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Abstract. We consider the nonlocal Cahn-Hilliard equation with singular potential and
degenerate mobility in a bounded domain Ω ⊂ Rd, d ≤ 3. We first prove the existence
of maximal strong solutions in weighted (in time) Lp spaces. Then we establish further
regularity properties of the solution through maximal regularity theory.
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1. Introduction

The so-called nonlocal Cahn-Hilliard (CH) equation was obtained by Giacomin and Lebo-
witz as a macroscopic model of phase segregation in binary alloys which accounts for long
range interactions (see [13, 14], cf. also [12]). This was done by performing a hydrodynamic
limit on a suitable microscopic model on a lattice gas evolving via Kawasaki exchange dy-
namics. The associated (nonlocal) Helmholtz free energy is given by (all the constants are
taken equal to one)

E(ϕ) = −1

2

∫
Ω

∫
Ω

J(x− y)ϕ(x)ϕ(y)dxdy +

∫
Ω

F (ϕ)dx. (1.1)

Here Ω ⊂ Rd is a bounded domain, d ≤ 3, ϕ denotes the relative concentration of one com-
ponents of the alloy, J is an interaction kernel such that J(x) = J(−x) and may include both
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short range (local) and long range (nonlocal) interactions (see [13, Section 3]). Moreover,
the potential density F is an entropic term defined for all s ∈ (−1, 1) by

F (s) = (1 + s) log(1 + s) + (1− s) log(1− s). (1.2)

Defining the flux j as follows

j(ϕ) = −m(ϕ)∇µ,
where µ = δE(ϕ)

δϕ
is the so-called chemical potential and m is the (degenerate) mobility,

namely,

m(s) = 1− s2 , (1.3)

the nonlocal CH equation deduced in [13] can then be viewed as a conservation law for j,
that is,

ϕt + div (−m(ϕ)∇µ) = 0, µ = −J ∗ ϕ+ F ′(ϕ), in Ω× (0, T ). (1.4)

subject to the boundary condition

m(ϕ)∂nµ = 0, on ∂Ω× (0, T ), (1.5)

where n is the outward normal to ∂Ω. This condition ensures the conservation of mass.
Observe that problem (1.4)-(1.5) can (formally) be written as follows

ϕt = div (−m(ϕ)∇J ∗ ϕ+m(ϕ)F ′′(ϕ)∇ϕ) , in Ω× (0, T ), (1.6)

(−m(ϕ)∇J ∗ ϕ+m(ϕ)F ′′(ϕ)∇ϕ) · n = 0, on ∂Ω× (0, T ). (1.7)

On account of (1.2) and (1.3), the term m(ϕ)F ′′(ϕ) is a constant. Therefore we are dealing
with a diffusive equation with a nonlocal term which accounts for segregation. Interestingly,
such nonlocal equations are also structurally related to other important models for biological
aggregations (see [9]).

Existence of a weak solution in the case of periodic boundary conditions was proven in [14]
through a fixed point argument. Uniqueness was obtained through a suitable reformulation
of the equation. It is worth noting that these results also hold when mF ′′ is not necessarily
constant but uniformly positive. The nonlocal effects are modeled through a sufficiently
smooth, fast decaying kernel J . Typical examples are the Newtonian or Bessel potential.
Such potentials are of essential interest in phase-segregation phenomena which exhibit com-
petition between nonlocal aggregation and the dispersal of particles due to the diffusion (see
[13]). The same equation was considered in [8] with no-flux boundary conditions and well-
posedness was proven as well. Moreover, the authors studied the convergence of a solution
to a stationary state along a time sequence.

The equation introduced in [8] was further analyzed in [15] where a major step was taken,
namely, the proof of the so-called (uniform or strict) separation property. Namely, any
(weak) solution will stay instantaneously away from the pure states (±1 in our case), uni-
formly with respect to the mass of the initial datum which is supposed to belong to (−1, 1)
(i.e. the initial datum cannot be a pure state itself). In particular, this result allowed the
authors to show some smoothness properties of weak solutions and their convergence to sin-
gle equilibria, thanks to a suitable non-smooth version of the  Lojasiewicz-Simon inequality.
This was done by supposing mF ′′ to be a positive constant. This requirement was then
weakened and the proof of the uniform separation property was simplified (see [16]). We
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also refer the reader to [11] for the existence of global and exponential attractors and to [18]
for the presence of a reaction term.

It is worth observing that in the case of constant mobility the separation property appears
to be less trivial to prove. Indeed, its validity in three dimensions is still an open issue (cf.
[10] for a proof in the two dimensional case).

Another variant of equation (1.4) which is related to the one proposed in [1] has been
considered, for instance, in [5] and [7] (see also the references therein and [10, Introduction]
for a comparison).

Problem (1.6)-(1.7) with a given initial condition and an additional convective term, has
recently been analyzed in [6, Sec. 6]. Making rather general assumptions on m and F
the existence of a strong solution (i.e. in L2(0, T ;H2(Ω)) if d = 3, in L∞(0, T ;H2(Ω)) if
d = 2) has been established. We recall that in [14] the authors claim that a smooth solution
can be obtained by using the results contained in [17]. However, this does not seem so
straightforward. In [6] the goal was achieved through a nontrivial approximation strategy
based on a suitable time discretization scheme. It is worth noting that solving problem (1.6)-
(1.7) is not equivalent to solve (1.4)-(1.5). This equivalence is guaranteed, for instance,
if the initial datum ϕ0 is such that F ′(ϕ0) ∈ L2(Ω) (see [7, Thm.3]). We remind that the
original gradient flow structure as well as the separation property are essential to prove the
convergence of a solution to a single stationary state (see [15, 16]).

In this contribution we first establish the existence of regular solutions in weighted (in
time) Lp spaces to problem (1.6)-(1.7) (plus initial condition) in any space dimension using
maximal regularity theory instead of energy estimates. This result allows us, in particular, to
recover the L∞(0, T ;H2(Ω))-regularity in three dimensions even when mF ′′ is not constant,
thus, closing the gap left open in [6, Rem. 6.3, Sec. 6]. Also, we present a slightly more
general and simpler proof of the separation property. We recall that, for the classical fourth-
order CH equation with degenerate mobility and singular potential (see [2, 3]), the existence
of a suitable notion of global weak solution is known (see [4]), but uniqueness and regularity
results are still open issues.

The paper is organized as follows. In Section 2 we introduce the functional framework
and we recall some known results. The existence of maximal solutions and their further
regularity properties are investigated in Section 3 and in Section 4. Some technical lemmas
are proven in Sections 5,6, and 7. The Appendix is devoted to the separation property.

2. Preliminaries and known results

We denote by W r
p (Ω), r ∈ N, the Sobolev space of functions in Lp(Ω) with distributional

derivative of order less or equal to r in Lp(Ω) and by ‖ · ‖W r
p (Ω) its norm. For an arbitrary

r ∈ N, Hr(Ω) = W r
2 (Ω) is a Hilbert space with respect to the scalar product (u, v)r =∑

|κ|≤r
∫

Ω
Dκu(x)Dκv(x) dx (κ being a multi-index) and the induced norm ‖u‖r =

√
(u, u)r.

For simplicity of notation, we indicate H = L2(Ω) and the inner product as well as the
norm in H are denoted by (·, ·) and ‖ · ‖, respectively (even for vector-valued functions).
In the case of non-integer differentiability for W s

p (Ω), s /∈ N0 we may consider these spaces
as interpolation spaces. If s = [s] + s∗ /∈ N0 with [s] ∈ N0 and s∗ ∈ (0, 1), then W s

p =

(W
[s]
p ,W

[s]+1
p )s∗,p, where (·, ·)s∗,p denotes real interpolation. Moreover, it is well-known that
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W s
p = (Lp,W 2

p )s,p for s ∈ (0, 2), s 6= 1. For p ∈ (1,∞) and s > 1/p, the trace trΩ (u) = u|∂Ω

extends to a continuous operator trΩ : W s
p (Ω) → W

s−1/p
p (∂Ω). Here we exclude the case

s − 1/p ∈ N for p 6= 2. We also set V = H1(Ω) endowed with the obvious norm ‖u‖2
V =

‖∇u‖2 + ‖u‖2 and we will often refer to the well-known Poincaré-Wirtinger inequality

C−1
Ω ‖u‖V ≤ ‖∇u‖+ |u|, ∀u ∈ V,

where u := |Ω|−1 ∫
Ω
u (x) dx. From now on, we indicate by V ′ the dual space of V and by

‖ · ‖−1 its norm.
The interaction kernel and the singular potential are required to verify the following as-

sumptions:

(H.1) J ∈ W 1
1 (Rd) with J(x) = J(−x);

(H.2) F ∈ C([−1, 1]) ∩ C2(−1, 1) fulfills

F ′′ (s) ≥ α > 0 , ∀s ∈ (−1, 1) ,

and there exists some ε0 > 0 such that F ′′ is nondecreasing in [1− ε0, 1) and nonin-
creasing in (−1,−1 + ε0].

In addition to assumptions (H.1) and (H.2), we shall also assume (see [7])

(H.3) m ∈ C1([−1, 1]), m ≥ 0 with m(s) = 0 if and only if s = −1 or s = 1, and there exists
ς0 > 0 such that m is non-increasing in [1− ς0, 1] and non-decreasing in [−1,−1 + ς0].
Furthermore, we assume that

γ := mF ′′ ∈ C([−1, 1]).

By weak solution we mean the following.

Definition 2.1. Let ϕ0 be a measurable function such that F (ϕ0) ∈ L1(Ω) and T > 0 be
given. A function ϕ is called weak solution to (1.6)-(1.7) on [0, T ] corresponding to the initial
condition ϕ0 if it satisfies

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ L∞(Ω× (0, T )),

∂tϕ ∈ L2(0, T ;V ′),

with
|ϕ(x, t)| ≤ 1, a.e. (x, t) ∈ Ω× (0, T ) (2.1)

and, for all v ∈ V and almost every t ∈ (0, T ), there holds

〈∂tϕ, v〉V ′,V + (m(ϕ)F ′′(ϕ)∇ϕ,∇v)− (m(ϕ)∇J ∗ ϕ,∇v) = 0, (2.2)

with
ϕ(0, ·) = ϕ0. (2.3)

Remark 2.2. Let us observe the following facts.

(1) F (ϕ0) ∈ L1(Ω) implies that ϕ0 ∈ L∞(Ω) and |ϕ0(x)| ≤ 1, for almost any x ∈ Ω.
(2) The conservation of mass is a straightforward consequence of Definition 2.1. Indeed,

taking v = 1, we get 〈∂tϕ, v〉V ′,V = 0, so that ϕ(t) = ϕ0 for all t ≥ 0.

(3) Let T > 0 be arbitrary. Note that ϕ ∈ L∞(Ω × (0, T )) with |ϕ(x, t)| ≤ 1, for
almost any (x, t) ∈ Ω × (0, T ) implies ϕ ∈ L∞(0, T ;Lp(Ω)), for all p ≥ 1, and

‖ϕ‖L∞(0,T ;Lp(Ω)) ≤ |Ω|
1
p .
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(4) As a direct consequence of Definition 2.1, any weak solution ϕ belongs to C([0, T ];H)
so that the initial condition is well defined.

We now recall a result established in [7] (see also [6]).

Theorem 2.3. Let (H.1)-(H.3) hold and let ϕ0 be a measurable function such that F (ϕ0) ∈
L1(Ω) and M(ϕ0) ∈ L1(Ω), where M ∈ C2(−1, 1) is defined by m(s)M ′′(s) = 1 for all
s ∈ (−1, 1) and M(0) = M ′(0) = 0. Then, there exists a weak solution in the sense of
Definition 2.1 which satisfies the energy equality for almost every t > 0,

1

2

d

dt
‖ϕ‖2 +

∫
Ω

m(ϕ)F ′′(ϕ)|∇ϕ|2dx−
∫

Ω

m(ϕ)(∇J ∗ ϕ) · ∇ϕdx = 0. (2.4)

Moreover, under the additional assumption

γ(s) ≥ θ > 0, for all s ∈ [−1, 1], (2.5)

the weak solution is unique and the following continuous dependence estimate holds for all
t ∈ [0, T ],

‖ϕ1(t)− ϕ2(t)‖2
−1 +

∫ t

0

‖ϕ1 (s)− ϕ2 (s)‖2 ds ≤ CeKt‖ϕ1 (0)−ϕ2 (0) ‖2
−1. (2.6)

Here, ϕ1 and ϕ2 are two weak solutions on [0, T ] with initial data ϕ01 and ϕ02, respectively,
and C and K are two positive constants.

