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A B S T R A C T   

The way the human microbiota may modulate neurological pathologies is a fascinating matter of research. 
Epilepsy is a common neurological disorder, which has been largely investigated in correlation with microbiota 
health and function. However, the mechanisms that regulate this apparent connection are scarcely defined, and 
extensive effort has been conducted to understand the role of microbiota in preventing and reducing epileptic 
seizures. Intestinal bacteria seem to modulate the seizure frequency mainly by releasing neurotransmitters and 
inflammatory mediators. In order to elucidate the complex microbial contribution to epilepsy pathophysiology, 
integrated meta-omics could be pivotal. In fact, the combination of two or more meta-omics approaches allows a 
multifactorial study of microbial activity within the frame of disease or drug treatments. In this review, we 
provide information depicting and supporting the use of multi-omics to study the microbiota-epilepsy connec
tion. We described different meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and 
metabolomics), focusing on current technical challenges in stool collection procedures, sample extraction 
methods and data processing. We further discussed the current advantages and limitations of using the inte
grative approach of multi-omics in epilepsy investigations.   

1. Introduction 

The term microbiota-gut-brain axis (MGBA) was coined to describe 
the complex interconnection between the microbial community residing 
in the intestine and the brain. In the last decades it became evident that 
many neurological disorders (e.g., depression, anxiety, Parkinson's and 
Alzheimer's diseases, schizophrenia, autism spectrum disorder, multiple 
sclerosis, hepatic encephalopathy, migraine and epilepsy) show alter
ations of the gut microbiota composition, defined as dysbiosis (Liang 
et al., 2018; Pittman, 2020; Strandwitz, 2018). Epilepsy is one of the 
most common chronic neurological diseases and it was estimated that 
45.9 million people were affected worldwide in 2016 (Beghi et al., 
2019). The disease is characterized by the occurrence of epileptic sei
zures that drastically decrease the quality of life. Although a lot of 
research aimed at identifying the causes of the disease, the pathophys
iology of epilepsy remains unclear in approximately 50% of the cases 
(Beghi, 2020). Moreover, 1/6 of epileptic patients develop drug- 

resistant epilepsy (DRE), the refractory form of the disease (Giussani 
et al., 2016). Metataxonomic analyses on microbiome biodiversity 
showed close correlation between gut microbiota and epilepsy (Gong 
et al., 2021; Gong et al., 2020; Peng et al., 2018). As an example, 
decreased alpha-diversity and changes in specific phyla abundance (e.g., 
increased Actinobacteria) have been observed in epileptic adults and 
DRE children compared to healthy controls (Gong et al., 2021; Gong 
et al., 2020; Lee et al., 2020; Şafak et al., 2019), with DRE patients 
having higher levels of rare bacteria (Peng et al., 2018). Differences in 
microbiota composition were also observed among patients experi
encing four or less seizures per year and those experiencing a higher 
number of seizure events (Peng et al., 2018). Interestingly, children's 
microbiota profile appears to be correlated to the efficacy of ketogenic 
diet (KD) treatment (Zhang et al., 2018a), a current therapy for re
fractory epileptic patients, that drives the reduction in pediatric 
epilepsy-associated genera (Gong et al., 2021; Ułamek-Kozioł et al., 
2019). Indeed, an increase in relative abundance of Ruminococcaceae, 
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Lachnospiraceae and Rikenellaceae was observed in children unre
sponsive to KD (Zhang et al., 2018b). Other evidence to support the role 
of gut microbiota in disease pathophysiology came from the beneficial 
effects of probiotics or antibiotics treatment in DRE patients (Braakman 
and van Ingen, 2018; Gómez-Eguílaz et al., 2018). 

Fecal microbiota transplantation (FMT) is a promising approach to 
treat epilepsy and reduce seizures (He et al., 2017). The study of FMT in 
animal models demonstrated the importance of the role of gut micro
biota in seizure occurrence. Indeed, the FMT from epileptic to healthy 
mice showed an increasing neuronal excitability and susceptibility to 
seizures in recipient healthy animals (Mengoni et al., 2021). Using rat 
models it was demonstrated that FMT determines taxonomic alterations 
in beta diversity, and a reduction in absence seizures respect to un
treated controls (Citraro et al., 2021). The connection between gut 
microbiota and brain involves different pathways, where bacteria may 
play a role in modulating body levels of molecules such as neurotrans
mitters (Rana and Musto, 2018; Wang and Wang, 2016; Yano et al., 
2015), neurotrophic factors (Iughetti et al., 2018; Maqsood and Stone, 
2016) and inflammatory signals (Al Bander et al., 2020; Boeri et al., 
2021) (Fig. 1). 

In the epileptic seizure context, characterized by a transient neuronal 
hyperexcitability, the abnormal brain activity is thought to be caused by 
an imbalance of excitatory/inhibitory signaling. The primary inhibitory 
neurotransmitter of central nervous system, γ-aminobutyric acid 
(GABA), is also produced by intestinal bacteria. Although the ability of 

GABA to cross the blood-brain-barrier (BBB) is still debated (Hepsomali 
et al., 2020), it is interesting to note that decreased levels of Bacteroides 
genera, to which the majority of GABA synthesis in the gut may be 
attributable (Otaru et al., 2021), have been observed in children with 
intractable epilepsy (Lee et al., 2020). Moreover, brain serotonin (5-HT) 
level has been inversely correlated with seizure frequency and suscep
tibility in human and animal models (Bagdy et al., 2007; Ribot et al., 
2017). It seems that gut microbiota indirectly modulates brain 5-HT 
levels by metabolizing tryptophan, which is a serotonin precursor able 
to cross the BBB (Kaur et al., 2019). 

It has been demonstrated that prebiotic administration elevates 
central brain-derived neurotrophic factor (BDNF) synthesis in adult 
male rats (Savignac et al., 2013), and Iughetti et al. (2018) well 
reviewed the relationship between serum BDNF levels and epilepsy in 
human, suggesting BDNF as potential therapeutic target (Iughetti et al., 
2018). 

Pre-clinical data suggest a causal relationship between inflammatory 
state and epileptic condition (Devinsky et al., 2013; Rana and Musto, 
2018; Vezzani and Granata, 2005). The administration of lipopolysac
charides (LPS), pro-inflammatory molecules released from Gram nega
tive bacteria, have been shown to increase seizure susceptibility in 
animal models (Ho et al., 2015; Kovács et al., 2014) whereas anti- 
inflammatory molecules as short-chain fatty acids (SCFA) resulted 
increased in DRE children after KD therapy (Gong et al., 2021; Mirzaei 
et al., 2021), suggesting a beneficial effect on epileptic patients. It has 

