrices [P ] associated with the planets in the
image are determined. From this computation, the planet projection 3σ uncertainty ellipsoid, shown
in yellow in Figure 9, are computed. Among the spikes contained in each ellipse, the closest to the
expected planet position projection is identified as the planet itself as it is the most probable to be
the expected planet. Once the planets are identified, their LoS direction is determined. In this case,
the error performed in the estimation of the planets’ LoS directions is 16.08 and 4.58 arcsec for
Mercury and Jupiter, respectively.

Robustness

RANSAC The robustness of the IP pipeline is increased with the application of the RANSAC algo-
rithm. To verify this, a Monte Carlo simulation without the application of the RANSAC procedure
is performed. The settings adopted are equal to the one exploited in the section “Test Case”. As ex-
pected, the percentage of failure increases in both the determination of the attitude of the spacecraft
(8.16%) and in the extraction of the planet LoS (3.98%). The total percentage of failure is equal to
12.14%.

Failure Cases Despite the RANSAC algorithm increases greatly the robustness of the star identifi-
cation procedure, failures in the determination of the probe attitude and in the planet LoS direction
may happen. For what concerns the failures in the attitude determination, three situations can take
place:

1. The star identification procedure can give as output a wrong star identification (one or more
stars are wrongly identified)
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(a) Results of the planet identification procedure
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Figure 9: Planets are identified for the given starfield

2. The procedure does not converge to any identification at all

3. The number of stars in the field of view (FoV) is less than three.

The second and the third scenarios are not considered as actual operative failures since, when they
happen, the algorithm can be simply run again slightly changing the camera view. When the second
scenario happens, the failure is counted to assess the expounded failure statistics, and the Monte
Carlo simulation moves directly to the next simulation. Moreover, even if the attitude is correctly
determined, the procedure for the planet LoS extraction may fail. Two are the identified scenarios,
both related to a spikes misidentification: A) No spikes inside the planet position uncertainty ellipse
are detected (the planet is mistaken for a star), B) The closest spike has a distance from CRpl0

greater than 50 px. Besides the identified cases of failure, it is assumed that the algorithm fails
whenever the LoS error is greater than 500 arcsec. This event is considered as a “not-recognized”
failure (C). Figure 10 gives a representation of failures A, B, and C.

Sensitivity to position uncertainty A sensitivity analysis is performed to analyze the robustness of
the IP pipeline to the increment of the uncertainty of the spacecraft position. In particular, two
additional Monte Carlo simulations, over the one previously run, are performed by changing σr.
Table 7 shows the results obtained when σr is set to 105, 106, and 107 km, respectively.

Table 7: Sensitivity analysis results as function of the position standard deviation error

σr [km] σRot [arcsec] σLoS [arcsec] % fail LoS % fail attitude % total fail

105 9.98 10.46 0.19 0.01 0.2
106 9.70 11.88 3.67 0.01 3.68
107 10.24 15 42.72 0.24 42.96

As expected, the standard deviations of the attitude determination and planet LoS direction errors
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(a) Failure A: The planet is mistaken for a
star.

(b) Failure B: The distance between the
closest spikes and the blue * is over 50 px.

(c) Failure C: The only spike contained
in the ellipse is wrongly identified as the
planet.

Figure 10: Failures in the LoS extraction. The true projection of the position of the planet is
identified with a green +, the expected one with a blue *.

do not have a significant increment with the increase of the uncertainty of the spacecraft position.
This is because the latter only brings a variation of the shape and the position of the planet position
uncertainty ellipse. If the spike that corresponds to the planet is inside that ellipse, the planet
is determined, and the only errors that affect its determination are the ones associated with the
centroids computation and attitude determination.
Instead, the percentage of failure of the IP pipeline increases significantly when the probe position
uncertainty is set to 107 km. This is mainly due to a failure in the planet LoS extraction and takes
place because the planet position uncertainty ellipses greatly increase in size, yielding to a wrong
planet identification. On the other hand, since the star pattern identification does not depend on
the knowledge of the position of the spacecraft, the rate of success in the attitude determination is
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similar in all the scenarios. For sake of completeness, Table 8 reports the subdivision of the failure
percentage of the planet LoS extraction with respect to the failure scenarios described in the section
“Failure Cases”.

Table 8: Failure percentage in the extraction of the planet LoS as function of the position standard
deviation error

σr A [%] B [%] C [%] [%] Total

105 0.13 0 0.06 0.19
106 1.06 0.93 1.68 3.67
107 4.53 27.20 10.99 42.72

CONCLUSIONS

In this work, an innovative and robust image processing procedure for the extraction of the planets
LoS has been proposed. The IP pipeline estimates the projection of the planet position with a 1σ
accuracy lower than 0.2 pixels along both the x and the y axis and computes the attitude direction
with a 1σ accuracy of about 10 arcseconds. Moreover, if the probe position is known with an
accuracy equal or lower than 106 km, the procedure is proved to be robust with a rate of total
failure below the 4%, which agrees with the result of the pyramid star identification technique.18

This robustness is provided by both the application of the RANSAC algorithm and the computation
of the planet position projection covariance matrix. The former detects the misidentified stars,
whereas, the latter identifies and delimits the region in which the projection of the planet position
can be found.
In this analysis, the IP pipeline is fed by synthetic images in which the camera noise is added.
Whereas, future analysis will test the performances of the IP pipeline during hardware-in-the-loop
simulations. In this context, a camera will acquire a starfield image, rendered on a high-resolution
screen, and will give the associated matrix of digital counts to the IP algorithm.
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