Remark 2.4. The existence of a weak solution (in the sense of Definition 2.1) can be proven
without requiring for F a singular behavior at the endpoints s = ±1 (cf. (H.2) and (H.3)).
Instead, the key role is played by the degenerate mobility, i.e., by condition (H.3), with F
being also in C2([−1, 1]). This is enough to ensure the bound |ϕ| ≤ 1 almost everywhere
in QT . However, concerning uniqueness and regularity results (cf. Theorem 2.7 below),
assumption (2.5) is crucial, but it implies that F must have some singular behavior at the
endpoints, in the sense that, at least, F ′′(s)→∞, as s→ ±1. Moreover, we point out that
the existence of a weak solution does not depend on the spatial dimension.

Recalling [7, Section 6, Theorem 5] and [6, Lemma 4.2], we also have

Proposition 2.5. Let all the assumptions of Theorem 2.3 be satisfied and assume (2.5).
Then, any weak solution belongs to Cβ/2,β([δ, T ]×Ω) for T > δ > 0, and fulfils the dissipative
estimate for all t ≥ 0,

‖ϕ(t)‖2 +

∫ t+1

t

‖ϕ(τ)‖2
V dτ ≤ ‖ϕ(0)‖2e−ωt + C, (2.7)

where ω and C are positive constants independent of the initial condition and on time.

Next, we define what we mean by a strong solution to our problem. We begin with the
following definition.

Definition 2.6. Let ϕ0 ∈ V ∩ Cβ
(
Ω
)

such that F (ϕ0) ∈ L1(Ω) and T > 0 be given.
A function ϕ is called a strong solution to problem (1.6)-(1.7) on [0, T ] corresponding to
ϕ (0) = ϕ0 if it is a weak solution in the sense of Definition 2.1 and, in addition,

ϕ ∈ H1(0, T ;H) ∩ L2(0, T ;H2 (Ω)),
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ϕ ∈ C ([0, T ] ;V ) ∩ Cβ,β/2
(
Ω× [0, T ]

)
.

In particular, ϕ satisfies

∂tϕ = div (γ(ϕ)∇ϕ−m(ϕ)∇J ∗ ϕ) , a.e. in Ω× (0, T ), (2.8)

γ(ϕ)∂nϕ = m (ϕ) (∇J · n ∗ ϕ) , a.e. on ∂Ω× (0, T ), (2.9)

ϕ(0, ·) = ϕ0, a.e. in Ω. (2.10)

Suppose that Ω ⊂ Rd, d ≤ 3 has a boundary ∂Ω of class C2. Concerning the interaction
kernel J we assume the following

(H.4) Either J ∈ W 2
1 (Bδ), where Bδ = {x ∈ Rd : |x| < δ} with δ ∼ diam(Ω) such that

Bδ ⊃ Ω or J is admissible in the sense of [5, Definition 2].

We recall that both Newtonian and Bessel potentials are still admissible due to the second
part of (H.4). Also, as a consequence of (H.1) and (H.4), J satisfies the inequality

‖∇J ∗ ϕ‖W 1
p (Ω) ≤ CJ ‖ϕ‖Lp(Ω) . (2.11)

Moreover, we assume

(H.5) F ∈ C3 (−1, 1);
(H.6) γ ∈ C1([−1, 1]);
(H.7) γ(s) ≥ θ > 0 for all s ∈ [−1, 1].

We recall the following result that was proved in [6], among others.

Theorem 2.7. Let the assumptions (H.1)-(H.7) hold. In addition, let ϕ0 ∈ V ∩ Cβ
(
Ω
)

be
such that F (ϕ0) ∈ L1(Ω) and M(ϕ0) ∈ L1(Ω), where M is defined as in Theorem 2.3. Then
there exists a (unique) strong solution in the sense of Definition 2.6.

3. Maximal solutions and Sobolev regularity

Here we state and prove the existence of a smooth solution which possesses W s
p (Ω)-

regularity for some s > 1 and p > d, for any fixed spatial dimension d ≥ 1. Such a solution
cannot be obtained by energy methods. Instead we shall employ a method that exploits
maximal regularity results for parabolic equations with inhomogeneous Robin boundary
conditions. A basic role will also be played by a Hölder bound in order to establish the

existence of a globally W
2−2/p
p (Ω)-bounded solution.

Let us briefly describe the function spaces that are used in this section. More details and
information on them can be found in [19, 20, 21, 22]. We work below with weighted and
unweighed vector-valued function spaces. To this end, let p ∈ (1,∞), ρ ∈ (1/p, 1] and let X
be a (real) Banach space and T ∈ (0,∞]. We set

Lp,ρ(0, T ;X) :=
{
u : (0, T )→ X : ‖u‖pLp,ρ(0,T ;X) =

∫ T

0

tp(1−ρ)‖u(t)‖pX dt <∞
}
,

W 1
p,ρ(0, T ;X) :=

{
u ∈ Lp,ρ(0, T ;X) : ∃u′ ∈ Lp,ρ(0, T ;X)

}
.

Note that ρ = 1 yields the unweighed case, i.e., Lp = Lp,1 and W 1
p = W 1

p,1. For instance, it

is shown in [22, Lemma 2.1] that W 1
p,ρ(0, T ;X) → W 1

1 (0, T ;X) is continuous, and thus the

(temporal) trace tr0 (u) = u|t=0 is continuous on W 1
p,ρ(0, T ;X).
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We can rewrite our nonlocal problem (see (1.6)-(1.7)) in the following form1

ϕt − ∂i(m(ϕ)F ′′(ϕ)∂iϕ) = −∂i (m(ϕ)∂iJ ∗ ϕ), in Ω× (0, T ), (3.1)

subject to the boundary condition

m (ϕ)F ′′ (ϕ)ni∂iϕ = m (ϕ)ni∂iJ ∗ ϕ, on ∂Ω× (0, T ), (3.2)

and to the initial condition
ϕ|t=0 = ϕ0, in Ω. (3.3)

We also observe preliminarily that by assumption (H.5) (see below) we can further rewrite
the boundary condition (3.2) into the equivalent form

ni∂iϕ+ l (ϕ)ni∂iJ ∗ ϕ = 0, on ∂Ω× (0, T ), (3.4)

which can then be treated as an inhomogeneous nonlinear Robin boundary condition. Our
aim is to first show the global existence of smooth solutions in a scale of nonlinear spaces for
(3.1)-(3.3) by exploiting maximal regularity results developed in [19, 21]. Our second aim is
to use the inherent smoothing effect of the weighted spaces to show that if ϕ (t1) ∈ Cβ(Ω)

for some time t1 > 0 then ϕ (t2) ∈ W 2−2/p
p (Ω) for p ∈ (d+ 2,∞) at a later time t2 > t1.

Here we actually assume that the bounded domain Ω ⊂ Rd has a boundary of class C2.
In addition, besides (H.1)-(H.7), we also suppose

(H.8) γ ∈ C2([−1, 1]), l := −1/F ′′ ∈ C2([−1, 1]). 2

In order to rigorously introduce our notion of smooth solution for (3.1)-(3.3), we define
the maximal regularity class3

Eϕ,ρ (I) = W 1
p,ρ (I;Lp (Ω)) ∩ Lp,ρ

(
I;W 2

p (Ω)
)
,

where I = (0, T ) is a finite interval, p ∈ (d+ 2,∞) and ρ ∈ (1/p, 1], as well as the boundary
class4

Fρ (I) = W
1
2
− 1

2p
p,ρ (I;Lp (∂Ω)) ∩ Lp,ρ(I;W 1−1/p

p (∂Ω)).

Besides, we will also need the following weighted space E0,ρ (I) = Lp,ρ (I;Lp (Ω)). We recall
that embedding results in weighted spaces5 (see [21]; cf. also [19, Theorem 1.3.6]) yield

Eϕ,ρ (I) ↪→ C(I;W 2(ρ−1/p)
p (Ω)) ↪→ C(I;C1

(
Ω
)
) (3.5)

where the last embedding in (3.5) holds if and only if 2 (ρ− 1/p) > 1 + d/p. Similarly, we
have

Fρ (I) ↪→ C(I;W 2(ρ−1/p)−1−1/p
p (∂Ω)),

provided that 2 (ρ− 1/p) > 1 + 1/p, so that

Fρ (I) ↪→ C(I;C (∂Ω)), if 2 (ρ− 1/p) > 1 + d/p. (3.6)

1The summation convention is used.
2Note that by (H.5), γ ∈ C2([−1, 1]) and l ∈ C2([−1, 1]) is equivalent to having γ ∈ C2([−1, 1]) and

m ∈ C2([−1, 1]).
3By the classical convention in Sobolev function theory, Eϕ,ρ (I) = W 1,2

p,ρ (I × Ω) . We recall our meaning

that W s,t
p,ρ (I ×X) := W s

p,ρ (I;Lp (X)) ∩ Lp,ρ
(
I;W t

p (X)
)
, where X is either Ω or ∂Ω.

4Also, we make the following convention, Fρ (I) = W
1/2−1/2p,1−1/p
p,ρ (I × ∂Ω) .

5We note that when restricting to 0Eϕ,µ (I) and 0Fµ (I)-spaces, the corresponding embeddings have the
constants independent of the size of the interval I. For a definition of these spaces, see [19, 21].
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Having defined these spaces, it is actually convenient to further convert (3.1)-(3.3) into
the following abstract form  ∂tϕ+ A (ϕ) = 0, in Ω× I,

B (ϕ) = 0, on ∂Ω× I,
ϕ|t=0 (= ϕ (0, ·)) = ϕ0, in Ω,

(3.7)

where, for ϕ ∈ Eϕ,ρ (I), the nonlinear operators A,B are defined as follows6:

A (ϕ) := −∂i(m(ϕ)F ′′(ϕ)∂iϕ−m(ϕ)∂iJ ∗ ϕ), (3.8)

B (ϕ) := nitrΩ∂iϕ+ l(trΩϕ)nitrΩ (∂iJ ∗ ϕ) .

Notice that, since the condition |ϕ| ≤ 1 is not included in the definition of the space Eϕ,ρ(I),
here and henceforth (cf. Lemma 3.2, Lemma 3.3, Theorem 3.4 and Lemma 3.5 below) we
shall tacitly assume that the nonlinear functions m, γ, l are replaced my some fixed smooth
extensions (which, for simplicity, we still denote by m, γ, l) outside the physical interval
|s| ≤ 1 over the whole real line.

Definition 3.1. Let ϕ0 ∈ F = {ϕ0 ∈ L∞ (Ω) : F (ϕ0) , M(ϕ0) ∈ L1 (Ω)} and T > 0 be given.
Assume further that ϕ0 ∈M s

p , where

M s
p =

{
ϕ0 ∈ W s

p (Ω) : ni∂iϕ0 = −l(ϕ0)ni∂iJ ∗ ϕ0 a.e. on ∂Ω
}
, (3.9)

where p ∈ (d+ 2,∞), ρ ∈ (1/2 + (d + 2)/2p, 1] and s = 2 (ρ− 1/p). We say that ϕ is a
smooth solution to problem (3.1)-(3.3) on the interval I = (0, T ) if it satisfies (2.1) and

ϕ ∈ Eϕ,ρ (I) ∩ C
(
[0, T );M s

p ∩ F
)
,

where the set M s
p ∩ F is endowed with the topology of W s

p (Ω). In this case, the equations
(3.1) and (3.2) are satisfied almost everywhere in Ω × I and on ∂Ω × I, respectively, while
the initial condition ϕ|t=0 = ϕ0 holds in a strong sense.

In order to prove the existence and uniqueness of smooth solutions in the class of Definition
3.1, we shall rely on maximal Lp,ρ-regularity results for a linearized problem associated with
(3.7) and the application of the Banach contraction principle. Indeed, it was noted in [19,
Remark 4.3.7] that as long as the corresponding operators A,B in (3.7) are C1 and a version
of the maximal Lp,ρ-regularity result applies to the corresponding linearized problem, the
proof of local existence and uniqueness is independent of the concrete form of the operators
A and B. Henceforth, our aim is to establish first that A,B ∈ C1 for our operators defined by
(3.8) on the corresponding spaces. These properties are stated in the following two lemmas
whose proofs are postponed in Sections 5 and 6.