Fig. 1. Molecular pathways possibly involved in gut microbiota interaction with epilepsy. 
Intestinal bacteria are thought to influence the pathophysiology of epilepsy through different mechanisms: 1) GABA and 5-HT neurotransmitters are strong mod
ulators of neuronal excitability, therefore their brain concentration may be fundamental in regulating seizure events. It has been hypothesized that gut bacteria 
modulate their brain levels by peripherally producing GABA and metabolizing 5-HT precursors. 2) Upon probiotics administration gut microbiota could influence 
BDNF levels, which appear to correlate with epilepsy severity. Seizures could in turn affect BDNF production, suggesting a mutual interaction between BDNF and 
epilepsy. 3) LPS and SCFAs are pro-inflammatory and anti-inflammatory molecules, respectively, and their blood levels are tightly determined by microbiota 
composition. As inflammation plays a key role in seizures frequency, these bacterial products could act on epilepsy features targeting inflammatory pathways. 4) The 
endocannabinoid (EC) system is well known as inflammation suppressor. Gut microbiota could be able to influence the expression of EC receptors and EC agonists, 
suppressing inflammation and affecting seizures events. 5) Microbiota-induced alterations of the HPA axis activity can enhance seizures rates possibly through 
corticosteroids action. Initial seizure insults could affect HPA activation too, resulting in a promotion of seizure susceptibility and highlighting the HPA-seizure 
crosstalk. 5-HT: serotonin; GABA: γ-aminobutyric acid; BDNF: brain-derived neurotrophic factor; HPA axis: hypothalamic-pituitary-adrenal axis; LPS: lipopolysac
charide; SCFAs: small chain fatty acids. Image created with BioRender.com. 
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been also hypothesized that microbiota may reduce the inflammatory 
response through the endocannabinoid pathway (Alger, 2004; Cani 
et al., 2016). Indeed, Lactobacillus strains enhance μ-opioid and canna
binoid receptors expression in intestinal epithelial cells (Rousseaux 
et al., 2007), and LPS modulates endocannabinoid receptors agonist 
synthesis in immune cells (Liu et al., 2003; Maccarrone et al., 2001; Zhu 
et al., 2011). 

It is important to note that the presence of bacterial molecules in the 
bloodstream is strongly enhanced in leaky gut syndrome, characterized 
by weakening and increased permeability of the intestinal barrier 
(Camilleri, 2020; Mohammad and Thiemermann, 2021). Barrier func
tion is in turn regulated by gut microbiota composition. As an example, 
Akkermansia muciniphila, Bifidobacterium infantis and Escherichia coli 
Nissle 1917 exerted positive effects on intestinal barrier integrity, 
whereas E. coli strain C25 led to tight junction disruption (Bergmann 
et al., 2013; Chelakkot et al., 2018; Ukena et al., 2007; Zareie et al., 
2005). Therefore, the modulation of barrier permeability by gut 
microbiota is another mechanism of interest in microbiota-gut-epilepsy 
axis. Mazarati et al., studied how the lateral fluid percussion injury and 
post- traumatic epilepsy were associated with the intestinal permeability 
and LPS concentration into the bloodstream (endotoxemia) (Mazarati 
et al., 2021). They showed that endotoxemia had a complex role in post- 
traumatic epilepsy development and was correlated with the severity of 
both acute and chronic post-traumatic motor dysfunction. Indeed, acute 
post-brain injury endotoxemia in rats was associated with late neuro
protection from chronic epilepsy, while late endotoxemia has been 
associated to both anti- and pro-epileptic effects (Mazarati et al., 2021). 

It is documented that dysbiosis leads to hypothalamic pituitary 

adrenal (HPA) axis dysregulation (Farzi et al., 2018). Interestingly, HPA 
axis activation is associated with increased seizures susceptibility 
(Hooper et al., 2018; Joëls, 2009) and adrenocorticotropic hormone 
(ACTH) treatment in infants with West syndrome affects microbiota 
shape (Xu et al., 2021). 

Giving the available clinical and preclinical data, the relation be
tween epilepsy and microbiota is reasonable but complex and the new 
frontier of meta-omics analyses could be fundamental to deepen the 
molecular and genetic basis of this interaction. While metagenomic 
studies were fundamental for microbial taxonomic characterization in 
epilepsy (Tilocca et al., 2020), other meta-omics techniques (meta
transcriptomics, metaproteomics and metabolomics) have not been fully 
exploited yet in this field (Table 1). An integrative meta-omics approach 
(multi-omics) could undoubtedly lead to a better understanding of the 
molecular mechanisms underlying microbiota-epilepsy linkage and help 
drug development. 

The multi-omics approach is still a challenge independently from the 
field of application. The main limitations are related to technical issues 
about not only the analysis methods but also the sample manipulation 
and preparation for meta-omics analysis. We will discuss the main 
technical aspects that should be taken into account when moving to a 
multi-omics approach, and highlight the importance of facing these 
challenges to study epilepsy also thanks to microbiota multifactorial 
analyses. 

Table 1 
Summary of studies investigating the association between gut microbiota and epilepsy using meta-omics analyses.  

Meta-omics Technique Subject Stool sampling and storage Sample extraction method Reference 

Single-omics 

Metagenomics 16S rRNA sequencing Human ND MoBio Power® Soil Kit 
(Xie et al., 
2017) 

Metagenomics 16S rRNA sequencing Human Frozen at − 80 ◦C within 2 h QIAmp® DNA Stool Mini Kit (Zhang et al., 
2018a) 

Metagenomics 16S rRNA sequencing Human Immediately frozen at − 80 ◦C FastDNA™ SPIN Kit for Soil (Peng et al., 
2018) 

Metagenomics 16S rRNA sequencing Human Frozen at − 80 ◦C within 2 h E.Z.N.A.® Soil DNA Kit 
(Gong et al., 
2020) 

Metagenomics 16S rRNA sequencing Human Frozen at − 80 ◦C within 30 min E.Z.N.A.® Soil DNA Kit 
(Huang et al., 
2019) 

Metagenomics 16S rRNA sequencing Human SB-01 stool sampling kit. Feces kept at 4 ◦C 
until the freezing at − 80 ◦C in the lab 

Homogenization, bead-beating, 
centrifugation at 14,000g for 10 min 

(Lee et al., 
2020) 

Metagenomics 16S rRNA sequencing Human Stored at − 80 ◦C until DNA extraction GeneMATRIX Tissue & Bacterial DNA 
Purification kit 

(Şafak et al., 
2019) 

Metagenomics 16S rRNA sequencing Human Frozen at − 80 ◦C within 12 h OMINgene-Gut 
(Lee et al., 
2021) 

Metagenomics 16S rRNA sequencing Rat Immediately frozen at − 80 ◦C QIAamp® DNA Stool Mini Kit 
(Citraro et al., 
2021) 

Metagenomics 16S rRNA sequencing Dog Feces kept at 4 ◦C until the freezing at 
− 80 ◦C in the lab 

Custom extraction protocol based on 
bead-beating and Qiagen reagents 

(Muñana et al., 
2020) 

Metagenomics Shotgun sequencing Human 
FLOQSwab® kept at 4 ◦C and transferred to 
− 70 ◦C within few hours PowerMicrobiome™ RNA Isolation Kit 

(Lindefeldt 
et al., 2019) 

Metabolomics GC Human 
Immediately frozen at − 20 ◦C, delivered to 
the laboratory within 48 h and stored at 
− 80 ◦C 

Liquid-liquid extraction (Ferraris et al., 
2021) 

