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Neural-based Predictive Control for Safe
Autonomous Spacecraft Relative Maneuvers

Stefano Silvestrini ∗ and Michèle Lavagna†

Polytechnic University of Milan, Via La Masa 34, 20156, Milan, Italy

I. Nomenclature

�## = Artificial Neural Network

�"� = Feature Matching Approach

�#� = Guidance, Navigation and Control

�'! = Inverse Reinforcement Learning

!'## = Layer Recurrent Neural Network

!()" = Long-Short Term Memory

"�'! = Model-based Reinforcement Learning

"!% = Multi-Layer Perceptron

"%� = Model Predictive Control

#�'- = Nonlinear Autoregressive Exogenous Model

&% = Quadratic Programming

'## = Recurrent Neural Network

II. Introduction

Distributed space systems composed of several micro-satellites flying in formation are

becoming increasingly attractive for the space community. As the number of satellites

increases, an unprecedented level of autonomy is required to perform Guidance, Navigation and

Part of the work has been presented at AIAA Scitech 2020 Forum - 6-10 January 2020 - Orlando, FL - Paper 1918
∗PhD Candidate, Department of Aerospace Science and Technology, stefano.silvestrini@polimi.it
†Full Professor, Department of Aerospace Science and Technology, michelle.lavagna@polimi.it



Control (GNC) tasks for formation maintenance and reconfiguration. Model-predictive control

is a powerful control strategy that, if combined with convex programming, guarantees optimality

and closed-loop control for trajectory generation and control actuation. It has already been studied

for distributed reconfiguration [1, 2], nevertheless such planning algorithms are dependent on

the accuracy of the dynamical model and they might fail if the on-board dynamical model does

not include correct gravitational models, perturbations or other nonlinear terms. In order to

maintain a high level of accuracy in the dynamical modelling used for planning, as well as a low

computational effort, there is a need for an adaptive algorithm that can cope with partially known

environment, whose computational burden does not scale linearly with the modelling accuracy.

Classic Reinforcement Learning and meta-Reinforcement Learning have become truly powerful

lately, due to their generalization capabilities. Nevertheless, this paper proposes a different approach

that is based on hybrid solutions, featuring both AI-methods and classical algorithms. One reason is

that classic Reinforcement Learning requires huge and extensive training campaign where thousands

of episodes are presented to the agent to be able to learn the correct actions. The reward drives the

learnt policy so maintaining an analytical structure of the cost function avoids the need for re-training

the agent if the reward was different. In addition, the meta-reinforcement learning approach would

certainly be able to handle the collision avoidance constraint. For instance, Gaudet et al. [3]

demonstrated that the agent learns to quickly adapt to novel control problems by learning over a

wide range of scenarios. Nevertheless, the scenario of distributed collision-free reconfiguration with

different target state may lead to nearly infinite configurations that could challenge the reinforcement

learning paradigm. For this reason, in this work, only one block (dynamics reconstruction) is left to

AI-based method coupling the classical framework.

The proposed Model-Based Reinforcement Learning (MBRL) is developed for controlling a

formation configuration and generating trajectories for distributed reconfigurations. This approach

enables autonomous quasi-optimal reconfiguration in unknown or unmodelled environments as well

as fuel-efficient control strategies for formation maintenance, leveraging the incremental knowledge

of the environment.
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In a distributed architecture no information is globally available to all agents regarding the

planning of each element, therefore each spacecraft needs to predict future maneuvers of potentially

colliding agents. Each spacecraft can only measure the relative state. When an impulsive

reconfiguration is performed, there are no means to estimate the future trajectory of neighboring

spacecraft. Usually, the collision avoidance constraint is enforced by assuming the formation to

evolve naturally or along predefined trajectories, which are known by the system [4, 5]. Such

assumption is quite restricting when dealing with systems that implement a distributed GNC

architecture. The consequence is that the maneuvers may be executed by one spacecraft at a time,

preventing the formation to evolve simultaneously. Two novel approaches are here presented to solve

the shortcoming and enable the formation to maneuver safely and simultaneously, namely Inverse

Reinforcement Learning and Long Short-Term Memory network trajectory forecasting. Inverse