In the sequel, in order to further simplify the estimates, we shall make use of the notation
a . b to mean that there exists a constant C > 0 such that a ≤ Cb. This will be done only
if the explicit value of C is irrelevant or tedious to write down. However, we shall point out
various properties of the constant C > 0 when necessary.

Lemma 3.2. Assume (H.1)-(H.8). Set I = (0, T ), T > 0, and let p ∈ (d + 2,∞), ρ ∈
(1/2 + (d+ 2)/2p, 1]. Then A ∈ C1 (Eϕ,ρ (I) , E0,ρ (I)) and for ϕ ∈ Eϕ,ρ (I), we have

A′ (ϕ)h = −∂i (γ (ϕ) ∂ih+ γ′ (ϕ) ∂iϕh−m′ (ϕ) (∂iJ ∗ ϕ)h−m (ϕ) ∂iJ ∗ h) ,

6Recall that trΩ (ϕ) = ϕ|∂Ω.



9

for h ∈ Eϕ,ρ (I). For T0, R > 0 given, there exists a continuous function ε : [0,∞)→ [0,∞),
ε (0) = 0, such that for each T0 ≤ T , it holds

||A (ϕ+ h)− A (ϕ)− A′ (ϕ)h||E0,ρ(I) ≤ ε(‖h‖Eϕ,ρ(I)) ‖h‖Eϕ,ρ(I) , (3.10)

for all ϕ, h ∈ Eϕ,ρ (I) with h (0, ·) = 0, such that

‖ϕ‖C(I;C1(Ω)) , ‖ϕ‖Eϕ,ρ(I) , ‖h‖Eϕ,ρ(I) ≤ R. (3.11)

Lemma 3.3. Assume (H.1)-(H.8). Set I = (0, T ), T > 0, and let p ∈ (d+ 2,∞), ρ ∈
(1/2 + (d+ 2)/2p, 1]. Then B ∈ C1 (Eϕ,ρ (I) , Fρ (I)) and for ϕ ∈ Eϕ,ρ (I), we have

B′ (ϕ)h = nitrΩ∂ih+ l′(trΩϕ)nitrΩ (∂iJ ∗ ϕ) trΩh+ l(trΩϕ)trΩ (∂iJ ∗ h)ni,

for h ∈ Eϕ,ρ (I). For T0, R > 0 given, there exists a continuous function ε : [0,∞)→ [0,∞),
ε (0) = 0, such that for each T0 ≤ T , it holds

‖B (ϕ+ h)−B (ϕ)−B′ (ϕ)h‖
0Fρ(I) ≤ ε(‖h‖Eϕ,ρ(I)) ‖h‖Eϕ,ρ(I) , (3.12)

for all ϕ, h ∈ Eϕ,ρ (I) with h (0, ·) = 0, such that

‖ϕ‖C(I;C1(∂Ω)) , ‖ϕ‖Eϕ,ρ(I) , ‖h‖Eϕ,ρ(I) , ‖ϕ (0, ·)‖
W

2(ρ−1/p)
p (Ω)

≤ R. (3.13)

The existence of a smooth solution is given by the following

Theorem 3.4. Let s = 2 (ρ− 1/p) > 1 + d/p, with ρ ∈ (1/p, 1] and p ∈ (d+ 2,∞). Assume
(H.1)-(H.8). Then, for each ϕ0 ∈ M s

p ∩ F , there exists a time t+ = t+ (ϕ0) > 0 such
that (3.1)-(3.3) has a unique maximal bounded solution in the sense of Definition 3.1 on

I = (0, t+). Furthermore, if ϕ0 ∈M2−2/p
p ∩ F the solution is global, i.e., t+ =∞.

Proof. Step 1. (Local well-posedness) We can now consider the linearized problem asso-
ciated with (3.7) and show that it enjoys maximal Lp,ρ-regularity for any ϕ ∈ Eϕ,ρ (I). The
linearized problem takes the following form: ∂tψ + A′ (ϕ)ψ = f , in Ω× I,

B′ (ϕ)ψ = g, on ∂Ω× I,
ψ|t=0 = ψ0, in Ω.

(3.14)

Let ϕ ∈ Eϕ,ρ (I) be given and let f ∈ E0,ρ (I), g ∈ Fρ (I) and ψ0 ∈ W s
p (Ω) such that

B′ (ϕ (0, ·))ψ0 = g (0, ·) on ∂Ω, where ρ ∈ (1/p, 1], p ∈ (d+ 2,∞) and

s = 2 (ρ− 1/p) > 1 + d/p.

We claim that there exists a unique bounded solution ψ to problem (3.14) such that

‖ψ‖Eϕ,ρ(I) . ‖f‖E0,ρ(I) + ‖g‖Fρ(I) + ‖ψ0‖W s
p (Ω) .

Given T0 > 0, with g belonging to 0Fρ (I), the above estimate is uniform in T ≤ T0. Let us

next consider the operator pair (Ã (ϕ) , B̃) given by

Ã (ϕ)h := ∂i (γ (ϕ) ∂ih) , B̃h = nitrΩ∂ih,

for ϕ ∈ Eϕ,ρ (I) . Then since

(A′ (ϕ) , B (ϕ)) = (Ã (ϕ) , B̃) + lower-order terms,
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the claim follows from [19, Lemma 4.3.1] on the basis of Lemmas 3.2 and 3.3. In this case,
as we have mentioned at the beginning of this section the proof for the local well-posedness
of problem (3.1)-(3.3) on some maximal interval I = [0, t+), for some t+ = t+ (ϕ0) > 0, does
not require a concrete form of the operators A,B, and thus follows from [19, Proposition
4.3.2]. The Lipschitz continuous dependence with respect to the initial datum ϕ0, in the
weaker L2-metric is a consequence of Theorem 2.3.

Step 2. (t+ = ∞) Assume to the contrary that t+ < ∞. Then by application of Lemma
3.5 below, it follows that

sup
t∈[0,t+)

‖ϕ‖
W

2−2/p
p (Ω)

. 1 + sup
t∈[0,t+/2)

‖ϕ‖Cβ(Ω) ≤ C,

where the last bound is a consequence of Proposition 2.5 and the fact that

ϕ ∈ Cβ,β/2
(
Ω× [0, T ]

)
,

for any T > 0. Therefore, ϕ (t) is bounded in W
2−2/p
p (Ω) for t ∈ [0, t+), and therefore it

contains a convergent subsequence in W s
p (Ω) for s ∈ (1 + d/p, 2− 2/p), which is in contra-

diction with the existence of the maximal time t+; thus, we must have t+ = ∞. The proof
is finished. �

We now state and prove the Cβ-W
2−2/p
p smoothing effect of the solution to our problem.

Indeed we have

Lemma 3.5. For ϕ0 ∈ M
2−2/p
p ∩ F , p ∈ (d+ 2,∞) , let ϕ be a smooth maximal solution

on (0, t+) in the sense of Definition 3.1. Let t1, t2 ∈ (0, t+) such that t1 < t2, with τ :=
t2 − t1. Then for β ∈ (0, 1) there exists a constant C > 0, depending only on τ, p, δβ :=
‖ϕ‖C([t1,t2];Cβ(Ω)) and J , such that

‖ϕ (t2)‖
W

2−2/p
p (Ω)

≤ C
(

1 + ‖ϕ (t1)‖Cβ(Ω)

)
. (3.15)

Proof. We argue along the lines of [19, Lemma 4.4.1]. Let us set I := (0, τ) and define
ψ (t) := ϕ (t+ t1) , t ∈ I, and note that ψ ∈ Eϕ,ρ (I) since ϕ ∈ Eϕ,1 (0, t+). Furthermore,
since the weight tp(1−ρ) only has an effect at t = 0, we have

‖ϕ (t2)‖
W

2−2/p
p (Ω)

= ‖ψ (τ)‖
W

2−2/p
p (Ω)

≤ C (τ) ‖ψ‖Eϕ,ρ(I) . (3.16)

Observe that ψ solves the inhomogeneous linear problem ∂tξ − γ (ϕ) ∆ξ = γ′ (ϕ) (∂iψ)2 −m (ψ) ∂i (∂iJ ∗ ψ)−m′ (ψ) ∂iψ∂iJ ∗ ψ, in Ω× I,
ni∂iξ = l (ψ) ∂iJ ∗ ψni, on ∂Ω× I,
ξ|t=0 = ψ (0) = ϕ (t1) , in Ω,

(3.17)
so we can apply [19, Theorem 2.1.4 and Proposition 2.3.1] and infer the existence of a
constant C > 0, independent of δβ and τ , such that

‖ψ‖Eϕ,ρ(I) ≤ C
(
||γ′ (ψ) (∂iψ)2 ||E0,ρ(I) + ||m (ψ) ∂i (∂iJ ∗ ψ) ||E0,ρ(I)

)
(3.18)

+ C||m′ (ψ) ∂iψ∂iJ ∗ ψ||E0,ρ(I)

+ C
(
||l (ψ) ∂iJ ∗ ψni||Fρ(I) + ‖ϕ (t1)‖Wσ

p (Ω)

)
,
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where σ := 2 (ρ− 1/p) with ρ ∈ (1/p, 1]. We estimate all summands on the right-hand side
of (3.18) as follows. By Holder’s inequality we first have

||γ′ (ψ) (∂iψ)2 ||pE0,ρ(I) ≤ C (δβ) || (∂iψ)2 ||pE0,ρ(I) (3.19)

≤ C (δβ) || ‖∂iψ‖L2p(Ω) ‖∂iψ‖L2p(Ω) ||
p
Lp,ρ(I)

≤ C (δβ)

∫
I

tp(1−ρ) ‖ψ (t)‖p
W 1

2p(Ω)
dt.

Let r ∈ (1,∞) and θ, α > 0 such that 1 − d/2p < 1/2 (α− d/r) + 1/2 (θ − d/p). Then,
applying the Gagliardo-Nirenberg inequality [19, Proposition A.6.2], we get

‖ψ‖2p

W 1
2p(Ω)

. ‖ψ‖p
W θ
p (Ω)
‖ψ‖pWα

r (Ω) . ‖ψ‖
p
W θ
p (Ω)
‖ψ‖p

Cβ(Ω)
(3.20)

≤ ε ‖ψ‖pW 2
p (Ω) + C (ε, δβ) ‖ϕ‖C([t1,t2];C(Ω)) ,

for any ε > 0. Here in the second inequality we have used the fact that Cβ
(
Ω
)
↪→ Wα

r (Ω)
for any α ∈ (0, β) and any r ∈ (1,∞), whereas in the last inequality we have exploited
an interpolation inequality together with the Young inequality since one can take θ < 2
sufficiently close to 2 and a sufficiently large r ≥ r0. Combining (3.19) with (3.20), we find
that

||γ′ (ψ) (∂iψ)2 ||E0,ρ(I) ≤ ε ‖ψ‖Eϕ,ρ(I) + C (ε, δβ) . (3.21)

For the second summand in (3.19), we have

||m (ψ) ∂i (∂iJ ∗ ψ) ||pE0,ρ(I) ≤ C (δβ) ||∂i (∂iJ ∗ ψ) ||pE0,ρ(I) (3.22)

=

∫
I

tp(1−ρ) ‖∂i (∂iJ ∗ ψ)‖pLp(Ω) dt

≤ C (δβ) ‖ψ‖pE0,ρ(I)

≤ ε ‖ψ‖pEϕ,ρ(I) + C (ε, δβ) ‖ϕ‖C([t1,t2];C(Ω)) ,

owing to (5.35). On the other hand, the third summand can be controlled as follows

||m′ (ψ) ∂iψ∂iJ ∗ ψ||pE0,ρ(I) ≤ C (δβ) ||∂iψ∂iJ ∗ ψ||pE0,ρ(I) (3.23)

≤ C (δβ) || ‖∂iψ‖Lp(Ω) ‖∂iJ ∗ ψ‖L∞(Ω) ||
p
Lp,ρ(I)

≤ C
(
δβ, ‖J‖W 1

1

)∫
I

tp(1−ρ) ‖ψ‖pW 1
p (Ω) dt

≤ ε ‖ψ‖pEϕ,ρ(I) + C
(
ε, δβ, ‖J‖W 1

1

)
‖ϕ‖C([t1,t2];C(Ω)) ,

for any ε > 0, owing to the Young convolution theorem, interpolation and the Young in-
equality. We may summarize from estimates (3.22)-(3.23) that

||m (ψ) ∂i (∂iJ ∗ ψ) ||E0,ρ(I) + ||m′ (ψ) ∂iψ∂iJ ∗ ψ||E0,ρ(I) (3.24)

≤ ε ‖ψ‖Eϕ,ρ(I) + C (ε, δβ) .