Metabolomics NMR + LC-MS/MS Human +
Rat 

Fresh fecal samples were analyzed within 
24 h 

Methanol-based solid phase extraction 
cartridge 

(Yoo et al., 
2014)  

Multi-omics 
Metagenomics +

metabolomics 
16S rRNA sequencing +
HPLC-UV 

Human Frozen at − 80 ◦C within 2 h CTAB/SDS method + liquid-liquid 
extraction 

(Gong et al., 
2021) 

Metagenomics +
metabolomics 

16S rRNA sequencing + GC/ 
MS, LC/MS and LC/MS/MS Mouse 

Immediately snap frozen in liquid nitrogen 
and stored at − 80 ◦C 

MoBio Power® Soil Kit + organic 
aqueous solvents-based extraction 

(Olson et al., 
2018) 

Metagenomics +
metabolomics 

16S rRNA sequencing + GC/ 
MS 

Mouse 
Immediately processed for DNA extraction 
and GC/MS 

DNeasy Power ® Soil Kit + liquid-liquid 
extraction 

(Eor et al., 
2021) 

ND: not defined; CTAB/SDS: cetyltrimethyl ammonium bromide/sodium dodecyl sulfate; NMR: nuclear magnetic resonance; LC: liquid chromatography; GC: gas 
chromatography; MS: mass spectroscopy; HPLC-UV: high-performance liquid chromatography with ultraviolet spectrophotometer; UHPLC-Q-TOF-MS: ultra-high- 
performance liquid chromatography–quadrupole time-of-flight mass spectrometry. 
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2. Meta-omics for human microbiota characterization 

2.1. Metagenomics 

Metagenomic analyses provide accurate and quantitative description 
of microbial composition (Sirangelo, 2018; Tilocca et al., 2020). It is 
currently based on next-generation sequencing (NGS) techniques, which 
can be used for sequencing either the whole genome (shotgun meta
genomics) or a single amplicon (16S rRNA gene sequencing). 

The shotgun sequencing produces informative details about the mi
crobial population and relative function. The alignment of the whole 
microbial DNA to reference genomes allows to identify all the organisms 
of database-collected bacterial community at the species/strain levels, 
and their gene-related functions and variants (Knight et al., 2018; Sir
angelo, 2018; Weinstock, 2012). Despite many advantages, some chal
lenging step during DNA preparation, discussed further below, and post- 
analytical processing procedures make this technique still to be 
improved. The last issue is about the high-level of expertise and high- 
cost machinery necessary to process the huge amount of data (Zhang 
et al., 2019). It is exacerbated by the reference databases used to extract 
list of genes and number of matched DNA reads (Sirangelo, 2018; 
Tilocca et al., 2020; Weinstock, 2012). The lack of some matching 
reference sequences makes the complete definition of the genome map 
and relative function difficult (Weinstock, 2012). This last limit can be 
overcome by the gene de novo prediction of shotgun sequencing but this 
approach increases the time and costs of post-analytical processing even 
more. Another technical aspect that limits shotgun metagenomics is that 
it does not distinguish between viable and dead cells (Heintz-Buschart 
et al., 2016). Indeed, this technique cannot offer accurate relative 
functional information (Mitra et al., 2013). 

16S rRNA gene sequencing is a metagenomic technique, which is 
used specifically for taxonomic profiling. It is widely used since it is 
time- and cost-effective and cheaper than shotgun sequencing. It is based 
on the amplification of specific hypervariable regions (V1-V9) of the 16S 
rRNA gene characterizing each bacteria species (Cao et al., 2017; Knight 
et al., 2018). Until a few years ago, the only methods for data compar
ison with the available taxa databases were based on the DNA reads 
clustering into operational taxonomic units (OTU), which collect groups 
of organisms with 16S rRNA gene sequences identity of at least 97% 
(Tilocca et al., 2020; Weinstock, 2012). Sequences clustering is used to 
take microbial community census and define the bacterial composition 
profile (Sirangelo, 2018). Recently, amplicon sequencing variants (ASV) 
have been proposed as an alternative to OTUs. ASV methods allow the 
analysis of single-nucleotide differences instead of user-created OTU 
differences. Indeed, ASV-based clustering may resolve the bias of OTU- 
generated clusters down to the taxonomic level of species (Callahan 
et al., 2017; Prodan et al., 2020). Despite the resolution and accuracy of 
the ASV approach, recent evidence showed the risk of the ASV-based 
analysis to lead to genome splitting into separate clusters and thus, 
the need to improve the methods to not generate conflicting inferences 
about the ASVs from the same genome (Schloss, 2021). Respect to 
shotgun metagenomics, 16S rRNA sequencing is equally unable to 
discriminate viable taxa but still shows more technical troubles to ach
ieve species-level accuracy in taxonomic profiling. Under this perspec
tive, 16S rRNA gene sequencing may be considered even more limited 
than shotgun metagenomics in terms of collection of functional and 
genetic information (Tilocca et al., 2020; Weinstock, 2012). 

Since both metagenomic approaches are based on the use of refer
ence genome databases, the lack of references from unusual bacteria is a 
challenging aspect during bioinformatic processing (Angiuoli et al., 
2011). Indeed, many resources have been employed to complete refer
ence databases, and improve software efficiency and computational al
gorithms (Sirangelo, 2018; Weinstock, 2012). 

To date, metagenomics represents the meta-omics analysis mostly 
used to study the role of gut microbiota in epilepsy. It is able to assess the 
microbiome biodiversity and relative abundance in relation to 

treatments or pathological evidence (Table 1). For instance, 16S rRNA 
sequencing has been frequently used to analyze taxonomic changes after 
FTM or KD (Citraro et al., 2021; Gong et al., 2021). The work of Lin
defeldt et al., is an elegant example of how shotgun metagenomics can 
help in defining new bacterial and molecular targets (Lindefeldt et al., 
2019). Authors selected children with therapy-resistant epilepsy and 
analyzed their taxonomic and functional profiles before and after 3 
months of KD. Thanks to the shotgun sequencing approach, they iden
tified seven pathways of carbohydrate metabolism, which are attribut
able to Bifidobacteria and Escherichia, and could contribute to the 
beneficial response of patients to KD. Overall, metagenomics is a 
powerful tool to provide genetic and functional information about the 
human microbiota but its inability in discriminating between dead or 
viable cells (Heintz-Buschart et al., 2016; Mitra et al., 2013) and 
providing data about bacterial activity introduces the need of the inte
gration of metagenomic data with other meta-omics analyses. 