Reinforcement Learning (IRL) is employed for impulsive trajectory prediction of neighbouring

satellites. Such method was originally developed for imitation learning [6], and then extended to

learn demonstrated behaviours and the underlying cost function [7]. Demonstrations of practical

real-world performance with three applied case-studies have been given recently [7, 8]. Concerning

space applications, Linares [9] proposed an approach based on IRL to determine the behaviour

of space objects. The IRL method requires a user-defined cost function structure. Moreover, the

method becomes more accurate as the number of observations and predictions grows. To improve

the capability of the algorithm for short-term scenarios, a complementing method is based on LSTM

recurrent neural networks, which is trained sequentially to predict the temporal behaviour of the

observed states. The algorithm scheme used in this paper is shown in Fig. 1. Concerning the whole

algorithm architecture, the main features are:

• Each spacecraft senses the environment with relative measurements and learns the underlying

dynamics by supervised learning.

• Each spacecraft observes the others, it performs LSTM-IRL and feeds such predictions to the

collision avoidance path constraint used in the MBRL.

• Each spacecraft plans its own reconfiguration trajectory using Model-Based Reinforcement
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Fig. 1 Overall algorithm architecture for neural-based planning and control for collision-
free coordinated spacecraft reconfigurations.

Learning (MBRL), which performs an optimization exploiting the dynamics reconstructed by

supervised learning. The model is encapsulated in an Artificial Recurrent Neural Network

(RNN). The collision avoidance constraint takes as input the predicted trajectory of neighboring

agents.

The justification for this work and the goal of the paper is to develop an algorithm that addresses the

following features:

1) To develop a neural-based reconstruction algorithm for system dynamics identification, which

allow an autonomous spacecraft to refine the on-board dynamical model as it flies, coping

with unmodelled perturbations and nonlinearities. It is achieved by supervised learning of a

Recurrent Neural Network.

2) To develop a planning algorithm that can adapt to the perturbed environments using the

neural reconstructed dynamics. This prevents the failure of traditional algorithms in presence

of unmodelled terms in the dynamical model enhancing the autonomy and flexibility of the

spacecraft. The task is performed using the developed Model-Based Reinforcement Learning

method.

3) To develop a relative trajectories prediction algorithm to ensure collision-free simultaneous

reconfigurations. This is required when coordinated maneuvers are needed, where the

hypothesis of the formation evolution according to natural dynamics does not hold. The
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neighbouring trajectories are predicted by Inverse Reinforcement Learning and Long-Short

Term Memory to guarantee safe reconfigurations.

The paper is structured in four main parts. Section III describes the Model-based Reinforcement

Learning algorithm. Section IV describes the trajectory prediction algorithms for collision-free

maneuvers. Section V presents the results for the numerical validation. Finally, section VI draws

the conclusions.

III. Model-based Reinforcement Learning for Trajectory Planning

A. Spacecraft Formation Dynamics Learning

A Recurrent Neural Network is employed for dynamics reconstruction. Let us assume having

a system that evolves according to the equation ¤x = F (x, u). Furthermore, it is assumed that the

observation is equal to the state for the sake of simplicity, i.e. y = x. The algorithm can easily

be extended to different measurement models by introducing the measurement function ℎ(x) or

its linear matrix version H. The system dynamics can be learned using an Artificial Recurrent

Neural Network (RNN) trained by standard Levenberg-Marquardt back-propagation algorithm. One

effective strategy is to use an analytical model coupled with an ANN to reconstruct uncertain

constant parameters (e.g. spherical harmonics coefficients in [10]). Another approach is to couple

the neural network with an estimation algorithm to reconstruct only the perturbation terms, taking as

basis the linearized natural dynamics [11, 12]. Differently from the above methods, here the whole

dynamics is encapsulated into an Artificial Neural Network. The neural dynamics reconstruction

lies on the theoretical foundation of the universal approximation theorem of Artificial Neural

Networks [13]. Recurrent Networks have the capability of handling time-series data efficiently.

The connections between neurons form a directed graph, which allows an internal state memory.

This enables the network to exhibit temporal dynamic behaviours. When dealing with dynamics

identification, it is crucial to exploit the temporal evolution of the states, hence RNN shows superior

performances with respect to MLP [14]. In detail, a Nonlinear Autoregressive Exogenous Model

(NARX) recurrent network is employed. It is worth remarking that the NARX model uses control
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Fig. 2 Comparison between NARX, LRNN
and MLP dynamical propagation in the
Local-Vertical-Local-Horizontal frame. The
plot demonstrates the superior performance
of RNN for dynamics reconstruction using
coarse initialization training.