For boundary summand in (3.18), we recall that n = n (·) ∈ C1
(
Ω
)

and (6.3), which states

that trΩ (·) : W
1/2,1
p,ρ (I × Ω) → Fρ (I) is continuous and its operator norm depends on τ . In
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particular, we have

||l (ψ) ∂iJ ∗ ψni||Fρ(I) ≤ C (τ) ||l (ψ) ∂iJ ∗ ψni||W 1/2,1
p,ρ (I×Ω)

. (3.25)

We use the intrinsic norm for W
1/2
p,ρ (I;Lp (Ω)) to estimate the right-hand side in (3.25).

Exploiting the mean value theorem for l ∈ C1([−1, 1]), the Young convolution theorem and
the Hölder inequality, we obtain

[l (ψ) ∂iJ ∗ ψni]p
W

1/2
p,ρ (I;Lp(Ω))

(3.26)

=

∫ T

0

∫ s

0

tp(1−ρ)

(s− t)1+(1/2)p
‖l (ψ (t)) ∂iJ ∗ ψ (t)ni − l (ψ (s)) ∂iJ ∗ ψ (s)ni‖pLp(Ω) dtds

≤
∫ T

0

∫ s

0

tp(1−ρ)

(s− t)1+(1/2)p
‖(l (ψ (t))− l (ψ (s))) ∂iJ ∗ ψ (t)ni‖pLp(Ω) dtds

+

∫ T

0

∫ s

0

tp(1−ρ)

(s− t)1+(1/2)p
‖l (ψ (s)) ∂iJ ∗ (ψ (t)− ψ (s))ni‖pLp(Ω) dtds

≤ C
(
δβ, ‖J‖W 1

1

)
[ψ]p

W
1/2
p,ρ (I;Lp(Ω))

+ C
(
‖J‖W 1

1

)
‖l (ϕ)‖C([t1,t2];C(Ω)) [ψ]p

W
1/2
p,ρ (I;Lp(Ω))

≤ C
(
δβ, ‖J‖W 1

1

)
[ψ]p

W
1/2
p,ρ (I;Lp(Ω))

.

Similarly, using (5.37) we have

||l (ψ) ∂iJ ∗ ψni||Lp,ρ(I;W 1
p (Ω)) ≤ ‖l (ϕ)‖C([t1,t2];C(Ω)) ‖∂iJ ∗ ψni‖Lp,ρ(I;W 1

p (Ω)) (3.27)

+ ‖∂iJ ∗ ψni‖Lp,ρ(I;L∞(Ω)) ‖l (ψ)‖Lp,ρ(I;W 1
p (Ω))

≤ C
(
δβ, ‖J‖W 1

1

)
‖ψ‖Lp,ρ(I;Lp(Ω))

+ C
(
‖J‖W 1

1
, τ, δβ

)(
1 + ‖ψ‖Lp,ρ(I;W 1

p (Ω))

)
≤ C

(
‖J‖W 1

1
, τ, δβ

)(
1 + ‖ψ‖Lp,ρ(I;W 1

p (Ω))

)
,

owing to (5.35) and the Young convolution theorem. Combining (3.26)-(3.27) together with
(3.25), we obtain by interpolation and the Young inequality,

||l (ψ) ∂iJ ∗ ψni||Fρ(I) ≤ C (J, τ, δβ) (1 + ‖ψ‖
W

1/2,1
p,ρ (I×Ω)

) (3.28)

≤ ε ‖ψ‖W 1,2
p,ρ (I×Ω) + C (ε, J, τ, δβ) ‖ϕ‖C([t1,t2];C(Ω)) ,

for any ε > 0. Since Eϕ,ρ (I) = W 1,2
p,ρ (I × Ω), we collect all the estimates from (3.21), (3.24)

and (3.28), and then we choose a sufficiently small ε < 1/3, to find from (3.16) and (3.18)
that

‖ϕ (t2)‖
W

2−2/p
p (Ω)

≤ C (τ) ‖ψ‖Eϕ,ρ(I) ≤ C (J, τ, δβ) (1 + ‖ϕ (t1)‖Wσ
p (Ω)),

where σ := 2 (ρ− 1/p) with p ∈ (d+ 2,∞) and ρ ∈ (1/p, 1]. Let us now choose ρ = 1/p+ ν,
for some ν < min (1− 1/p, β/2) , for β ∈ (0, 1). Then, since Cβ

(
Ω
)
↪→ W σ

p (Ω) for σ ∈ (0, β)
and any p ∈ (1,∞), we can easily arrive at inequality (3.15). The proof is complete. �

Lemma 3.5 entails the following
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Corollary 3.6. Let the assumptions of Lemma 3.5 hold. Then, for any T > ζ > 0, we have

‖ϕ (T )‖
W

2−2/p
p (Ω)

+ ‖ϕ‖Eϕ,ρ(T−ζ,T ) ≤ C
(
ζ, J, ‖ϕ‖C([T−ζ,T ];Cβ(Ω))

)
,

for some sufficiently small ρ ∈ (1/p, 1].

Remark 3.7. Thanks to Theorem 3.4, system (1.6)-(1.7) generates a family of closed semi-

groups on the phase space Qp := F ∩M2−2/p
p , for p ∈ (d+ 2,∞),

S(t) : Qp → Qp, S(t)ϕ0 = ϕ(t), ∀t ≥ 0,

where ϕ is the smooth solution in the sense of Definition 3.1. Furthermore, the dynamical

system (Qp,S(t)) is dissipative since it possesses a bounded absorbing set Bp ⊂ W
2−2/p
p (Ω)∩

F thanks to Corollary 3.6. More precisely, it holds

sup
t>2

(
‖ϕ (t)‖

W
2−2/p
p (Ω)

+ ‖ϕ (t)‖C1+δ0(Ω)

)
≤ C0, (3.29)

for some C0 > 0 independent of time and the initial datum, also owing to the embedding

W
2−2/p
p (Ω) ↪→ C1+δ0

(
Ω
)
, for some δ0 > 0. This is the starting point to investigate the

existence of global and exponential attractors (cf. [11]).

4. Further regularity properties

In this section we exploit the previous results to show that ϕ belongs to W 1
∞ (0, T ;L2 (Ω))∩

L∞ (0, T ;H2 (Ω)) if d ≤ 3, without the restriction γ constant in dimension three (cf. [6]).
Before stating and proving the main result of this section, we introduce a technical lemma

whose proof is given in the last section.

Lemma 4.1. Let (H.1)-(H.8) hold. Then there exists a constant C > 0 independent of
t, T, ϕ and ϕ (0), such that

‖ϕ(t)‖H2(Ω) ≤ C
(
‖∂tϕ(t)‖+ ‖ϕ(t)‖V + ‖ϕ(t)‖2(1−θ)/(1−2θ)

Cβ(Ω)

)
, (4.30)

for almost any t ∈ (0, T ) and for some θ ∈ (0, 1/2) .

The main result reads

Theorem 4.2. Let (H.1)-(H.8) hold. Given an initial datum ϕ0 ∈ H2 (Ω) that satisfies the
compatibility condition

γ(ϕ0)∂nϕ0 = m (ϕ0) (n · ∇J ∗ ϕ0) a.e. on ∂Ω, (4.31)

the corresponding strong solution also has the following regularity

ϕ ∈ W 1
∞
(
0, T ;L2 (Ω)

)
∩ L∞

(
0, T ;H2 (Ω)

)
. (4.32)

Proof. Let ϕ0 ∈ H2 (Ω) ∩ F that satisfies (4.31) and let ϕ be the corresponding strong

solution in the sense of Definition 2.6. Since H2 (Ω) ⊂ W
2(1−1/p)
p (Ω) for any p ∈ (d + 2, 6]

and d ≤ 3, we also have ϕ0 ∈ M
2−2/p
p (see (3.9)) in this range for p (we have also taken

ρ = 1 so all space-time integrals are no longer weighted). Thus Theorem 3.4 implies that
the (global) strong solution satisfies

ϕ ∈ W 1
p (0, T ;Lp (Ω)) ∩ Lp

(
0, T ;W 2,p (Ω)

)
∩ C([0, T ] ;M2−2/p

p ) (4.33)
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for any p ∈ (d+ 2, 6] with d ≤ 3. The improved maximal regularity (4.33) allows us to gain
the desired regularity claim in (4.32) provided that we can show that ∂tϕ ∈ L∞ (0, T ;L2 (Ω)).
Indeed, the latter bound together with Holder regularity for ϕ (see Definition 2.6) allows to
deduce the desired claim owing to the application of the elliptic estimate (4.30) (which also
holds for ϕ), see Lemma 4.1.

Let us introduce the difference in time of a function v by Thv(t) = v(t+ h)− v(t), for any
h > 0. Being ϕ a solution to (2.8)-(2.9), Thϕ solves

(∂tThϕ, v) + (γ(ϕ(·+ h))Th∇ϕ,∇v) + (Thγ(ϕ)∇ϕ,∇v)

= (m(ϕ(·+ h))∇J ∗ Thϕ,∇v) + (Thm(ϕ)∇J ∗ ϕ,∇v),

for any v ∈ H. Taking v = Thϕ, we get

1

2

d

dt
‖Thϕ‖2 + θ‖∇Thϕ‖2 ≤ −(Thγ(ϕ)∇ϕ,∇Thϕ)

+ (m(ϕ(·+ h))∇J ∗ Thϕ,∇Thϕ) + (Thm(ϕ)∇J ∗ ϕ,∇Thϕ).

Since γ′ is bounded,

(Thγ(ϕ)∇ϕ,∇Thϕ) ≤ θ

4
‖∇Thϕ‖2 + C‖∇ϕ‖2

L∞(Ω)‖Thϕ‖2.

On the other hand, we easily find

(m(ϕ(·+ h))∇J ∗ Thϕ,∇Thϕ) + (Thm(ϕ)∇J ∗ ϕ,∇Thϕ) ≤ θ

4
‖∇Thϕ‖2 + C‖Thϕ‖2.

Thus, we arrive at the differential inequality

1

2

d

dt
‖Thϕ‖2 +

θ

2
‖∇Thϕ‖2 ≤ C(1 + ‖ϕ‖2

W 2,p(Ω))‖Thϕ‖2,

where p > 3. Thanks to the enhanced regularity (4.33), an application of the Gronwall
lemma yields

sup
t∈[0,T ]

‖Thϕ(t)‖2 ≤ C‖Thϕ(0)‖2, (4.34)

where C depends on T but is independent of h. In order to pass to the limit as h goes to 0,
we need to find a uniform control of Thϕ(0). To this aim, recalling that ϕ0 satisfies (4.31),
we have

1

2

d

dt
‖ϕ(t)− ϕ0‖2 = (ϕt, ϕ− ϕ0)

= −(γ(ϕ)∇ϕ,∇(ϕ− ϕ0)) + (m(ϕ)∇J ∗ ϕ,∇(ϕ− ϕ0))

= −(γ(ϕ)∇(ϕ− ϕ0),∇(ϕ− ϕ0)) + (m(ϕ)∇J ∗ ϕ,∇(ϕ− ϕ0))

+ (γ(ϕ)∇ϕ0,∇(ϕ− ϕ0)).

By standard computations, we have

1

2

d

dt
‖ϕ(t)− ϕ0‖2 +

θ

2
‖∇(ϕ− ϕ0)‖2 ≤ C(1 + ‖∇ϕ0‖2).

For any t > 0, integrating the above inequality on the time interval (0, t), we find

‖ϕ(t)− ϕ0‖2 ≤ C(1 + ‖∇ϕ0‖2)t.
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Hence, taking t = h, we obtain

‖Thϕ(0)‖2 ≤ Ch.