2.2. Metatranscriptomics 

Metatranscriptomics allows to sequence bacterial transcriptome and 
elaborate the relative gene expression profile and thus, functional ac
tivity (Bashiardes et al., 2016; Knight et al., 2018; Urich et al., 2008). It 
is based on the extraction and sequencing of mRNA from a microbial 
ecosystem. As metagenomics, mRNA sequencing usually involves NGS 
techniques (RNA-seq) with additional challenging steps: (1) extraction 
of sufficient high-quality mRNA (Reck et al., 2015); (2) efficient reverse 
transcription of mRNA to cDNA (Gosalbes et al., 2011); (3) selective 
removal of other abundant RNAs (i.e rRNA and tRNA that approxi
mately represent 98% of total RNA sample) to not obscure the high- 
informative mRNA (Morgan and Huttenhower, 2014; Zhang et al., 
2019). As metagenomics, the bioinformatic processing is based on the 
sequences alignment to specific reference databases, which are limited 
even more then for metagenomic analyses (Sirangelo, 2018; Tilocca 
et al., 2020). The detection of mRNA in bacterial samples identify the 
gene expression profile but does not provide the relative protein trans
lation (Zhang et al., 2019), whose quantification requires non-genomic 
analysis, such as metaproteomics. 

2.3. Metaproteomics 

Metaproteomics and metabolomics are probably the most informa
tive tools available to define the microbial activity and function. They 
clarify functional aspects involved in a physiological state even in 
comparison with pathologic conditions (Zhu et al., 2021). Meta
proteomics uses analytical techniques based on mass spectrometry (MS) 
to provide information about the differential microbial protein expres
sion based on time/treatment conditions, protein molar quantitation, 
post-translational modification, and partitioning in subcellular struc
tures (Hettich et al., 2013; Wang et al., 2020). The performance of this 
analysis is highly dependent on the stool sample storage and extraction 
(Issa Isaac et al., 2019) and the lack of universal guidelines/standardized 
protocols makes the process even more complex (Heyer et al., 2019). 
Indeed, the high contamination of host proteins or indigested food not 
only can saturate MS spectra but also generate background noise, which 
may alter the results (Mayers et al., 2017). In addition, it is worth noting 
that metaproteomics is a low-depth analysis that limits protein detection 
to 10–20% of expressed proteins (Zhang et al., 2019). As in case of 
genomic data, the number of identified proteins depends on the quality 
of the protein database used. While large databases require high 
computational time and large number of peptides, small databases may 
exclude large amount of detected proteins (Chatterjee et al., 2016; 
Jagtap et al., 2013). A possible strategy to overcome the database- 
related challenges is represented by an iterative method that involves 
a preliminary search from large databases and an in-depth analysis from 
smaller databases (Issa Isaac et al., 2019). 

In short, metaproteomics is a key technology to identify microbial 
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functional patterns but it remains poorly exploited due to the several 
challenging technicalities: (1) the lack of standardized protocols for 
sample preparation; (2) the inability of MS to measure low-abundance 
peptides (Zhang et al., 2018b); (3) the inadequacy of the current refer
ence databases of microbial proteins (Sirangelo, 2018); (4) and the need 
of implemented bioinformatic tools (Heyer et al., 2017; Zhang et al., 
2018a). 

2.4. Metabolomics 

Metabolomics integrates quantitative and qualitative analyses of all 
the small molecules (<1500 Da) originating from microbial symbionts, 
hosts and environmental intake (Martias et al., 2021; Smirnov et al., 
2016). Via nuclear magnetic resonance (NMR) spectroscopy and MS, 
metabolomics shows an instantaneous snapshot of the physiology of the 
cells (Luan et al., 2019). Metabolomics could be applied to targeted 
analyses referring to small specific set of known compounds such as 
lipids, amino acids, carbohydrates or to untargeted analyses also known 
as “metabolite fingerprinting” to reach complete metabolic comparison 
(Cambiaghi et al., 2017; Smirnov et al., 2016). Even though metab
olomics is an extraordinary tool to investigate the bacterial role in 
several pathologies - such as human intestinal disorders, neurodegen
erative diseases and aging -, it results extremely limited by hard 

discrimination between host and bacterial metabolites (Nicholson et al., 
2012), difficulty in associating the relative phylogenetic origin, and 
inadequate reference databases (Smirnov et al., 2016; Zhang et al., 
2019). In this context, the choice of adequate analytical tools and 
pipelines (i.e. sample handling, selection of appropriate equipment and 
statistical evaluation) represents a crucial step to enable meaningful 
biological interpretation (Smirnov et al., 2016). Due to the enormous 
amount and diversity of metabolites detected in a stool sample and the 
heterogeneity of the current databases, data analyses may require user's 
manual integration of multiple databases (Cambiaghi et al., 2017). This 
manual integration represents a further time-consuming and chal
lenging step with high-risk of user-related errors. 

In the study of microbiota-epilepsy connection metabolomics is 
emerging and has been mostly applied to measure a specific set of 
compounds, such as SCFAs (Eor et al., 2021; Ferraris et al., 2021; Gong 
et al., 2021). A recent work in this field introduced metabolomics also to 
profile the entire metabolite fingerprint in response to KD, but authors 
focused on mouse models and not yet on human beings (Olson et al., 
2018; Yoo et al., 2014), the next now at-hand level. 

2.5. Multi-omics 

Nowadays several studies integrated various -omics techniques to 

Fig. 2. Graphical representation of advantages in using meta-omics analyses, separately or in combination (multi-omics).  
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examine the complex microbiota environment. In this context, multi- 
omics combines two or more meta-omics approaches to: (1) investi
gate the transcript/gene ratio that is an index of activation/repression of 
gene expression; (2) provide detailed molecular description of 
microbiota-host interaction; (3) and reveal the bilateral flow of infor
mation that underlies different pathological conditions (Knight et al., 
2018; Tilocca et al., 2020) (Fig. 2). 

For instance, metagenomics, required to investigate composition and 
gene-related functional capacity of the microbiota, may be combined 
with metatranscriptomics to define which genes are induced/repressed 
or with metaproteomics to identify and quantify the expressed proteins 
in relation to each bacterial species. Heintz-Buschart et al. (2016) 
combined metagenomics, metatranscriptomics and metaproteomics to 
characterize the gut microbiota of patients with type 1 diabetes mellitus 
(T1DM) (Heintz-Buschart et al., 2016). The definition of the genomic 
and functional profile of the gut microbiota provided inter-individual 
functional differences and allowed the elucidation of the bacterial 
genes that may have a role in the metabolic transformations relevant to 
the T1DM pathophysiology. Metagenomics can be also integrated with 
metabolomics to characterize the ongoing physiological or pathological 
process. This integrative approach defines co-variation between the 
microbiota composition and the metabolic response, showing the impact 
of pathological or pharmacological conditions (Zhang et al., 2019). In 
the microbiota-epilepsy connection investigation, this integrative 
approach is the only multi-omics combination used so far. It demon
strated how taxonomic distribution and metabolites production change 
in response to KD and in relation to seizure susceptibility (Olson et al., 
2018). The emerging importance of this multi-omics approach is 
confirmed by several studies in different clinical fields, such as meta
bolic and other neurodegenerative disorders (Olson et al., 2018). For 
instance, whole-genome shotgun sequencing and metabolomics (capil
lary electrophoresis time-of-fight MS) were combined to identify cases of 
gut intramucosal carcinoma since they show a significant alteration in 
metagenomic and metabolomic profiles respect to healthy patients 
(Yachida et al., 2019). In the field of neurodegenerative diseases, this 
approach showed Parkinson's disease-specific differential patterns of 
metabolic features (i.e., sulfur co-metabolism) that could open up routes 
towards a better understanding and prediction of phenotypic variability 
in this severe disease (Hertel et al., 2019; Tan et al., 2021). 