Fig. 3 Comparison between pre-trained (of-
fline) and refined (online) network prediction
for N = 100 planning steps.

action as inputs and state as output, given a certain n-delay of the training data. The n-delay of

the training data means that the network is fed with a n-long sequence of precedent states. The

NARX network shown in Fig. 4 is particularly suited for the task, being able to make prediction

when used in closed-loop architecture. Fig. 2 shows the different propagation of the feed-forward

(MLP), a standard Layer-Recurrent Neural Network (LRNN) and the proposed NARX, pre-trained

equally. The reference orbit is a 6 am – 6 pm Sun-synchronous orbit of 775 km altitude, the initial

relative state is Xj = [100 100 200 300 200 0]/0 expressed in Relative Orbital Elements. The

prediction position and velocity accuracy, compared with the analytical unperturbed nonlinear (NL)

and J2-perturbed model (NL-J2), demonstrates the superior performance of recurrent networks

in dynamics reconstruction. The offline pre-trained NARX is constantly updated on-board while

performing operations, as described later (see Eq. 1). Fig. 3 shows the improvement for the same

open-loop prediction of N = 100 planning steps between the pre-trained network (offline) and the

network generated after performing one reconfiguration simulation. It is important to remark that the

prediction reported in Fig. 3 is open-loop, namely a forward propagation, which is not representative

of the closed-loop utilization of the network in the guidance and control algorithm. As the agents
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Fig. 4 Nonlinear Autoregressive Exogenous Model used for on-board dynamical model
reconstruction.

keep performing relative orbital maneuvers the knowledge of the actual dynamics is refined online,

which can be used for a incremental performance planning. The NARX network is a 2-layer, 2-step

delay with the 10− 6 neurons shown in Fig. 4. The process of learning can be initiated off-line based

on one of the well-known relative dynamical model. The pre-training is performed presenting to the

network a set of 1000 trajectories generated using the Clohessy-Wiltshire model. The dynamical

model can be represented as x:+1 = F̃)B (x: , u: ), where the transition matrix is associated to the

sampling time )B. The model is learned using the network Ñ)B trained by back-propagation. In this

paper, the well established Levenberg-Marquardt algorithm is employed for minimizing:

min
w

∑
:

| |Ñ)B (x, u,w) − y:+1 | |2 (1)

where Ñ is the Artificial Neural Network model at the current learning step, hence the dependency

on the weights w. The vector y is the observation vector, here assumed to be equal to the state x.

B. Neural Planning and Control

Model predictive control (MPC) is an optimization-based guidance and control strategy, which

merges the advantage of optimization and closed-loop control [1]. Typically, the objective function

includes the quadratic difference between the target state and the spacecraft state, x: at each time

7



step, and a quadratic term representing the control effort [1], as in Eq. 2.

J (x: , u: ) =
[
(xk+N − x∗k)

T(̂(xk+N − x∗k)+
#−1∑
8=1
(xk+i − x∗k)

T((xk+i − x∗k) +
#−1∑
8=0

uT
k+i'uk+i

]
(2)

where (, ' are positive semi-definite matrices, (̂ is the solution of the Discrete Algebraic Riccati

Equation (DARE), # is the number of prediction steps, : indicates the current time step, 8 the time

steps within the receding horizon. At each time step, the optimization problem can be expressed as:

min
u
J (x: , u: )

subject to xk+i+1 = F̃)B (xk+i, uk+i), i=1,..,#

umin < ui < umax, i=1,..,#

1 − (xp,k+i − xo
j,k+i)

T%(xp,k+i − xo
j,k+i) < 0, i=1,..,N, j=1,..,m, j≠ p

(3)

where : indicates the current time step, 8 the time step within the receding horizon. The last

constraint refers to the collision avoidance and will be thoroughly discussed in Section IV. The

objective function is minimized respecting the dynamics constraint and the maximum thrust limit.

The optimization variable is the control history U: , which is the set of control actions for each time

step within the receding horizon. U: = [u: , ..., u:+#−1] is a stacked vector containing the decision

variables for the optimization problem, namely the control action for each discretization time step.