Combining the above estimate with (4.34), we have

sup
t∈[0,T ]

h−1‖Thϕ(t)‖ ≤ C.

Exploiting the convergence Thv
h
→ ∂tϕ in weak sense, we end up with

‖∂tϕ‖L∞(0,T ;H) ≤ C.

The proof is finished. �

5. Proof of Lemma 3.2

Let us recall first that, thanks to (H.4), we have

‖∂i (∂jJ ∗ ϕ)‖Lp(Ω) ≤ C (p) ‖ϕ‖Lp(Ω) , ∀p ∈ (1,∞) , (5.35)

and all i, j ∈ {1, ..., d}. This estimate will be crucial for most of the estimates performed in
this section, and shall be used repeatedly. We also recall that

‖∂iJ ∗ ϕ‖Lq(Ω) ≤ C(‖∂iJ‖L1(Rd)) ‖ϕ‖Lq(Ω) , (5.36)

for i ∈ {1, ..., d}, q ∈ (1,∞]. Secondly, for the sake of notational simplicity, we set

‖·‖0,∞ = ‖·‖C(I;C(Ω)) and ‖·‖1,∞ = ‖·‖C(I;C1(Ω)) .

We shall also rely on the fact that W 1
p (Ω) is a Banach algebra for p > d. Thus we have

‖ϕψ‖W 1
p (Ω) ≤ ‖ϕ‖W 1

p (Ω) ‖ψ‖L∞(Ω) + ‖ϕ‖L∞(Ω) ‖ψ‖W 1
p (Ω) , ∀ϕ, ψ ∈ W 1

p (Ω). (5.37)

We use (5.37) together with the embedding (3.5) and (5.35) to estimate, for ϕ, h ∈ Eϕ,ρ (I)
satisfying (3.11), the linearization of A as follows

||A (ϕ+ h)− A (ϕ)− A′ (ϕ)h||E0,ρ(I) (5.38)

. || (γ (ϕ+ h)− γ (ϕ)− γ′ (ϕ)h) ∂i (ϕ+ h) ||Lp,ρ(I;W 1
p (Ω))

+ ||γ′ (ϕ)h∂ih||Lp,ρ(I;W 1,p(Ω))

+ || (m (ϕ+ h)−m (ϕ)−m′ (ϕ)h) ∂iJ ∗ (ϕ+ h) ||Lp,ρ(I;W 1,p(Ω))

+ ||m′ (ϕ)h∂iJ ∗ h||Lp,ρ(I;W 1,p(Ω))

. ||γ (ϕ+ h)− γ (ϕ)− γ′ (ϕ)h||1,∞
(
‖ϕ‖Eϕ,ρ(I) + ‖h‖Eϕ,ρ(I)

)
+ ||γ′ (ϕ) ||1,∞ ‖h‖2

Eϕ,ρ(I)

+ ||m (ϕ+ h)−m (ϕ)−m′ (ϕ)h||1,∞
(
‖ϕ‖Eϕ,ρ(I) + ‖h‖Eϕ,ρ(I)

)
+ ||m′ (ϕ) ||1,∞ ‖h‖2

Eϕ,ρ(I) .



16

We note that for h(0) = 0 the above estimates are uniform in T0 ≤ T . Indeed to get the
third summand in the second inequality of (5.38), by (5.35) and (5.36), we have

||∂i ((m (ϕ+ h)−m (ϕ)−m′ (ϕ)h) ∂iJ ∗ (ϕ+ h)) ||E0,ρ(I) (5.39)

≤ ||∂i (m (ϕ+ h)−m (ϕ)−m′ (ϕ)h) ∂iJ ∗ (ϕ+ h) ||E0,ρ(I)

+ || (m (ϕ+ h)−m (ϕ)−m′ (ϕ)h) ∂i (∂iJ ∗ (ϕ+ h)) ||E0,ρ(I)

. ||m (ϕ+ h)−m (ϕ)−m′ (ϕ)h||1,∞ ‖∂iJ ∗ (ϕ+ h)‖E0,ρ(I)

+ ||m (ϕ+ h)−m (ϕ)−m′ (ϕ)h||0,∞ ‖∂i (∂iJ ∗ (ϕ+ h))‖E0,ρ(I)

. ||m (ϕ+ h)−m (ϕ)−m′ (ϕ)h||1,∞ ‖ϕ+ h‖E0,ρ(I) .

Similarly, we get the fourth summand as follows

||∂i(m′ (ϕ)h∂iJ ∗ h)||E0,ρ(I) (5.40)

≤ ||∂i(m′ (ϕ))h∂iJ ∗ h||E0,ρ(I) + ||m′ (ϕ) ∂ih∂iJ ∗ h||E0,ρ(I)

+ ||m′ (ϕ)h∂i (∂iJ ∗ h) ||E0,ρ(I)

. ||m′ (ϕ) ||1,∞ ‖h‖0,∞ ‖∂iJ ∗ h‖E0,ρ(I) + ||m′ (ϕ) ||0,∞ ‖∂ih‖0,∞ ‖∂iJ ∗ h‖E0,ρ(I)

+ ||m′ (ϕ) ||0,∞ ‖h‖0,∞ ‖∂i (∂iJ ∗ h)‖E0,ρ(I)

. ||m′ (ϕ) ||1,∞ ‖h‖1,∞ ‖h‖E0,ρ(I)

. ||m′ (ϕ) ||1,∞ ‖h‖2
Eϕ,ρ(I) .

For the first summand in (5.38), we use a basic uniform estimate for smooth functions (see
[19, Lemma 4.2.1]) and the embedding (3.5), to deduce

||γ (ϕ+ h)− γ (ϕ)− γ′ (ϕ)h||0,∞ ≤ ε
(
‖h‖0,∞

)
‖h‖0,∞ ≤ ε

(
‖h‖Eϕ,ρ(I)

)
‖h‖Eϕ,ρ(I) .

On the other hand, we have

||∇ (γ (ϕ+ h)− γ (ϕ)− γ′ (ϕ)h) ||0,∞ (5.41)

≤ ||γ′′ (ϕ)∇hh||0,∞

+ ||γ′ (ϕ+ h)− γ′ (ϕ)− γ′′ (ϕ)h||0,∞
(
‖ϕ‖1,∞ + ‖h‖1,∞

)
. ||γ′′ (ϕ) ||0,∞ ‖h‖2

Eϕ,ρ(I) + ε
(
‖h‖0,∞

)
‖h‖0,∞

≤ ε
(
‖h‖Eϕ,ρ(I)

)
‖h‖Eϕ,ρ(I) ,

where in the second summand of the first inequality we have applied once again [19, Lemma
4.2.1] to the function γ′. Furthermore, the third summand that involves the mobility m, in
the second inequality of (5.38), can be estimated exactly verbatim, so that

||m (ϕ+ h)−m (ϕ)−m′ (ϕ)h||1,∞ ≤ ε
(
‖h‖Eϕ,ρ(I)

)
‖h‖Eϕ,ρ(I) .
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Clearly, since both ||γ′ (ϕ) ||1,∞ and ||m′ (ϕ) ||1,∞ are bounded by a constant in terms of
R > 0, according to (3.11) and the fact that m, γ ∈ C2([−1, 1]), we have

||m′ (ϕ) ||1,∞ ‖h‖2
Eϕ,ρ(I) + ||γ′ (ϕ) ||1,∞ ‖h‖2

Eϕ,ρ(I) ≤ ε
(
‖h‖Eϕ,ρ(I)

)
‖h‖Eϕ,ρ(I) . (5.42)

Combining all the foregoing estimates into (5.38), we arrive at the uniform estimate (3.10)
for as long as ϕ, h ∈ Eϕ,ρ (I) are as in (3.11). Therefore, A is also differentiable in each
ϕ ∈ Eϕ,ρ (I) with derivative A′ (ϕ).

It remains to show that A′ : Eϕ,ρ (I) → B (Eϕ,ρ (I) , E0,ρ (I)) is continuous. To this end,
we take ϕ, ψ, h ∈ Eϕ,ρ (I) with ‖h‖Eϕ,ρ(I) ≤ 1, and ‖ψ‖Eϕ,ρ(I) , ‖ϕ‖Eϕ,ρ(I) ≤ R, for arbitrary

but fixed R > 0. We exploit (5.37) and the embedding (3.5) in what follows to find

||(A′ (ϕ)− A′ (ψ))h||E0,ρ(I) (5.43)

≤ ‖(γ (ϕ)− γ (ψ)) ∂ih‖Lp,ρ(I;W 1
p (Ω)) + ||(γ′ (ϕ) ∂iϕ− γ′ (ψ) ∂iψ)h||Lp,ρ(I;W 1

p (Ω))

+ ‖(m (ϕ)−m (ψ)) ∂iJ ∗ h‖Lp,ρ(I;W 1
p (Ω))

+ ||(m′ (ϕ) ∂iJ ∗ ϕ−m′ (ψ) ∂iJ ∗ ψ)h||Lp,ρ(I;W 1
p (Ω))

=: S1 + S2 + S3.

Furthermore, for ‖h‖Eϕ,ρ(I) ≤ 1, we have

S1 := ‖(γ (ϕ)− γ (ψ)) ∂ih‖Lp,ρ(I;W 1
p (Ω)) + ||(γ′ (ϕ) ∂iϕ− γ′ (ψ) ∂iψ)h||Lp,ρ(I;W 1

p (Ω)) (5.44)

. ‖γ (ϕ)− γ (ψ)‖1,∞ + ||γ′ (ϕ) ∂iϕ− γ′ (ψ) ∂iψ||0,∞
+ ||γ′ (ϕ) ∂iϕ− γ′ (ψ) ∂iψ||Lp,ρ(I;W 1

p (Ω))

. ‖γ (ϕ)− γ (ψ)‖1,∞ + ||γ′ (ϕ) ∂iϕ− γ′ (ψ) ∂iψ||0,∞
+ ||γ′ (ϕ) (∂iϕ− ∂iψ) ||Lp,ρ(I;W 1

p (Ω)) + ||(γ′ (ϕ)− γ′ (ψ))∂iψ||Lp,ρ(I;W 1
p (Ω))

→ 0,

due to (3.5), as ϕ→ ψ in the strong Eϕ,ρ (I)-norm sense. Similarly, it follows that

S3 := ||(m′ (ϕ) ∂iJ ∗ ϕ−m′ (ψ) ∂iJ ∗ ψ)h||Lp,ρ(I;W 1
p (Ω)) (5.45)

. ||m′ (ϕ) ∂iJ ∗ ϕ−m′ (ψ) ∂iJ ∗ ψ||0,∞ + ||m′ (ϕ) ∂iJ ∗ ϕ−m′ (ψ) ∂iJ ∗ ψ||Lp,ρ(I;W 1
p (Ω))

. ||m′ (ϕ) ∂iJ ∗ (ϕ− ψ) ||0,∞ + ||(m′ (ϕ)−m′ (ψ))∂iJ ∗ ψ||0,∞
+ ||m′ (ϕ) ∂iJ ∗ (ϕ− ψ) ||Lp,ρ(I;W 1

p (Ω)) + ||(m′ (ϕ)−m′ (ψ))∂iJ ∗ ψ||Lp,ρ(I;W 1
p (Ω))

≤ C
(
R, ‖J‖W 1

1

)
‖ϕ− ψ‖Eϕ,ρ(I) + ||m′ (ϕ)−m′ (ψ) ||1,∞

→ 0,
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due to (3.5), (5.35) and m′ ∈ C1([−1, 1]), for as long as ϕ→ ψ in Eϕ,ρ (I) . Finally, exploiting
once again (5.37), on account of (5.35) we have

S2 := ‖(m (ϕ)−m (ψ)) ∂iJ ∗ h‖Lp,ρ(I;W 1
p (Ω)) (5.46)

. ‖m (ϕ)−m (ψ)‖0,∞ ‖h‖Eϕ,ρ(I) + ‖m (ϕ)−m (ψ)‖Lp,ρ(I;W 1
p (Ω)) ‖h‖0,∞

. ‖m (ϕ)−m (ψ)‖Eϕ,ρ
→ 0,

as ϕ→ ψ in Eϕ,ρ (I), due to the continuity of m. Summarizing, from estimates (5.44)-(5.46),
we have shown in (5.43) that indeed we have

‖A′(ϕ)− A′(ψ)‖B(Eϕ,ρ(I),E0,ρ(I)) = sup
h∈Eϕ,ρ(I) ,‖h‖Eϕ,ρ(I)≤1

||(A′ (ϕ)− A′ (ψ))h||E0,ρ(I) → 0 ,

as ϕ→ ψ in Eϕ,ρ (I), which is the required continuity of A′. The proof is now finished.