With the potential of multi-omics clear, it becomes pivotal the defi
nition of standardized protocols for the sample preparation, which is, 
along with post-analytical processing, the most challenging step in each 
meta-omics analysis. In particular, meta-omics studies on gut microbiota 
are strongly influenced by both sampling procedures and molecule 
extraction methods (Costea et al., 2017). 

3. The importance of stool sampling methods 

Optimizing the sampling procedure is the first and probably most 
practical issue while characterizing the microbiota by meta-omics 
techniques. The management of the samples can be faced in two inter
connected viewpoints: the sampling and the storage procedures. 

The human microbiota can be collected by stools, endoscopic pro
cedures, aspiration of intestinal fluid, capsule endoscopy, among others, 
described in detail elsewhere (Million et al., 2020; Yang et al., 2010). 
Surgical sampling such as biopsy is the most reliable procedure, as it 
minimizes possible contamination, for example by materials derived 
from non-collecting sites. However, it is invasive and challenging, 
requiring preparation steps that may damage microbiota, like antibiotic 
administration (Tang et al., 2020; Tuohy and Scott, 2015). Differently, 
stool sampling remains one of the most used methods to collect micro
biota samples thanks to its simplicity, repeatability on daily basis, 
affordability and non-invasiveness. However, stool samples provide in
formation only about the more transient luminal bacteria of the large 
intestine (i.e., caecum and colon), failing in recapitulating the complex 
spatial organization of gut microbiota communities (Donaldson et al., 

2015; Geerlings et al., 2018; Jones et al., 2018; Rossen et al., 2015; Tang 
et al., 2020; Zhang et al., 2014). 

In the human gut, anaerobic bacteria are 100–1000 times more 
numerous than aerobic ones (Bellali et al., 2019), but the fact that 
extreme oxygen sensitive bacteria die after a few minutes of exposure to 
atmospheric oxygen concentrations (Loesche, 1969) poses some chal
lenges for sample collection. To maintain the populations of obligate 
anaerobes, the delay between collection and processing should not 
exceed a few minutes. Once in the lab, an anaerobic chamber ensuring 
an oxygen concentration below 1% should be required for all manipu
lations. Unfortunately, among the meta-omics studies, only few works 
consider anaerobiosis during stool sampling (Costea et al., 2017; Yoo 
et al., 2014). Most of them do not pay sufficient attention to preserve 
anaerobic population viability with the risk of misinterpreting the data 
dependent on microbial composition (Martínez et al., 2019). In order to 
facilitate the preservation of anaerobes in the sample preparation for 
meta-omics, the commercial kit GutAlive could be used to recapitulate 
higher levels of diversity since it maintains the viability of obligate an
aerobes up to 72 h with an anaerobic reagent to be combined with water 
(Martínez et al., 2019). However, its capability to preserve all the 
anaerobic bacteria in the stool is currently unknown. As anaerobic in
cubation systems, jars or plastic bags could be also used (e.g., GasPak™, 
Becton Dickinson), coupled with a gas mixture and an oxygen indicator 
(Lagier et al., 2015; McDonald et al., 2013). Alternatives could be 
evacuation-exchange systems, where air is removed by suction and 
filling with an anaerobic atmosphere (e.g., 80% N2, 10% H2, and 10% 
CO2 or 90% N2, 5% H2, and 5% CO2). However, both systems are not 
suitable for extreme oxygen sensitive bacteria, because a few hours 
could be required before anaerobiosis (Ingala et al., 2018; Tang et al., 
2020). 

Storage greatly influences the quality, consistency, reliability, and 
reproducibility of the results for high-throughput microbiota research. 
Intra-individual variation can bias the results, but in the case of stools, 
homogenization contributes to its reduction (Wu et al., 2010). However, 
after homogenization, the information related to stool structure are 
neglected, the relative abundance of some bacterial families and genera 
may be altered and differences in microbial composition and ratio be
tween soluble and insoluble fractions were noticed (Bircher et al., 2020; 
Song et al., 2016). In the context of metagenomics analysis, Maghini 
et al. (2021) suggested not to homogenize the fecal sample but to 
maintain stool integrity and use biopsy punches with plungers to aliquot 
(Maghini et al., 2021). However, most of the meta-omics-based studies 
include stool samples preparation steps by homogenizing, preferring a 
reduced intra-individual variability to the stool structure-dependent 
information (Cortes et al., 2019; Costea et al., 2017; Han et al., 2021; 
Reck et al., 2015). 

For sample shipment to the laboratory, compliance with delivery 
instructions is essential to avoid temperature fluctuations, maintain cell 
viability, and prevent shifts in microbial composition. The Human 
Microbiome Project recommended to immediately freeze the stool 
sample with liquid nitrogen or dry ice, and then store it at − 80 ◦C (The 
Human Microbiome Project Consortium, 2012). This storage method is 
the Gold Standard for each meta-omics analysis. Storage at − 80 ◦C (e.g., 
after adding 10% glycerol as a cryoprotectant) also ensures the stability 
and viability of the microbial community up to two years, while storage 
at − 20 ◦C only for a few months (Mathieson et al., 2016). However, the 
procedure of stool sampling is often done by patients at their own home 
where sophisticated technologies are not available. In this context, 
shared guidelines about the maximum acceptable times as a function of 
temperature have not been established yet, but many method compar
isons highlighted the need to control these parameters especially in the 
perspective of performing meta-omics analyses (Angebault et al., 2018; 
Cardona et al., 2012; Dominianni et al., 2014). The strategies to store 
fecal samples at home are three: (1) immediately freezing at − 20 ◦C; (2) 
storage in the fridge at 4 ◦C; (3) mixing with stabilizing buffers and 
storage at room temperature. (1) The immediate freezing at − 20 ◦C 
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seems to sufficiently preserve DNA and RNA integrity, as well as the 
bacterial composition (Cardona et al., 2012). (2) Refrigeration at 4 ◦C up 
to 3 days does not significantly impact on biodiversity and DNA 
extraction efficacy. (3) RNALater®, DNA/RNA Shield™ and OMNIge
ne®⋅GUT are the reagents most tested as stabilizers at room temperature 
(Angebault et al., 2018; Choo et al., 2015; Dominianni et al., 2014; 
Kazantseva and Kallastu, 2020; Reck et al., 2015). They seem to be a 
good alternative if the refrigeration is not possible. The combination of 
the second and the third storage method (the use of stabilizers at 4 ◦C) 
seems to be the most practical and efficient condition maintaining 
biodiversity and DNA integrity (Reck et al., 2015). In absence of stabi
lizers, storage at room temperature is possible just for few hours (up to 
3) since it promotes unphysiological bacterial growth and DNA and RNA 
degradation (Cardona et al., 2012; Dominianni et al., 2014). Storage 
procedures for further metabolomic and metaproteomic analyses are 
even less defined. Indeed, fecal samples are generally collected, trans
ferred on ice and frozen at-80 ◦C within few hours to avoid protein and 
metabolite degradation (Cortes et al., 2019; García-Durán et al., 2021; 
Han et al., 2021; Martias et al., 2021; Zhang et al., 2018b). 