The Model-Based Reinforcement Learning (or Neural-Model Predictive Control) exploits the neural

dynamics reconstruction presented in section III.A to enhance the robustness, effectiveness and

flexibility of the traditional MPC. The difference is that the dynamical model used in the optimization

is encapsulated in an Artificial Neural Network model. The latter is mathematically tractable, and it

adapts continuously as the spacecraft flies. In its pre-trained form, the AI-model approximates the

linear dynamics (i.e. Clohessy-Whiltshire model). In the MBRL framework, the dynamics used

in the MPC in Eq. 3 is replaced by the neural model NB. Such strategy creates a highly-coupled

learning and planning algorithm that resembles the approach of reinforcement learning but does

not prevent the exploitation of the underlying physics. As anticipated, the controller is extended to
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feature the collision avoidance constraint. The constraint is nonlinear, hence the problem transforms

into a quadratic optimization with nonlinear constraints. In this paper the MBRL is compared with

a traditional MPC controller. The MPC implementation uses the same optimal control problem of

MBRL, namely the same cost function and constraints. The analytical dynamical model used is the

Clohessy-Whiltshire linearized dynamics. Both approaches are solved using sequential quadratic

programming (sqp). The sqp has been selected for the medium-scale problem in the receding

horizon optimization as well as for its efficiency and robustness.

IV. Relative Trajectory Prediction for Collision Avoidance
As stated in section II, one critical task for distributed operation is to safely maneuver avoiding

collision between agents. The distributed architecture does not allow the agents to communicate

their own state, planned trajectories and target position to the other elements of the formation. This

means that when the satellites perform impulsive maneuvers they have no means to predict the

relative trajectories of the other agents. It is critical that, based on few relative observation between

agents, the reconfiguration trajectory of neighboring satellites could be predicted. In this way,

collision avoidance constraints can be taken into account by the each spacecraft’s MBRL algorithm

in the shape of a keep-out-ellipsoid. The path constraint for satellite ? is added as:

1 − (xp,k+i − xo
j,k+i)

T%(xp,k+i − xo
j,k+i) < 0, i=1,..,N, j=1,..,m, j≠ p (4)

where < is the number of agents, : indicates the current time step, 8 the time step within the

receding horizon. The G>
9,:+8 vector is the predicted trajectory derived by the collision avoidance

algorithm. The non-convex constraint in Eq. 4 is convexified by unfolding the ellipsoid into a

tangent plane, as done in previous work [14]. Convex optimization guarantees the convergence

of the algorithm to a global minimum. As the number of satellites grows, the constraint becomes

more challenging to fulfill, given that the set of feasible positions reduces dramatically. Inverse

Reinforcement Learning and Long-Short Term Memory are two methods for generating predictions
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of future trajectories based on few observations. The two approaches were thought to be used

interchangeably, nevertheless, the results will show the benefit of coupling the two algorithms. The

methods addressing the collision avoidance are focused on the prediction of impulsive trajectories

of neighboring agents. The planning itself is carried out by MBRL, aided by the prediction made by

the IRL-LSTM. At each GNC time step, the IRL runs to generate the neighboring agents trajectory

prediction, such prediction is fed to the MBRL that uses the trajectory prediction to incorporate the

convexified collision avoidance constraint.

A. Inverse Reinforcement Learning

In general, the cost function of an optimal control problem for trajectory planning in the horizon

(C, )) can be described as the summation of a running intermediate cost and the terminal state

penalty. The cost function can be recast into a feature-based expression where the cost is a linear

combination of 5 nonlinear features. In principle, each state-control pair can represent a feature.

In this paper the optimizer is described as an optimization over a linear combination of features q,

which represent cumulative cost along feasible trajectories and terminal state penalty. The feasible

trajectories are those respecting optimization constraint and dynamics: the set of state-control

pairs represents a policy c, borrowing a term from the Reinforcement Learning world. Using such

approach, the cost function can be rewritten [6]:

w = [F1, F2, ..., F 5 , F) ]) , `(c) =


{∑)−1

C q(xt, ut)}1,..., 5

q) (xT)

 → cost: J = w) · `(c) (5)

The above formulation is necessary to introduce and discuss the Feature Matching Approach for

Inverse Reinforcement Learning.