6. Proof of Lemma 3.3

We first recall that, since we have assumed that ∂Ω of class C2, then the boundary can
be locally “flattened”. Fix a point x0 ∈ ∂Ω. Then there is an open ball B = B (x0) and a
bijection π : B → D ⊂ Rd such that π (B ∩ Ω) ⊂ Rd

+, π (∂Ω ∩B) ⊂ ∂Rd
+ and π ∈ C2 (B) ,

π−1 ∈ C2 (D). In particular, for π = (π1, ..., πd) we have πd ≡ 0 on B ∩ ∂Ω. In this case,
n = n (x0) = −∇πd (x0) / ‖∇πd (x0)‖ is a well defined outer-normal vector to x0 ∈ ∂Ω. In
particular, n = n (x0) ∈ C1

(
B ∩ Ω

)
. Next, we observe that for ϕ ∈ Eϕ,ρ (I), there holds

that

trΩϕ ∈ W 1−1/2p,2−1/p
p,ρ (I × ∂Ω) ↪→ C(I;W 2(ρ−1/p)−1/p

p (∂Ω)) ∩ Lp,ρ(I;W 2−1/p
p (∂Ω))

↪→ C
(
I × ∂Ω

)
∩ Lp,ρ

(
I;C1 (∂Ω)

)
, (6.1)

where [19, Proposition 1.3.12] in the first part of (6.1), and [19, Theorem 1.3.6], together
with the condition 2(ρ − 1/p) > d/p, in the second part have been used. Notice also that

W
2−1/p
p (∂Ω) ↪→ C1 (∂Ω), since p ∈ (d+ 2,∞). Therefore, by [19, Lemma 4.2.3, part (a)] we

have
l′(trΩϕ), l(trΩϕ) ∈ Fρ (I) ∩ C

(
I × ∂Ω

)
.

Furthermore,
nitrΩ (∂iJ ∗ ϕ) ∈ Fρ (I) ∩ C

(
I × ∂Ω

)
, (6.2)

due to the regularity of J and n = (n1, ..., nd) ∈ C1. Indeed, it suffices to show it in the
norm of Fρ (I) due to (3.6) since 2 (ρ− 1/p) > 1 + d/p.

Instead of applying the Young convolution theorem in boundary spaces (in fact, this would
surely require further regularity of J in addition to (H.4)), we recall the fact that the spatial
trace

trΩ (·) : W 1/2,1
p,ρ (I × Ω)→ Fρ (I) = W 1/2−1/2p,1−1/p

p,ρ (J × ∂Ω) (6.3)

is continuous, and that the operator norm of trΩ in 0W
1/2,1
p,ρ (I × Ω) is independent of the

length of I (cf. [19, Proposition 1.3.12]). Noticing that

W 1/2,1
p,ρ (I × Ω) = W 1/2

p,µ (I;Lp (Ω)) ∩ Lp,µ
(
I;W 1

p (Ω)
)
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we get

||nitrΩ (∂iJ ∗ ϕ) ||Fρ(I) . max
i=1,...,d

||trΩ (∂iJ ∗ ϕ) ||Fρ(I) . max
i=1,...,d

||∂iJ ∗ ϕ||W 1/2,1
p,ρ (I×Ω)

(6.4)

. ||ϕ||
W

1/2,1
p,ρ (I×Ω)

≤ ‖ϕ‖Eϕ,ρ(I) ,

owing to (5.35) and (5.36). Here, we point out again that the embedding constant in (6.4)
is independent of the length of I = (0, T ) if Fρ (I) and W s,1

p,ρ (I × Ω) in (6.4) are replaced by

0Fρ (I) and 0W
s,1
p,ρ (I × Ω), respectively. Application of [19, Lemma 1.3.23] yields that Fρ (I)

is a Banach algebra if 2 (ρ− 1/p) > 1 + d/p so that by (3.6) the pointwise multiplications

l′(trΩϕ) (nitrΩ (∂iJ ∗ ϕ)) , l(trΩϕ)(nitrΩ (∂iJ ∗ h)) ∈ Fρ (I) ∩ C
(
I × ∂Ω

)
,

and once again by (6.1),

l′(trΩϕ)(nitrΩ (∂iJ ∗ ϕ))trΩh ∈ B (Eϕ,ρ (I) , Fρ (I)) .

We now show the differentiability of B at ϕ ∈ Eϕ,ρ (I) . For this it suffices to show that the
superposition nonlinear operator

g(trΩϕ) := l(trΩϕ)nitrΩ (∂iJ ∗ ϕ) (6.5)

is differentiable with derivative g′ : Eϕ,ρ (I)→ B (Eϕ,ρ (I) , Fρ (I)), given by7

g′ (ϕ)h = l′(ϕ) (ni∂iJ ∗ ϕ)h+ l(ϕ) (∂iJ ∗ h)ni. (6.6)

Moreover, we will show that g′ is continuous, and that the uniform estimate holds

||g (ϕ+ h)− g (ϕ)− g′ (ϕ)h||0Fρ(I) ≤ ε(‖h‖Eϕ,ρ(I)) ‖h‖Eϕ,ρ(I) , (6.7)

for ϕ, h ∈ Eϕ,ρ (I) , h (0, ·) = 0 equipped with the property (3.13). Arguing as in the proof
of Lemma 3.2 (see, in particular, (5.38)-(5.42)), we obtain

||g (ϕ+ h)− g (ϕ)− g′ (ϕ)h||
Lp,ρ

(
I;W

1−1/p
p (∂Ω)

) (6.8)

≤ ||(l (ϕ+ h)− l (ϕ)− l′ (ϕ)h) (∂iJ ∗ (ϕ+ h))ni||Lp,ρ
(
I;W

1−1/p
p (∂Ω)

)
+ ||(l′ (ϕ)h∂iJ ∗ hni)||Lp,ρ

(
I;W

1−1/p
p (∂Ω)

)
≤ ||(l (ϕ+ h)− l (ϕ)− l′ (ϕ)h) (∂iJ ∗ (ϕ+ h))ni||Lp,ρ(I;W 1

p (Ω))

+ ||(l′ (ϕ)h∂iJ ∗ hni)||Lp,ρ(I;W 1
p (Ω))

≤ ε(‖h‖Eϕ,ρ(I)) ‖h‖Eϕ,ρ(I) ,

since the spatial trace trΩ : W 1
p (Ω)→ W

1−1/p
p (∂Ω) is continuous. Observe that this estimate

is always uniform in T0 ≤ T and R > 0 if (3.13) holds. In order to bound the same quantity

in W
1/2−1/2p
p,ρ (I;Lp (∂Ω)), we use its intrinsic norm given as

‖ϕ‖p
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

= [ϕ]p
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

+ ‖ϕ‖pLp,ρ(I;Lp(∂Ω)) (6.9)

7In the sequel, we drop the spatial trace trΩ to simplify readability.
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with

[ϕ]p
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

:=

∫ T

0

∫ s

0

tp(1−ρ)

(s− t)1+(1/2−1/2p)p
‖ϕ (t)− ϕ (s)‖pLp(∂Ω) dtds, (6.10)

to estimate the following expression

Σ (t, x) := g (ϕ (t, x) + h (t, x))− g (ϕ (t, x))− g′ (ϕ (t, x))h (t, x) .

For the nonlinear operators given by (6.5) and (6.6), by a simple computation we can further
split the difference Σ (t, x)− Σ (s, x) into three summands Σ1 + Σ2 +Σ3, where

Σ1 := [(l (ϕ+ h)− l (ϕ)− l′ (ϕ)h) (t)− (l (ϕ+ h)− l (ϕ)− l′ (ϕ)h) (s)] ∂iJ ∗ (ϕ+ h) (t)ni ,

Σ2 :=(l (ϕ+ h)− l (ϕ)− l′ (ϕ)h) (s) [∂iJ ∗ ((ϕ+ h) (t)− (ϕ+ h) (s))ni] ,

Σ3 :=[l′ (ϕ)h(∂iJ ∗ h)(t)− l′ (ϕ)h(∂iJ ∗ h)(s)]ni .

Using [19, Lemma 4.2.1], the embeddings (3.5), (3.6) and assumption (H.6) together with
(6.4), we find

[Σ]p
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

(6.11)

.
(
‖h‖pEϕ,ρ(I) + ‖ϕ‖pEϕ,ρ(I)

)
[l (ϕ+ h)− l (ϕ)− l′ (ϕ)h]

p

W
1/2−1/2p
p,ρ (I;Lp(∂Ω))

+ ||l (ϕ+ h)− l (ϕ)− l′ (ϕ)h||p
C(I×∂Ω)

(
‖ϕ‖pEϕ,ρ(I) + ‖h‖pEϕ,ρ(I)

)
+‖h‖p

C(I×∂Ω)
‖h‖p

C(I×Ω)
[l′(ϕ)]p

W
1/2−1/2p
p,ρ (I;Lp(∂Ω))

+ ‖l′(ϕ)‖p
C(I×∂Ω)

[h(∂iJ ∗ h)ni]
p

W
1/2−1/2p
p,ρ (I;Lp(∂Ω))

. ε(‖h‖C(I×∂Ω))

(
[h]p

W
1/2−1/2p
p,ρ (I;Lp(∂Ω))

+ ‖h‖p
C(I×∂Ω)

[ϕ]p
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

)
×
(
‖h‖pEϕ,ρ(I) + ‖ϕ‖pEϕ,ρ(I)

)
+ ε(‖h‖C(I×∂Ω)) ‖h‖p

C(I×∂Ω)

(
‖ϕ‖pEϕ,ρ(I) + ‖h‖pEϕ,ρ(I)

)
+‖l′(ϕ)‖p

C(I×∂Ω)

(
‖h‖2p

C(I×Ω)
+ ‖h‖pFρ(I)‖∂iJ ∗ hni‖

p
L∞(I×∂Ω) + ‖∂iJ ∗ hni‖pFρ(I)‖h‖

p
L∞(I×∂Ω)

)
. ε(‖h‖Eϕ,ρ(I)) ‖h‖

p
Eϕ,ρ(I) +‖h‖2p

Fρ(I) + ‖h‖pFρ(I)‖h‖
p
Eϕ,ρ(I) . ε(‖h‖Eϕ,ρ(I)) ‖h‖

p
Eϕ,ρ(I) ,

where the first summand was estimated again using [19, Lemma 4.2.3, part (b)] and, for the
last term, we used (6.4) and

‖ϕψ‖Fρ(I) . ‖ϕ‖Fρ(I) ‖ψ‖L∞(I×∂Ω) + ‖ψ‖Fρ(I) ‖ϕ‖L∞(I×∂Ω) . (6.12)

Estimate (6.11) is also valid if we replace I by R+. Finally, this estimate together with (6.8)
implies that g is differentiable at each ϕ ∈ Eϕ,ρ (I). However, the intrinsic norm (6.10) does

not yield a uniform estimate in T > 0 if (6.11) involves the 0W
1/2−1/2p
p,ρ (I;Lp (∂Ω))-norm,

whenever (3.13) is assumed. More precisely, the embedding constant C > 0 in (6.11) may
depend on T > 0 and typically becomes large as T becomes small, see [19, Remark 1.1.15].
In order to overcome this obstacle, when working over small intervals I = (0, T ) one has

to equip the space 0W
1/2−1/2p
p,ρ (I;Lp (∂Ω)) with an interpolation norm via suitable extension
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and restriction operators. Arguing then as in the proof of [19, Lemma 4.2.3, Step (IV)], by
virtue of (6.11) and (6.4) we can then show the estimate

||g (ϕ+ h)− g (ϕ)− g′ (ϕ)h||
0W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

(6.13)

≤ ε(‖h‖Eϕ,ρ(I)) ‖h‖Eϕ,ρ(I)

(
R + ‖ϕ (0)‖

W
2(ρ−1/p)
p (Ω)

)
,

where now the function ε is uniform in T0 ≤ T and R > 0, for as long as ϕ, h ∈ Eϕ,ρ (I) are
as in (3.13).