4. The influence of sample extraction methods on meta-omics 
success 

The output quality of meta-omics is strictly dependent on the 
extraction reagents and methods. Each meta-analysis requires specific 
precautions during extraction procedures to get reproducible, repre
sentative and reliable results (Cortes et al., 2019; Costea et al., 2017; 
Hosseinkhani et al., 2021). In the last few years, many methods com
parisons discussed which elements – such as the extraction solvent and 
lysis protocol – influence the extraction efficiency in terms of concen
tration, quality and taxonomic coverage of the material of interest (i.e. 
DNA, RNA, proteins and metabolites) (Angebault et al., 2018; García- 
Durán et al., 2021; Lim et al., 2018; Reck et al., 2015; Zhang et al., 
2018b). 

In metagenomics studies, DNA has to be processed to minimize the 
fragmentation and maximize the concentration. The better is the DNA 
quality, the greater is the taxonomic representation, and the easier is the 
processing of repetitive genomes (Costea et al., 2017; Maghini et al., 
2021). In addition to stool collection methods, the main factors that 
influence the DNA extraction outcome are: (1) the stabilizing reagents 
used for stool sampling; (2) the methods of cell lysis; (3) the contami
nation of non-bacterial DNA; (4) the presence of DNA amplification 
inhibitors. (1) The most used stabilizers in DNA extraction are Tris- 
EDTA buffer, Stratec stool collection DNA stabilizer, RNAlater, DNA/ 
RNA Shield™ reagent and OMNIgene Gut (Chen et al., 2020; Choo et al., 
2015; Song et al., 2018; Wegl et al., 2021). Depending on the reagent 
type, the relative abundance of the gut microorganisms changes and 
thus, the choice of the DNA stabilizer becomes pivotal (Choo et al., 
2015). Among these stabilizers, the OMNIgene Gut is the reagent most 
validated and used, since it guarantees a good DNA extraction rate and 
shows the smallest differences in relative abundance of microorganisms 
(Choo et al., 2015). The Stratec stool collection and DNA/RNA Shield™ 
reagents provide a similar extraction efficiency to OMNIgene Gut (Chen 
et al., 2020; Wegl et al., 2021), while the Tris–EDTA buffer seems to be 
the less efficient and determines the highest change in relative abun
dance respect to the gold standard of stool collection methods (Choo 
et al., 2015). The RNAlater is a very used DNA stabilizer but it showed 
worrying discrepancy among the literature data on DNA extraction ef
ficiency and taxonomic coverage (Angebault et al., 2018; Choo et al., 
2015), making the use of this reagent less attractive for DNA extraction. 
(2) The protocol of lysis is a key element in the extraction procedures of 
all meta-omics. In metagenomics, the cell disruption method influences 
the DNA concentration, quality and fragmentation. As a consequence, it 
also determines the taxonomic coverage, largely improved by the 
presence of high molecular weight DNA (HMWDNA) (Maghini et al., 
2021). The mechanical disruption by bead-beating is the method 

commonly preferred to lyse microbiota samples, since it breaks even the 
harder cell walls of Gram-positive bacteria (Costea et al., 2017; Lim 
et al., 2020; Lim et al., 2018). However, the bead-beating-based lysis 
provides high level of fragmented DNA thus affecting the taxonomic 
coverage. Maghini et al. (2021) elaborated an interesting extraction 
protocol in which they substituted the common mechanical lysis with a 
gentler enzymatic cell disruption (Maghini et al., 2021). Adding size 
selection by Solid Phase Reversible Immobilization (SPRI) beads, they 
set a protocol to obtain high quality of HMWDNA. (3) During DNA 
extraction from stool samples, it is necessary to eliminate host and non- 
bacterial DNA. It could be removed using different strategies: disruption 
of mammalian cells (e.g., osmotic or chaotropic lysis), which are 
generally more susceptible than bacteria; elimination of contaminating 
DNA by targeting the methylation sites on eukaryotic DNA (e.g., NEB
Next® Microbiome DNA Enrichment kit) or by bioinformatics post- 
analytical processing; capture of bacterial DNA with specific probes 
(Bachmann et al., 2018). (4) The presence of DNA amplification in
hibitors is a determinant factor in the amplification step necessary for 
the library preparation. In this regard, it is pivotal to remove the stool- 
derived contaminants, such as polysaccharides and bile salts (Schrader 
et al., 2012), and nowadays it is possible using most of the commercial 
kits commonly used for DNA extraction. Considering all the factors 
challenging the DNA extraction from stool samples, Costea et al. (2017) 
elegantly compared all the best-performing DNA extraction methods 
and provided a modified protocol based on the commercial QIAamp 
Stool Mini kit (Qiagen) (Costea et al., 2017). This new protocol gua
rantees high quality of DNA, high taxonomic coverage and the possi
bility to be easily implemented. 

Metatranscriptomics requires even more precautions respect to 
metagenomics since RNA is more exposed to degradation due to its short 
half-life and sensibility to enzymatic degradation (Deutscher, 2006). In 
order to achieve reliable gene expression data, extracted RNA has to be 
highly purified, integral, enriched and representative of the microbial 
biodiversity (Reck et al., 2015). The factors that most influence the RNA 
extraction are: (1) RNA stabilizing buffers; (2) methods of cell lysis; (3) 
contamination of non-bacterial RNA and bacterial non-messenger RNA; 
(4) presence of RNA and DNA amplification inhibitors or degradative 
enzymes. To examine the quality of RNA extraction, RNA is evaluated by 
observing the concentration, the 260/280 and 260/230 ratios for pro
tein and contaminants purity, the RNA integrity number (RIN) and the 
taxonomic profiles. Reck et al. (2015) compared the best-performing 
RNA extraction methods for metatranscriptomics and showed that the 
reagent that best stabilizes RNA and reduces its degradation during stool 
sampling procedures is RNAlater maintained at 4 ◦C (Reck et al., 2015). 
Unfortunately, RNAlater seems to reduce the number of functional COG 
(cluster of orthologous group) and thus, the representation of the 
functional profile of microbiota. For this purpose, the stabilizing buffer 
RNA Protect seems to be more conservative. Reck et al. concluded that, 
among the extraction methods evaluated, the commercial Power
microbiome RNA Isolation Kit (MoBio) combined with mechanical cell 
lysis with a bead beater seems to be the most efficient in terms of RNA 
quality and quantity (Reck et al., 2015). As in case of DNA extraction, 
the last aspects affecting the RNA extraction rate are easily addressed by 
commercial kits. While the removal of amplification inhibitors and 
degradative enzymes are standard steps in most of the current com
mercial kit of RNA extraction, bacterial rRNA or host RNA should be 
specifically removed by focused kits (e.g., Ribo-zero Magnetic kit, Epi
centre) or bioinformatics post-analytical processing (Bashiardes et al., 
2016). 