1. Feature-Matching Approach

The concept of Inverse Reinforcement Learning is to estimate a cost function that delivers an

optimal trajectory compatible with an expert demonstrated trajectory, called W̃ = {(xt, ut)})C for
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simplicity. The demonstrated trajectory is the reconfiguration path followed by the neighbouring

agents. The estimated cost function translates into trajectories through the application of an optimal

control problem. Such optimal control problem is hand-crafted: in this paper, the MBRL described

above is used as planner, where the control history (i.e. control action for each horizon step) is

the only decision variable. It is important to note that the expert cost function, parametric in the

set of features, is not known, but we assume the demonstration to be optimal for the estimated

one. Each trajectory is generated by a policy c, which characterizes the state-control pairs at each

instant in time, ideally. In detail, given a set of #> observations of the demonstrated trajectory

DW̃ = {(xi, ui)}#>

8=1 we need to find a cost function J , under which the demonstrated trajectory looks

optimal according to the estimated cost function. It means that the demonstrated trajectory is the

result of an optimization of a certain cost function that we want to estimate, namely the expert cost

function. Feature Matching Approach solves for the weights in Eq. 5 by attempting to match the

cumulative feature cost demonstrated by the expert under the optimal policy c̃ and the policy c∗

based on the estimated cost function. The FMA can be expressed in compact form:

J (W̃ |c̃) < J (W |c) → w) · `(c̃) < w) · `(c), ∀W, c (6)

where it is stated that the demonstrated trajectory is optimal with respect to the estimated cost

function. The demonstrated trajectory owns significant information about the structure of the cost

function, hence the algorithm significantly benefits if the discrepancy between estimated optimal

trajectory and expert one is integrated in the optimization [15, 16]. Loss augmentation represents a

cost gap structured margin: LW̃ (c) =
∑#>

8=1 | |x̃8 − x8 | |2. By inserting the loss augmentation in Eq. 6

we obtain the expression for the FMA for IRL:

min
w
| |w| |2

subject to w) · `(c̃) < w) · `(c) − LW̃ (c)
(7)
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Eq. 7 represent a convex optimization. Nevertheless, the set of policies the algorithm sweeps is

theoretically not finite. This makes the optimization intractable, in particular for computational

constraints of several interesting applications in spacecraft GNC. We may suppose that there exists a

policy c∗ that minimizes the right-hand side of the constraints in Eq. 7. Then, the constraints in

Eq. 7 can be written as w)`(c̃) < min
c
{w)`(c) − LW̃ (c)} without any loss of generality. We can

place the constraint into the cost function. This yields an unconstrained optimization, which can be

solved using gradient-based algorithms:

min
w

[

2
| |w| |2 +

(
w)`(c̃) − min

c
{w)`(c) − LW̃ (c)}

)
(8)

where [ is a user-defined coefficient. The FMA-IRL is actually a nested optimization problem. The

outer loop is unconstrained, whereas the inner loop, which is a path-planning optimization, may be

constrained, both linearly and non-linearly. The cumulative feature cost for the formation spacecraft

trajectories can be expressed as:

`(c) =



X)
:
SBX:

U)
:
RAU:

(�X: )) Ŝ(�X: )


(9)

where X: , U: , SB and RA are the stacked vectors and matrices to shorten the summation in Eq. 5.

Note that no target state guess is inserted, making the formulation insensitive to such parameter. The

target state guess is a-priori estimation of the target state, i.e. the objective state of the formation.

From Eq. 9, the weights vector is w = [FB, FA , F B̂]) .

2. Inner Loop: Fast QP-Model Predictive Control

The nested optimization resulting from the FMA for trajectory prediction relies on an inner loop,

calculating the trajectory generated by the estimated cost function. The inner policy evaluation is

performed using a fast MPC recast in QP formulation. Such strategy allows a rapid convergence
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of the inner loop, limiting the computational burden of the whole algorithm. In particular, the

MPC resembles the architecture presented in Section III with the additional term entailing the gap

structured margin LW̃ (c). The proposed implementation uses the Clohessy-Whiltshire linearized

natural dynamics for state prediction. In general, this approach can be extended to a neural

reconstructed dynamics. The QP formulation is:

min
U:

1
2

U)
:QU: + HU:

subject toVU: <W
(10)

where U: = [u: , ..., u:+#−1] is a stacked vector containing the decision variables for the optimization

problem, namely the control action for each discretization time step. The matrices of the QP

formulation can be written as Q = 2FARA + 2F B̂Ω)SB̂Ω − 2ΩP?Ω andH = 2x̂)
:
ΨSB̂Ω + 2XWP?Ω,

where XW is the stacked vector of the demonstrated trajectory, P? is a stacked identity matrix. The

matrices Ω and Ψ represent the stacked state transition matrix and control matrix for the linearized

relative dynamics. The demonstrated trajectories for each agent is generated using the MBRL

approach. Each agent demonstrates its own trajectory to all the other elements of the formation.