It remains to show that g′ is continuous. We apply the statement of [19, Lemma 1.3.23]
repeatedly, due to the embedding (3.6), by also employing (6.12). To this end, we take
ϕ, ψ, h ∈ Eϕ,ρ (I) with ‖h‖Eϕ,ρ(I) ≤ 1, and estimate according to (6.4) using also (3.6). This
gives

||(l (ϕ)− l (ψ))∂iJ ∗ hni||Fρ(I) . ‖l (ϕ)− l (ψ)‖L∞(I×∂Ω) ‖∂iJ ∗ hni‖Fρ(I) (6.14)

+ ‖l (ϕ)− l (ψ)‖Fρ(I) ‖∂iJ ∗ hni‖L∞(I×∂Ω)

. ‖l (ϕ)− l (ψ)‖L∞(I×∂Ω) + ‖l (ϕ)− l (ψ)‖Fρ(I)

. ‖l (ϕ)− l (ψ)‖L∞(I×∂Ω) + ‖l (ϕ)− l (ψ)‖
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

+ ‖l (ϕ)− l (ψ)‖Lp,ρ(I;W 1
p (Ω)) ,

owing to the regularity of J and the fact that the spatial trace trΩ : W 1
p (Ω)→ W

1−1/p
p (∂Ω)

is continuous. We observe that the first summand in the last inequality of (6.14) goes to zero
as ϕ→ ψ in Eϕ,ρ (I), and so does the last summand due to the continuity of l ∈ C2([−1, 1]).
For the second summand, we use [19, Lemma 4.2.1, part (c)] to estimate

[l (ϕ)− l (ψ)]
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

. ε(‖ϕ− ψ‖C(I×∂Ω)) [ψ]
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

+ ‖ϕ− ψ‖
W

1/2−1/2p
p,ρ (I;Lp(∂Ω))

,

and notice once again that the right-hand side also goes to zero as ϕ (strongly) converges to
in Eϕ,ρ (I). Collecting these estimates, we obtain

||(l (ϕ)− l (ψ) ∂iJ ∗ hni)||Fρ(I) → 0 as ϕ→ ψ in Eϕ,ρ (I) . (6.15)

Next, using (6.4), (6.12) and arguing as in (6.14) we want to bound the following quantity
(recall that ‖h‖Eϕ,ρ(I) ≤ 1):

||(l′(ϕ) (∂iJ ∗ ϕni)− l′(ψ) (∂iJ ∗ ψni))h||Fρ(I) (6.16)

≤ ||(l′(ϕ)− l′(ψ)) (∂iJ ∗ ψni)h||Fρ(I) + ||(l′ (ψ) ∂iJ ∗ (ϕ− ψ)ni)h||Fρ(I)

. ||(l′(ϕ)− l′(ψ)) (∂iJ ∗ ψni) ||L∞(I×∂Ω) ‖h‖Fρ(I)

+ ||(l′(ϕ)− l′(ψ)) (∂iJ ∗ ψni) ||Fρ(I) ‖h‖L∞(I×∂Ω)

+ C (R) ||∂iJ ∗ (ϕ− ψ)ni||Fρ(I)+‖l′(ψ)h‖Fρ(I)‖∂iJ ∗ (ϕ− ψ)ni‖L∞(I×∂Ω)

. C (J,R) ||l′(ϕ)− l′(ψ)||L∞(I×∂Ω) + ||l′(ϕ)− l′(ψ)||L∞(I×∂Ω)||∂iJ ∗ ψni||Fρ(I)

+ ||l′(ϕ)− l′(ψ)||Fρ(I)||∂iJ ∗ ψni||L∞(I×∂Ω) + C (R, J) ||ϕ− ψ||Eϕ,ρ(I)
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+
(
‖l′(ψ)‖L∞(I×∂Ω)‖h‖Fρ(I) + ‖l′(ψ)‖Fρ(I)‖h‖L∞(I×∂Ω)

)
‖∂iJ ∗ (ϕ− ψ)ni‖L∞(I×∂Ω) (6.17)

. C (J,R)
(
||l′(ϕ)− l′(ψ)||L∞(I×∂Ω) + ||(l′(ϕ)− l′(ψ))||Fρ(I) + ||ϕ− ψ||Eϕ,ρ(I)

)
.

Notice that first and last summands in the last inequality of (6.16) go to zero as ϕ → ψ in
Eϕ,ρ (I). For the second summand, we argue exactly as in the uniform bound for (6.14) so
that this also goes to zero owing to l′ ∈ C1([−1, 1]). Thus, we have also shown that

||(l′(ϕ) (∂iJ ∗ ϕni)− l′(ψ) (∂iJ ∗ ψni))h||Fρ(I) → 0 as ϕ→ ψ in Eϕ,ρ (I) , (6.18)

uniformly for ‖h‖Eϕ,ρ(I) ≤ 1. This estimate together with (6.15) implies that, as ϕ → ψ in

Eϕ,ρ (I), we have

‖g′(ϕ)− g′(ψ)‖B(Eϕ,ρ(I),Fρ(I)) = sup
h∈Eϕ,ρ(I) ,‖h‖Eϕ,ρ(I)≤1

||(g′ (ϕ)− g (ψ))h||Fρ(I) → 0 ,

which entails the desired continuity of g′. This concludes the proof of lemma.

7. Proof of Lemma 4.1

Observe that, for almost any t ∈ (0, T ), we have −γ(ϕ)∆ϕ = γ′(ϕ)∇ (ϕ) · ∇ϕ− div (m(ϕ)∇J ∗ ϕ)− ∂tϕ, a.e. in Ω× (0, T )

∂nϕ = b (ϕ) (∇J · n ∗ ϕ) , a.e. on ∂Ω.
(7.19)

The idea is to apply an elliptic regularity result to the equation −∆ϕ = f in Ω with ∂nϕ = g
on ∂Ω, where

f := γ′(ϕ)γ−1(ϕ)∇ (ϕ) · ∇ϕ− γ−1(ϕ)div (m(ϕ)∇J ∗ ϕ)− γ−1(ϕ)∂tϕ

and

g := b (ϕ) (∇J · n ∗ ϕ) .

Observe that, by (H.1) and (2.11), we have

‖f‖H ≤ C
(
||γ′||C([−1,1]), θ

)
‖∇ϕ‖L4(Ω) ‖∇ϕ‖L4(Ω) (7.20)

+ C (θ) ‖div (m(ϕ)∇J ∗ ϕ) ‖L2(Ω) + C (θ) ‖∂tϕ‖L2(Ω)

≤ C
(
||γ′||C[−1,1], θ

)
‖∇ϕ‖2

L4(Ω) + C (θ) ‖∂tϕ‖L2(Ω)

+ C
(
||γ′||C[−1,1], ‖∇J‖L1

)
‖ϕ‖2

W 1
4 (Ω) + C (m0) ‖∇ (∇J ∗ ϕ) ‖L2(Ω)

≤ C
(
γ,m0, θ, ‖J‖W 1

1

)
‖ϕ‖2

W 1
4 (Ω) + CJ‖ϕ‖L2(Ω) + C (θ) ‖∂tϕ‖L2(Ω).

In order to estimate the W 1
4 (Ω)-norm on the right-hand side of (7.20) we exploit a proper

form of the Sobolev interpolation inequality (see [19, Proposition A.6.2]) with the choices

s = 1, p = 4, s1 = 2, p1 = 2, s0 = β − δ, p0 = r,

where β is the Hölder exponent of Definition 2.6 and δ > 0, 1 < r <∞. We find

‖ϕ‖W 1
4 (Ω) ≤ C‖ϕ‖θH2(Ω)‖ϕ‖1−θ

W
s0
p0

(Ω)
, (7.21)
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if 0 < θ < 1 satisfies the following inequalities{
1
4
≤ θ

2
+ 1−θ

r
,

1− 3
4
< θ(2− 3

2
) + (1− θ)(β − δ − 3

r
).

(7.22)

Our claim is that there exist δ, r and θ < 0.5 which satisfy these conditions. Indeed, the first
one is equivalent to 1

2
r−4
r−2
≤ θ, so then there exists θ < 0.5 which satisfies the first condition

of (7.22) for any r > 4. On the other hand, choosing δ and r such that β − δ − 3
r

= β/2, we
get in the second condition that

1

4
− β

2
< θ

(
1

2
− β

2

)
⇔ 1− 2β

4
< θ

(
1− β

2

)
⇔ 1− 2β

2(1− β)
< θ.

We note that the first term on left-hand side is less than 0.5 for any β ∈ (0, 1), so we
conclude that there exists θ < 0.5 which satisfies (7.22). Then, exploiting the Gagliardo-
Nirenberg inequality (7.21) together with the continuous embedding Cβ(Ω) ↪→ Wα,r(Ω), for
any α ∈ (0, β) and r ∈ (1,∞), we have

‖ϕ‖W 1
4 (Ω) ≤ C‖ϕ‖θH2(Ω)‖ϕ‖1−θ

Cβ(Ω)
, with θ < 1/2. (7.23)

Thus, using (7.23), from (7.20) we infer

‖f‖H ≤ C (γ,m0, θ,Ω, J)
(
‖ϕ‖2θ

H2(Ω)‖ϕ‖
2(1−θ)
Cβ(Ω)

+ ‖ϕ‖L2(Ω) + ‖∂tϕ‖L2(Ω)

)
,

for some θ ∈ (0, 1/2). This yields for any δ > 0 that

‖f‖H ≤ δ‖ϕ‖H2(Ω) + Cδ

(
‖ϕ‖2(1−θ)/(1−2θ)

Cβ(Ω)
+ ‖ϕ‖V + ‖∂tϕ‖L2(Ω)

)
. (7.24)

Concerning the boundary term g, using the classical trace theorem, recalling (2.11) and
observing that ||b′||C([−1,1]) <∞, we similarly deduce

‖g‖H1/2(∂Ω) ≤ C‖b (ϕ) (∇J · n ∗ ϕ) ‖V
≤ C (‖n‖C1) max

i=1,..,d
(‖b (ϕ) ∂iJ ∗ ϕ‖H + ‖∇ (ϕ)∂iJ ∗ ϕ) ‖H)

≤ C
(
α, ‖n‖C1 , J, ||b′||C[−1,1]

) (
‖ϕ‖V + ‖ϕ‖2

W 1
4 (Ω)

)
.

Arguing as above in (7.20)-(7.24) we find

‖g‖H1/2(∂Ω) ≤ δ‖ϕ‖H2(Ω) + Cδ

(
‖ϕ‖2(1−θ)/(1−2θ)

Cβ(Ω)
+ ‖ϕ‖V

)
. (7.25)

Finally, recalling the well-known elliptic estimate

‖ϕ‖H2(Ω) ≤ C (Ω)
(
‖ϕ‖V + ‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
, (7.26)

combining together (7.24) and (7.25) into (7.26) and choosing a sufficiently small δ < 1/2,
we deduce from (7.26) the desired (4.30).
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8. Appendix: on the separation property

Here we present a proof of the separation property for the nonlocal Cahn-Hilliard equation
with degenerate mobility (see [15, 16]) for the original proofs). More precisely, we establish
the validity of the following

Theorem 8.1. Let κ ∈ (0, 1). Assume that the assumptions of Theorem 2.3 are satisfied,
together with (2.5). In addition, let the mobility m be such that

m(s) ≤M(1− s2) , ∀s ∈ [−1, 1] , (8.1)

for some M > 0. Then, there exists δ = δ(κ) > 0 such that, for any measurable initial data
ϕ0 with |ϕ0| ≤ 1− κ, it holds

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀t ≥ 2. (8.2)

The proof of Theorem 8.1 will be carried out by means of two lemmas which are slight
generalization of the ones contained in [15, Sec.3]. In particular, here we assume that mF ′′ ≥
θ > 0 on [−1, 1], while in [15] they assume mF ′′ = a, for some positive constant a albeit the
authors claim that this is just a simplifying assumption.

The first lemma is an L1-bound of a suitable entropy function, while the second one will
enable us to use a Moser-Alikakos argument to get an L∞-bound and conclude the proof.