Metaproteomics and metabolomics need high-concentration of high- 
quality proteins and metabolites, respectively. The analysis success is 
strictly related to the rate of protein or metabolite identification (Peters 
et al., 2019). For both meta-analyses, the extraction buffer and the lysis 
method are the aspects more influencing the results in terms of repeat
ability, recovery and functional coverage. In case of metaproteomics, the 
best protein extraction methods in literature involve the use of a sodium 
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dodecyl sulfate (SDS)-based buffer and the combination of mechanical 
and physical lysis methods (ultrasonication and bead-beating with glass 
beads <0.75 mm) (Cortes et al., 2019; García-Durán et al., 2021; Zhang 
et al., 2018b). The extraction method from fecal samples for metab
olomics is still poorly defined. As in proteomics, sonication and bead- 
beating are the most used methods for cell disruption. Instead, the 
choice of the extraction buffer is more challenging. Some research group 
evaluated the extraction efficiency of single-phase and double-phase 
solvents, such as methanol, ethanol, acetonitrile, chloroform, and 
methyl tert-butyl ether (MTBE) (Hosseinkhani et al., 2021; Martias 
et al., 2021). MTBE seems to be the best buffer in terms of extraction 
recovery, identification and coverage (Hosseinkhani et al., 2021). 
However, as emerged by the latest works on both metaproteomics and 
metabolomics, the extraction buffer choice still selectively influences 
the representation of the taxonomic profile (García-Durán et al., 2021; 
Hosseinkhani et al., 2021). 

5. Current challenges for the multi-omics approach in the study 
of microbiota-epilepsy correlation 

In the last few years, the great potential of integrated meta-omics 
analyses has been stimulating many research groups to overcome the 
technical challenges towards the elaboration of standard procedures for 
microbiota sampling and processing, and the implementation of bio
informatic tools for post-analytical processing (García-Durán et al., 
2021; Han et al., 2021; Maghini et al., 2021; Sedlar et al., 2017). 

Summarily, the unresolved technical issues impairing the sample 
preparation are still two: the oxygen concentration during stool collec
tion and the stabilizing reagents used to preserve the sample. Indeed, 
while the stool sampling conditions should consider anaerobiosis 
maintenance to preserve the anaerobic bacterial population to the best, 
the stabilizing buffers should poorly affect the microbial composition 
and be more versatile to various meta-omics techniques. In this regard, 
the stabilizer AllProtect Tissue Reagent (Qiagen) seems to be the ideal 
reagent for multi-omics approaches since it is efficient in stabilizing 
DNA, RNA, proteins and metabolites (Reck et al., 2015). However, 
further studies have to be done to clarify its impact on the biodiversity 
and relative abundance. 

The post-analytical processing is a relevant challenge in each meta- 
omic analysis and becomes a great limit in the multi-omics approach. 
The increased complexity and diversity of collected data make the data 
integration, their correlation and interpretation not trivial (Zhang et al., 
2019). Data analysis requires advanced statistics with large numbers of 
comparisons and statistical analyses, large investment of time and skil
led human resource (Hasin et al., 2017; Huang et al., 2017; Knight et al., 
2018; Zhang et al., 2019). Moreover, the data correlation process re
quires high-power calculation, the development of pipelines to integrate 
these data, and a large computational storage space (Segata et al., 2013). 
In line with this, many resources have been employed in the develop
ment of a software system able to support integrative multi-omics and 
machine learning represents a promising strategy to investigate 
microbiota-dependent mechanisms (Huang et al., 2017; Patel-Murray 
et al., 2020; Reel et al., 2021; Yuan et al., 2021). 

Despite these issues, the extremely promising results so far achieved 
has opened its application in clinical fields to pursue custom therapeutic 
approaches. In the context of epilepsy, the recent advent of meta-omics 
techniques has stimulated the research in deeply enquiring the 
microbiota-brain connection. For instance, metagenomic analyses have 
been instrumental to reveal gut microbiota changes related to disease 
type and severity. Meta-omics techniques, used separately or in com
bination, could become fundamental to deepen key molecular pathways 
at the base of the microbiota-epilepsy connection. For instance, the 
combination of all the meta-omics could clarify in deeper detail the 
mechanisms at the basis of the promotion of GABA biosynthesis by 
Bacteroides and its relevance in epileptic patients (Olson et al., 2018; 
Otaru et al., 2021). In respect to experimental evidence exploiting 

metagenomics and metabolomics (Olson et al., 2018), the full integrated 
multi-omics approach could show for instance bacterial abundance 
variations (metagenomics) in association with GABA production 
(metabolomics) and glutamate decarboxylase (GAD) expression (meta
transcriptomics and metaproteomics) patterns. Multi-omics could be 
also useful to deepen the mechanism by which the ACTH treatment for 
epileptic encephalopathy (West syndrome) was able to change micro
biota abundance, via the HPA axis (Xu et al., 2021). Metatran
scriptomics, metaproteomics and metabolomics could add wide 
information about times and pathways of the bacterial response. 

As already introduced before, the fecal microbiota transplantation 
(FMT) is an emerging approach for the treatment of several pathologies 
and the study of the functional connection between microbiota and the 
host. Some recent works assessed the effects of FMT from epileptic an
imals to healthy recipients. For instance, Mengoni et al. analyzed the 
host response to FTM and measured how the treatment influenced the 
neuronal excitability in the brain and thus, the seizure threshold 
(Mengoni et al., 2021). In this work they did not consider the behaviour 
of the microbiota transplanted after the treatment. So far, only one work 
analyzed the taxonomic composition of the gut microbiota before and 
after the FMT (Citraro et al., 2021). An integrative meta-omics approach 
could show how microbiota directly influences the neuronal excitability 
by identifying specific molecular pathways and metabolic profiles 
involved. Even if it is quite accepted that the microbiota plays a role in 
seizure treatment success (Mengoni et al., 2021; Zhang et al., 2018a), 
the molecular mechanisms underlying its role in the treatment of drug- 
resistance patients is less evident (Chatzikonstantinou et al., 2021). A 
multi-omics approach could help in defining the microbial contribution 
to this resistance under different molecular points of view, evaluating 
genomic, expression and functional patterns of the microbiota in 
response to specific drug treatments. The multi-omics approach to 
clarify microbiota role in epilepsy and other neurodegenerative disor
ders could take advantage from peculiar in vitro models, as organs-on-a- 
chip, which may recapitulate in simplified but informative manner the 
MGB axis and allow controlled extraction of molecular material also for 
meta-omics analyses (Liu et al., 2019; Raimondi et al., 2020; Raimondi 
et al., 2019; Sardelli et al., 2021). 

6. Conclusion 

In recent years, the gut microbiota has been often associated to ep
ilepsy pathophysiology, but its exact role has still to be clarified. It has 
been well established that dysbiotic conditions correlate with epilepsy 
drug resistant pathology and, by modulating the intestinal microbial 
population, it is possible to guide the seizure frequency and the patient's 
response to anti-epileptic drugs. Unfortunately, the microbial mecha
nisms that impact on the seizure frequency and severity are still far from 
being elucidated. Multi-omics is an integrated science that could allow 
the characterization of the microbial population and its interaction with 
the host in terms of taxonomic, genomic, functional, and metabolic 
features. Even if many attempts have been made towards a multi-omics 
approach, many other efforts need to be made to make this integrated 
analysis a common experimental procedure. 