3. Outer Loop: Unconstrained Optimization

The cumulative feature cost is a function of the policy, which is basically the sequence of control

action output of the MBRL. The inner loop generates an optimal policy (control action sequence)

based on the current estimate of the cost function (current weights). The optimal policy is used

to calculate the cumulative feature cost used in Eq. 8. The outer loop is a convex unconstrained

minimization problem that can be solved by quasi-newton methods with gradient descent. In the

proposed implementation, the gradient reads ∇F = [w + (`(c̃) − `(c)), which completes the

FMA-IRL algorithm.
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B. Neural-Sequential Trajectory Forecasting

The trajectory prediction for collision avoidance based on IRL is a promising algorithm, which

delivered good results during the numerical validation test campaign. Although being simple and

effective, IRL presents two drawbacks for working out the delicate task:

• the cost features have carefully been designed by analyzing the dynamics of the spacecrafts. In

particular, it is assumed that all the spacecrafts executes the formation reconfiguration using

an MBRL algorithm with the same cost function.

• the unknown cost function is assumed to be quadratic in the control effort, hence it is required

at least an estimate of the observed control thrust impulse. A possible way to solve this issue

is approximating the control term by a discrete velocity differential between two subsequent

observations, provided that they are close in time.

As stated above, Recurrent Networks have the capability of handling time-series data efficiently.

From this premises, the use of RNN can be extended also for trajectory identification of neighbouring

satellites. Differently from the dynamics reconstruction used inMBRL, the network for neighbouring

satellites, does not need the control input, since it tries to estimate the future trajectory by only

observing the relative state. The type of recurrent neural network used for neighbouring satellites

trajectory prediction is a Long Short-Term Memory network [17]. The LSTM network is used for

on-board prediction of future state given the observed trajectory history (i.e. observed relative

measurements). In this paper, a sequence of observed relative states is used to perform the

online training. As the number of observations grows, the prediction becomes more accurate,

nevertheless even limited observations (e.g. as low as 10) guarantee an acceptable prediction for the

short-term horizon. The LSTM can be trained to make predictions based on time sequence data.

Given the demonstrated trajectory W̃ = {(xt, ut)})C , where we neglect the control ut, the proposed

sequential supervised learning is performed by feeding the network with the gathered input states

and compared with the same states shifted of one time step: namely x8=,!()" = {W̃}(C,C+(#−1)·)B) ,

y>DC,!()" = {W̃}(C+)( ,C+# ·)B) . In order to obtain a more robust fit and to prevent the training from

diverging, it is required to standardize the training data to have zero mean and unit variance.
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Finally, the complete algorithm reads as Algorithm 1.

Algorithm 1Model-Based Reinforcement Learning with Collision-Avoidance Prediction
1: Pre-train system description through dynamical model x:+1 = Ñ (x: , u: ) , : discretized time step
2: Acquire target position x∗
3: while x: ≠ x∗ do
4: Observe system state at time :: x:
5: Acquire formation geometry: x8 − x: ∀8 = 1, .., <, < number of spacecraft in the formation
6: Execute trajectory prediction of neighboring agents (IRL-LSTM)
7: Generate predictions of future states -? of neighboring agents
8: Solve Optimal Control Problem with cost J(x: , u: ) using neural-dynamics Ñ for # time steps, including -? in the collision avoidance

constraint
9: Execute u:

10: Observe system state at time instant : + 1 and perform incremental learning of Ñ
11: end while

V. Numerical Simulations and Results
The proposed algorithm architecture is reported in Fig. 1 and tested in two application scenarios,

representative of in-plane and out-of-plane relative reconfiguration. The selected scenarios are tight

formations with 1 N thrust limit, requiring constant relative position and velocity control to satisfy

the strict requirements on relative states. The error with respect to the target state is indicated as

f? = ‖x − x∗‖. The numerical simulations features:

• Each spacecraft plans its own trajectory using the MBRL algorithm. The planner entails a

collision avoidance constraint in the optimization scheme. The Guidance & Control sample

time is 60 B. Each spacecraft measures only the relative state of all the other agents of the

formation. The predicted trajectories of each neighbouring satellites is delivered by the LSTM

and IRL algorithms and is fed to the constrained MBRL.