Lemma 8.2. Under the assumptions of Theorem 8.1, there exists C(κ) > 0 such that

‖η(ϕ(t))‖L1(Ω) +

∫ t+1

t

‖∇ϕ (s)‖2
L2(Ω) ds ≤ C(κ), ∀t ≥ 1.

Proof of Lemma 8.2. Our aim is to obtain a suitable differential inequality for the L1-norm
of log(1− ϕ) and log(1 + ϕ). For simplicity, we consider just one of these two function, say
log(1 + ϕ), since the argument for the other one is similar. By employing equation (2.2) we
have

d

dt

∫
Ω

∣∣∣ log
(1 + ϕ

2

)∣∣∣ dx =
d

dt

∫
Ω

− log(1 + ϕ) dx

=

∫
Ω

−1

1 + ϕ
ϕt dx

=

∫
Ω

−∇ϕ
(1 + ϕ)2

·
[
m(ϕ)F ′′(ϕ)∇ϕ−m(ϕ)(∇J ∗ ϕ)

]
dx

= −
∫

Ω

∣∣∣∇ log
(1 + ϕ

2

)∣∣∣2m(ϕ)F ′′(ϕ) dx

+

∫
Ω

m(ϕ)

1 + ϕ
∇ log

(1 + ϕ

2

)
· (∇J ∗ ϕ) dx . (8.3)

Therefore, by using assumptions (2.4) and (8.1) we get

d

dt

∫
Ω

∣∣∣ log
(1 + ϕ

2

)∣∣∣ dx+ θ
∥∥∥∇ log

(1 + ϕ

2

)∥∥∥2

≤ 2M

∫
Ω

∣∣∣∇ log
(1 + ϕ

2

)∣∣∣|∇J ∗ ϕ| dx
≤ θ

2

∥∥∥∇ log
(1 + ϕ

2

)∥∥∥2

+N , (8.4)
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where the constant N is given by N = 8M2J2
0 |Ω|θ−1, with J0 := supx∈Ω

∫
Ω
|∇J(x − y)|dy.

Hence, we get

d

dt

∫
Ω

|η(ϕ)| dx+
θ

2
‖∇η(ϕ)‖2 ≤ N , (8.5)

where we have set

η(s) := log
(1 + s

2

)
. (8.6)

The second term on the right hand side of (8.5) is now estimated according to the following
generalized Poincaré inequality∥∥∥η(ϕ)− 1

|Ω1|

∫
Ω1

η(ϕ) dx
∥∥∥ ≤ CP
|Ω1|
‖∇η(ϕ)‖ , (8.7)

where CP = CP (Ω) and Ω1 ⊂ Ω is any subset of Ω such that |Ω1| > 0. We now choose
Ω1 = Ω1,t given by

Ω1,t :=
{
x ∈ Ω : ϕ(x, t) ≥ −1− ϕ

2

}
. (8.8)

Then, we can see that

|Ω1,t| ≥
1 + ϕ

4
|Ω| . (8.9)

Indeed, if this were not true, we would have

1 + ϕ

2
=

1

|Ω|

∫
Ω1,t

1 + ϕ

2
dx+

1

|Ω|

∫
Ω−Ω1,t

1 + ϕ

2
dx

≤ |Ω1,t|
|Ω|

+
|Ω− Ω1,t|
|Ω|

1 + ϕ

4
<

1 + ϕ

2
(8.10)

which is a contradiction.
By employing (8.7), we have

‖η(ϕ)‖2
L1(Ω) ≤ |Ω|‖η(ϕ)‖2 ≤ 2

|Ω|C2
P

|Ω1,t|2
‖∇η(ϕ)‖2 + 2

|Ω|2

|Ω1,t|2
(∫

Ω1,t

|η(ϕ)| dx
)2

≤ 32C2
P

|Ω|
1

(1 + ϕ)2
‖∇η(ϕ)‖2 + 2 |Ω|2 log2

(1 + ϕ

4

)
(8.11)

Inserting this estimate in (8.5), we therefore obtain the following differential inequality

d

dt

∫
Ω

|η(ϕ)| dx+ κ(ϕ0)
(∫

Ω

|η(ϕ)| dx
)2

≤ K , (8.12)

where the positive constants κ,K are given by

κ(ϕ0) :=
θ|Ω|

64C2
P

(1 + ϕ0)2 , K := N +
θ |Ω|3

32C2
P

(1 + ϕ0)2 log2
(1 + ϕ0

4

)
. (8.13)

Notice that, on the right hand side of (8.12), K can be replaced by a constant (that we can
still denote by K) which does not depend on ϕ0.
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Due to the lack of regularity of the initial condition (η(ϕ0) /∈ L1(Ω)), we consider an approx-
imation sequence of initial data ϕ0,n fulfilling

η(ϕ0,n) ∈ L1(Ω) and ϕ0,n → ϕ0 in L2(Ω).

We observe that

|ϕ0,n| ≤ ‖ϕ0,n − ϕ0‖L1(Ω) + |ϕ0| ≤ 1− κ

2
,

for n large enough. Since any weak solution related to ϕ0,n satisfies the differential inequality
(8.12), we can control η(ϕn(t)) by means of the solution Λ(t) of the differential equation

Λ̇(t) + ω1Λ2(t) = K, Λ(0) = ‖η(ϕ0,n)‖L1(Ω), (8.14)

where ω1 and K are exactly the constants of (8.12), and we obtain

‖η(ϕn(t))‖L1(Ω) ≤ K̂, ∀t ≥ 1,

where K̂ is a positive constant depending only on ω1 and K. Therefore, on account of the
continuous dependence with respect to the initial conditions, for all t ≥ 1, ϕn(t) → ϕ(t) in
L2(Ω) and so ϕn(t)→ ϕ(t) for almost every x ∈ Ω, up to a subsequence. In particular, this
also implies that η(ϕn(t))→ η(ϕ(t)) for almost every x ∈ Ω and, by the Fatou’s Lemma, we
finally deduce ∫

Ω

|η(ϕ(t))|dx ≤ lim inf
n→∞

∫
Ω

|η(ϕn(t))|dx ≤ K.

Finally integrating (8.5) once more over (t, t+ 1) with t ≥ 1, the claim in the statement of
Lemma 8.2 follows immediately. �

The second lemma contains the proof of Theorem 8.1. Indeed we have

Lemma 8.3. Let the assumptions of Theorem 8.1 hold. Then there exists C(κ) such that

‖η(ϕ(t))‖L∞(Ω) ≤ C(κ), ∀t ≥ 2. (8.15)

Proof. We argue as in Lemma 8.2 to prove a differential inequality in the Lp-norm. We only
consider the function η defined as in (8.6), since the argument for η defined as log((1−ϕ)/2)
is similar. Performing a differentiation with respect to time and using the equation (2.2), we
have

1

p+ 1

d

dt

∫
Ω

|η(ϕ)|p+1dx+

∫
Ω

m(ϕ)F ′′(ϕ)∇ϕ · ∇
(
|η(ϕ)|p−1η(ϕ)

1

1 + ϕ

)
dx (8.16)

=

∫
Ω

m(ϕ) (∇J ∗ ϕ) · ∇
(
|η(ϕ)|p−1η(ϕ)

1

1 + ϕ

)
dx .

Exploiting the following relation

∇
(
|η(ϕ)|p−1η(ϕ)

1

1 + ϕ

)
= p|η(ϕ)|p−1 ∇ϕ

(1 + ϕ)2
+ |η(ϕ)|p−1η(ϕ)

−∇ϕ
(1 + ϕ)2

(8.17)

= p|η(ϕ)|p−1 ∇ϕ
(1 + ϕ)2

+ |η(ϕ)|p ∇ϕ
(1 + ϕ)2

,



27

we can control from below the second term on the left-hand side of (8.16) as∫
Ω

m(ϕ)F ′′(ϕ)∇ϕ · ∇
(
|η(ϕ)|p−1η(ϕ)

1

1 + ϕ

)
dx ≥ pθ

∫
Ω

|η(ϕ)|p−1 |∇ϕ|2

(1 + ϕ)2
dx .

Concerning the right-hand side of (8.16), we split it into two terms accordingly to (8.17) and
we control them as follows:

|J1| ≤ p

∫
Ω

m(ϕ)|∇J ∗ ϕ||η(ϕ)|p−1 |∇ϕ|
(1 + ϕ)2

dx

≤ Cp

∫
Ω

(
|η(ϕ)|

p−1
2
|∇ϕ|
1 + ϕ

)(
|η(ϕ)|

p−1
2
m(ϕ)

1 + ϕ

)
dx

≤ εp

∫
Ω

|η(ϕ)|p−1 |∇ϕ|2

(1 + ϕ)2
dx+

Cp

4ε

∫
Ω

|η(ϕ)|p−1dx ,

and

|J2| ≤
∫

Ω

m(ϕ)|∇J ∗ ϕ||η(ϕ)|p |∇ϕ|
(1 + ϕ)2

dx ≤ C

∫
Ω

|η(ϕ)|
p−1
2
|∇ϕ|
1 + ϕ

|η(ϕ)|
p+1
2

≤ εp

∫
Ω

|η(ϕ)|p−1 |∇ϕ|2

(1 + ϕ)2
dx+

C

4εp

∫
Ω

|η(ϕ)|p+1dx ,

where we have used (8.1) and the fact that |ϕ| ≤ 1. Finally, collecting the above estimates
together and recalling that

|η(ϕ)|p−1 |∇ϕ|2

(1 + ϕ)2
=

4

(p+ 1)2
|∇|η(ϕ)|

p+1
2 |2, (8.18)

we deduce the differential inequality

d

dt

∫
Ω

|η(ϕ)|p+1dx+
2pθ

p+ 1

∫
Ω

|∇|η|
p+1
2 |2 dx ≤ C(p+ 1)2

(
1 +

∫
Ω

|η(ϕ)|p+1dx

)
,

Starting from this differential inequality, we exploit an iterative argument (see [11], [10] and
references therein) together with Lemma 8.2, to infer that

sup
t≥2
‖η(ϕ(t))‖L∞(Ω) ≤ C sup

t≥1
‖η(ϕ(t))‖L1(Ω) ≤ C(κ).

This inequality, together with the similar bound involving the function η defined as log((1−
ϕ)/2), entail (8.2).

Remark 8.4. A careful look at the above proofs shows that the separation property holds
instantaneously (i.e. for any time t0 > 0). Therefore, if the initial datum is already separated
(i.e. −1 + κ ≤ ϕ0 ≤ 1 − κ in Ω) then the (strong) solution is separated for any time t ≥ 0
due to its space-time continuity.

As a consequence of the separation property, the weak solution gets more regular in finite
time. For instance, we have the following uniform-in-time bound
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Corollary 8.5. Under the assumptions of Theorem 8.1, there exists C(κ) > 0 such that

‖µ(t)‖L∞(Ω) +

∫ t+1

t

‖∇µ(τ)‖2
L2(Ω)dτ ≤ C(κ), ∀t ≥ 2. (8.19)

Furthermore, it follows that

sup
t≥3

(
‖ϕ (t)‖V + ‖∂tϕ‖L2([t,t+1];L2(Ω))

)
≤ C (κ) . (8.20)

Proof. The first estimate (8.19) is an immediate consequence of (8.15). For the second
estimate (8.20), let us recall again that

1

2
‖∂tϕ‖2

L2(Ω) +
d

dt
E (ϕ) ≤ C∗

(
‖ϕ‖4(1−θ)/(1−2θ)

Cβ(Ω)
+ E (ϕ)

)
,

for some constant C∗ > 0 independent of time, T > 0 and the initial datum ϕ0. We can then
apply the uniform Gronwall lemma taking advantage of the estimate of Lemma 8.2, as well
as the fact that supt≥2 ‖ϕ (t) ‖Cβ(Ω) ≤ C, for some C > 0 independent of time and ϕ0. This

quickly yields (8.20) and finishes the proof.

Remark 8.6. Note that formulation (2.2) (or its strong form (3.1)) also includes pure phases,
namely constant solutions ϕ = ±1. However, if the initial datum is not a pure phase (i.e. its
total mass belongs to (−1, 1)) then the solution gets separated from pure states in finite time
due to Theorem 8.1. Therefore, it is possible to show that this solution becomes a smooth
solution in finite time in the sense of Definition 3.1. In particular, further uniform-in-time
bounds hold (cf. Remark 3.7).
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