In this review, we summarized the potential of using integrated 
meta-omics for studying microbiota-host interaction. We showed both 
advantages and limits of each meta-omic analysis, paying particular 
attention to the technical aspects challenging the stool collection, sam
ple extraction and data analysis. Even if a multi-omics approach inte
grating all the meta-omics still requires a great deal of efforts, the 
combination of two meta-omics seems at hand and it is currently used 
for investigating different pathologies. The application of the same 
integrative approach in epilepsy could help in identifying the molecular 
pathways and bacterial biomarkers that are key elements in the 
microbiota-epilepsy connection. 
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Hernáez, M.L., Pitarch, A., Monteoliva, L., Gil, C., 2021. Distinct human gut 
microbial taxonomic signatures uncovered with different sample processing and 
microbial cell disruption methods for metaproteomic analysis. Front. Microbiol. 12 
https://doi.org/10.3389/FMICB.2021.618566. 

Geerlings, S., Kostopoulos, I., de Vos, W., Belzer, C., 2018. Akkermansia muciniphila in the 
human gastrointestinal tract: when, where, and how? Microorganisms 6, 75. https:// 
doi.org/10.3390/microorganisms6030075. 

Giussani, G., Canelli, V., Bianchi, E., Franchi, C., Nobili, A., Erba, G., Beghi, E., 
Agostoni, E., Airoldi, L., Basso, F., Carpanelli, M., Di Stefano, M., Magnoni, A., 
Martinelli, O., Rigamonti, A., Salmaggi, A., Stanzani, L., Volpe, C., Zanotta, N., 

L. Boeri et al.                                                                                                                                                                                                                                    

https://doi.org/10.3390/ijerph17207618
https://doi.org/10.3390/ijerph17207618
https://doi.org/10.1111/J.1535-7597.2004.04501.X
https://doi.org/10.1371/journal.pone.0201174
https://doi.org/10.1371/journal.pone.0201174
https://doi.org/10.1371/journal.pone.0026624
https://doi.org/10.3389/fpubh.2018.00363
https://doi.org/10.3389/fpubh.2018.00363
https://doi.org/10.1111/j.1471-4159.2006.04277.x
https://doi.org/10.4137/BBI.S34610
https://doi.org/10.4137/BBI.S34610
https://doi.org/10.1159/000503831
https://doi.org/10.1159/000503831
https://doi.org/10.1016/S1474-4422(18)30454-X
https://doi.org/10.1016/S1474-4422(18)30454-X
https://doi.org/10.3389/fmicb.2019.01606
https://doi.org/10.3389/fmicb.2019.01606
https://doi.org/10.1016/j.ajpath.2013.01.013
https://doi.org/10.1128/msystems.00521-19
https://doi.org/10.1002/ADHM.202002043
https://doi.org/10.1002/ADHM.202002043
https://doi.org/10.1007/S00415-018-8943-3
https://doi.org/10.1038/ISMEJ.2017.119
https://doi.org/10.1093/bib/bbw031
https://doi.org/10.1136/gutjnl-2019-318427.The
https://doi.org/10.1038/nrendo.2015.211
https://doi.org/10.1038/nrendo.2015.211
https://doi.org/10.3389/FMICB.2017.01829
https://doi.org/10.3389/FMICB.2017.01829
https://doi.org/10.1186/1471-2180-12-158
https://doi.org/10.1186/1471-2180-12-158
https://doi.org/10.1186/s12864-016-2855-3
https://doi.org/10.1002/EPI4.12461
https://doi.org/10.1038/emm.2017.282
https://doi.org/10.1016/j.jfma.2020.01.013
https://doi.org/10.1038/srep16350
https://doi.org/10.1038/srep16350
https://doi.org/10.1111/epi.16813
https://doi.org/10.1111/epi.16813
https://doi.org/10.3390/ijms20061430
https://doi.org/10.1038/nbt.3960
https://doi.org/10.1038/nbt.3960
https://doi.org/10.1093/NAR/GKJ472
https://doi.org/10.1016/j.tins.2012.11.008
https://doi.org/10.1016/j.tins.2012.11.008
https://doi.org/10.1186/1471-2180-14-103
https://doi.org/10.1186/1471-2180-14-103
https://doi.org/10.1038/nrmicro3552
https://doi.org/10.1016/j.eplepsyres.2021.106668
https://doi.org/10.1016/j.eplepsyres.2021.106668
https://doi.org/10.1007/S13311-017-0600-5
https://doi.org/10.3389/FNUT.2021.613100
https://doi.org/10.3389/FNUT.2021.613100
https://doi.org/10.3389/FMICB.2021.618566
https://doi.org/10.3390/microorganisms6030075
https://doi.org/10.3390/microorganisms6030075


Neurobiology of Disease 164 (2022) 105614

10

Zucca, C., Agudio, M., Arienti, F., Arrigoni, G.R., Balestra, G., Ballabio, P., Balossi, S. 
M., Baratti, M.R., Barteselli, F.E., Bellani, F., Bellani, M., Bellini, G., Beretta, P.A., 
Beretta, R., Bergamini, M., Bertella, A., Bertolini, F., Bevilacqua, R., Bianchi, M.A., 
Bigiolli, P., Binda, G., Biondelli, G., Bodega, L., Bolis, E.G., Bolla, M.V.C., 
Bonacina, C.A., Bonfanti, M., Borghetti, F., Brambilla, R., Brancaleone, W., 
Brusadelli, F., Bub, S., Caccia, G., Caglio, M., Rossi, C.C., Capra, D., Carone, D., 
Carì, G., Carrera, S., Cavenago, R., Cecchetti, M.L., Centonze, B.A., Cereghini, F., 
Cerrone, C., Ciappetta, M.P., Cogliati, B., Colombano, O., Colombo, A., Colombo, D., 
Corti, M.L., Cremonini, N., Crippa, M., Crippa, R.A., Crotta, M., Curto, S., Daielli, P., 
De Gilio, D., De Pascalis, G.P., Decet, E., Morte, L. Della, Duvia, F., Favorito, A., 
Ferrario, R., Fezzi, L., Finzi, A.L., Fiorentino, B.U., Fornaciari, A., Franceschetti, S., 
Fulconis, F., Fumagalli, G., Fumagalli, M., Galbiati, G., Galimberti, C.A., 
Gecchele, D., Ghiazza, B., Ghislanzoni, P., Gioffredi, L., Hassibi, T., Julita, S., 
Leone, G., Levi, C., Locatelli, G., Locati, A.A., Longhi, E.G., Lukacova, I., Manfroi, M. 
G., Manzoni, P., Marcolini, C., Minicucci, F., Martini, M.S., Masperi, R., Mayan, S., 
Mazzoleni, V., Menga, A., Merlini, F., Messina, E., Micheli, M., Micò, R., Millul, A., 
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