• The true dynamics used to carry out simulations is a fully nonlinear J2-perturbed relative

model with respect to the reference orbit reported in Tab. 2.

• The simulation is stopped when the target configuration is reached, i.e. when position and

velocity errors are below 10 < and 0.1 <
B
, respectively.

A summary of the employed neural networks is reported in Tab. 1
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Table 1 Artificial Neural Networks used in MBRL and collision-avoidance specifications.

Type NARX LSTM

Number of Layers 2 (2-delay) 2
Type of Layers tanh-lin sequential-lstm
Hidden Units 10+6 100
Input Size 3 (DG , DH, DI) 3 (G, H, I)
Output Size 6 3

Table 2 Reference Orbit - Orbital Elements.

ℎ [km] 4 [-] 8 [>] l [>] Ω [>] \ [>]

775 0.01 98 0 0 0

A. In-Plane Maneuver

Three satellites fly in rigid formation, i.e. a formation in which the relative distances and

orientation among the satellites remain fixed. The aperture plane is perpendicular to the orbital

plane. The initial condition consists in the three satellites at the vertices of an equilateral triangle of

13 m side lying on y-z plane. Yaw rotations of the aperture plane are possible as long as the relative

formation between the arrays is kept. The numerical results for a yaw rotation of 30◦, shown in

Fig. 5, are reported in Tab. 3. For close reconfiguration, the MBRL outperforms the traditional MPC

both in terms of fuel consumption and time of flight, as reported in Tab. 3. The required ΔE is ∼ 5%

lower when using MBRL. It is interesting to test the algorithm in a hypothetical scenario where the

relative distances are two order of magnitude larger. The difference in accuracy and required ΔE

between the compared algorithms becomes more significant, as shown in Fig. 6. This is due to the

Table 3 ΔE and time of flight for MBRL and MPC.

FR MBRL MPC

SC1 SC2 SC3 SC1 SC2 SC3

ΔE) [<
B
] 1.2 1.0 1.0 1.3 1.1 1.1

Time of Flight [B] 600 600 600 660 660 660
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Fig. 5 Formation reconfiguration following
30◦ yaw rotation of the synthetic aperture.

Fig. 6 Large reconfiguration following 30◦
yaw rotation of the synthetic aperture.

fact that nonlinearities become more and more relevant as the formation grows in size. The MBRL

utilizes the neural reconstructed dynamics that captures these unmodelled terms.

B. Out-of-Plane Maneuver

The cross-track formation can be achieved by fixing the relative position or exploiting natural

relative orbits, which owns a cross-track harmonic motion. The relative orbital elements, in

particular X4 and X8 completely defines the central bounded relative orbit [18, 19]. The simulated

reconfiguration is a transfer between two cross-track relative orbits with parallel and perpendicular

relative inclination/eccentricity vector, namely from %e ⊥ %i to %e ‖ %i with 0X8 = 0X4 = 2 :<.

In such reconfiguration, far from the target, the MPC fails in trajectory control and the controller

diverges, whereas MBRL completes the reconfiguration using ΔE ∼ 30 <
B
, as shown in Fig. 7. The

MPC failure is due to the large distance and the cross-track requirement, which is different from the

other test cases. Nevertheless, if one could know beforehand the environment, the MPC could be

tuned to solve the reconfiguration successfully. The main point is that, if an MPC scheme (with its

associated tuned parameters) is used without modifications in all the scenarios, the output can fail

given the low-adaptivity. The MBRL still uses the same tuning for all the scenarios presented but it

is still able to perform all the reconfigurations successfully.
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Fig. 7 Cross-track reconfiguration from %e ⊥ %i to %e ‖ %i with 0X8 = 0X4 = 2 :<.

C. Collision Avoidance Algorithms

Two algorithms have been presented to cope with the lack of knowledge on the neighbouring

satellites trajectories while performing reconfiguration. If the formation is reconfiguring using

impulsive maneuvers the zero-impulse natural dynamics is no longer valid, indeed the keep-out-zone

limit may often be intersect, violating the constraint due to wrong trajectory prediction. Fig. 8 shows

a challenging reconfiguration where the spacecraft swap the along track positions separated by

200 <. As shown, the relative distance between the satellites falls below the Keep-Out-Zone limit

of 100 < when the prediction of neighbouring agents is carried out using natural dynamics. On the

other hand, coupling the MBRL planner with an impulsive trajectory identification algorithm, such

as IRL, allows a safe reconfiguration.

The comparison simulation consists of a sample of N> observation of a neighbouring satellite’s

trajectory. These observation are processed by the IRL algorithm to approximate a cost function,

whose optimization delivers a predicted trajectory shown in Fig. 9. Simultaneously, the observations

are used to train the LSTM network, which predicts future states. The number of prediction is set

to N? = 5, whereas N> = 10. The two algorithms are beneficial with respect to natural dynamics

prediction for controlled reconfiguration, used in literature. The prediction accuracy for the proposed

architecture is < 10 < compared to ∼ 100 < if using prediction based on the system natural

dynamics evolution. A more comprehensive analysis has been conducted to map the behaviour
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Fig. 8 Close intersecting reconfiguration. The relative distances between the agents are
shown. MBRL-ND coupled with natural dynamics prediction for collision avoidance violates
the constraints during close approach.

Fig. 9 Neighbouring satellite’s trajectory. Predicted trajectories based on IRL, LSTM and
natural dynamics are shown in colored dots. The error plot is shown on the right.

19



Fig. 10 Map of RMS error of the neighbouring agent trajectory prediction based on CW-
model, IRL algorithm and LSTM, left to right, as a function of the number of observations
and predictions.

of the algorithm for different combination of N? and N> in the same scenario described before.

Fig. 10 shows the difference in the presented algorithms. On one hand, short-horizon predictions

based on few observations are better resembled using LSTM. On the other hand, the IRL accuracy

is higher when a larger observation set is used. A combination of the two approaches may be the

best solution. The simulations are run using a Laptop computer using Intel(R) Core(TM) i7-6500U

CPU@2.50GHz. The computational time is very limited for IRL ∼ 1 B, whereas the network takes

approximately ∼ 2.5 B to perform the training. The computational burden scales linearly with the

number of satellites, given that each trajectory prediction is based on disjoint sets of observations.

Nevertheless, as mentioned in Section IV, a large number of collision avoidance constraints (one

for each agent) poses threats to the algorithm convergence. All the numerical routines can be

optimized for on-board implementation. One important remark is that Recurrent Neural Networks

currently lack deep support for the implementation on space-grade boards, thus it is expected that

the computational loads results may significantly improve.

VI. Conclusion
This paper presents an innovative strategy for the guidance and control of distributed formation

solving the shortcomings that arise from the incomplete representation of the dynamical environment

as well as the lack of knowledge of future trajectories of neighbouring satellites during coordinated

maneuvers. The trajectory and control is generated using a Model-Based Reinforcement Learning
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(MBRL) approach. Two algorithms, namely Inverse Reinforcement Learning (IRL) and Long-

Short-Term Memory (LSTM) network, are explored to guarantee collision-free operations. Inverse

Reinforcement Learning (IRL) reconstructs the cost function of each agent and predicts trajectories

of concurring agents during the reconfiguration. The second method exploits a Long Short-Term

Memory recurrent network to capture the dynamics and predict the trajectory. In this way, both

natural and thrust dynamics is managed when enforcing the collision-avoidance constraint. Long

Short-Term Memory demonstrated more accurate predictions for the short-term horizon whereas

Inverse Reinforcement Learning for the longer term. This result leads to the conception of a coupled

architecture where the first prediction is given by the Long Short-Term Memory and the successive

by the Inverse Reinforcement Learning. The results show that the proposed algorithms perform

correctly and solve reconfiguration scenario that are challenging, or even fatal, for traditional

algorithms. Being computationally light, online Neural Network aided algorithms can be deployed

in micro-satellites, where the computational power is limited. Also, the algorithms adapt to the

environment capturing the unmodelled terms delivering successful control where traditional and not

adaptive algorithms may fail.
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